
University of Wollongong University of Wollongong 

Research Online Research Online 

Australian Institute for Innovative Materials - 
Papers Australian Institute for Innovative Materials 

1-1-2014 

Graphene oxide dispersions: tuning rheology to enable fabrication Graphene oxide dispersions: tuning rheology to enable fabrication 

Sina Naficy 
University of Wollongong, snaficy@uow.edu.au 

Rouhollah Jalili 
University of Wollongong, rjalili@uow.edu.au 

Seyed Hamed Aboutalebi 
University of Wollongong, sha942@uowmail.edu.au 

Robert A. Gorkin III 
University of Wollongong, rgorkin@uow.edu.au 

Konstantin Konstantinov 
University of Wollongong, konstan@uow.edu.au 

See next page for additional authors 

Follow this and additional works at: https://ro.uow.edu.au/aiimpapers 

 Part of the Engineering Commons, and the Physical Sciences and Mathematics Commons 

Recommended Citation Recommended Citation 
Naficy, Sina; Jalili, Rouhollah; Aboutalebi, Seyed Hamed; Gorkin III, Robert A.; Konstantinov, Konstantin; 
Innis, Peter C.; Spinks, Geoffrey M.; Poulin, Philippe; and Wallace, Gordon G., "Graphene oxide dispersions: 
tuning rheology to enable fabrication" (2014). Australian Institute for Innovative Materials - Papers. 1149. 
https://ro.uow.edu.au/aiimpapers/1149 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/aiimpapers
https://ro.uow.edu.au/aiimpapers
https://ro.uow.edu.au/aiim
https://ro.uow.edu.au/aiimpapers?utm_source=ro.uow.edu.au%2Faiimpapers%2F1149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Faiimpapers%2F1149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Faiimpapers%2F1149&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/aiimpapers/1149?utm_source=ro.uow.edu.au%2Faiimpapers%2F1149&utm_medium=PDF&utm_campaign=PDFCoverPages


Graphene oxide dispersions: tuning rheology to enable fabrication Graphene oxide dispersions: tuning rheology to enable fabrication 

Abstract Abstract 
Here, we show that graphene oxide (GO) dispersions exhibit unique viscoelastic properties, making them 
a new class of soft materials. The fundamental insights accrued here provide the basis for the 
development of fabrication protocols for these two-dimensional soft materials, in a diverse array of 
processing techniques. 

Keywords Keywords 
fabrication, enable, graphene, rheology, oxide, tuning, dispersions 

Disciplines Disciplines 
Engineering | Physical Sciences and Mathematics 

Publication Details Publication Details 
Naficy, S., Jalili, R., Aboutalebi, S. Hamed., Gorkin III, R. A., Konstantinov, K., Innis, P. C., Spinks, G. M., 
Poulin, P. & Wallace, G. G. (2014). Graphene oxide dispersions: tuning rheology to enable fabrication. 
Materials Horizons, 1 (3), 326-331. 

Authors Authors 
Sina Naficy, Rouhollah Jalili, Seyed Hamed Aboutalebi, Robert A. Gorkin III, Konstantin Konstantinov, Peter 
C. Innis, Geoffrey M. Spinks, Philippe Poulin, and Gordon G. Wallace 

This journal article is available at Research Online: https://ro.uow.edu.au/aiimpapers/1149 

https://ro.uow.edu.au/aiimpapers/1149


 
 
 
 
 
 

 

Graphene Oxide Dispersions: Tuning Rheology to 
Enable Fabrication 

  

Sina Naficy‡ a, Rouhollah Jalili‡ a, Seyed Hamed Aboutalebi‡b, Robert A. Gorkin 
III a, Konstantin Konstantinovb, Peter C Innis a, Geoffrey M. Spinks a, Philippe 
Poulinc and Gordon G. Wallace a * 

 

 

Here, we show that graphene oxide (GO) dispersions exhibit 
unique viscoelastic properties which constitute them as a new 
class of soft materials. The fundamental insights accrued here 
provide the basis for the development of fabrication protocols 
for these two dimensional soft materials, in a diverse array of 
processing techniques. 

The recent discovery of liquid crystalline behaviour in graphene oxide 

(GO) dispersions in water,1-5 and various organic solvents,6, 7 can be 

implemental in guiding material assembly at atomic level through π–π 

stacking and hydrogen bonding interactions.1, 5, 6, 8 Original rheological 

behaviour is expected, since monolayer GO dispersions constitute a 

new class of soft material with rich unique properties in between rigid 

2D nanoplatelets and 1D polymers.9 Probing and quantifying this 

dynamic behaviour will be instrumental in generating novel 

applications, such as coatings, fillers and molecular electronics by 

advancing our fundamental knowledge of soft materials.10 Despite the 

importance for fundamental, practical, and industrial applications, the 

rheological behaviour of GO monolayer dispersions and its origin 

remains an unexplored area. This, in turn, hinders the development of 

fabrication protocols for two dimensional soft materials, including GO 

dispersions. Moreover, fabricating practical devices in large-scale with 

advanced architectural design is still a big challenge, unresolved.    
Likewise, formulation of functional composite inks for industrially 

scalable fabrication methods such as electrospraying, spray coating, 

and printing techniques, is always hindered by the high concentration 

of supporting media (such as graphene, GO, LCs and polymers). 

Therefore, low concentration of the supporting media is desirable to 

simultaneously permit processing while making the preparation of 

composite inks with high concentrations of multi-functional materials 

possible. This challenge, if resolved, can be used to create 

geometrically complex multi-functional 3D architectures fabricated 

for use in areas such as printed electronics, organic field effective 

transistors and 3D bionic scaffolds. 

Here, with the aim of investigating the rheological behaviour of GO to 

enable further processing, fabrication and integration of GO into 

complex architectures, we employed ultra large GO sheets as a model 

material with high aspect ratio (~ 45000, Fig. S1) to study the phase 

transitions from the so-called isotropic phase to liquid crystal (LC) 

phase and finally to a LC gel phase at higher loadings. We 

demonstrate that GO dispersions exhibit unique viscoelastic 

behaviour, wherein the rheological behaviour varies considerably with 

dispersion concentration. We show that finite yield stress in ultra large 

GO dispersions occurs at a critical concentration approximately three 

orders of magnitude lower than the theoretical value for colloidal 

suspensions (𝜙𝑡ℎ𝑖𝑠 𝑠𝑡𝑢𝑑𝑦 ≈ 2.2×10-4 vs. 𝜙𝑐 ≈ 0.5) enabling the 

processing of this 2D material at the lowest concentration ever 

reported for any dispersions allowing the self-assembly of multi-

functional architectures. Our experiments reveal that there are four 

distinct regions: viscoelastic liquid, a transition state consisting of 

viscoelastic liquid and viscoelastic soft solid, viscoelastic soft solid 

(behaving like a solid below yield stress yet flow readily above a yield 

stress)11 and viscoelastic gel. Each of these unbinding regions were 

found amenable to unique processing techniques, some of which 

never before shown possible in case of GO, warranting the process of 

this fascinating material based on its inherent complex flow 

properties. 

Control over the rheological properties can be achieved by adjusting 

the volume fraction (concentration) of GO particles. To this end, we 

probed, as plotted in Fig. 1 and S2, the flow behaviour of a series of 

GO dispersions by the cone-plate method (see the provided 

Supporting Information for detailed information on the experimental 

section). The elastic G' (storage) and viscous G'' (loss) moduli of GO 

dispersions were determined as a function of frequency at a constant 

strain amplitude of 0.01.  



 
 
 
 
 
 
 

 

 

Figure. 1. Storage and loss moduli (filled squares and open squares, respectively) of GO suspensions as function of frequency accompanied with their polarized optical 
micrographs (POMs) and the schematic illustrations of the proposed model for the evolution of LC phases in GO dispersions upon increasing concentration. a) At this 
extremely low concentration, GO sheets are randomly dispersed in the solution. b, c ) Upon increasing concentration to 0.25 mg ml-1 some nematic ordering starts to 
appear. At this region, the storage modulus increases and overtakes the loss modulus, while the loss modulus remains almost constant with frequency. This can be 
attributed to the increase in the volume fraction of colloidal particles imparting elasticity to the system. However, this increase in concentration is very negligible to 
impart any serious effects on the loss modulus, as the dominating part is still water. d) The dispersion forms a single phase nematic liquid crystal. This phase 
transformation frees up some additional space in the dispersion resulting in subsequent gain in entropy as well as a drop in elastic modulus. e) Further increase in 
concentration results in higher packing of nematic phase. An increase in volume fraction of GO sheets results in a frequency dependent plateau-like behaviour which 
is the direct consequence of sheets being trapped by their neighbours preventing the stress relaxation on the longest time-scale of the measurement. (Jammed 
systems such as weak polymer gels, entangled polymer networks, concentrated emulsions or biological cells exhibit this generic behaviour).10, 12, 13 f) In addition to 
long-range orientation in the nematic phase, some parts in GO exhibit long-range positional order. However, above this critical concentration, as the formation of 
nematic LC phase is completed, further increase in volume fraction results in the simultaneous increase in both moduli, with the storage modulus increasing much 
faster than the loss modulus. g and h) smaller monodomains are formed associated to exceptional increase in elastic modulus.  



 
 
 
 
 
 

 

Quite interestingly, even at very low concentrations (as low as 0.05 

and up to 0.25 mg ml-1), previously thought to be a completely 

isotropic and viscous phase,1, 5 a considerable elastic component still 

exists. Over all time-scales, in the low concentration region (<0.25 mg 

ml-1), the dispersions exhibited a liquid-like response with G'' being 

slightly higher than G' suggesting a viscoelastic liquid like behaviour 

similar to colloidal suspensions near their crystallization point at 

volume fractions 𝜙𝑐  ~ 0.5.10 The dominance of G'' along with a large G' 

suggests the existence of so-called crowding or jamming.10 This 

implies that the configurational rearrangement necessary for 

equilibration cannot be achieved within the time framework studied 

here. In our system, jamming resulted in the development of a finite 

yield stress 12 at concentrations approximately three orders of 

magnitude lower than the theoretical value for spherical colloidal 

suspensions  (𝜙𝑡ℎ𝑖𝑠 𝑠𝑡𝑢𝑑𝑦 ≈ 2.2×10-4 vs. 𝜙𝑐 ≈ 0.5).10 Jamming at such 

low concentrations is due to the extremely large aspect ratio of ultra 

large wrinkled GO sheets used in this study (Fig. S1). The dominance 

of the viscous part in all time scales (liquid-like behaviour) while 

having a considerable elastic and viscosity components, in such low 

concentrations, has a direct impact on processability and fabrication. 

Specifically this behaviour enables us to easily electrospray and spray-

coat with a high level of control (Table S1 and Fig. 2), while 

eliminating the drift perturbations typically associated with spraying 

of viscous fluids with no elastic component. These rheological 

features also allow us to spray at extremely low concentrations 

leading to low mass loading levels deposited at the substrate surface 

and subsequently enabling the fabrication of ultra-transparent GO 

thin films (Transparency of 98.04% and 95.4% at 633 nm for 1 and 

two-time coated glass slides after partial reduction by heat-treatment 

at 220ºC corresponding to approximately 1 layer of GO per run (Fig. 

2d)). It should be noted that such a level of control is usually achieved 

through employing highly time consuming Langmuir-Blodgett 

method.14, 15 Spray coating of GO dispersions has great potential in 

many industrial processes such as electronics, painting, 

microencapsulation, electroemulsification, fine powder production, or 

micro- and nano-thin film deposition.16  

In the second region (GO concentration ~ 0.25 up to 0.75 mg ml-1), GO 

dispersions show biphasic behaviour (coexistence of both isotropic 

and nematic phase). Here a viscoelastic behaviour which is in contrast 

with normal lyotropic liquid crystal phases can be observed.17 In 

typical lyotropic liquid crystals, the viscous part (G'') is often dominant 

at large time-scales or towards the lower frequencies.17 On the other 

hand, here G' appears to be higher than G'' for GO dispersions falling 

in this region at large time-scales. This behaviour suggests the 

crowding of particles and consequently gelation of the system as a 

result of repulsive interactions experienced by neighbouring GO 

sheets which is also consistent with the yield point observed at this 

region (Fig. 3a). Therefore, over long-time scales, GO dispersions 

respond more like a viscoelastic soft solid as the “long-range” 

rearrangements (convolutions) are very slow. However, above the G'-

G'' crossover point, in an intermediate time scale, G' was found to be 

lower than G'' suggesting a dominant viscous behaviour (liquid-like) 

implying that “short-range” rearrangements rapidly occur. 

Nevertheless, up to the concentration of 0.75 mg ml-1, the difference is 

not considerable and the zones are not yet well-defined. These fluid 

properties are ideal for inkjet printing as the ink formulation should be 

designed to quickly regain viscosity and hence shapes (rearrange the 

mesogens) once they are printed on the surface to preserve the 

printed structure for accurate reproduction.18 Importantly, this new 

finding enables us to formulate stable inks from pure GO dispersions 

without the need of any binders or additives to impart the dominant 

elastic components required for ink-jet printing (Fig. 2 e). It should 

also be noted that although the size of our GO sheets (average 

diameter 37 µm) are much larger than the safe zone 19 criterion for our 

inkjet printer nozzles (1 µm for a 50 µm nozzle), we were able to 

successfully print GO without any clogging side effects as a 

consequence of the highly flexible nature of GO sheets (Fig. S1). The 

inkjet printing of binder free GO will enable the fabrication of high 

quality electrode materials that are critical for use in electronic 

applications such as organic field effective transistors (OFETs). 

At higher concentrations (above 0.75 up to 2.5 mg ml-1), the storage 

and loss moduli are completely and clearly well-separated from each 

other (Fig. 1d and 1e). This is the concentration range at which GO 

dispersions form single phase nematic liquid crystals. The two 

dimensional GO sheets form a tenuous network architecture with a 

very dominant elastic part in spite of the considerably low 

concentration. The G'-G'' crossover point begins to shift towards 

higher frequencies. The rheological behaviour of GO dispersions at 

concentrations as high as 2.5 mg ml-1 resembles that of soft glassy 

materials (SGMs), liquid crystals, and/or weak gels.10, 20 This 

rheological behaviour suggests that the processing of GO dispersions 

is possible with established fabrication techniques usually reserved for 

processing weak gel-like materials (such as the wet-spinning 

approach).1, 21-24 However, in contrast to cross-linked biopolymers 10 

and biological gels 13 no strain stiffening is observed (Fig. 3b), and 

unlike gels of other disk-like colloids a fully frequency-dependent 

elastic modulus is not observed either (Fig. 1e).25 Another interesting 

aspect is the ability of these dispersions to retain their structure at 

very short time scales.  



 
 
 
 
 
 

 

 

Figure. 2. A correlation between rheological properties and the key prerequisites for various manufacturing techniques enabled us to process and fabricate GO via a 
wide range of industrial techniques. a) Ratio of elastic and storage moduli for various GO concentrations measured over a range of testing frequencies. Overlaid are 
the approximate processing regimes for a number of industrial fabrication techniques. When the viscous modulus (G”) dominates, the GO dispersion is suitable for 
high rate processing methods where the dispersion must spread on contact with the substrate. However, when the elastic modulus (G’) is high the rheological 
properties suit fabrication methods requiring the dispersion to keep its given shape, such as extrusion printing and fibre spinning. b) Photograph of electrospraying of 
a viscoelastic liquid of GO dispersion at a concentration of 0.05 mg ml-1.  c) Photograph of a GO thin film that was spray coated and thermally reduced (overnight at 
220 oC) utilizing a transitional state to viscoelastic liquid GO dispersion of 0.25 mg ml-1. d) Transparency of the spray coated reduced GO thin films as function of 
coating layers; the numbers show the number of coating layers. e) Ink-jet printed logo using LC GO viscoelastic soft solid at concentration of 0.75 mg ml-1.  f) As-
prepared wet-spun fibers from LC GO viscoelastic soft solid at concentration of 2.5 mg ml-1. g) Cross section of the wet-spun LC GO fiber, showing that GO sheets are 
stacked in layers with some degree of folding and are ordered due to the formation of nematic liquid crystals. h) Extrusion printed pattern using LC GO viscoelastic gel 
of 4.5 mg ml-1. i) Extrusion printed 3D architecture using LC GO viscoelastic gel of 13.3 mg ml-1.  j) Dry-spinning of LC GO fibers utilizing LC GO viscoelastic gel of 13.3 
mg ml-1.  

As concentration increases up to 4.5 mg ml-1 G' and G'' become fully 

distinct with G' reaching 15-77 Pa at 4.5 mg ml-1 (depending on 

frequency, Fig. 1f). This behaviour is slightly different to polymer 

networks and resembles the rheological characteristics of cells or 

SGMs.10, 26 Purely elastic polymer networks exhibit a completely 

frequency-independent storage modulus plateau even at low 

frequencies.10, 26 Similar to cells however,10 GO dispersions at this 

region show power-law rheology with a weak non-universal exponent 

(i.e. the storage modulus increases slowly with frequency). In this 

region, it is only at very short time scales that the viscous part 

dominates. The magnitude of storage modulus increases with 

increasing concentration (volume fraction) and the crossover point 

(G'=G'') shifts to time scales as short as 0.01-0.1 sec as the network 

becomes more robust and exhibits a gel-like behaviour (Fig. 1 g).  This 

behaviour might suggest structural changes even though the 

rheological properties of liquid crystals of disk like particles are not 

simply correlated to the phase behaviour of the materials.20, 25, 27 Upon 

increasing the concentration above 0.75, the nematic domains (with 

same orientation and brightness) decrease in size, this in turn, could 

contribute to substantial increase in the elastic modulus associated to 

a greater density of defects.28  

At even higher concentrations (up to 13.35 mg ml-1), no G'-G'' 

crossover was observed in the frequency range studied here, 

resembling a gel-like (cells or SGMs) behaviour with an extraordinarily 

high elastic modulus of 350-490 Pa. The measured storage modulus at 

13.35 mg ml-1 was considerably higher than the calculated elastic  



 
 
 
 
 

 

 

Figure. 3. Interpretation of rheological behaviour of LC GO dispersions. a) Yield 
strain (γY) and yield stress (σY) of various GO suspensions determined at different 
GO volume fractions. Yield point is considered as where the storage and loss 
moduli intercept when measured as a function of frequency. b) Storage (elastic) 
and loss (viscous) moduli of GO suspensions at the frequency of 0.01 Hz at 
different strains. No strain-stiffening can be observed even at very high 
concentrations which is consistent with SGM rheology generally exhibiting 
yielding and plasticity. However in contrast to soft glassy rheology (SGR), c) no 
aging after shear rejuvenation/fluidization can be observed.  

modulus of SWNT suspensions at the same concentration (~ 60 Pa).29 

GO dispersions at this concentration range, are therefore, viscoelastic 

liquid crystals gel that can flow after a yield point. Furthermore, there 

are some unique characteristics that our as-prepared LC GO 

viscoelastic gels exhibit such as the anisotropy arising from having a 

liquid crystal network, and the exceptional uniformity of the network 

structure. Therefore, GO dispersions prepared in this region enabled 

us to process GO for the first time in a range of industrial processes 

such as gel-extrusion printing and dry spinning that are most 

beneficial for many industrial applications (Fig. 2 h-j). During gel-

extrusion through a nozzle (i.e. extrusion printer nozzle), the loss 

modulus will become dominant (Fig. 3b, strain thinning effect), 

allowing for the dispersion to easily be extruded. However, when the 

LC GO viscoelastic gels leaves the nozzle (at low strain), the physical 

sheet entanglement forces them to regain their high elasticity. The 

high elasticity of LC GO viscoelastic gels retains the printed structure 

and makes it possible to print fine lines or 3D architectures (Fig. 2h,i).  

 

Figure. 4. Viscosity and the ratio of loss and storage moduli of GO dispersions at 
different GO concentrations. a) Viscosity (𝛾̇ = 0.01 s-1) as a function of GO 
volume fraction. Increasing the concentration of GO results in an overall increase 
in viscosity until a peak at 𝜙 ~ 2.3×10-4 (0.5 mg ml-1). However as depicted in b) a 
sudden drop in viscosity as a result of ordering happens at higher 
concentrations. c) The same general trend also happens in the case of the ratio 
between loss and storage moduli. Moreover, at almost all concentrations, except 
in the very beginning, the ratio of G’ to G” is higher than 1 indicating a very 
dominant elastic behaviour. 

To provide further understanding of the phase transition behaviour of 

the GO dispersion, we measured the viscosity and calculated the ratio 

of elastic and loss moduli of the system with increasing the GO 

concentration (Fig. 4). As expected, both viscosity and G'/G'' increase 

with GO concentration in the low concentration range until a peak is 

reached at 0.5 mg ml-1, then a sudden drop in both viscosity and G'/G'' 

is observed. As we showed before,5 entropy plays an important role in 



 
 
 
 
 

 

the ordering of GO sheets. Upon becoming concentrated, the 

isotropic fluid of two dimensional disk-like GO sheets must undergo a 

transition to a nematic phase in which GO sheets encompass a 

preferred orientation. This orientational ordering consequently results 

in loss of orientational entropy. However, this loss of entropy is 

compensated with an increase in free volume. Therefore, there will be 

a net gain of entropy, as a result of the increase in free volume 

(packing) entropy. This sudden free volume expansion accompanied 

by ordering in the direction of shear, because of the spontaneous 

formation of LC domains, results in a sudden drop of viscosity and the 

ratio of elastic to viscous moduli. By increasing GO concentration 

furthermore, both viscosity and the moduli ratio gradually increase 

again until around 2.5 mg ml-1. However, at the concentration range of 

2.5 mg ml-1 to 4 mg ml-1, a sudden drop of G'/G'' can be observed 

suggesting a disturbance in the system. The latter might be due to an 

underlying phase transition with a tendency of the flakes to stack 

more regularly. Indeed, it has been observed that clays platelets can 

form columnar and hexagonal phases at high concentration.25 The 

formation of such phases can be prevented in the present case by the 

polydispersity of the system or by dynamical arrest; but the tendency 

of the flakes to pack more regularly could explain changes in 

rheological properties. At the critical concentration (4 mg ml-1), the 

increase in viscosity levels out and G'/G'' ratio starts to increase again. 

Stacking of the GO mesogens results in further free volume expansion 
30 and subsequently hinders any increase in the viscosity (Fig. 1h). 

Conclusions 
The viscoelastic behaviour of this fascinating material offers 

significant features that can prove to be useful for both fundamental 

researches in two-dimensional materials and practical applications as 

demonstrated by a wide range of processing techniques employed in 

the present paper. We emphasize that the characteristic flow 

behaviour of LC GO is fundamentally different from those associated 

with usual viscoelastic materials including polymers. The generic 

properties reported here can be considered as a universal guideline to 

process different GO dispersions based on their rheological 

properties. Therefore, a simple rheological test and the comparison 

with the guideline provided here can assist others in the field to decide 

on what processing techniques should be employed and why.   
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