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Abstract

Intel SGX hardware enables applications to protect

themselves from potentially-malicious OSes or hyper-

visors. In cloud computing and other systems, many

users and applications could benefit from SGX. Unfortu-

nately, current applications will not work out-of-the-box

on SGX. Although previous work has shown that a li-

brary OS can execute unmodified applications on SGX,

a belief has developed that a library OS will be ruinous

for performance and TCB size, making application code

modification an implicit prerequisite to adopting SGX.

This paper demonstrates that these concerns are exag-

gerated, and that a fully-featured library OS can rapidly

deploy unmodified applications on SGX with overheads

comparable to applications modified to use “shim” lay-

ers. We present a port of Graphene to SGX, as well as

a number of improvements to make the security bene-

fits of SGX more usable, such as integrity support for

dynamically-loaded libraries, and secure multi-process

support. Graphene-SGX supports a wide range of un-

modified applications, including Apache, GCC, and the

R interpreter. The performance overheads of Graphene-

SGX range from matching a Linux process to less than

2× in most single-process cases; these overheads are

largely attributable to current SGX hardware or missed

opportunities to optimize Graphene internals, and are not

necessarily fundamental to leaving the application un-

modified. Graphene-SGX is open-source and has been

used concurrently by other groups for SGX research.

1 Introduction

Intel SGX introduces a number of essential hardware fea-

tures that allow an application to protect itself from the

host OS, hypervisor, BIOS, and other software. With

SGX, part or all of an application can run in an en-

clave. Enclave features include confidentiality and in-

tegrity protection for the enclave’s virtual address space;

restricting control flow into well-defined entry points for

an enclave; integrity checking memory contents at start

time; and remote attestation. SGX is particularly appeal-

ing in cloud computing, as users might not fully trust the

cloud provider. That said, for any sufficiently-sensitive

application, using SGX may be prudent, even within

one administrative domain, as the security track record

of commodity operating systems is not without blemish.

Thus, a significant number of users would benefit from

running applications on SGX as soon as possible.

Unfortunately, applications do not “just work” on

SGX. SGX imposes a number of restrictions on enclave

code that require application changes or a layer of in-

direction. Some of these restrictions are motivated by

security, such as disallowing system calls inside of an

enclave, so that system call results can be sanitized by

shielding code in the enclave before use. Our experience

with supporting a rich array of applications on SGX, in-

cluding web servers, language runtimes, and command-

line programs, is that a number of software components,

orthogonal to the primary functionality of the applica-

tion, rely on faithful emulation of arcane Linux system

call semantics, such as mmap and futex; any SGX wrap-

per library must either reproduce these semantics, or

large swaths of code unrelated to security must be re-

placed. Although this paper focuses on SGX, we note

that a number of vendors are developing similar, but

not identical, hardware protection mechanisms, includ-

ing IBM’s SecureBlue++ [16] and AMD SEV [27]—

each with different idiosyncrasies. Thus, the need to

adapt applications to use hardware security features will

only increase in the near term.

As a result, there is an increasingly widespread belief

that adopting SGX necessarily involves significant code

changes to applications. Although Haven [15] showed

that a library OS could run unmodified applications on

SGX, this work pre-dated availability of SGX hardware.

Since then, several papers have argued that the library OS

approach is impractical for SGX, both in performance

overhead and trusted computing base (TCB) bloat, and

that one must instead refactor one’s application for SGX.

For instance, a feasibility analysis in the SCONE paper

concludes that “On average, the library OS increases the

TCB size by 5×, the service latency by 4×, and halves

the service throughput” [14]. Shinde et al. [49] argue that

using a library OS, including libc, increases TCB size by

two orders of magnitude over a thin wrapper.

This paper demonstrates that these concerns are

greatly exaggerated: one can use a library OS to quickly

deploy applications in SGX, gaining immediate secu-

rity benefits without crippling performance cost or TCB
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bloat. We present a port of the Graphene library OS [52]

to SGX, called Graphene-SGX, and show that the per-

formance overheads are comparable to the range of over-

heads presented in SCONE; the authors of Panoply also

note that Graphene-SGX is actually 5-10% faster than

Panoply [49]. Arguments about TCB size are more nu-

anced, and a significant amount of the discrepancies arise

when comparing incidental choices like libc implemen-

tation (e.g., musl vs. glibc). Graphene, not including libc,

adds 53 kLoC to the application’s TCB, which is compa-

rable to Panoply’s 20 kLoC or SCONE’s 97 kLoC. Our

position is that the primary reduction to TCB comes from

either compiling out unused library functionality, as in a

unikernel [38] and measured by our prior work [53]; or

further partitioning an application into multiple enclaves

with fewer OS requirements. When one normalizes for

functionality required by the code in the enclave, the de-

sign choice between a library OS or a smaller shim does

not have a significant impact on TCB size.

To be clear, SGX-specific coding has benefits, but we

must not let the perfect be the enemy of the good. For

example, privilege separating a complex application into

multiple enclaves may be a good idea for security [40, 44,

49], and replacing particularly expensive operations can

improve performance on SGX. The goal of Graphene is

to bring up rich applications on SGX quickly, and then let

developers optimize code or reduce the TCB as needed.

Graphene-SGX runs unmodified Linux binaries on

SGX; to this end, this paper also contributes a number of

usability enhancements, including integrity support for

dynamically-loaded libraries, enclave-level forking, and

secure inter-process communication (IPC). Users need

only configure features and cryptographically sign the

configuration.

Graphene-SGX is also useful as a tool to accelerate

SGX research. Graphene-SGX has been open-sourced

since June 20161. Although our focus is unmodified ap-

plications, Graphene-SGX can also run smaller pieces

of code in an enclave, as in a partitioned application.

Several papers already compared against or extended

Graphene-SGX [28, 43, 49] and we are aware of ongoing

projects using Graphene-SGX.

The contributions of this paper are:

– A framework, called Graphene-SGX, to isolate un-

modified, Linux applications in enclaves.

– Several usability enhancements for SGX, including

dynamic loading, fork, and IPC.

– A thorough evaluation of the performance of unmod-

ified applications on Graphene-SGX, indicating that

the costs of a feature-rich library OS on SGX are in-

band with purportedly lighter-weight solutions that

require application changes. For example, lighttpd

1Available at https://github.com/oscarlab/graphene

throughput and latency on Graphene-SGX are com-

parable to a Linux process. Overheads are generally

under 2× (cf. SCONE overheads up to 1.6× on com-

parable workloads). In a few cases, Graphene-SGX

overheads are higher, but these are internal to the li-

brary OS or fundamental to enclave limitations, not

because the application is unmodified.

2 Background

This section summarizes SGX, and current design points

for running or porting applications on SGX.

2.1 Software Guard Extensions (SGX)

The primary SGX abstraction is an enclave: an isolated

execution environment within the virtual address space

of a process. The code and data in enclave memory do

not leave the CPU package unencrypted; when mem-

ory contents are read back into cache, the CPU decrypts

the contents, and checks the integrity of cache lines and

the virtual-to-physical mapping. SGX also cryptograph-

ically measures the integrity of enclaves at start-up, and

provide attestation to remote systems or other enclaves.

SGX enables a threat model where one only trusts the

Intel CPUs and the code running in the enclave(s). SGX

protects applications from three different types of attacks

on the same host, which are summarized in Figure 1:

untrusted application code inside the same process but

outside the enclave; operating systems, hypervisors, and

other system software; other applications on the same

host; and off-chip hardware. A SGX enclave can also

trust a remote service or enclave, and be trusted after

inter-platform attestation [13].

2.2 SGX Software Design Space

This subsection summarizes the principal design choices

facing any framework for running applications on SGX.

We explain the decisions in recent systems for SGX ap-

plications, and the trade-offs in this space.

How much functionality to pull into the enclave? At

one extreme, a library OS like Haven [15] pulls most of

the application-supporting code of the OS into the en-

clave. On the other extreme, thin “shim” layers, like

SCONE [14] and Panoply [49] wrap an API layer such as

the system call table. Pulling more code into the enclave

increases the size of the TCB, but can reduce the size and

complexity of the interface, and attack surface, between

the enclave and the untrusted OS.

The impact of this choice on performance largely de-

pends on two issues. First, entering or exiting the en-

clave is expensive; if the division of labor reduces en-

clave border crossings, it will improve performance. The

second is the size of the Enclave Page Cache (EPC), lim-

ited to 128MB on version 1 of SGX. If a large support-
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Figure 1: The threat model of SGX. SGX protects ap-

plications from three types of attacks: in-process attacks

from outside of the enclave, attacks from OS or hypervi-

sor, and attacks from off-chip hardware.

ing framework tips the application’s working set size past

this mark, the enclave will incur expensive swapping.

Shielding complexity. SGX hardware can isolate an ap-

plication from an untrusted OS, but SGX alone can’t pro-

tect an application that requires functionality from the

OS. Iago attacks [18] are semantic attacks from the un-

trusted OS against the application, where an unchecked

system call return value or effect compromises the ap-

plication. Iago attacks can be subtle and hard to com-

prehensively detect, at least with the current POSIX or

Linux system call table interfaces.

Thus, any SGX framework must provide some shield-

ing support, to validate or reject inputs from the untrusted

OS. The complexity of shielding is directly related to the

interface complexity: inasmuch as a library OS or shim

can reduce the size or complexity of the enclave API, the

risks of a successful Iago attack are reduced.

Application code complexity. Common example ap-

plications for SGX in the literature amount to a sim-

ple network service running a TLS library in the en-

clave, putting minimal demands on a shim layer. Even

modestly complex applications, such as the R runtime

and a simple analytics package, require dozens of sys-

tem calls providing wide-ranging functionality, includ-

ing fork and execve. For these applications, the options

for the user or developer become: (1) modifying the ap-

plication to require less of the runtime; (2) opening and

shielding more interfaces to the untrusted OS; (3) pulling

more functionality into a shim or a library OS. The goal

of this paper is to provide an efficient baseline, based on

(3), so that users can quickly run applications on SGX,

and developers can explore (1) or (2) at their leisure.

Application partitioning. An application can have mul-

tiple enclaves, or put less important functionality outside

of the enclave. For instance, a web server can keep cryp-

tographic keys in an enclave, but still allow client re-

quests to be serviced outside of the enclave. Similarly, a

privilege-separated or multi-principal application might

create a separate enclave for each privilege level.

This level of analysis is application-specific, and be-

yond the focus of this paper. However, partitioning a

complex application into multiple enclaves can be good

for security. In support of this goal, Graphene-SGX can

run smaller pieces of code, such as a library, in an en-

clave, as well as coordinate shared state across enclaves.

3 Design Overview

This section discusses the threat model, how Graphene-

SGX defends against attacks from the untrusted OS, and

how users configure policies for defenses.

3.1 Threat Model

Graphene-SGX follows a typical threat model for SGX

applications. The following components are untrusted:

(1) hardware outside of the Intel CPU package(s), (2)

the OS, hypervisor, and other system software, (3) other

applications executing on the same host, including unre-

lated enclaves, and (4) user-space components that reside

in the application process but outside the enclave. Our

design only trusts the CPUs and any code running inside

the enclave, including the library OS, the unmodified ap-

plication, and its supporting libraries.

We also trust aesmd, an enclave provided by the In-

tel’s SGX SDK, which verifies attributes in the enclave

signature and approves the enclave creation. Currently,

any framework that uses SGX for remote attestation must

trust aesmd. Graphene-SGX uses, but does not trust, the

Intel SGX kernel driver. Other than aesmd and the driver,

Graphene-SGX does not use or trust any part of the SDK.

Denial of service, side channels, and controlled-

channel attacks [54] are vulnerabilities common to all

SGX frameworks, and are beyond the scope of this work.

3.2 User Policy Configuration

Before an application is first executed using Graphene-

SGX, the user must make certain policy decisions. Our

goal is to balance policy expressiveness with usability.

As with Graphene and several other systems, each ap-

plication requires a manifest to specify which resources

the application is allowed to use, including a unioned,

chroot-style view of the file system (comparable to aufs),

and a set of iptables-style network rules. In Graphene, a

program cannot access any resources not declared in the

manifest. The original intention of the manifest was to

protect the host: a reference monitor can easily identify

the resources an application might use, and reject an ap-

plication with a problematic manifest.

In Graphene-SGX, the manifest is extended to protect

the application from the host file system. Specifically,
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Figure 2: Two enclave groups, one running Apache

and the other running Lighttpd, each creates a child en-

clave running CGI-PHP. Graphene-SGX distinguishes

the child enclaves in different enclave groups.

the manifest can specify secure hashes (using SHA-256)

of trusted files (generally read-only, including dynamic

libraries). As part of opening a file, Graphene-SGX ver-

ifies the integrity of trusted files by checking the secure

hashes. A trusted file is only opened if the secure hash

matches. The manifest can also specify files or direc-

tories that can be accessed but are not trusted, such as a

write-only output file. Graphene-SGX includes a signing

utility that hashes all trusted files and generates a signed

manifest that can be used at runtime.

SGX requires that certain resources be specified at ini-

tialization time, including the number of threads, the

maximum size of the enclave, and the starting vir-

tual address of the enclave. Thus, we also extend the

manifest syntax for the user to specify these options.

Other security-sensitive manifest options inherited from

Graphene, such as enabling debug output, are also pro-

tected as part of the signed manifest.

3.3 Multi-Process Applications

Graphene supports multi-process applications by run-

ning a separate library OS instance in each process [52].

Each library OS instance coordinates state via message

passing. Graphene implements Linux multi-process ab-

stractions in the user-space, including fork, execve,

signals, and System V semaphores and message queues.

Graphene-SGX extends the multi-process support of

Graphene to enclaves by running each process with a

library OS instance in an enclave. For instance, fork

creates a second enclave and copies the parent enclave’s

contents over message passing. We call a group of coor-

dinating enclaves an enclave group. Figure 2 shows two

mutually-untrusting enclave groups running on a host.

Because multi-process abstractions are implemented

in enclaves, securing these abstractions from the OS is

straightforward. Graphene-SGX adds: (1) the ability for

enclaves to authenticate each other via local attestation,

and thereby establish a secure channel, and (2) a mecha-

nism to securely fork into a new enclave, adding the child

to the enclave group (§4.3).

4 Shielding Linux Abstractions

This section discusses how Graphene-SGX implements

and shields the Linux ABI for applications in enclaves.

4.1 Shielding Dynamic Loading

To run unmodified Linux binaries, Graphene-SGX im-

plements dynamic loading and run-time linking. In a

major Linux distribution like Ubuntu, more than 99% of

binaries are dynamically linked [53]. Static linking is

popular for SGX frameworks because it is simple and fa-

cilitates the use of hardware enclave measurements. Dy-

namic linking requires rooting trust in a dynamic loader,

which must then measure the libraries. For Haven [15],

the enclave measurement only verifies the integrity of

Haven itself, and the same measurement applies to any

application running on the same Haven binary.

Graphene-SGX extends the Haven model to generate

a unique signature for any combination of executable and

dynamically-linked libraries. Figure 3 shows the archi-

tecture and the dynamic-loading process of an enclave.

Graphene-SGX starts with an untrusted Platform Adap-

tion Layer (pal-sgx), which calls the SGX drivers to

initialize the enclave. The initial state of an enclave,

which determines the measurement then attested by the

CPU, includes a shielding library (libshield.so), the

executable to run, and a manifest file that specifies the at-

tributes and loadable binaries in this enclave. The shield-

ing library then loads a Linux library OS (libLinux.so)

and the standard C libraries (ld-linux-x86-64.so and

libc.so). After enclave initialization, the loader contin-

ues loading additional libraries, which are checked by the

shielding libraries. If the SHA-256 hash does not match

the manifest, the shield will refuse to open the libraries.

To reiterate, a manifest includes integrity measure-

ments of all components and is signed; this manifest is

unique for each application and is measured as part of

enclave initialization. This strategy does require trust in

the Graphene (in-enclave) bootloader and shielding mod-

ule to correctly load binaries according to the manifest

and reject any errant binaries offered by the OS. This is

no worse than the level trust placed in Haven’s dynamic

loader, but differentiates applications or even instances

of the same application with different libraries.

Memory permissions. By default, the Linux linker for-

mat (ELF) often places code and linking data (e.g., jump

targets) in the same page. It is common for a library to

temporarily mark an executable pages as writable dur-

ing linking, and then protect the page to be execute-only.

This behavior is ubiquitous in current Linux shared li-

braries, but could be changed at compile time to pad

writable sections onto separate pages.

The challenge on version 1 of SGX is that an appli-

cation cannot revoke page permissions after the enclave
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Figure 3: The Graphene-SGX architecture. The exe-

cutable is position-dependent. The enclave includes an

OS shield, a library OS, libc, and other user binaries.

starts. In order to support this ELF behavior, we cur-

rently map all enclave pages as readable, writable, and

executable. This can lead to some security risks, such as

code injection attacks in the enclave. In a few cases, this

can also harm functionality; for instance, some Java VM

implementations use page faults to synchronize threads.

Version 2 of SGX [41] will support changing page pro-

tections, which Graphene-SGX will adopt in the future.

Position-dependent executables. SGX requires that all

enclave sizes be a power-of-two, and that the en-

clave starts at a virtual address aligned to the enclave

size. Most Ubuntu Linux executables are compiled

to be position-dependent, and typically start at address

0x400000. The challenge is that, to create an enclave

that includes this address and is larger than 4MB, the en-

clave will necessarily need to include address zero.

We see including address zero in the enclave as a net

positive, but not strictly necessary, as we are reluctant to

make strong claims in the presence of code that follows

null pointers. Graphene-SGX can still mark this address

as unmapped in an enclave. Thus, a null pointer will still

result in a page fault. On the other hand, if address zero

were outside of the enclave, there is a risk that the un-

trusted OS could map this address to dangerous data [10],

undermining the integrity of the enclave.

4.2 Shielding Single-Process Abstractions

For a single-process application running on Graphene-

SGX, most Linux system calls are serviced inside the

enclave by the library OS. A Graphene-SGX enclave in-

cludes both the same library OS in “classic” Graphene,

Classes Safe Benign DoS Unsafe

Enter enclaves & threads 2 0 0 0

Clone enclaves & threads 2 0 0 0

File & directory access 3 0 0 2

Exit enclave 1 0 0 0

Network & RPC streams 5 2 0 0

Scheduling 0 1 1 0

Stream handles 2 2 1 0

Map untrusted memory 2 0 0 0

Miscellaneous 1 1 0 0

Total 18 6 2 2

Table 1: 28 enclave interfaces, including safe (host be-

havior can be checked), benign (no harmful effects), DoS

(may cause denial-of-service), and unsafe (potentially at-

tacked by the host) interfaces.

that would also run on a Linux or FreeBSD picoprocess,

as well as an SGX-specific platform adaptation layer

(PAL), which implements 36 functions of the host ABI

that the library OS is programmed against. This PAL

funnels to a slightly smaller set of 28 interfaces which

the enclave calls out to the untrusted OS (Table 1).

The evolution of the POSIX API and Linux system

call table were not driven by a model of mutual distrust,

and retrofitting protection onto this interface is challeng-

ing. Checkoway and Shachman [18] demonstrate the

subtlety of detecting semantic attacks via the POSIX

interface. Projects such as Sego [33] go to significant

lengths, including modifying the untrusted OS, to val-

idate OS behavior on subtle and idiosyncratic system

calls, such as mmap or getpid.

The challenge in shielding an enclave interface is care-

fully defining the expected behavior of the untrusted sys-

tem, and either validating the responses, or reasoning that

any response cannot harm the application. By adding

a layer of indirection under the library OS, we can de-

fine an enclave ABI that has more predictable semantics,

which is, in turn, more easily checked at run-time. For

instance, to read a file, Graphene-SGX requests that un-

trusted OS to map the file at an address outside the en-

clave, starting at an absolute offset in the file, with the

exact size that the library OS needs for checking. After

copying chunks of the file into the enclave, but before

use, the contents can be hashed and checked against the

manifest. This enclave interface limits the possible re-

turn values to one predictable answer, and thus reduces

the space that the OS can explore to find attack vectors to

the enclave. Many system calls are partially (e.g., brk)

or wholly (e.g., fcntl), absorbed into the library OS,

and do not need shielding from the untrusted OS.

Table 1 lists our 28 enclave interfaces, organized by

risk. 18 interfaces are safe because responses from the

OS are easily checked in the enclave. An example of

a safe interface is FILE MAP, which maps a file outside
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the enclave, to copy it into the enclave for system calls

like mmap or read, as discussed below. 6 interfaces

are benign, which means, if a host violates the spec-

ification, the library OS can easily compensate or re-

ject the response. An example of a benign interface is

STREAM FLUSH, which requests that data be sent over a

network or to disk; cryptographic integrity checks on a

file or network communication can detect when this op-

eration is ignored by untrusted software.

Like any SGX framework, Graphene-SGX does not

guarantee liveness of enclave code: the OS can refuse to

schedule the enclave threads. Two interfaces are suscep-

tible to liveness issues (labeled DoS): FUTEX WAIT and

STREAM POLL. In the example of FUTEX WAIT, a block-

ing synchronization call may never return, violating live-

ness but not safety. A malicious OS could cause a futex

wait to return prematurely; thus, synchronization code in

the PAL must handle spurious wake-ups and either at-

tempt to wait on the futex again, or spin in the enclave.

Finally, only two interfaces, namely FILE STAT and

DIR READ, are unsafe, because we do not protect in-

tegrity of file metadata. We leave this issue for future

work, adopting one of several existing solutions [21].

File authentication. As with libraries and application

binaries, configuration files and other integrity-sensitive

data files can have SHA256 hashes listed in the signed

manifest. At the first open to ones of the listed files,

Graphene-SGX maps the whole file outside the enclave,

copies the content in the enclave, divides into 64KB

chunks, constructs a Merkle tree of the chunk hashes, and

finally validates the whole-file hash against the manifest.

In order to reduce enclave memory usage, Graphene-

SGX does not cache the whole file after validating the

hash, but keeps the Merkle tree to validate the untrusted

input for subsequent, chunked reads. The Merkle tree is

calculated using AES-128-GMAC.

Memory mappings. The current SGX hardware re-

quires that the maximum enclave size be set at creation

time. Thus, a Graphene-SGX manifest can specify how

much heap space to reserve for the application, so that

the enclave is sufficiently large. This heap space is also

used to cache file contents.

Threading. Graphene-SGX currently uses a 1:1 thread-

ing model, whereas SCONE and Panoply support an m:n

threading model. The issue is that SGX version 1 re-

quires the maximum number of threads in the enclave

to be specified at initialization time. We see this as a

short-term problem, as SGX version 2 will support dy-

namic thread creation. We currently have users specify

how many threads the application needs in the manifest.

This choice affect performance, as one may be able

to use m:n threading and asynchronous calls at the en-

clave boundary to reduce the number of exits. This is

a good idea we will probably implement in the future.

Eleos [43] addresses this performance problem on un-

modified Graphene-SGX with application-level changes

to issue asynchronous system calls. The benefits of this

optimization will probably be most clear in I/O-bound

network services that receive many concurrent requests.

Exception handling. Graphene-SGX handles hardware

exceptions triggered by memory faults, arithmetic errors,

or illegal instructions in applications or the library OS.

SGX does not allow exceptions to be delivered directly

into the enclave. An exception interrupts enclave ex-

ecution, saves register state on a thread-specific stack

in the enclave, and returns to the untrusted OS. When

SGX re-enters the enclave, the interrupted register state

is then used by Graphene-SGX to reconstruct the excep-

tion, pass it to the library OS, and eventually deliver a

signal to the application.

We note that the untrusted OS may deliberately trigger

memory faults, by modifying the page tables, or not de-

liver the exceptions (denial of service). Direct exception

delivery within an enclave is an opportunity to improve

performance and security in future generations of SGX,

as designed in Sanctum [19].

By handling exceptions inside the enclave, Graphene-

SGXcan emulate instructions that are not supported by

SGX, including cpuid and rdtsc. Use of these instruc-

tions will ultimately trap to a handler inside the enclave,

to call out to the OS for actual values, which are treated

as untrusted input and are checked.

4.3 Shielding Multi-Process Abstractions

Many Linux applications use multi-process abstractions,

which are implemented using copy-on-write fork and in-

kernel IPC abstractions. In SGX, the host OS is un-

trusted, and enclaves cannot share protected memory.

Fortunately, Graphene implements multi-process support

including fork, execve, signals, and a subset of System

V IPC, using message passing instead of shared memory.

Thus, Graphene-SGX implements multi-process abstrac-

tions in enclaves without major library OS changes. This

subsection explains how Graphene-SGX protects multi-

processing abstractions from an untrusted OS.

Process creation in Graphene-SGX is illustrated in

Figure 4. When a process in Graphene-SGX forks into

a new enclave, the parent and child will be running the

same manifest and binaries, and will have the same mea-

surements. Similar to the process creation in Graphene,

the parent and child enclaves are connected with a pipe-

like RPC stream, through the untrusted PAL. As part of

initialization, the parent and child will exchange a ses-

sion key over the unsecured RPC stream, using Diffie-

Hellman. The parent and child use the CPU to generate

attestation reports, which include a 512-bit field in the

report to store a hash of the session key and a unique en-
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Figure 4: Process creation in Graphene-SGX. Numbers

show the order of operations. When a process forks,

Graphene-SGX creates a new, clean enclave on the un-

trusted host. Then the two enclaves exchange an encryp-

tion key, validates the CPU-generated attestation of each

other, and migrates the parent process snapshot.

clave ID. The parent and child exchange these reports to

authenticate each other. Unlike remote attestation, local

attestation does not require use of Intel’s authentication

service (IAS). Once the parent and child have authenti-

cated each other, the parent establishes a TLS connection

over the RPC stream using the session key. The parent

can then send a snapshot of itself over the TLS-secured

RPC stream, and the snapshot is resumed in the child

process, making it a clone of its parent. This mutual at-

testation and encryption strategy prevents a man-in-the-

middle attack between the parent and child.

Once a parent enclave forks a child, by default, the

child is fully trusted. To create a less trusted child, the

parent would need to sanitize its snapshot, similar in

spirit to the close-on-exec flag for file handles. For ex-

ample, a pre-forked Apache web server may want to keep

worker processes isolated from the master to limit a po-

tential compromise of a worker process. Graphene-SGX

inherits a limited API from Graphene, for applications

to isolate themselves from untrusted child processes, but

developers are responsible for purging confidential infor-

mation before isolation.

Supporting execve. Unlike fork, execve starts a pro-

cess with a specific executable, often different from the

caller. When a thread calls execve in Graphene-SGX,

the library OS migrates the thread to a new process, with

file handles being inherited. Although the child does not

inherit a snapshot from its parent, it can still compromise

the parent by exploiting potential vulnerabilities in han-

dling RPC, which are not internally shielded. In other

words, Graphene-SGX is not designed to share library

OS-internal with untrusted children. Thus, Graphene-

SGX restricts execve to only launch trusted executables,

which are specified in the manifest.

Inter-process communication. After process creation,

parent and child processes will cooperate through shared

abstractions, such as signals or System V message

queues, via RPC messages. While messages are being

exchanged between enclaves, they are encrypted, ensur-

ing that these abstraction are protected from the OS.

5 Evaluation

Graphene-SGX is designed to be general-purpose, sup-

porting a broad range of server and command-line ap-

plications. We thus evaluate performance overheads

of unmodified Linux applications, using binaries from

an Ubuntu installation. Depending on the workload, we

measure application throughput or latency.

In order to differentiate SGX-specific overheads from

Graphene overheads, we use both Linux processes and

Graphene on a Linux host without SGX as baselines for

comparison. Note that Graphene includes two optional

kernel extensions: one that creates a reference monitor to

protect the host kernel from the library OS, and one that

optimizes fork by with copy-on-write for large (page-

sized) RPC messages. Neither of these extensions are

currently supported in Graphene-SGX.

Experimental setup. We use a Dell Optiplex 790

Small-Form Desktop, with a 4-core 3.20 GHz Intel Core

i5-6500 CPU (no hyper-threading, with 6MB cache), 8

GB RAM, and a 512GB, 7200 RPM SATA disk. The

host OS is Ubuntu 16.04.4 LTS, with Linux kernel 4.4.0-

21. Each machine uses a 1Gbps Ethernet card connected

to a dedicated local network. We use version 1.8 of the

Intel SGX Linux SDK [24] and driver [23].

5.1 Server applications

One deployment model for SGX is to host network

services on an untrusted cloud provider’s hardware.

We measure three widely-used Linux web servers, in-

cluding Lighttpd [6] (v1.4.35), Apache [2] (v2.4.18),

and NGINX [7] (v1.10). For each workload, we use

ApacheBench [1] to download the web pages on a sepa-

rate machine. The concurrency of ApacheBench is grad-

ually increased during the experiment, to test the both

the per-request latency and the overall throughput of the

server. Figure 5 shows the throughput versus latency

of these server applications in Graphene-SGX, Graphene

and Linux. Each workload is discussed below.

Lighttpd [6] is a web server designed to be light-

weight, yet robust enough for commercial uses. Lighttpd

is multi-threaded; we test with 25 threads to pro-

cess HTTP requests. By default, Lighttpd uses the

epoll wait system call to poll listening sockets. At

peak throughput and load, both Graphene and Graphene-

SGX have marginal overhead on either latency or

throughput of the Lighttpd server. The overheads of
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(c) NGINX (event-driven)

Figure 5: Throughput versus latency of web server workloads, including Lighttpd, Apache, and NGINX, on native

Linux, Graphene, and Graphene-SGX. We use an ApacheBench client to gradually increase load, and plot throughput

versus latency at each point. Lower and further right is better.

Graphene are more apparent when the system is more

lightly loaded, at 15–35% higher response time, or 13–

26% lower throughput. Without SGX, Graphene in-

duces 11–15% higher latency or 13-17% lower through-

put over Linux; the remaining overheads are attributable

to SGX—either hardware or our OS shield.

Apache [2] is one of the most popular production web

servers. We test Apache using 5 preforked worker pro-

cesses to service HTTP requests, in order to to eval-

uate the efficiency of Graphene-SGX across enclaves.

This application uses IPC extensively—the preforked

processes of a server use a System V semaphore to syn-

chronize on each connection. Regardless of the work-

load, the response time on Graphene-SGX is 12–35%

higher than Linux, due to the overhead of coordination

across enclaves over encrypted RPC streams. The peak

throughput achieved by Apache running in Graphene-

SGX is 26% lower than running in Linux. In this work-

load, most of the overheads are SGX-specific, such as

exiting enclaves when accessing the RPC, as non-SGX

Graphene has only 2–8% overhead compared to Linux.

NGINX [7] is a relatively new web server designed

for high programmability, for as a building block to im-

plement different services. Unlike the other two web

servers, NGINX is event-driven and mostly configured as

single-threaded. Graphene-SGX currently only supports

synchronous I/O at the enclave boundary, and so, under

load, it cannot as effectively overlap I/O and computa-

tion as other systems that have batched and asynchronous

system calls. Once sufficiently loaded, NGINX on both

Graphene and Graphene-SGX performs worse than in a

Linux process. The peak throughput of Graphene-SGX

is 1.5× lower than Linux; without SGX, Graphene only

reaches 79% of Linux’s peak throughput. We expect that

using tools like Eleos [43] to reduce exits would help this

workload; in future work, we will improve asynchronous

I/O in Graphene-SGX.

5.2 Command-Line Applications

We also evaluate the performance of a few commonly-

used command-line applications. Three off-the-shelf ap-

plications are tested in our experiments: R (v3.2.3) for

statistical computing [9]; GCC (v5.4), the general GNU

C compiler [4]; CURL (v7.74), the default command-

line web client on UNIX [3]. These applications are cho-

sen because they are frequently used by Linux users, and

each of them potentially be used in an enclave to handle

sensitive data—either on a server or a client machine.

We evaluate the latency or execution time of these ap-

plications. In our experiments, both R and CURL have

internal timing features to measure the wall time of in-

dividual operations or executions. On a Linux host, the

time to start a library OS is higher than a simple process,

but significantly lower than booting a guest OS in a VM

or starting a container. Prior work measured Graphene

(non-SGX) start time at 641 µs [52], whereas starting an

empty Linux VM takes 10.3s and starting a Linux (LXC)

container takes 200 ms [12].

On SGX, the enclave creation time is relatively higher,

ranging from 0.5s (a 256MB enclave) to 5s (a 2G en-

clave), which is a fixed cost that any application frame-

work will have to pay to run on SGX. Enclave creation

time is determined by the latency of the hardware and

the Intel kernel driver, and is primarily a function of the

size of the enclave, which is specified at creation time

because it affects the enclave signature. For non-server

workloads that create multiple processes during execu-

tion, such as GCC in Figure 6, the enclave creation con-

tributes a significant portion to the execution time over-

heads, illustrated as a stacked bar.

R [9] is a scripting language often used for data pro-

cessing and statistical computation. With enclaves, users

can process sensitive data on an OS they don’t trust.

We use an R benchmark suite developed by Urbanek et

al. [8], which includes 15 CPU-bound workloads such as

matrix computation and number processing. Graphene-

SGX slows down by less than 100% on the majority

of the workloads, excepts the ones which involve al-

location and garbage collection: (matrix1 creates and

destroys matrices, and both FFT and hilbert involve

heavy garbage collection.) Aside from garbage collec-

tion, these R benchmarks do not frequently interact with
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Figure 6: Performance overhead on desktop applications, including latency of R, execution time of GCC compilation,

download time with CURL. The evaluation compares native Linux, Graphene, and Graphene-SGX.

the host. We further note that non-SGX Graphene is as

efficient as Linux on all workloads, and these overheads

appear to be SGX-specific. In our experience, garbage

collection and memory management code in managed

language runtime systems tends to be written with as-

sumptions that do not match enclaves, such as a large,

sparse address space or that memory can be demand

paged nearly for free (SGX version 1 requires all mem-

ory to be mapped at creation); a useful area for future

work would be to design garbage collection strategies

that are optimized for enclaves.

GCC [4] is a widely-used C compiler. By support-

ing GCC in enclaves, developers can compile closed-

source applications on customers’ machines, without

leaking the source code. GCC composes of multiple bi-

naries, including cc1 (compiler), as (assembler), and ld

(linker). Therefore, GCC is a multi-process program us-

ing execve. We test the compilation of thee source files

with varied sizes, using single C source files collected by

MIT [5]. Each GCC execution typically creates five

processes, and we run each process in a 256MB enclave

by default. For a small workload like compiling gzip.c

(5 kLoC), running in Graphene-SGX (4.1s) is 18.7×

slower than Linux (0.2s). The bulk of this time is spent in

enclave creation, taking 3.0s in total, while the whole ex-

ecution inside the enclaves, including initialization of the

library OS and OS shield, takes only 1.1s, or 4.2× over-

head. For larger workloads like oggenc.c (50 kLoC)

and gcc.c (500 kLoC), the overhead of Graphene-SGX

is less significant. For gcc.c (500 kLoC), we have to

enlarge one of the enclaves (cc1) to 2GB, but running on

Graphene-SGX (53.1s) is only 2.1× slower than Linux

(17.2s), and 7.1s is spent on enclave creation. The over-

head of non-SGX Graphene on GCC is marginal.

CURL [3] is a command-line web downloader.

Graphene-SGX can make CURL into a secure down-

loader that attests both server and client ends. We

evaluate the total time to download a large file, rang-

ing from 1MB to 1GB, from another machine running

Apache. Graphene has marginal overhead on CURL, and

Graphene-SGX adds 7–61% overhead to the download-

ing time of CURL, due to the latency of I/O.

5.3 Performance Overhead Analysis

In this section we evaluate a few system operations that

are heavily impacted by the Graphene-SGX design. We

measure the open, read, and fork system calls using

LMbench 2.5 [42]. A primary source of the overheads

on these system calls is the cost of shielding applications,

with run-time checks on the inputs. Cryptographic tech-

niques are used to: (1) validate the file against the se-

cure hash, at open, (2) check the file chunks against the

Merkle tree, at read, and (3) establish a TLS connection

over inter-enclave RPC, at fork. The remaining over-

heads contribute to exiting the enclave for host system

calls, and bringing memory into the EPC (enclave page

cache) or decrypting memory on a last-level cache miss.

Figure 7(a) shows the overhead for authenticating files

in open. Depending on the file size, the latency of open

on Graphene-SGX is 383µs (64KB file) to 21ms (4MB

file), whereas on Linux, the latency is constant at 0.85µs.

We note that this is where enclaves are at a disadvan-

tage, as open normally does not need to read file con-

tent; whereas here Graphene-SGX uses open as a point

at which to validate file content. For a subsequent open,

when the Merkle tree is already generated, the overhead

of simply exiting enclave for open, and searching the file

list in the manifest, is about 9×.

One might be able to optimize further for cases where

only part of a file is accessed with incremental hashing.

However, in the common case where nearly all of the file

is accessed, these costs are difficult to avoid when host

file system is untrusted. Another opportunity is to create

the Merkle tree offline, when the manifest is created.

Figure 7(b) shows the overhead for authenticating files

in read, which is lower than open. Since the whole

file has been verified at open, the sequential read only

verifies the chunks of files it is reading from untrusted

memory. Depending on the size of blocks being read,

the latency on Graphene-SGX is 0.5µs (64-byte read)
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Figure 7: Latency of some expensive system calls in Graphene-SGX, including opening and reading a secured (au-

thenticated) file, and forking a new process. The results are compared with native Linux and Graphene.

Components Graphene-SGX SCONE Panoply

libc (ld, libm, pthread) 1,292 88 –

(glibc-2.19) (musl)

Library OS 34 – –

PAL / OS Shield 22 99 10

Total 1,348 187 10

Table 2: TCB size (in thousands of lines of code) of

Graphene-SGX, SCONE, and Panoply.

to 16.9µs (4KB read). The latency of read on Linux is

∼0.1µs for any block size below 4KB. If the file is not

authenticated, Graphene-SGX only copies the file con-

tents into the buffer, and the overhead reduces to 48%

(64-byte read) to 83% (4KB read).

Figure 7(c) shows the overhead of forking a process.

As described in 4.3, the latency of fork in Graphene-

SGX is affected by three factors: creation of a new en-

clave, local attestation of the integrity, and duplicating

the process state over an encrypted RPC stream. Com-

bining these factors, fork is one of the most expen-

sive calls in Graphene-SGX. The default enclave size is

256MB. Our evaluation shows that the latency of forking

a process is around 0.8s (16MB process) to 2.7s (128MB

process), but can be more expensive if the parent process

uses more memory. The trend matches the performance

of Graphene without the bulk IPC optimization.

One way to further optimize fork is to reduce or avoid

enclave creation time; one can potentially pre-launch a

child enclave, and then migrate the process contents later

when fork is called. There might be another opportunity

to improve the latency of process migration, if copy-on-

write sharing of enclave pages can be supported in future

generations of SGX.

5.4 TCB Size and Shielded Functionality

In this section we measure the increase in TCB size of

Graphene-SGX, as well as the OS functionality shielded

by the framework. We compare to SCONE and Panoply,

using numbers reported in their papers. A smaller TCB

is generally easier to review or possibly verify, and is

assumed to have fewer vulnerabilities.

Table 2 lists the lines of code in each compo-

nents within the TCB of Graphene-SGX, SCONE, and

Panoply. By comparing the total TCB size, Graphene-

SGX is 9× larger than SCONE, and 134× larger than

Panoply. However, the primary difference is the selec-

tion of libc: for maximum compatibility, Graphene uses

glibc. SCONE uses the smaller musl libc, which lacks

some features of glibc. Panoply excludes libc from its

TCB, to fit into the range of automated formal verifi-

cation, as they shield at the libc interface. In principle,

Graphene could easily support musl as well as glibc for

applications that do not need the additional features of

glibc. We also see the benefit of removing unused code

from libraries, especially in an unsafe language, similar

to the approach taken in unikernels [38]. On balance,

this choice of libc implementation is largely orthogonal

to the issue of how general-purpose the shields are.

If we focus on the TCB size of the library OS and the

shields, Graphene-SGX is 44% smaller than SCONE.

We cannot analyze the size of SCONE because it is

closed source. Panoply has a smaller TCB in its shield,

but within the same order of magnitude. Panoply only

shields 91 out of 256 supported POSIX functions; for

context, POSIX 1003.1 defines 1,191 APIs [11].

All three of these compatibility layers or shields are

within the same order of magnitude in code size, and

the differences are likely correlated with different ranges

of supported functionality. A recent study indicates that

only order-of-magnitude differences in code size corre-

late with reported CVE vulnerabilities; within the same

order-of-magnitude, the data is inconclusive that there

is a meaningful difference in risk [25]. Thus, increased

generality does not necessarily come with increased risk.

6 Related Work

Protection against untrusted OSes. Protecting appli-

cations from untrusted OSes predates hardware support.

Virtual Ghost [20] uses both compile-time and run-time

monitoring to protect an application from a potentially-

compromised OS, but requires recompilation of the

guest OS and application. Flicker [40], MUSHI [56],
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SeCage [37], InkTag [21], and Sego [32] protect appli-

cations from untrusted OS using SMM mode or virtual-

ization to enforce memory isolation between the OS and

a trusted application. Koberl et al. [30], isolate software

on low-cost embedded devices using a Memory Protec-

tion Unit. Li et al. [34] built a 2-way sandbox for x86

by separating the Native Client (NaCl) [55] sandbox into

modules for sandboxing and service runtime to support

application execution and use Trustvisor [39] to protect

the piece of application logic from the untrusted OS. Jang

et al. [26] build a secure channel to authenticate the appli-

cation in the Untrusted area isolated by the ARM Trust-

Zone technology. Song et al. [50] extend each memory

unit with an additional tag to enforce fine-grained isola-

tion at machine word granularity in the HDFI system.

Trusted execution hardware. XOM [35] is the first

hardware design for trusted execution on an untrusted

OS, with memory encryption and integrity protection

similar to SGX. XOM supports containers of an appli-

cation to be encrypted with a developer-chosen key. This

encryption key is encrypted at design-time using a CPU-

specific public key, and also used to tag cache lines that

the containers are allowed to access. XOM realizes a

similar trust model as SGX, except a few details, such as

lack of paging support, and allowing fork by sharing the

encryption key across containers.

Besides SGX, other hardware features have been in-

troduced in recent years to enforce isolation for trusted

execution. TrustZone [51] on ARM creates an isolated

environment for trusted kernel components. Different

from SGX, TrustZone separates the hardware between

the trusted and untrusted worlds, and builds a trusted path

from the trusted kernel to other on-chip peripherals. IBM

SecureBlue++ [16] also isolates applications by encrypt-

ing the memory inside the CPU; SecureBlue++ is capa-

ble of nesting isolated environments, to isolate applica-

tions, guest OSes, hypervisors from each other.

AMD is introducing a feature in future chips called

SEV (Secure Encrypted Virtualization) [27], which ex-

tends nested paging with encryption. SEV is designed

to run the whole virtual machines, whereas SGX is de-

signed for a piece of application code. SEV does not

provide comparable integrity protection or the protection

against replay attacks on SGX. Graphene-SGX provides

the best of both worlds: unmodified applications with

confidentiality and integrity protections in hardware.

Sanctum [19] is a RISC-V processor prototype that

features a minimal and open design for enclaves. Sanc-

tum also defends against some side channels, such as

page fault address and cache timing, by virtualizing the

page table and page fault handler inside each enclave.

SGX frameworks and applications. Besides shielding

systems [14, 15, 49], SGX has been used in specific ap-

plications or to address other security issues. VC3 [45]

runs MapReduce jobs in SGX enclaves. Similarly, Bren-

ner et al. [17] run cluster services in ZooKeeper in an

enclave, and transparently encrypt data in transit be-

tween enclaves. Ryoan [22] sandboxes a piece of un-

trusted code in the enclave to process secret data while

preventing the loaded code from leaking secret data.

Opaque [57] uses an SGX-protected layer on the Spark

framework to generate oblivious relational operators that

hide the access patterns of distributed queries. SGX has

also been applied to securing network functionality [47],

as well as inter-domain routing in Tor [29].

Several improvements to SGX frameworks have been

recently developed, which can be integrated with appli-

cations on Graphene-SGX. Eleos [43] reduces the num-

ber of enclave exits by asynchronously servicing system

calls outside of the enclaves, and enabling user-space

memory paging. SGXBOUND [31] is a software tech-

nique for bounds-checking with low memory overheads,

to fit within limited EPC size. T-SGX [48] combines

SGX with Transactional Synchronization Extensions, to

invoke a user-space handler for memory transactions

aborted by page fault, to mitigate controlled-channel at-

tacks. SGX-Shield [46] enables Address Space Layout

Randomization (ASLR) in enclaves, with a scheme to

maximize the entropy, and the ability to hide and enforce

ASLR decisions. Glamdring [36] uses data-flow analysis

at compile-time, to automatically determine the partition

boundary in an application.

7 Conclusion

This paper demonstrates that the costs of running an

unmodified application in SGX on a library OS are

marginal compared to thinner shims. The major costs

of using SGX are still hardware limitations of SGX.

As SGX and similar technologies mature, these de-

sign choices may have more impact. In the interim,

Graphene-SGX serves as a simple, open-source tool to

quickly bring up existing applications on SGX, and then

incrementally adapt the code to improve performance

and security on SGX.
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