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Graphene on transition-metal dichalcogenides: A platform for proximity spin-orbit
physics and optospintronics
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Hybrids of graphene and two-dimensional transition-metal dichalcogenides (TMDCs) have the potential to
bring graphene spintronics to the next level. As we show here by performing first-principles calculations of
graphene on monolayer MoS2, there are several advantages of such hybrids over pristine graphene. First, Dirac
electrons in graphene exhibit a giant global proximity spin-orbit coupling, without compromising the semimetallic
character of the whole system at zero field. Remarkably, these spin-orbit effects can be very accurately described
by a simple effective Hamiltonian. Second, the Fermi level can be tuned by a transverse electric field to cross the
MoS2 conduction band, creating a system of coupled massive and massless electron gases. Both charge and spin
transport in such systems should be unique. Finally, we propose to use graphene/TMDC structures as a platform
for optospintronics, in particular, for optical spin injection into graphene and for studying spin transfer between
TMDCs and graphene.
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I. INTRODUCTION

Graphene spintronics [1] has relied exclusively on elec-
trical spin injection [2–4]. Combining graphene with semi-
conducting two-dimensional transition-metal dichalcogenides
(TDMCs) [5] can open new venues for spintronics appli-
cations [6,7]. Indeed, TMDCs are becoming increasingly
popular in optoelectronics as sensitive photodetectors [8] or,
forming lateral heterostructures [9,10], as two-dimensional
(2D) solar cells [11]. Important, TMDCs have a sizable
spin-orbit coupling and lack space inversion symmetry. As
a result, their band structure [12] allows for a valley-resolved
optical spin excitation by circularly polarized light [13–15].
TMDCs can thus facilitate optical spin injection into graphene,
in hybrid structures.

Efficient growth of MoS2 on graphene has already been
demonstrated [16–18]. It was reported that graphene on MoS2

is ultraflat, having large mean free paths [19]; angle-resolved
photoemission found an intact Dirac point but a strong
hybridization elsewhere in the π system [20]. Technological
potentials for these hybrid structures are already being dis-
cussed [21], mainly as a basis for nonvolatile memory [22],
sensitive photodetection [23], and gate-tunable persistent pho-
toconductivity [24]. Recently, the spin Hall effect in graphene
on few-layer WS2 was observed at room temperature [25].

In this paper we establish, by first-principles calculations,
fundamental electronic properties and the spin-orbit fine struc-
ture of the graphene Dirac bands for graphene on monolayer
MoS2, and introduce an effective spin-orbit Hamiltonian which
explains the proximity induced spin splittings of the Dirac
states. We show that the induced spin-orbit coupling is giant,
being 20 times more than in pristine graphene. We also discuss
the field effect on the band offsets of the two materials. Finally,
we present possible experimental schemes to perform optical
spin injection into graphene and study spin tunneling from
TMDCs through graphene.

II. FIRST-PRINCIPLES RESULTS

To establish the electronic and spin properties of graphene
on MoS2 we used first-principles methods based on density-

functional theory [26]. Structural relaxation and elec-
tronic structure calculations were performed with QUANTUM

ESPRESSO [27], using norm conserving pseudopotentials with
a kinetic energy cutoff of 60 Ry for wave functions. For
the exchange-correlation potential we used the generalized
gradient approximation [28]. To reduce structural strain we
constructed a large supercell of 59 atoms, comprising a 3 × 3
supercell of MoS2 and a 4 × 4 supercell of graphene, with
a residual lattice mismatch of 1.4%. Atomic positions were
relaxed using the quasi-Newton algorithm based on the trust ra-
dius procedure, including the van der Waals interaction, which
was treated within a semiempirical approach [29,30]. The re-
laxed interlayer distance between graphene and MoS2 is 3.37 Å
[see Fig. 1(a)]. Such a quasicommensurate superstructure of
TMDC has been grown on highly oriented pyrolytic graphite
(HOPG) [31]. In this supercell the K point of MoS2 is mapped
to the � point in the reduced Brillouin zone. The calculated
electronic band structure is shown in Fig. 1(b). The Dirac cones
of graphene are nicely preserved, with the projected Dirac
point (which is also the Fermi level) being slightly below the
conduction band edge of MoS2. The closeness of the Dirac
point to the conduction band of MoS2 enhances screening,
which can substantially increase the mean free path in the
graphene layer, as recently shown experimentally [19]. We
note that use of the dipole correction [32] turned out to be
crucial to get proper band offsets between the Dirac point and
the conduction band minimum of MoS2. The reduced Brillouin
zone was sampled with 12 × 12k points.

The band offsets between graphene and MoS2 can be
controlled by an external electric field applied transverse to
the layers [33]. This is demonstrated by our first-principles
calculations in Fig. 2(a), where we present �c, the difference
between the conduction band minima of MoS2 and graphene.
At negative fields (pointing towards MoS2) the offset increases,
leaving both layers neutral. However, positive fields shift the
Dirac point above the conduction band minimum of MoS2 and
populate graphene with holes and MoS2 with electrons. The
Fermi level crosses both the valence band of graphene and
the conduction band of MoS2 [see Figs. 2(b) and 2(c)]. This
field effect can establish a unique system in which massless
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FIG. 1. (Color online) Calculated electronic and spin properties
of graphene on two-dimensional MoS2. (a) The supercell used in
first-principles calculations. (b) Calculated band structure along high
symmetry lines. The inset is a zoom to the fine structure of the low
energy bands at the Fermi level, around the Dirac point. Bands with
a positive (negative) z component of the spin are shown in red (blue).
The sublattice character (A and B) is also indicated. (c) Spin textures
for the four bands of the inset in (b).

Dirac electrons are coupled with a conventional 2D electron
gas [34].

We now zoom in on the Dirac point at K to see how the
electronic spectrum of graphene deforms in the presence of
MoS2. This fine structure is shown in the inset to Fig. 1(b).
There are two important effects: First, an orbital band gap
opens, due to the breaking of the graphene pseudospin sym-
metry. On average, atoms A and B in the graphene supercell
see a different environment coming from the MoS2 layer. This
orbital gap is there even in the absence of spin-orbit coupling.
It arises from the effective staggered potential induced by the
pseudospin symmetry breaking. Second, spin-orbit coupling
combined with the broken space inversion symmetry lifts
the spin degeneracy of the Dirac valence and conduction
bands and leads to the appearance of four distinct bands. This
splitting is on the meV scale, which is giant when compared
to the 24 μeV spin-orbit splitting in pristine graphene [35].
The inset also shows the orbital character of the bands at
K: While the valence states are formed at the B sublattice,
the conduction states live on A. The same orbital ordering is
at K ′.

Another important characteristic of the Dirac states is their
spin texture. This is plotted in Fig. 1(c) for the four bands from
the inset of Fig. 1(b). Directly at K the spins are pointing out
of the graphene plane, alternating up and down. Increasing
the momentum away from K , the spins acquire a winding
in-plane component, either clockwise or counterclockwise,
suggestive of the strong Rashba effect. At K ′ the spins are
reversed.
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FIG. 2. (Color online) Field effect on graphene/MoS2. (a) Cal-
culated offset �c from the conduction band minimum of MoS2 to
graphene, as a function of an applied transverse electric field. At
positive fields electrons are transferred from graphene to MoS2,
establishing a massless-massive electrons bilayer. (b) Net Fermi
energy for graphene, as the difference of the valence band maximum
Egv of graphene and the system Fermi level EF. At positive fields the
valence band of graphene becomes populated. (c) Net Fermi energy
for MoS2, as the difference between the system Fermi level EF and
the conduction band minimum Ec of MoS2. The conduction band of
MoS2 becomes populated at positive field, reflecting the population
of holes in graphene in (b) as the whole system is neutral.

III. EFFECTIVE HAMILTONIAN

Can we understand these proximity-induced changes in
graphene’s band structure from an effective model? The
answer is not obvious since not only do sublattices A and B

differ, but even the sites that belong to the same sublattice see
different local environments in the supercell. Surprisingly, an
effective symmetry-based Hamiltonian with graphene orbitals
in the presence of pseudospin inversion symmetry breaking
gives a remarkably good description. The model builds on the
orbital Hamiltonian for pristine graphene which, close to K

(K ′) points, is

H0 = �vF(κσxkx + σyky). (1)

Here, vF is the Fermi velocity of graphene, kx and ky

are the Cartesian components of the electron wave vector
measured from K (K ′), parameter κ = 1 (−1) for K (K ′),
and σx and σy are the pseudospin Pauli matrices acting on the
two-dimensional vector space formed by the two triangular
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sublattices of graphene. Hamiltonian H0 describes gapless
Dirac states with the conical dispersion ε0 = ν�vF|k| near the
Dirac points; ν = 1 (−1) for the conduction (valence) band.

The staggered potential describing the effective orbital
energy difference on A and B sublattices of graphene on MoS2

enters via the Hamiltonian,

H� = �σzs0, (2)

where σz is the pseudospin Pauli matrix and s0 is the unit spin
matrix; � is the proximity induced gap of the Dirac spectrum.
Another consequence of the pseudospin inversion asymmetry
is the sublattice-resolved intrinsic spin-orbit coupling. Indeed,
the intrinsic coupling acts solely on a given sublattice: It is
a next-nearest-neighbor hopping [36]. We describe it in our
model with parameters λA

I and λB
I for sublattices A and B,

respectively. The corresponding proximity induced spin-orbit
coupling Hamiltonian close to K (K ′),

HSO = λA
I [(σz + σ0)/2]κsz + λB

I [(σz − σ0)/2]κsz, (3)

is a generalization of the McClure-Yafet Hamiltonian for
graphene [1,37]. A similar Hamiltonian has been derived
for hydrogenated graphene where pseudospin symmetry is
explicitly broken [38]. We denote by sz the spin Pauli
matrix, while by σ0 the unit matrix acting on the pseudospin
(sublattice) space. If λA

I = λB
I , the main effect of the intrinsic

spin-orbit coupling is to enhance the anticrossing of the pristine
graphene Dirac cones [35], leaving the spin degeneracy intact.
However, if λA

I �= λB
I , as in our case, the spin degeneracy gets

lifted by this intrinsic term already, reflecting the loss of space
inversion symmetry.

Placing graphene on MoS2 also breaks the lateral mirror
symmetry, giving rise to the Rashba type spin-orbit cou-
pling [36],

HR = λR(κσxsy − σysx), (4)

where λR is the Rashba parameter and sx,sy are the spin Pauli
matrices. In the hopping language, the Rashba coupling is the
nearest-neighbor spin-flip hopping, contributing further to the
spin splitting of the bands, and defining the spin quantization
axis for each Bloch state, away from the time reversal points
� and M .

Hamiltonian H0 + H� + HSO + HR fully describes
graphene’s bands at K (K ′). Its eigenenergies are

ενμ = 1 + νμ

2

[
ν� + 1 + ν

2
λA

I + 1 − ν

2
λB

I

]

− 1 − νμ

4

[
λA

I + λB
I − ν

√(
2� − λA

I + λB
I

)2 + 16λ2
R

]
,

(5)

where μ = 1 (−1) for spin up (down) branches. The expecta-
tion values of the spin along z for the corresponding states are
given by

〈sz〉νμ

= μκ�

2

⎡
⎣1 + νμ

2
+ 1 − νμ

2
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FIG. 3. (Color online) Calculated effective Hamiltonian parame-
ters at the K point: (a) Hybridization gap �, (b) sublattice-resolved
intrinsic spin-orbit coupling λA

I and λB
I (they have opposite signs),

and (c) Rashba parameter λR, as functions of the applied transverse
electric field.

Using the formulas for the eigenenergies, Eq. (5), and for
the spin expectation values, Eq. (6), we can algebraically
extract the orbital band gap � and the three spin-orbit
parameters λA

I , λB
I , and λR by comparing to our first-principles

data for the fine structure at K [see the inset to Fig. 1(b)]. The
extracted parameters are shown in Fig. 3 as a function of the
applied transverse electric field. The orbital proximity gap � is
about 0.5 meV in zero field. In fields greater than 0.5 V/nm, the
gap exhibits a steep increase, which is related to the transfer of
the electronic charge from graphene to MoS2 (see Fig. 2). The
proximity spin-orbit parameters in Figs. 3(b) and 3(c) are about
0.2 meV, which is 20 times more than in pristine graphene [35].
Similar giant values of spin-orbit coupling in graphene are
induced by hydrogen adatoms [38–40], and even more by
fluorine [41], though the mechanisms are different. Unlike
in the adatom cases in which the induced spin-orbit coupling
is only local, in our case the giant coupling is global. While
the intrinsic parameters λA

I and λB
I change rather moderately

with applying the electric field, the Rashba parameter λR [see
Fig. 3(c)] more than doubles in increasing the field from −2 to
2 V/nm.

What is the origin of the induced giant spin-orbit coupling
in graphene on MoS2? We trace the enhancement to the
hybridization of the carbon orbitals with the d orbitals of Mo.
We find only 0.3% of d orbitals at the K point by analyzing
the calculated density of states. But when we turn off the
spin-orbit coupling on Mo atoms in the supercell, the orbital
gap in zero field remains almost unchanged (� = 0.506 meV),
while the spin-orbit parameters drop to their pristine graphene
values λA

I = 24 μeV, λB
I = 23 μeV, and λR = 10 μeV, which

are, curiously, also determined by d orbitals, but from carbon
atoms [35].

Away from K (K ′), the spin splittings depend on the
momentum. In order to describe our first-principles data,
we add the pseudospin inversion asymmetry (PIA) spin-orbit
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coupling term [38] which, as the intrinsic coupling, rep-
resents the next-nearest-neighbor hopping, but with a
spin flip. The full model Hamiltonian describes the data
perfectly [42].

Although our effective model should capture the basic
physics of graphene on TMDCs, the extracted parameters are
for the specific supercell of graphene on MoS2. Certainly,
taking an even larger cell that could further reduce strain, or
twisting the two layers as could happen in experiments, would
lead to a different set of parameters, although the orders of
magnitudes would likely stay. In a macroscopic experimental
structure we expect moiré patterns which would transform
our Hamiltonian into a Hamiltonian density, with an orbital
gap and spin-orbit fields, perhaps even averaging some of the
parameters (such as � and the difference between λA

I and
λB

I ) to zero. Our extracted parameters can then be viewed as
effective standard deviations of the spatial variations, suitable
as input for charge and spin transport model calculations for
such samples. We also expect that graphene on TMDCs could
produce superlattice features as in graphene on hexagonal
boron nitride (hBN) [43].

IV. OPTOSPINTRONICS

We propose graphene-TMDC hybrids, such as the one
studied above based on MoS2, as an ideal platform for
optospintronics. In Fig. 4(a) we give an optical spin injection
scheme into graphene. A circularly polarized light, tuned to
the band gap of TMDC, excites electron spins by optical
orientation [6,44]. In effect, the light produces spin-polarized
excitons which dissociate into spin-polarized electrons and
holes. As in the recent optical experiment [24], we expect
that electrons will be transferred to graphene, leaving holes
behind in TMDC, although in which way electrons and
holes split may depend on the TMDC material as well as
on gating. The spin-polarized electrons (or holes) diffuse
in graphene. One can detect this spin accumulation either
optically, by observing a circular polarization of the pho-
toluminescence [44] elsewhere in graphene on TMDC, or
electrically, or using Kerr spectroscopy [45]. The latter is
illustrated in Fig. 4(a): A ferromagnetic electrode on top of
graphene detects the presence of the spin accumulation in
graphene [6,7]. Spin precession in graphene can be observed
as the Hanle signal (which is not possible to see in the spin-
valley coupled TMDC [46]), by applying an external mag-
netic field transverse to the injected spin, providing Larmor
precession [7].

Spin transport per se in graphene-TMDC bilayers should
be fascinating. The presence of the giant, effectively uniform
spin-orbit fields should give large spin Hall signals, even
greater than in hydrogenated graphene [40]. Most important,
as our calculations show, the spin, as the charge, properties
of these structures are expected to be highly field tunable.
The fascinating prospect of realizing the massive-massless
electron gas coupling of the two electron gases, if the Fermi
level is positioned in both band structures, calls for new
theories of spin transport and spin relaxation in such hybrid
systems.

To demonstrate spin tunneling from a TMDC through
graphene one could use a sandwich structure, as pictured

FIG. 4. (Color online) Optospintronic schemes for graphene-
TMDC hybrids. (a) Optical spin injection into graphene, facilitated
by the semiconducting TMDC. A circularly polarized light excites
spin-polarized electrons in the semiconductor. The spin is transferred
to graphene where it can be detected as a Hanle signal by the
ferromagnetic electrode. (b) Spin transfer between two different
TMDCs, encapsulating graphene. Circularly polarized light tuned
to the band gap of the top material excites electron spins which
can tunnel to the lower material, exhibiting a circular luminescence
peaked at its band gap frequency.

in Fig. 4(b). The two semiconductors have different band
gaps, allowing one to discern the photoluminescence signals
from the top and bottom layers. If the spin pumping light
is tuned to the band gap of the top layer, the spin-polarized
carriers would be excited there and would tunnel through
graphene to the bottom layer, in which they would recom-
bine and emit circularly polarized light with the frequency
characteristics of the bottom material. One can envision influ-
encing the signal with a transverse magnetic field, allowing
for a Hanle effect. Another possibility is to measure the
accumulated spin in the bottom layer using the magneto-
optical Kerr effect, as in recent experiments on monolayer
MoS2 [47].

V. CONCLUSION

We have established, by first-principles calculations, a
strong effect of MoS2 on the spin properties of graphene,
predicting a giant and field-tunable proximity spin-orbit
coupling for Dirac electrons. We have introduced an effective
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spin-orbit Hamiltonian to describe the electronic states around
the Fermi level, fitting perfectly the first-principles data. We
have also showed that gating can tune the band offsets of
the two layers, allowing one to realize a unique system of
coupled massless and massive electron gases. Finally, we have
proposed to use graphene on TMDCs as a platform for op-
tospintronics with graphene-based two-dimensional material
structures.
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