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Abstract 

Increasing energy demands as well as the depletion of traditional energy sources has led to the 

need for the development and improvement of energy conversion and storage technologies. 

Concerns regarding climate change and environmental awareness has also created increased 

support for renewable energy and clean technology research. One technology of interest is the 

photocatalyst, which is a material that is able to use natural light irradiation to create electrical 

currents or drive useful chemical reactions. For this purpose, a strong photocatalytic material 

has the following properties: i) strong absorbance over a wide solar radiation spectrum; ii) high 

surface area for adsorbance of target species; iii) high electron efficiency characteristics such 

as high conductivity, long charge-carrier lifetimes, and direct pathways for electron transport; 

and iv) good chemical stability. All of these requirements serve to maximize the efficiency and 

overall output of the device, and are a means of overcoming the performance hurdle required 

for the commercialization of various energy conversion technologies.  

Unfortunately, current photocatalytic materials suffer from small absorbance windows and 

high recombination rates which greatly reduce the conversion efficiency of the catalyst. 

Titanium dioxide (TiO2), the most well-known and widely used photocatalyst, can only absorb 

light within the ultraviolet (UV) range – which accounts for only a small fraction of the entire 

solar spectrum.  For this reason, the majority of recent research has been directed toward 

producing photocatalysts that are able to absorb light within the visible and infrared range in 

order to maximize the amount of light absorbed in the solar spectrum. Other research is also 

being conducted to increase electrical conductivity and charge-carrier separation to further 

increase conversion efficiency.  
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It is hoped that these two major problems surrounding photocatalysis can be solved by using 

novel functional nanomaterials. Nanomaterials can be synthesized using three main 

techniques: crystal structuring, doping, and heterostructuring. By controlling the structure of 

the crystal, materials of different phase, morphology, and exposed crystal facets can be 

synthesized. These are important for controlling the electronic properties and surface reactivity 

of the photocatalyst. Doping is the act of introducing impurities into a material in order to 

modify its band structure and create a red shift in light absorption. Lastly, heterostructuring is 

a method used to combine different photocatalysts or introduce co-catalysts in order to widen 

the range of absorption, encourage charge separation, or both. Many novel photocatalytic 

materials have been synthesized using these techniques. However, the next-generation 

photocatalytic material has remained elusive due to the high cost of production and complexity 

of synthesis. 

This thesis proposes a novel photocatalytic material that can be used in photocatalyzed waste-

water remediation. Graphene-wrapped hierarchical TiO2 nanoflowers (G-TiO2) are 

synthesized using a facile synthesis method. TiO2 is a material of particular interest due to its 

chemical and photo-corrosion stability, high redox potential, strong electronic properties, and 

relative non-toxicity. Hierarchical structures are highly desired because they are able to achieve 

both high surface area and high conductivities. Graphene hybridization is a popular method for 

creating composites with highly conductive networks and highly adsorptive surfaces. To the 

best of my knowledge, the hybridization of graphene on hierarchical TiO2 structures without 

pre-functionalization of TiO2 has not yet been demonstrated in literature. Therefore, it is 

proposed that the use of such a material would greatly simplify the synthesis process and 
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enhance the overall photocatalytic performance of TiO2 over that of commercial TiO2 

photocatalysts. 

In the first study, hierarchical TiO2 nanoflowers are synthesized using a solvothermal reaction. 

It is then shown that under UV irradiation, the hierarchical TiO2 material is able to outperform 

commercial TiO2 material in the photodegradation of methylene blue (MB). Further 

characterization shows that this improvement is explained by a higher electrical conductivity, 

and exists in spite of having a lower specific surface area compared to the commercial material. 

In the second study, G-TiO2 is synthesized by mixing hierarchical TiO2 nanoflowers with 

graphene oxide (GO) and reducing GO in a hydrothermal reaction. Photocatalytic tests show 

that this hybridization further improves the performance of the hierarchical TiO2. Further 

studies reveal that an optimal graphene loading of 5 wt% is desired in order to achieve the 

higher rate of MB decomposition, and greatly outperforms P25 in this task. Characterization 

shows that G-TiO2 composites have increased specific surface area and electrical conductivity 

compared to the hierarchical TiO2 nanoflower. 

It is believed that this work will provide a simple and efficient avenue for synthesizing 

graphene–TiO2 composites with greatly improved photocatalytic activity. This work may also 

find use in other photocatalytic applications such as chemical deconstruction and 

manufacturing, hydrogen production, solar cells, and solar enhanced fuel cells. 
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1.0 Introduction 

As the world faces growing concerns regarding environmental issues and energy sources, the 

scientific community is looking for cleaner solutions to existing problems. In the face of 

dwindling fossil fuel resources, energy production, and storage industries are under pressure 

to provide technologies that are clean and renewable. Waste remediation and pollution control 

technologies are in high demand in order to combat the increasing emissions of an increasing 

world population. Although Canada is continually working towards lowering its greenhouse 

gas emissions, its oil and gas and transportation sectors continue to contribute the largest and 

growing greenhouse gas emissions.1 

Photocatalysts are a recently discovered class of materials that are a potential solution to many 

of the energy concerns described above. Fujishima showed in 1972 that photocatalytic 

materials such as titanium dioxide (TiO2) could convert natural sunlight into photo-generated 

charge-carriers that were able to split water into oxygen and hydrogen gas.2 This discovery 

was significant because the work implied that a completely passive and renewable mechanism 

could be used to produce energy in the form of hydrogen fuel. Since then, photocatalysts have 

been used in various applications, including waste-water treatment, sterilization, cancer 

therapy,3 dye-sensitized solar cells,4 and hydrocarbon cracking.5 

The reason TiO2 is able to act as a photocatalyst is because of its many desirable optical 

properties. The redox chemistry of TiO2 is such that it is highly reactive with many other 

compounds. TiO2 is also very chemically stable, even under light irradiation, making it a strong 

candidate for a photocatalytic material. The main issues surrounding TiO2 and its future 

development is three-fold. First, the recombination rate of charge-carriers in conventional TiO2 
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particles is high, leading to low efficiencies and photocatalytic activities. Second, TiO2 only 

absorbs light within the ultraviolet (UV) spectrum, limiting it to less than 10% of the solar 

spectrum.6 Lastly, the affinity of target species for TiO2 is much smaller than other materials. 

This lack of adsorption presents a mass transfer issue during photocatalysis. 

It is for the aforementioned reasons that research on improved photocatalytic systems is 

continuing to grow.7, 8 TiO2 photocatalytic activity can be improved by controlling its 

morphology, introducing dopants, and heterostructuring TiO2 with other materials.9 The 

objective of this thesis work is to: (i) show the merits of hierarchical morphologies in 

photocatalysis; and (ii) pair hierarchical TiO2 structures with graphene to create a material with 

enhanced photocatalytic activity over a commercial photocatalyst. Specifically, this work 

outlines the first attempt in literature to produce graphene-wrapped hierarchical TiO2 in the 

photodegradation of methylene blue (MB) as a model for waste-water purification. Graphene 

is a material of great interest in many applications for its high conductivity and high surface 

area. It is believed that the use of graphene as a co-catalytic material in photocatalysis can 

address many of the issues currently plaguing conventional TiO2 photocatalysts. 

 

1.1 Thesis Organization 

This thesis will focus on the development of a specific graphene-TiO2 composite configuration 

that can be used in the photocatalytic degradation of organic compounds in waste-water. In 

Section 2, a brief overview of the operating principles of photocatalysts is given, highlighting 

the necessary properties of a strong photocatalytic material. TiO2 is then presented as a 
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potential photocatalyst. The synthesis and use of TiO2 in literature as a photocatalyst is 

discusses in greater detail, including the merits of hierarchical morphologies in optical and 

electronic applications. Lastly, graphene is introduced as a co-catalytic material, and graphene-

TiO2 composites found in literature are explored. Section 3 provides a brief explanation of the 

characterization techniques used in this work. 

Section 4 covers the first study performed in this thesis work. Hierarchical TiO2 nanoflower 

material is synthesized using a solvothermal reaction. The photocatalytic activity of these TiO2 

nanoflowers are then evaluated against a commercial TiO2 material (P25) using MB as the 

target species. Various characterization techniques are performed to determine the factors 

behind the improved catalytic activity of the hierarchical material.  

Section 5 contains the second study of this thesis work. Hierarchical TiO2 nanoflowers are 

wrapped in graphene sheets via the reduction of graphene oxide in a hydrothermal reaction. 

The photocatalytic activity of this graphene-TiO2 composite is again tested in the 

photodegradation of MB and compared with P25. The mass of graphene is also controlled to 

determine the optimal weight loading of graphene on TiO2 for photocatalysis. The composite 

is characterized extensively to determine the nature of the benefits of graphene as a co-catalyst. 

Lastly, Section 6 gives a conclusion of the work described in this thesis and the future direction 

of this research. 
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2.0 Background 

2.1 Basic Principles of Photocatalysis 

Photocatalysis, as its name implies, involves the acceleration of a chemical reaction via a light-

activated catalyst. Photocatalysts use photo-generated electron-hole pairs (EHPs) to generate 

free radical species that can undergo secondary reactions. Because of the nature of photo-

generation, photocatalysts rely on a class of materials called semiconductors to perform this 

type of process. 

Semiconductors are materials that have all of their valence shells filled with electrons.10 

Because of this, electrons are not mobile within the material and semiconductors are not 

intrinsically conductive. When enough energy is put into the system, an electron can be excited 

to the next unfilled shell, also called the conduction band. Since the conduction band was 

previously empty, electrons that are excited to this band have much more mobility. This 

charge-carrier movement creates a current within the semiconductor. The gap in which no 

energy states exists is called the electronic band gap, and is the amount of energy required to 

excite an electron from the valence band to the conduction band. It is important to note that the 

band gap is the minimum amount of energy required to excite an electron. It is possible to 

excite an electron with energy greater than the band gap, however the electron may relax back 

down to the conduction band edge and release energy in the form of phonons.  

When an electron is excited from the valence band to the conduction band, it leaves behind an 

electron vacancy. In semiconductor theory, this vacancy is referred to as a ‘hole’ – an 
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imaginary particle that holds a positive charge. Therefore, the movement or transition of a hole 

in one direction is actually the movement or transition of an electron in the opposite direction. 

Once an EHP is generated, these charge-carriers must be separated and transported to an active 

site for reaction. EHP separation is necessary because electrons have a tendency to lower their 

potential energy, and by extension holes have a tendency to increase their potential energy. 

Therefore, EHPs have a tendency to recombine in order to create a more thermodynamically 

favourable system. 

This unique characteristic of charge-carriers is important for understanding how they interact 

with other molecules in redox reactions. Redox reactions are chemical reactions in which the 

oxidation state of an atom is changed.11 This means that an electron transfer has taken place. 

The term, ‘redox,’ is a portmanteau used to describe two types of electron transfer processes: 

reduction and oxidation. Reduction is the process of gaining electrons, leading to a decrease in 

the oxidation state of a species. Oxidation is the process of losing electrons, leading to an 

increase in the oxidation state of a species.  

Redox reactions require a driving force in order to proceed. Redox potentials are a measure of 

the tendency of chemical species toward these types of reactions. For example, in a solution 

containing two species, the species with a more positive electrochemical potential will have a 

tendency to gain an electron from the species with a less positive electrochemical potential. 

This is the same behaviour of charge-carriers described previously, except stated in terms of 

electrochemical potentials: Electrons have a tendency to move toward species with higher 

electrochemical potentials (or lower potential energies), reducing the species; and, holes have 
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a tendency to move toward lower electrochemical potentials (or high potential energies), 

oxidizing the species. 

The above processes describe the mechanism by which photocatalysts, such as TiO2, induce 

chemical reactions (Figure 1): (i) an incident photon with sufficient energy strikes the 

photocatalyst, photo-generating an EHP; (ii) the EHP are either separated and reach an active 

site on the surface of the photocatalyst (a), or they recombine, ending the process (b); and, (iii) 

successfully separated electrons and holes undergo reduction and oxidation reactions with 

adsorbed species, respectively. In an aqueous solution, photocatalysts can react with water or 

other organic compounds to form radical species. These species are highly reactive and are 

‘resolved’ through various oxidation reactions, eventually leading to products such as CO2 and 

H2O (Equations 1 to 3c).12 

 

Figure 1: Illustration of the basic photocatalytic mechanism.7 
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 𝑇𝑖𝑂2 + ℎ𝜈 → 𝑒− + ℎ+ (1) 

 𝑒− + 𝑂2 → 𝑂2 ∙ (2a) 

  𝑂2 ∙ +𝐻+ → 𝐻𝑂2  

  𝐻𝑂2 + 𝑒− + 𝐻+ → 𝐻2𝑂2 

   𝐻2𝑂2 + 𝑒− → ∙ 𝑂𝐻 + 𝑂𝐻−   
   𝐻2𝑂2 + 𝑂2 ∙ → ∙ 𝑂𝐻 + 𝑂𝐻− + 𝑂2   
 2𝑂2 ∙ +𝐻2𝑂 → 𝑂2 + 𝐻𝑂2 ∙ +𝑂𝐻− 

(2b) 

(3c) 

(4d) 

(5e) 

(6f) 

 ℎ+ + 𝑇𝑖𝑂𝐻/𝑂𝐻−/𝐻2𝑂 → 𝑅/𝑅 ∙/ ∙ 𝑅𝑂𝐻 

 → 𝑂2 ∙, 𝐻𝑂𝑂 ∙, 𝐻𝑂𝑂𝐻, 𝐻𝑂𝑂−, 𝐻𝑂 ∙, 𝑂𝐻−, 𝐻2𝑂 

 → 𝐻2𝑂 + 𝐶𝑂2 

(3a) 

(3b) 

(3c) 

 

Based on this reaction mechanism, there are four main requirements for a strong photocatalytic 

material: (i) chemical stability; (ii) absorbance over a wide light spectrum; (iii) high electron 

conductivity; and (iv) high specific surface area. These four requirements will be described in 

greater detail below: 

Chemical Stability 

Chemical stability and photo-corrosion resistance is an important property of photocatalysts 

for three reasons: First, a catalyst by definition should not be used up during a chemical 

reaction; second, the decomposition of a catalyst means that it can no longer be used and must 

be replaced with new catalyst; and third, the decomposition of a catalyst can produce harmful 

or dangerous products.13  

One example of a good photocatalytic material with low photo-corrosion resistance is 

cadmium sulfide (CdS). CdS has a band gap of 520 nm (2.39 eV), making it a candidate 

material for visible-light photocatalysis.14 However, one issue with CdS, along with many 
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other metal sulfides, is that it can easily undergo photo-corrosion via the oxidation of S2- 

(Equations 7 to 9). Not only does this destroy the photocatalyst and lower overall activity, but 

this decomposition also introduces toxic dissolved Cd2+ into solution, which is detrimental to 

health and quality of life.  

  𝐶𝑑𝑆 + ℎ𝜈 → 𝑒− + ℎ+ (7) 

 𝐶𝑑𝑆 + 2ℎ+ → 𝐶𝑑2+ + 𝑆(𝑠) (8) 

 𝐶𝑑𝑆 + 2𝑂2 → 𝐶𝑑2+ + 2𝑂42+ (9) 

 

For this reason, unstable catalysts such as CdS require either a hole-scavenging species to 

reduce the rate of self-oxidation (such as a 𝑆2−/𝑆𝑂32− system),14 or another co-catalyst that can 

accept holes from CdS, thus preventing oxidation of S2-.15 

Absorption Spectrum 

The absorption requirements for a photocatalytic material appear obvious at first. The smaller 

the band gap the wider the range of light that can be absorbed. For example, the anatase phase 

of titanium dioxide (TiO2) has a band gap of 3.2 eV and can only absorb light within the 

ultraviolet (UV) range.2 As shown previously, CdS has a band gap of 2.39 eV, and can 

therefore absorb UV light as well as part of the visible-light spectrum.  

It is important to understand redox potentials and the position of band gaps in materials, as 

these potentials determine the movement of charge-carriers. For example, in the case of 

photocatalytic water splitting, the photocatalyst must straddle both the H+/H2 reduction 

potential (0 eV vs. SHE) and the H2O/O2 oxidation potential (1.23 eV vs. SHE).16 Based on 
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Figure 2 below, the band gaps of the semiconductors on the left are large (UV-active only) but 

are able to induce photocatalytic water splitting. The semiconductors in the middle are unstable 

because they are susceptible to redox reactions and decomposition. Lastly, the semiconductors 

on the right have unsuitable band edge positions. This means that the conduction band or 

valence band are too positive or negative to induce a reduction or oxidation reaction with water, 

respectively. 

 

Figure 2: Redox potentials of various materials in evaluating suitability for water splitting. Reprinted with 
permission from publisher.16 Copyright 2013, The Electrochemical Society. 

 

Therefore, although smaller band gaps are desired for their absorption of higher wavelengths, 

one must guarantee that the band edge positions are suitable for the desired redox reaction. At 

the same time, if the desire redox reactions are known, then it is possible to find or tailor the 

best material with the most appropriate redox potentials to drive the reactions forward. 

The absorption spectrum can therefore be increased by: (i) finding or synthesizing a material 

with a small band gap that perfectly straddles the desired redox reaction; (ii) doping a large 

band gap material to create intermediate states, effectively lowering the band gap; or, (iii) 
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heterostructuring a large band gap material with a small band gap material to create a wider 

absorption spectrum. 

Electron Conductivity 

A material’s electrical conductivity is defined as its ability to allow the flow of electric 

current.17 The higher the conductivity, the more easily electrons can move. Metals are 

considered the most conductive type of material because their Fermi levels – the hypothetical 

energy level that has a 50% chance of being occupied by an electron at thermodynamic 

equilibrium - exist within their energy band. This means that many energy levels exist near the 

Fermi level and can easily be occupied by electrons.  

Unfortunately, photocatalytic materials are by nature semiconductors and therefore have no 

energy levels near their Fermi levels. This means that photocatalysts intrinsically have low 

conductivities. However, it is possible to improve the conductivity of photocatalysts by 

creating a composite with a conductive material such as a carbonaceous material. The crystal 

structure of the catalyst can also be improved to reduce the amount of defects and increase 

grain boundary size that can act as traps for charge-carriers.18 

Surface Area 

The surface area of a photocatalyst is important because an increased amount of active surface 

sites allows for creating more active oxygen species and adsorbing target species for 

decomposition.19, 20 Because active sites are only found at the interface between the catalyst 

and the target medium, a high specific surface area (m2·g-1) is generally desired for all 

photocatalytic applications. 
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Given the criteria mentioned above, different photocatalytic materials have been proposed and 

are currently being researched.21, 22 Relevant classes of materials include metal oxides, metal 

sulfides, and nitrides. Metal oxides are represented mainly by TiO2,2 23 ZnO,24, 25 α-Fe2O3,26, 27 

and WO3,28, 29 though other binary metal oxide photocatalysis exist.21 Ternary metal oxides 

such as SrTiO3
30, 31 and BiVO4

32, 33 have also been gaining attention as potential visible-light 

photocatalysts. Still, various other metal oxide combinations have been tested for their 

photocatalytic activity.34, 35 Potential metal sulfide photocatalysts include CdS,36, 37 ZnS,38, 39 

and more recently MoS2 and WS2.40 Lastly, nitrides such as graphitic-C3N4 have been gaining 

attention for its simple and inexpensive synthesis and visible light activity.41, 42 For the sake of 

brevity, this thesis will focus mainly on photocatalytic TiO2 and its various forms, which will 

be discussed in detail in Section 2.2. 

 

2.1.1 Testing of Photocatalytic Systems 

Photocatalysts can be tested in various photocatalytic systems. Solution-based setups vary 

from simple batch suspension reactors and continuous flow annular reactors to more complex 

compound parabolic collecting reactors (shown in Figure 3) and photocatalytic membrane 

reactors.43-46 Solution-based photocatalysis normally involves the treatment of waste water, the 

electrolysis of water (or water-splitting), or the directed cracking of specific hydrocarbons. 

Gas-based systems, such as powder layer reactors, fluidized bed reactors, and honeycomb 

monolith reactors, are often used to decompose harmful pollutants such as NOX gas and 

volatile organic compounds.47 The aim of all photocatalytic systems is to maximize the 
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exposed surface area of photocatalyst and the mass transport of target species to the surface of 

the photocatalyst while guaranteeing the highest throughput possible. 

 

Figure 3: Diagram outlining the design of a compound parabolic collecting reactor (right). A non-concentration 
continuous flow reactor is shown on the left and a basic concentrating reactor in the center.44 

 

In solution-based photocatalysis, many different target species are tested at the lab-scale 

including the degradation of pharmaceuticals and organic compounds, and the reduction of 

heavy metal ions.48-51 At the same time, model compounds are used to provide a standard by 

which different research groups can compare results. One such model compound is 

C16H18N3SCl, or methylene blue (MB), a textile dye that is considered toxic and a pollutant in 

textile effluents.52 MB is a heterocyclic aromatic compound that easily dissolves in H2O to 

form a positively charged molecule.53 The adsorption of MB on TiO2 and carbonaceous 

materials follows a monolayer Langmuir type isotherm.54, 55 This means that MB will not form 

multiple layers on these surfaces, and that an equilibrium adsorption concentration of MB 

exists in solutions containing excess MB. 
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Figure 4: Chemical structure of methylene blue. 

 

In this work, a batch reaction is employed. This system is chosen for its ease of use and simple 

characterization of photocatalysts compared to continuous-flow reactors. Batch reactions also 

allow for photocatalyst dispersions which maximizes the available surface area for reaction. 

Two beakers containing an aqueous photocatalyst solution are placed on two stir plates 

approximately 6 in (15.24 cm) away from a center lamp. While maintaining a dark 

environment without any illumination, stock MB solution is added to the photocatalyst solution 

under stirring. Without light irradiation, the MB in the solution slowly adsorbs onto the surface 

of the photocatalyst. After a certain period of time the solution is expected to reach adsorption-

desorption equilibrium. The concentration of MB at this time is known as the equilibrium 

concentration (C0). Because different photocatalytic materials differ in the amount of time it 

takes to reach adsorption-desorption equilibrium, a long period of time – such as one hour – is 

used to guarantee that concentration C0 has been reached for all samples. This value remains 

consistent across all experiments. 

At this point, the UV lamp can be turned on to begin the photocatalytic reaction. MB that is 

closest to the photocatalytic material – mainly the MB that is adsorbed on the surface – can 

undergo direct oxidation or reduction. The product of this redox reaction can then desorb from 
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the photocatalyst surface and allow another MB molecule to adsorb on the newly vacant active 

site. Vacant active sites can also be used to induce redox reactions with water species to 

produce active oxygen species that can further react with MB and cause decomposition. 

As MB undergoes photocatalytic reduction and decomposition, it forms intermediates which 

are also reduced over time. The N-demethylation of MB causes the formation of intermediate 

products such as Azure B, Azure A, Azure C, and Thionine.56 The decomposition of MB into 

these intermediates causes a blue shift in the characteristic absorbance peak (~664 nm). This 

blue shift in absorbance is similar to the behaviour seen in the N-deethylation of Rhodamine 

B.57 The final products of MB decomposition are CO2, SO4
2–, NH4

+, and NO3
–.54 The 

concentration of MB can be measured using an Ultraviolet-Visible (UV-Vis) spectrometer to 

determine the absorbance of MB in the range of 660 – 670 nm. The reduction of the absorbance 

peak in this range signals the removal of MB. 

 

Figure 5: Proposed decomposition of MB during photocatalysis. N-demethylation causes the formation of 
intermediates Azure B (AB), Azure A (AA), Azure C (AC), and Thionine (Th), causing a blue shift in MB’s 
characteristic absorbance peak.56 
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2.2 Titanium Dioxide (TiO2) as a Photocatalytic Material 

TiO2 is a naturally occurring metal oxide that is typically found in the form of ilmenite ore. 

TiO2 exists in three main mineral forms: anatase, rutile, and brookite. Both anatase and 

brookite are metastable states, and convert to rutile upon heating.58 The photocatalytic activity 

of TiO2 was first discovered by Fujishima in 1967 and published by Fujishima and Honda in 

1972.2 It was found that TiO2 could use light irradiation to perform hydrolysis – the breaking 

of water molecules into hydrogen and oxygen gas – at active surface sites. 

Since the discovery of this effect – called the Honda-Fujishima effect – TiO2 has been used as 

a photocatalytic material in applications ranging from dye-sensitized solar cells59 to 

antibacterial systems60 to air pollution control.61 Even today, TiO2 has remained at the forefront 

of photocatalytic research because of its low cost, chemical stability, and large redox potentials 

with respect to water.62 

Subsequent work revealed that TiO2 could be modified in many different ways in order to 

improve its photocatalytic activity.23 In addition to changing its mineral phase, impurities could 

be introduced to modify its absorption spectrum; the morphology of the material could be 

changed to improve surface area and conductivity; and, TiO2 could be paired with other co-

catalysts to improve overall performance. 

The following sections will focus on: the properties of TiO2 that make it a strong photocatalytic 

material; the various methods for synthesizing TiO2; and, the specific control of TiO2 

morphology to form hierarchical structures. 
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2.2.1 TiO2 Properties 

The properties of TiO2 relevant to photocatalysis have been widely studied.63 The most 

photoactive active form of TiO2 is thought to be anatase due to its high adsorption of organic 

compounds and high hole trapping rate,64, 65 though the rutile and brookite phases have also 

been shown to be photoactive.66 In fact, TiO2 containing multiple phases have been shown to 

improve photocatalytic activity and reduce recombination of charge-carriers.67, 68 Because 

anatase and rutile TiO2 are the most relevant and widely studied phases, this section will focus 

on these phases only. 

The most thermally stable crystal face of anatase is (101).63 The (101) surface is corrugated 

and consists of alternating rows of 5-coordinated Ti atoms. The lowest energy crystal face of 

rutile is (110), which consists of 6-coordinated Ti atoms with bridging oxygens. Both anatase 

and rutile have tetragonal crystal structures, and the transformation of anatase into rutile is 

possible by annealing anatase at temperatures greater than 400°C.69 

 

Figure 6: The most thermodynamically stable crystal faces of anatase TiO2 (a) and rutile TiO2 (b). Red spheres 
= O; blue spheres = Ti.63 

A 

B 
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TiO2 is an intrinsic wide band gap semiconductor, with optical absorption gaps of 3.2 eV and 

3.03 eV for anatase and rutile, respectively.70 However, anatase and rutile can also be 

considered n-type semiconductors due to the natural oxygen vacancies within the lattice which 

reduces Ti4+ to Ti3+.63 These band gaps effectively place the absorption spectrum of pure TiO2 

within the ultraviolet range (λ ≈ 10 – 400 nm). 

It has been recently confirmed that mixed-phase TiO2 containing anatase and rutile consists of 

a 0.4 eV band alignment, with anatase having a work function 0.2 eV larger than that of rutile 

(Figure 7).67 This confirmation provides a strong theoretical basis for the use of mixed-phase 

TiO2 to effectively separate EHPs, reducing charge recombination and increasing 

photocatalytic efficiency. TiO2 can have a wide range of conductivities depending on its crystal 

structure and morphology. As a nanoporous film, TiO2 has been shown to have conductivities 

as high as 3.7 × 10–3 Ω–1·cm–1.71 

 

Figure 7: Band gap mismatch between anatase and rutile in mixed-phase TiO2.67 
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At neutral pH, the conduction band of anatase has a potential of -0.5 eV vs. SHE (Figure 8).72 

The conduction band of anatase is negative enough to reduce O2 to O2•– (-0.3 eV vs. SHE). 

The valence band is also sufficiently positive to oxidize H2O and other hydroxide species to 

form their respective radicals. When placed relative to the redox potential of organic functional 

groups such as aromatics, phenols, amines, and sulfur bands, TiO2 is very capable of inducing 

redox reactions.  

  

Figure 8: Band positions of various semiconductors including TiO2. Relative redox potentials of various 
organic functional groups.23 

 

Apart from photocatalytic applications, TiO2 is used extensively as a pigment in paints and 

coatings, as a UV-blocker in sunscreens, and as a food additive.73 TiO2 is useful as a white 

pigment due to its high refractive index and, therefore, high brightness.74 Its high refractive 

index means that light is easily bent and redirected off of the surface – even for very thin layers 

of TiO2. With the addition of strong UV absorption, this also makes TiO2 a useful additive in 



19 

 

sunscreens. In foodstuffs, TiO2 is commonly used as both a whitening agent and as an anti-

bacterial additive for increasing product shelf-life. 

Unfortunately, the toxicity of nanoscale TiO2 particles used in these applications have yet to 

be thoroughly studied. Although bulk TiO2 is found to be inert and relatively non-toxic towards 

humans, existing toxicity studies performed on sub-micron TiO2 particles has led the 

International Agency for Research on Cancer to label TiO2 as an IARC Group 2B carcinogen, 

meaning that it is possibly carcinogenic to humans.73 This evaluation is based on several 

studies. One of the largest epidemiological cohort studies performed in TiO2 production 

industries in six European countries, as well as three other studies in the USA and Canada 

showed inadequate evidence for TiO2 carcinogenicity in humans.73, 75 However, ultrafine TiO2 

particles tested in rats, mice, and hamsters have shown sufficient evidence in animals for its 

carcinogenicity. For these reasons, TiO2 is currently classified as possibly carcinogenic to 

human beings. 

 

2.2.2 TiO2 Synthesis 

The synthesis of photocatalytic materials can be divided into three main approaches: 

morphology control, doping, and heterostructuring.76 By controlling and fine-tuning the 

morphology of a photocatalyst, one can control the physical and electronic properties of the 

material. Doping, as mentioned previously, can be used to introduce intermediate energy states 

and lower the effective band gap of the material. Lastly, heterostructuring combines two 
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different materials in order to take advantage the properties of each material and improve 

charge-carrier separation. 

TiO2 can be synthesized using a wide array techniques and processes which have been 

extensively recorded in literature.23, 76, 77 These include precipitation, sol-gel, emulsion, 

solvothermal and hydrothermal, electrochemical, chemical and physical vapour deposition 

(CVD and PVD), and microwave methods. Precipitation, sol-gel, and emulsion methods are 

often employed to create TiO2 nanoparticles that can be used as films, membranes, or powders. 

These methods rely on the hydrolysis of TiO2 precursors such as titanium oxysulfates, titanium 

chlorides and titanium alkoxides. These methods can also be used with templating compounds 

such as surfactants, block co-polymers, and other ordered structures to produce specific 

ordered membranes. Solvothermal and hydrothermal methods are high temperature, high 

pressure processes that use organic or aqueous solvents as media, respectively. These methods 

often begin with sol-gel solutions, and so use similar precursors. Solvothermal and 

hydrothermal reactions are favoured when specific complex morphologies are desired. CVD 

and PVD processes can be used to produce thin TiO2 films. Lastly, microwave methods use 

high-frequency electromagnetic waves to induce hydrolysis of TiO2 suspensions to form larger 

ordered structures. 

Sol-gel synthesis of TiO2 is one of the simplest and popular means of growing TiO2 

nanomaterials.23, 78 Sol-gel methods can be used to produce high purity TiO2, and processing 

parameters can be modified to change structure, introduce dopants, and form composites.23 In 

sol-gel synthesis, TiO2 is formed through the hydrolysis and condensation of a titanium 

alkoxide. Titanium salts can also be used, however this requires the removal of the anion after 
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synthesis. When sol-gel methods are combined with solvothermal and hydrothermal 

techniques, the range of TiO2 materials that can be synthesized greatly diversifies.  

TiO2 can take various forms depending on the synthesis method.77 Hydrothermal and 

solvothermal methods alone account for the synthesis of nanoparticles,79 nanotubes,80 

nanosheets,81 nanobelts,82 nanorods,83, nanowires,84 nanowire arrays,85 and aerogels.86 

Hierarchical morphologies are becoming an important part of the photocatalysis research due 

to the many benefits of combining different morphologies into one material.20, 87, 88 Spherical 

0D structures have the highest theoretical surface area, while highly crystalline 1D structures 

(such as nanotubes, nanobelts, nanorods, and nanowires) are known to have lower 

recombination rates and higher electron transport properties.88 In order to address the scattering 

issues of smaller structures, larger 3D morphologies are desired to increase light scattering and 

absorbance.  

An example of a hierarchical material is shown in Figure 9. In this example, a continuous film 

is cast or deposited on a substrate. This film consists of smaller nanowires, which themselves 

are comprised of even smaller nanoparticles. The nanoparticles provide a higher surface area 

for the material, while the nanowire morphology provides higher electrical conductivity 

between sites. Lastly, because the material can be made as a continuous film it can easily be 

applied to various surfaces.  
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Figure 9: Example of a hierarchical structure: a continuous film consisting of nanowires that are themselves 
comprised of nanoparticles. 

 

Even without the use of surfactants, various hierarchical morphologies can be synthesized 

using hydrothermal and solvothermal reactions. For example, Mali et al showed that 

hierarchical TiO2 structures could be synthesized without the use of surfactants. By increasing 

the hydrothermal reaction temperature from 100°C to 190°C, Mali showed the evolution of 

TiO2 morphology from 0D nanoparticles to 1D nanorods to ordered 3D dendritic structures. 

Similar hierarchical structures have also been shown by other research groups.89-91  

TiO2, and photocatalytic materials in general, can also be doped in order to change the band 

structure of the semiconductor material. The doping of TiO2 has been explored extensively by 

research groups, including both metal ions (Fe, Mo, Ru, Os, Re, V, Rh, Co, Al, Ag, Pd, Pt, Zn, 

Zr, Cr, Mg, La, Ce, Er, Pr, Gd, Nd, Sm)92-95 and non-metal ions (C,96 N,97 S,98 F,99 Cl/Br68). 

Dopants introduce energy bands within the band gap of semiconductors. These energy bands, 

although very close to either the valence band or conduction band (depending on their 

contribution to the band structure), causes a shift in the Fermi level and ultimately a reduction 

in the band gap of the material. Doping is commonly used with TiO2 to cause a red shift in its 

absorption spectrum and induce visible light photoactivity. In general, p-doping is more 
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desirable than n-doping, since TiO2 is intrinsically more oxidative than reductive of water 

molecular and other organic compounds. This means that the introduction of excess holes, 

unlike electrons, is more favourable for reducing band gap because their influence over the 

reduction potential of TiO2 is less problematic.9 

 

Figure 10: Various hierarchical morphologies of TiO2 based on reaction temperature.88 
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The final means for improving photocatalytic activity is introducing a second distinct material 

that improves absorption of light, acts as a charge-carrier acceptor or donor, or both. The 

advantage of creating a heterogeneous photocatalyst like this is that the crystal structure and 

redox characteristics of TiO2 are preserved, while additional properties can be provided by a 

secondary material. There are many types of heterogeneous mechanisms, but the most widely 

studied are charge-carrier transfer, indirect Z-scheme, sensitization, and co-catalyst coupling.9 

Charge-carrier transfer requires the pairing of TiO2 with another semiconductor that produces 

a staggered band-alignment like that shown in Figure 7.  In this configuration, electrons 

preferentially transfer to one semiconductor, while holes preferential transfer to the second 

semiconductor. Examples of semiconductors paired with TiO2 include CdS,100 Bi2O3,101 

PbS102. Charge-carrier transfer has the advantage of reducing recombination but also the 

disadvantage of ultimately lowering the reaction potential of both charge-carriers. 

This disadvantage can be solved by using indirect Z-scheme processes, which separate the two 

semiconductors and place a redox mediator in between electrons from one semiconductor and 

holes from the other. This keeps reduction and oxidation reactions on separate semiconductors, 

while maintaining the reaction potential of all charge-carriers. An example of a TiO2-based 

indirect Z-scheme is an anatase-rutile TiO2 system using an IO3–/I– redox mediator.103  

Sensitization improves the photocatalytic performance of TiO2 by providing visible-NIR 

sensitivity in the form of a narrow band gap secondary material such as an organic dye like 

N719,104 or semiconductor such as Cu2O105 or CdSe106. This heterostructure makes it possible 

to absorb light within both UV and visible spectrums, while maintaining the large redox 

potential of TiO2.  
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Lastly, co-catalysts can be coupled with TiO2 to either improve reactivity, improve absorbance, 

or act as electron acceptors.  Both metals (Au, Pt, Ir, Ag, Pd, Ru, Rh)107-109 and other 

semiconductors such as NiO and RuO2
109 have been used as co-catalysts. Carbonaceous 

nanomaterials are also considered co-catalytic in these systems. It has been found that carbon-

based materials can be used to photosensitize TiO2 to larger wavelengths, reduce 

recombination through charge-carrier transfer, and provide more active surface sites.7 

Graphene is one such material that is being increasingly studied, and will be discussed in 

greater detail in the following section. 

 

2.3 Graphene 

Graphene is a very popular carbon nanomaterial due its highly interesting and beneficial 

properties.110 Graphene was first successfully produced by Novoselov et al in 2004111 and 

Geim and Novoselov were eventually given the 2010 Nobel Prize in Physics for their work.112 

Graphene consists monolayer, sp2 hybridized, carbon atoms that create a 2D honeycomb 

lattice. This structure makes graphene the precursor to various other carbon materials such as 

0D fullerenes, 1D nanotubes, and 3D graphite (Figure).113 Each carbon atom can form a σ-

bond with a neighbouring atom, and these bonds are responsible for the high mechanical 

strength of graphene. The unused p orbital is free to form π-bonds with neighbouring atoms, 

forming a half-filled orbital. The result is a highly conjugated structure that allows for 

extremely high conductivity. In fact, calculations show that graphene has a mobility in excess 

of 15 000 cm2·V-1·s-1 and a resistivity as low as 10-6 Ω·cm-1.113, 114 In theory, these 
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characteristics make graphene one of the strongest and most conductive materials presently 

known. 

An additional property of graphene is its high specific surface area. Calculations show that 

monolayer graphene has a maximum theoretical specific surface area of 2630 m2·g-1.115 This 

high surface area, combined with its highly conjugated structure, makes graphene a suitable 

material for adsorbing other conjugated compounds, such as aromatics, via π-π interactions.116 

Lastly, graphene is known to be a zero-band gap material with a work function of -4.42eV – 

just below that of anatase TiO2 (-4.40 eV).117, 118 This makes graphene a good electron acceptor 

of anatase TiO2 and electrons have a tendency to transfer to graphene, avoiding recombination 

with holes that remain on TiO2. 

 

Figure 11: Single layer graphene, as a parent to other carbonaceous materials: 0D fullerenes, 1D 
nanotubes, and 3D graphite.113 
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2.3.1 Graphene Synthesis 

Graphene can be synthesized using various methods. In order to produce single-layer or bi-

layer graphene, micromechanical cleavage of highly oriented pyrolytic graphite, epitaxial 

growth, chemical vapour deposition, and arc discharge of graphite can be used.119 For large-

scale production of graphene, the aforementioned methods are not suitable. The most popular 

method for producing graphene is to reduce chemically exfoliated graphene oxide (GO).120 

The large-scale, facile synthesis of GO was first created by Hummers and is aptly named the 

Hummers method.121  

The Hummers method involves the exfoliation and oxidation of a graphite precursor in order 

to form graphene oxide, a non-conductive and hydrophilic graphene sheet containing 

functionalities such as epoxides, alcohols, ketone carbonyls, and carboxylic groups. First, 

graphite powder is added to a solution containing concentrated sulfuric acid (H2SO4), sodium 

nitrate (NaNO3), and potassium permanganate (KMnO4) to oxidize and exfoliate the graphite. 

After this process is complete, the solution is slowly neutralized using water, and excess 

KMnO4 is reduced using hydrogen peroxide (H2O2). This final solution is washed and 

centrifuged to obtain the final GO powder. 

This method has since been modified to improve the quality of the prepared GO.122 

Specifically, NaNO3 is no longer used in the oxidation process and the ratio of H2SO4 and 

NaNO3 is changed. This not only improves the efficiency of the oxidation process, but also 

makes the synthesis process itself safer and easier to control. The method used in this thesis is 

based heavily on these methods. 
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2.3.2 Graphene-TiO2 Composites 

Graphene-TiO2 composites are quickly growing in popularity due to the complimentary 

properties of each material.7, 123-125 Because graphene can easily be produced from GO using a 

variety of reduction methods, composites likewise can be made using various experimental 

techniques. As mentioned earlier, graphene has the potential for providing certain benefits to 

pure TiO2 photocatalysis:123 i) the highly conjugated surface of graphene allows for 

preferential adsorption of aromatic compounds through π–π stacking;116, 125, 126 ii) the addition 

of graphene has been shown to produce a red-shift in light absorption;7, 116, 125 iii) and, the 

presence of two-dimensional graphene can improve the electrical conductivity of the overall 

material and act as an electron acceptor to reduce recombination.116, 125, 127 

A qualification must be made to distinguish between true graphene-based composites and 

composites based on reduced GO (RGO).  In the majority of synthesis methods, the complete 

reduction of GO is not possible and some oxygenated surface groups remain on GO – this type 

of GO is referred to as reduced GO (RGO).124 Therefore, although GO is typically never fully 

reduced, for the sake simplicity the term graphene-TiO2 is still used to refer to RGO-based 

TiO2 composites. 

Graphene-TiO2 composites can be synthesized using various methods.127 The UV-assisted 

reduction of GO onto TiO2 is a simple method using the photocatalytic nature of TiO2.128 

Reducing agents can also be used to reduce GO in the presence of TiO2, including hydrazine129, 

glucose130, and even various solvents including water.131 Hybridization of graphene and TiO2 

occurs through hydrogen bonding between the various functional groups of GO (for example, 

–OH and –COOH groups) and the surface of TiO2. During reduction, the functional groups of 



29 

 

GO are removed and unpaired p electrons on the carbon atoms can bond with more free Ti 

atoms of TiO2.132 Hybridization is the basis for electronic contact between TiO2 and graphene 

and allows for graphene to act as an electron acceptor, as mentioned earlier in this section. 

Composites containing graphene and various types of TiO2 have been synthesized to great 

effect in photocatalysis.59, 60 Graphene has been hybridized with TiO2 nanoparticles,116, 133, 134 

nanotubes,135 nanowires,136 nanorods,137 and various mesoporous and hierarchical morpho-

logies.138-141 One aspect of graphene-TiO2 composites that is gaining more interest is the nature 

of hybridization between the two materials. Theoretically, to be able to synthesis titanium 

structures that are wrapped in graphene would provide greater electrical contact than to 

synthesize graphene sheets that have titanium structures on their surface (Figure 12). Only 

several papers have been published concerning preferentially wrapping graphene around 

titanium structures.142-145 In addition, only one paper has been published concerning graphene-

wrapped hierarchical TiO2 structures and in the area of li-ion battery research.146  

 

       

Figure 12: Diagram comparing graphene-wrapped TiO2 and TiO2 loaded on graphene. Graphene-wrapping 
maximizes the surface area of TiO2 in contact with graphene. 
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Most importantly, to the best of my knowledge the wrapping of graphene around TiO2 

structures without pre-functionalization has yet to be achieved. Compounds such as 

poly(allylamine hydrochloride),142 (3-aminopropyl) trimethoxysilane,147 and aminopropyl-

trimethoxysilane148 has been used to amine functionalize TiO2. This functionalization 

introduces a positive charge on the surface of TiO2, making it more easily hybridized with GO, 

which is negatively charged. To remove the necessity of such chemicals would reduce 

synthesis costs and any health concerns associated with these functionalization compounds. 

Therefore, it is pertinent to determine whether graphene-wrapped hierarchical TiO2 structures 

can be synthesized without need for amine functionalization for solution-based photocatalysis. 

 

2.4 Summary 

This section has covered the operating principles of photocatalysis and the basic attributes of 

a good photocatalyst. These attributes include chemical stability, high absorbance, high 

conductivity, and high specific surface area. A brief overview of photocatalytic systems are 

also discussed, as well as the use of MB as a model for the photodegradation of organic 

compounds. Background regarding TiO2 as a photocatalytic material is given in greater detail, 

highlighting its crystal structure, large redox potential, and stability. The synthesis of TiO2 is 

explained, detailing the various possible TiO2 structures found in literature, including 

differences in morphology, doping, and heterostructuring. Lastly, graphene is introduced as a 

potential co-catalyst in photocatalysis. Graphene is used for its high surface area, high 

conductivity, and high absorptivity of aromatic compounds. Graphene can easily be hybridized 

with TiO2 to form graphene-TiO2 composites, with many examples in literature. Very few 
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literature has been found concerning graphene-wrapped TiO2 as a specific means of 

hybridizing graphene-TiO2, and no literature has been found regarding graphene-wrapped 

hierarchical TiO2 structures without the use of pre-functionalization. The strong performance 

of these results warrants the synthesis of graphene-wrapped hierarchical TiO2 as a potential 

photocatalytic material with further enhanced performance. 
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3.0 Characterization of Photocatalytic Materials 

3.1 Scanning Electron Microscopy (SEM) 

SEM is perhaps the most popular characterization technique for obtaining the topographical 

features and elemental composition of a material. This type of microscopy benefits from the 

use of electrons as opposed to conventional photons in optical microscopy. An optical 

microscope’s ability to resolve the features of a specimen – or its resolution – is a function of 

the wavelength of light (λ) used and the microscope’s numerical aperture (NA) via the Abbe 

diffraction limit (Equation 10). Based on this equation, current optical microscopes are 

intrinsically hindered by the wavelength of visible light (λ ≈ 400-750 nm), and in practice are 

able to achieve resolutions no better than 100 nm.149  

 𝑑 = 𝜆2𝑁𝐴 (10) 

 

On the other hand, electron microscopes can achieve much higher resolutions using the concept 

that all matter has wave-particle duality. Louis de Broglie proposed this very thing in 1924, 

showing that the wavelength of a particle was inversely proportional to its momentum.150 In 

his proposed relation (Equation 11), λDB is the de Broglie wavelength, h is the Planck constant, 

me is the rest mass of an electron, and Eb is the potential of the electron beam. Based on this 

equation, electrons with larger energy potentials – and therefore larger momentums – will have 

smaller wavelengths. Based on de Broglie’s equation, a 1 eV electron with a rest mass of 0.511 

MeV would have a de Broglie wavelength of 1.123 nm. SEMs are typically able to resolve 

features down to 1 nm in size. 
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 𝜆𝐷𝐵 = ℎ𝑝 = ℎ√2𝑚𝑒𝐸𝑏 (11) 

 

SEMs obtain an image via the following steps (Figure 13):151 electrons are first thermionically 

emitted from an electron source, normally an electron gun consisting of a tungsten filament, 

inside a column. The electrons then form a beam that is accelerated by an applied potential 

(typically in the range of 0.2-40 kV) through the column and manipulated by condenser lenses. 

In the final objective lens, the electron beam is deflected along the x and y axes in order to 

provide a raster scan over a rectangular area of the sample. Because of the need for high beam 

accuracy, high vacuum conditions are necessary in order to remove particulate that could 

scatter the electron beam or compromise the sample being characterized. Once an electron 

beam strikes the sample, it interacts with the material through various scattering and absorption 

events, releasing secondary electrons, backscattered electrons, characteristic X-ray photons, 

and visible light photons. These signals are then caught by various detectors placed within the 

device and digitized into an image for viewing. The nature of these various signals is 

determined by their source, and is commonly described by the interaction volume of the 

electron beam (Figure 14).  
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Figure 13: Diagram outlining the main components of an SEM. This work is attributed to Steff. 

 

Secondary electrons are generated by incident electrons passing near an atom and ionizing a 

local electron in the atom with a much smaller kinetic energy. This ‘secondary’ electron is then 

ejected from the atom and caught by a detector. Secondary electrons are able to reveal 

topographical information about the sample because only secondary electrons near the surface 

of the sample have enough energy to leave the sample and be detected. Backscattered electrons 

are generated when incident electrons strike the nucleus of the atom in the sample and scatters 

back toward the column. The number of electrons that backscatter is directly proportional to 

the mass of the atom, meaning heavier elements appear brighter than lighter elements. Lastly, 

characteristic X-ray photons are generated when secondary electrons leave an inner shell of an 

atom. When a valence electron lowers its energy to fill the vacancy in the inner shell, energy 
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is released in the form of an X-ray. Because the energy of these X-rays are unique across 

different elements, this signal can be used to determine the elemental composition of a sample. 

It is possible to perform elemental analysis on materials, however they are not reliable enough 

to give meaningful information concerning material composition of the materials used in this 

work. Therefore, we are only interested in verifying the morphology of our titanium oxide 

(TiO2) and graphene-TiO2 composite samples using SEM. 

 

Figure 14: Interaction volume of an electron beam in SEM.152 

 

3.2 Transmission Electron Microscopy (TEM) & Selected Area Electron 

Diffraction (SAED) 

TEM is similar to SEM in the fact that they both rely on an electron beam to interact with a 

sample and produce images of the specimen. However, because TEMs require electrons to 
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transmit through the specimen being characterized, samples must be extremely thin in order to 

be appropriately imaged. Like an SEM, electron beams in TEMs are produced using an 

electron gun.153 Electron beams are then manipulated using magnetic lenses and electrostatic 

fields. When electrons pass through the sample, they are projected onto a fluorescent screen 

and imaged using a high-resolution camera. In this way, thinner areas of the sample that allow 

for electron transmission appear brighter, while thicker or denser areas of the sample appear 

darker. 

TEMs use much higher accelerating voltages than SEMs (typically 100 kV to 300 kV), leading 

to much smaller de Broglie wavelengths and sub-nanometer resolutions. This means that 

characteristics such as crystal structure and lattice spacing can be obtained – and even 

visualized – using a TEM. 

By moving the focal plane of the electron beam from the imaging plane to the fluorescent 

screen, a diffraction pattern of the sample can be generated. When focused on a specific region 

of the sample, this diffraction pattern can give insight into the crystal structure and orientation 

of the sample. This technique is known as Selected Area Election Diffraction (SAED). 

For this thesis work, TEM will be used to look at higher magnification images of the sample 

materials. Because TEM does not provide topographical information, it will be used to look at 

the general structure of TiO2 and G-TiO2. TEM will also be used to verify the lattice spacing 

that corresponds to the crystal structure of TiO2 (using both the visual image and SAED 

pattern), and the number of layers of graphene wrapped around TiO2. 
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3.3 X-Ray Diffraction (XRD) 

XRD is a characterization technique that can ascertain the crystal structure of a material based 

on Bragg’s model of diffraction (Equation 12). This model says that, given a crystal structure 

consisting of evenly-spaced crystal sheets (of lattice spacing d), incident light that diffracts off 

of each of these sheets will interfere constructively when the angle θ between the plane and 

the incident light results in a path-length difference equal to an integer multiple (n) of the 

wavelength of light (λ).  All non-integer path-length differences will results in destructive 

interference, providing a unique XRD spectra for a material with a specific crystal structure. 

 2𝑑𝑠𝑖𝑛𝜃 = 𝑛𝜆 (12) 

 

X-rays are suitable light sources for obtaining this type of information because their 

wavelengths are on the same order of magnitude of the d spacing in crystals (1-100 Å). In 

normal operation, an X-ray source – such as a copper plate – is struck by an electron beam, 

generating X-rays.154 These X-rays are then filtered into a single wavelength and collimated 

into a single direction before striking the sample. X-rays that elastically scatter off the sample 

hit a detector, which records the intensity of the signal as a function of incident angle θ. When 

the signal intensity of this constructive interference is plotted as a function of 2θ, an XRD 

spectrum can be obtained and compared against a database to determine its composition and 

crystal structure. 



38 

 

 

Figure 15: Illustration of XRD operating mechanism.155 

 

XRD can also be used to estimate the crystallite size of a material based on the broadening of 

a peak in an XRD spectrum. The Scherrer equation (Equation 13) can be used to estimate the 

size of crystallites no greater than 0.2 μm in size.156 Here, τ is the mean crystallite size, K is 

the shape factor (typically ≈ 0.9), λ is the X-ray wavelength, β is the line-broadening at the full 

width half maximum (FWHM), and θ is the corresponding Bragg angle. 

 𝜏 = 𝐾𝜆𝛽𝑐𝑜𝑠𝜃 (13) 

 

XRD will be main characterization technique for verifying the crystal structure and phase of 

TiO2, as well as distinguishing the crystal structure of the hierarchical materials before and 

after heat treatment. XRD will also be used to estimate the crystallite size of TiO2 and 

determine whether there is a change in size before and after hybridization with graphene. 
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3.4 Brunauer–Emmett–Teller (BET) Specific Surface Area Analysis 

BET is not so much a characterization technique as it is a theory used to analysis surface area 

and pore analysis data.157 BET theory is used to explain the physical adsorption of gas 

molecules on a surface as a means of determining a material’s specific surface area. Specific 

surface area is typically expressed by the surface area divided by mass (m2·g-1) or by volume 

(m2·m-3, or m-1). 

BET theory builds upon the foundational Langmuir adsorption theory, which provides a model 

for monolayer molecular adsorption, and extends this theory to multilayer adsorption using 

three assumptions: 

1. Gas molecules can adsorb on a solid surface in an infinite number of layers; 

2. Individual adsorption layers do not interact with one another; and 

3. Langmuir theory can be applied to each individual adsorption layer. 

These three assumptions form the basis for the BET equation shown below (Equation 14): 

 1𝜈[(𝑝0𝑝 ) − 1] = 𝑐 − 1𝜈𝑚𝑐 ( 𝑝𝑝0) + 1𝜈𝑚𝑐 (14) 

 

where p0 and p are the saturation and equilibrium pressure of adsorbates at a given temperature, 

ν and νm are the total adsorbed gas and monolayer adsorbed gas quantity, and c is the BET 

constant. By measuring the pressure and total gas adsorption at a given temperature, a plot 

showing 1/𝜈[(𝑝0/𝑝) − 1] vs. 𝜙 = 𝑝/𝑝0 can be created. Finding the slope and y-intercept of 

this data allows the monolayer adsorption νm and BET constant c to be calculated. Once these 
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values are found, the total specific surface can be derived based on the cross-sectional area of 

the adsorbate species and the mass of the sample used for characterization. 

In this thesis work, BET will be used to determine the specific surface area of all materials, 

including the commercial reference (P25), the hierarchical TiO2 nanoflowers, and G-TiO2 

composites. BET results may give further insight into how surface area effects overall 

photocatalytic performance and whether it is a large factor in determining high activity 

photocatalysts. Special provisions must be made when analyzing graphene-based samples, 

since graphene is known to reconfigure and collapse when heated to high temperatures. This 

reduces the surface area of graphene and causes the analyzer to underestimate the surface area 

of the material. In order to obtain BET data, graphene-based samples must be degassed at 

especially low temperatures. 

 

3.8 Ultraviolet-Visible (UV-Vis) Spectroscopy 

UV-Vis spectroscopy is a type of absorption spectroscopy that uses electron transitions within 

transition metal ions, conjugated organic molecules, and biological macromolecules to 

characterize their nature and abundance.158 Specifically, this type of spectroscopy is useful for 

analyzing molecules containing π-electrons and non-bonding n-electron that can be excited 

from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular 

orbital (LUMO). As the name suggests, UV-Vis spectroscopy covers both the ultraviolet and 

visible spectrums of light, but also part of the near-infrared spectrum (190-1100 nm). 
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A UV-Vis spectrophotometer operates by passing a beam of light through a cuvette holding 

the sample solution of interest (Figure 16). The machine then compares the intensity of light 

that transmits through the sample with the intensity of the initial beam of light to obtain the 

absorbance of the material. UV-Vis spectrophotometers use a dispersive method in that a 

monochromator is used to scan across single wavelengths at a time in order to produce a 

spectrum. When light strikes a sample, it is either reflected, transmitted, or absorbed. For this 

reason, a baseline, or reference, measurement containing only the solvent and cuvette must be 

taken to account for reflection that may occur due to these materials. Once this reference 

measurement is taken, it can be subtracted from subsequent sample measurements to produce 

an accurate spectrum of the sample’s absorbance. 

Beer-Lambert’s law (Equation 15) states that the absorbance A of a sample in solution is 

directly proportional to the concentration c of the absorbing species within the solution and the 

path length L. (ε is a constant corresponding to the molar extinction coefficient of a compound.) 

Therefore, given a constant path length, a linear relationship between a compound’s 

absorbance and its concentration can be obtained. 

 𝐴 = 𝜖𝑐𝐿 (15) 

 

This property is extremely useful for measuring how the concentration of a compound in 

solution may vary with time. In photocatalytic degradation, UV-Vis spectroscopy can be used 

to record the decomposition (or decrease in concentration) of a target species during light 



42 

 

irradiation. In this work, UV-Vis spectroscopy will be used for this very purpose, measuring 

the reduction in methylene blue (MB) concentration over time as it is decomposed by TiO2. 

 

Figure 16: Illustration of the operating mechanism of a UV-Vis spectrophotometer. 

 

3.8.1 Diffuse Reflectance UV-Vis Spectroscopy (DRS) 

DRS is a specific type of UV-Vis spectroscopy that uses the same light spectrum to obtain not 

the change in transmittance of a sample but rather the change in reflectance.159 Instead of 

passing a beam of light through a sample, light is reflected off the sample inside an integrating 

sphere. An integrating sphere is a hollow, spherical enclosure coated with highly diffuse 

reflective coating (Figure 17). When a light source enters an integrating sphere, its beam is 

diffused or integrated across the volume of the sphere. This diffusion preserves the light’s 

original power but removes any spatial characteristics such as beam shape, direction, and 

position. An integrating sphere therefore provides much more accurate measurements of 

reflectance. 



43 

 

 

Figure 17: Operation mechanism of an integrating sphere used in diffuse reflectance UV-Vis spectroscopy.160 

 

The improved accuracy of DRS is important in estimating the band gaps of materials. Diffuse 

reflectance data can be manipulated into a Tauc plot using the Kubelka-Munk transformation, 

given by:161 

 [ℎ𝜈 ∙ 𝐹(𝑅∞)]1/𝑛 = 𝐴(ℎ𝜈 − 𝐸𝑔) (16) 

 

where h is the Planck constant, ν is the frequency of the light source, F(R∞) is a value 

proportional to the absorbance, A is a proportional constant, Eg is the band gap, and n signifies 

the nature of the electron transition. For anatase TiO2, n = 2, denoting an allowed indirect 

transition. Once [ℎ𝜈 ∙ 𝐹(𝑅∞)]1/2 is plotted against ℎ𝜈, the linear region of the resulting graph 

can be extrapolated to the x-axis to estimate the band gap (expressed in ℎ𝜈) of the material. 
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DRS will be used to find the absorption spectrum of all photocatalytic materials, as well as 

estimate their band gaps. This information may confirm the visible light absorption of G-TiO2 

which may make G-TiO2 a viable visible-light photocatalyst. 

 

3.4 Fourier Transform Infrared Spectroscopy (FTIR) 

FTIR is another type of absorption spectroscopy that measures the degree to which samples 

absorb and elastically scatter light over a range of wavelengths or frequencies.162 FTIR devices 

do this by using a broadband light source – light containing all frequencies being measured – 

and a Michelson interferometer. A Michelson interferometer consists of an arrangement of 

mirrors that move in order to modify the spectrum of the light source (Figure 18). When a 

collimated, broadband light source strikes the beam splitter, it is split into two separate beams 

that each move toward a stationary mirror and a moving mirror. Once reflected off of the two 

mirrors, the two beams return to the beam splitter and recombine to strike the sample. Upon 

exiting the sample the beam is detected by a sensor and is recorded. As the non-stationary 

mirror moves, a difference in path-length of the two beams changes causing different 

frequencies to interfere destructively and constructively. Consequently, information regarding 

all frequencies is obtained simultaneously over the course of the experiment and integration 

time greatly increases. This technique differs from the dispersive method used in UV-Vis 

spectroscopy, which analyzes one wavelength at a time. The raw data obtained from the 

instrument is called an interferogram, and a Fourier transform operation must be applied to the 

data to create the final FTIR spectrum. 
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Figure 18: Mechanism behind a Michelson interferometer in FTIR. 

 

FTIR takes advantage of the fact that many molecules absorb frequencies that are specific to 

their structure. Molecules absorb resonant frequencies, or frequencies that are equal to the 

vibrational mode of a bond or group. Because different molecular interactions have different 

masses and bonding energies – and therefore different resonance frequencies – FTIR can be 

used to determine if such interactions exist within a material. 

It is important to note that FTIR is only able to detect vibrational modes that are IR-active, 

meaning that the vibration involves the change in the dipole moment of the bond or group. For 

example, symmetrical diatomic molecules (e.g. N2) are not detected in the IR spectrum, while 

asymmetrical diatomic molecules (e.g. CO) are detected. This differs from Raman 

spectroscopy, which is described in Section 3.5. 
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In this work, FTIR is used mainly to confirm the existence of bonds that normally found in 

TiO2 and carbon-TiO2 composites. FTIR will also be used to explore the theory that band gap 

reduction in G-TiO2 composites are due to the formation of Ti-O-C bonds which function as 

C-doped TiO2.163, 164
 Unfortunately, the evaluation of these bonds depends on the sensitivity of 

the FTIR device, therefore it may not be possible to resolve such interactions even if they do 

exist. 

 

3.5 Raman Spectroscopy 

Raman spectroscopy operates on principles similar to that of FTIR spectroscopy and 

vibrational modes. However, unlike FTIR, Raman spectroscopy measures signals that undergo 

inelastic scattering when interacting with molecules.165 Inelastic scattering of light occurs 

when the scattered light has an energy different from that of the incident light. This is due to 

the change in polarizability of the molecule during vibration which causes a change in the 

energy of the excited electron. This means that while a symmetrical molecule like N2 is not IR 

active, it is Raman-active. In this same way, the symmetric stretch of CO2 is Raman-active 

while the asymmetric stretch is IR-active. In the case of molecules that do not have a center of 

inversion (e.g. H2O), it is possible for molecules to be active in both IR and Raman spectra. 

There are six normal vibrational modes in molecules with centers of symmetry: symmetrical 

and anti-symmetrical stretching, scissoring, rocking, wagging, and twisting. Based on the 

previous discussion on IR and Raman-active modes, it can be determined that anti-symmetrical 

stretching, rocking, and wagging modes will be IR-active. On the other hand symmetrical 
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stretching, scissoring, and twisting modes are Raman-active. Again, it is of course possible for 

molecular modes to be both or neither IR and Raman-active, however this only occurs in 

molecules without a center of symmetry. 

 

Figure 19: Examples of molecular modes found in molecules. 

 

Raman spectroscopy will be used in this thesis as a complementary characterization technique 

to XRD: confirming the structure and phase of TiO2. This technique will also be used to 

analyze the G-TiO2 composites and the level of disorder within the graphitic material.166 

Unfortunately, the use of chemically reduced graphene oxide (GO) means that the reduced GO 

will exist in several layers. This means that the number of graphene layers in the G-TiO2 

composite cannot be determined using Raman spectroscopy. 
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3.7 Electrochemical Impedance Spectroscopy (EIS) 

EIS, sometimes called dielectric spectroscopy, is a measure of a material’s dielectric properties 

as a function of frequency. This technique is performed by applying an alternating voltage to 

an electrode interface and measuring the response for a range of frequencies.167 When 

displayed as a Nyquist plot – plotting imaginary impedance Z’’(Ω) vs. real impedance Z’(Ω) – 

EIS data can reveal information about the impedance and electrochemical behaviour of 

materials (Figure 20). Beginning at the high frequency response, the x-intercept of the data 

provides the series resistance of the entire electrochemical system. The size of the following 

semi-circle provides a measure of the charge transfer resistance of the material. This resistance 

is closely related to inter-particle resistance within the electrode.168 At lower frequencies, the 

response enters into a 45° slope known is the Warburg diffusion regime. This regime 

corresponds to the Warburg impedance ZW, which is a measure of the diffusion resistance of 

the electrochemical system. 

In order to extract more quantitative results from EIS data, software is used to model the 

experimental data against equivalent circuits in order to estimate impedance values. This data 

will be used to confirm the differences in impedance and diffusion resistance between all 

photocatalytic materials. This work hopes to show that hierarchical TiO2 can improve 

conductivity over that of nanoparticle TiO2, and also that the addition of graphene can further 

improves the conductivity of TiO2. 
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Figure 20: Example of a typical Nyquist plot. 

 



50 

 

4.0 Hierarchical TiO2 Nanoflowers 

The following section is based on previously published work169 and is reproduced by 

permission from The Royal Society of Chemistry.  

As mentioned previously, titanium dioxide (TiO2) has become a widely studied semiconductor 

material in photocatalysis ever since its excellent photocatalytic properties were discovered by 

Fujishima and Honda in 1972.2 The strong photocatalytic performance of TiO2 is largely due 

to its high redox potential and appropriately positioned energy bands. Through the photo-

generation of electrons-hole pairs, surrounding water molecules can be reduced and oxidized 

to form radical species capable of subsequent degradation of both organic and inorganic 

compounds. Therefore, photocatalytic materials such as TiO2 have a promising future through 

the use of this mechanism and the sun’s abundant source of radiation. 

Various TiO2 morphologies have been studied extensively, including micro- and 

nanoparticles,170 nanotubes,171 nanowires,172 and hierarchical morphologies.87, 173 Hierarchical 

materials are of great interest due to their ability to combine the light-scattering ability of larger 

particles with the high surface area of smaller particles.87 In the absence of initial absorption, 

light scattering increases the probability that photons can still be absorbed by the material, 

while high surface areas increase the material’s capacity for adsorption and subsequent 

degradation.87 The use of specialized morphologies such as one and two-dimensional 

structures can be used to improve charge transfer, thus improving charge separation and 

reducing charge recombination.174 The larger size of hierarchical morphologies also increases 

the ease of removal and recycling of the photocatalyst from solution. Flower-like structures 

are an example of hierarchical materials with large size, relatively large surface area, and the 
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effective use of one and two-dimensional nanostructures to aid charge transport. Some work 

has been done regarding flower-like structures and their related morphologies, and they have 

found great success in various applications. For example, Sun et al. has synthesized spherical 

dendritic structures consisting of nanorods, nanoribbons, and nanowires for lithium ion 

storage.89 Liao et al. successfully synthesized flower-like morphologies consisting of nanorods 

and nanoparticles for use in dye-sensitized solar cells.175 Wu et al. was able to synthesize F-

doped flower-like TiO2 structures consisting of short nanorods.176 

This study reports the synthesis of hierarchical TiO2 nanoflowers using a facile solvothermal 

method with significantly improved photocatalytic degradation of MB under UV irradiation. 

These TiO2 nanoflowers are shown to improve upon commercial P25 performance by 

improving charge transport and reducing recombination rate, leading to an improvement of 

MB photodegradation over P25 by a factor of 1.49. 

 

4.1 Experimental Methods & Characterization 

TiO2 nanoflowers were synthesized using a facile solvothermal reaction based on previous 

literature.177 First, 1 mL titanium butoxide was added to 30 mL acetic acid. After stirring for 

10 minutes, the solution was transferred to a 40 mL Teflon-lined stainless steel autoclave and 

heated to 140 °C for 12 h. The product was then centrifuged and washed several times with 

de-ionized water and ethanol to remove any residual reagents and solvents. After drying 

overnight at 60 °C, the resulting powder was annealed in air at 700 °C for 1 h to produce TiO2. 
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A summary of this procedure, along with the procedure for the synthesis of G-TiO2 composites 

and the RGO reference, is found in Section 5.1.  

The morphologies and microstructures of materials were determined using field-emission 

scanning electron microscopy (FESEM, Zeiss ULTRA Plus; 10 kV acceleration voltage) and 

transmission electron microscopy (TEM, JEOL 2010F; 200 kV acceleration voltage), X-ray 

diffraction (XRD, Bruker AXS D8 Advance), and Raman spectroscopy (Bruker SENTERRA; 

532 nm 20 mW laser). Moisture was removed from BET samples by first placing material in a 

vacuum oven at 100 °C overnight. In order to further remove moisture and impurities, samples 

were degassed at 80 °C for 300 min using He. Lower degassing temperatures were used to 

remain consistent with the temperature used for graphene samples – which were considerably 

more temperature sensitive.  

Material performance was determined by the photocatalytic degradation of MB under UV light 

irradiation (500W Hg lamp, Beijing CEL Sci-Tech Co., Ltd). 30 mg of photocatalyst was 

added to a 40 mL MB aqueous solution (1.56 x 10-3 M) and stirred in the dark for 30 min to 

achieve adsorption-desorption equilibrium. Under irradiation, 1 mL sample solutions were 

drawn at 1, 2, 5, 10, 15, 20, and 30 min. After centrifuging to remove the photocatalyst, the 

concentration of MB was obtained using a UV-Vis photospectrometer (Fischer Scientific, 

GENESYS 10S). The absorbance was measured at the characteristic MB peak (664 nm) and 

data was reported as C/C0, where C is the measured dye absorption at a given time interval and 

C0 is the measured dye absorption of the solution at absorption-desorption equilibrium. DRS 

data was obtained using a diffuse reflectance UV-Vis recording spectrophotometer (Shimadzu 

Corporation UV-2501PC). 
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EIS of as-prepared samples were measured using an electrochemical workstation (Princeton 

Applied Research VersaSTAT MC) with a frequency ranging from 10 mHz to 1 MHz. The 

magnitude of the alternative signal was 5 mV. Glassy carbon was used as the working electrode 

with a material loading of 0.413 mg/cm3. EIS data was modelled using ZSimpWin data 

analysis software. 

 

4.2 Results & Discussion 

4.2.1 Structure & Morphology 

SEM was used to investigate the morphology and microstructure of the synthesized TiO2 

nanoflowers (Figure 21). Before annealing the as-prepared material exists as a six-coordinated 

Ti-complex, Ti6O6(Ac)6(OBu)6, which has been discussed previously in the literature by Liao 

et al (Figure 21a and b).175, 177 It has been proposed that TiO2 nanoflowers are synthesized 

through the oriented growth of Ti-complex nanoparticles under high temperature and pressure. 

The oriented attachment of nanoparticles forms nanoribbons, which over time agglomerate 

together to form hierarchical spherical structures consisting of these nanoribbons. This 

hierarchical material is approximately 2–2.5 μm in diameter and has a flower-like morphology 

consisting of nano-ribbon‘petals’. Annealing causes the formation of anatase TiO2 and the 

roughening of the nano-ribbon surface, which is due to the decomposition of the as-prepared 

Ti-complex into TiO2.  

The effects of this decomposition are seen in the annealed TiO2 material (Figure 21c and d), 

which consists of small nanosheet and nanoparticle morphologies. TEM images gives greater 
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insight into the fine structure of the TiO2 material (Figure 22) and better illustrate the 

hierarchical nature of the TiO2 nanoflower. Figure 22b provides a higher magnification of the 

‘petal’ structures of the nanoflower. It can be seen that the petals vary in width (~10-50 nm) 

and consist of smaller nanoparticles. 

 

Figure 21: SEM images of as-prepared nanoflowers (a and b) and TiO2 nanoflowers after annealing (c and d).  
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XRD was conducted using Cu Kα radiation with a wavelength of 1.54 Å. Figure 23a shows 

typical XRD patterns of the as-prepared nanoflower and annealed TiO2 nanoflower. It can be 

seen that the as-prepared material is an unknown crystal structure of TiO2, while annealing 

leads to the formation of a dominant anatase phase, marked by characteristic peaks at 25.5°, 

38.0°, 48.2°, 54.1°, and 55.2°, and the formation of a rutile phase, as indicated by the 

characteristic peaks at 27.4°, 36.3°, and 69.0°.178 Anatase TiO2 has been known to transform 

into rutile TiO2 anywhere in the range of 400 °C to 1200 °C,69 and early formations of the 

rutile phase are often observed above 600 °C.178, 179 Using the Scherrer equation, an average 

crystallite size of 28 nm is obtained for the annealed TiO2 nanoflower.  

  

Figure 22: TEM of TiO2 nanoflower (a) with a closer look at the nanoribbon ‘petals’ consisting of smaller 
nanoparticles (b). 

 

Raman spectroscopy was also conducted to confirm the crystal phase of TiO2 (Figure 23b). 

The spectrum for TiO2 again confirms an anatase phase, with the characteristic Eg band at 150 

cm-1, 199 cm-1, and 630 cm-1, the B1g band at 394 cm-1, and the (A1g + B1g) mode centered at 
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509 cm-1.180 Each band is associated with a vibrational mode of TiO2:181 The Eg band is mainly 

associated with the symmetric stretching vibration of O-Ti-O; the B1g is associated with the 

symmetric bending vibration of O-Ti-O; and, the A1g band is associated with the anti-

symmetric bending vibration of O-Ti-O. The peak at 449 cm-1 and shoulder around 613 cm-1 

are assigned to the Eg and A1g modes of the rutile phase, respectively, and are consistent with 

XRD results.182 

  

Figure 23: XRD spectra of as-prepared nanoflowers and anneal TiO2 nanoflowers (a) and Raman spectra of 
TiO2 nanoflowers after annealing (b). 

 

4.2.2 Photocatalytic Performance 

The photocatalytic activity of the TiO2 nanoflower and P25 was determined through the 

degradation of methylene blue under UV irradiation. Figure 24a shows the normalized 

photodegradation of MB over 30 minutes of exposure using P25 and the TiO2 nanoflower. It 

is shown that the TiO2 nanoflower outperforms P25 in the photodegradation of MB. This is 

believed to be attributed to the hierarchical nature of the nanoflower morphology. The highly 
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crystalline nanosheet structure allows for fast charge transport, resulting in lower 

recombination rates compared to nanoparticle materials. A simple calculation of the first-order 

degradation rate constant, k=-ln(C/C0)/t, gives a quantitative measure of this difference in 

photocatalytic performance. Dividing the rate constant by that of P25 also provides a 

quantitative measure of improvement over P25. k(P25) = 0.0620 min-1, k(TiO2 Nanoflower) = 

0.0921 min-1, showing that our TiO2 morphology provides a ~49% increase in degradation rate. 

The change in the characteristic absorbance peak of MB (~664 nm) over time due to TiO2 

nanoflower photocatalysis is shown in Figure 24b. The decrease in the absorbance peak of MB 

relates to the decrease in MB concentration in the solution, and thus the decomposition of the 

target compound. As previously mentioned, the blue shift in the absorbance peak over time is 

due to the N-demethylation of MB as it undergoes attack from active oxygen species.56  

  

Figure 24: Photodegradation of MB under UV irradiation, comparing the performance of commercial P25 and 
TiO2 nanoflowers. C is the measured dye absorption at a given time interval and C0 is the measured dye 
absorption of the solution at absorption–desorption equilibrium (a). Change in the characteristics absorbance 
peak (~664 nm) of MB over time using TiO2 nanoflower (b). 
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This further confirms its decomposition during photocatalysis. One should keep in mind that 

this relates only to the removal MB, and its structurally similar intermediates, from the 

solution. This is not necessarily indicative of the complete removal of all intermediate products 

in solution. 

To better understand the difference in photocatalytic performance of P25 and the TiO2 

nanoflower, further characterization was conducted.  Surface area measurements reveal that 

the TiO2 nanoflower has a BET specific surface area of 16.4 m2·g-1 and an average pore size 

of 23.2 nm compared to a measured surface area of 46.1 m2·g-1 and pore size of 12.4 nm for 

P25 (Figure 34). The lower surface area of the TiO2 nanoflower is expected, as annealing of 

the TiO2 nanoflower at 700 °C causes strong sintering of particles and sheets which 

subsequently lowers surface area. This further suggests that the enhanced performance of the 

TiO2 nanoflower is not due to an increase in surface area but rather improved charge transport 

properties.  

EIS was performed on P25 and the TiO2 nanoflower using a frequency range of 1 MHz to 10 

mHz at an amplitude of 5 mV. A Nyquist plot of this data is shown in Figure 26, along with a 

Randles circuit used for impedance analysis. The different components in this circuit represent 

the electrochemical processes occurring at the electrode-electrolyte interface. The solution 

resistance (Rs) is determined by the x-intercept of the EIS curve and describes the overall 

resistance between the electrode and the electrolyte. The Rs value is consistently low between 

the two materials, with values of 31.2 Ω·cm-2 and 35.7 Ω·cm-2
 for P25 and the TiO2 

nanoflower, respectively. 
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Figure 25: BET measurements of P25 and TiO2 nanoflowers. Inset: pore size distribution of P25 and TiO2 
nanoflowers. 

 

The region of interest is the semi-circle found at high frequencies corresponding to the 

interfacial charge-transfer resistance (Rct). A smaller impedance arc radius corresponds to a 

smaller Rct, and is clearly illustrated by our TiO2 nanoflower and composite material in the 

Nyquist plot. Fitted values from impedance analysis verifies this observation with Rct values 

of 160 kΩ·cm-2 and 68.9 kΩ·cm-2 for P25 and the TiO2 nanoflower, respectively. The 45° slope 

found at the lower frequencies corresponds to the Warburg impedance (ZW), and the length of 

this region determines the diffusion resistance of ions within the pores of the material. In this 

way, it can be seen that the TiO2 has a slightly lower Warburg impedance than P25. The 

impedance analysis thus confirms the improved charge transfer and decreased ionic diffusion 

resistance of the TiO2 nanoflower over commercial P25. 
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Figure 26: Nyquist plots of P25, the TiO2 nanoflower. Inset: the Randles circuit model for impedance analysis: 
Rs is the solution resistance, Cdl is the double layer capacitance, and ZW is the Warburg impedance. 

 

Material absorption data was acquired using a diffuse reflectance UV-Vis recording 

spectrophotometer (Figure 27a). The TiO2 nanoflower shows a small red-shift in absorption 

compared to commercial P25.  This implies that the TiO2 nanoflower is able to absorb more 

light closer to the visible-light spectrum. However, it should also be noted that P25 absorbs 

more strongly within the UV region. It is therefore unclear whether TiO2 has a higher 

absorption efficiency than P25 across the entire absorption spectrum. A Kubelka-Munk 

transformation on the absorption data can be used to create a Tauc plot and estimate the band 

gap of each material.161, 183 The Kubelka-Munk function, [F(R∞)hν]1/2, is approximated by 

(αhν)1/2 where α is the absorption coefficient and hν is the photon energy. A Tauc plot is 

generated by plotting (αhν)1/2 versus hν. By extrapolating a tangent line generated from the 

linear region of the curve to the x-axis, approximate band gaps of 3.0 eV and 2.9 eV can be 

found for P25, TiO2 nanoflower, respectively. 
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Figure 27: Absorbance spectra of P25 and the TiO2 nanoflower (a), and band gap estimation using a Tauc plot 
(b). 

 

4.3 Summary 

TiO2 nanoflowers were synthesized using a solvothermal reaction, and were annealed at 700°C 

to produce a TiO2 material containing both anatase and rutile phases. These TiO2 nanoflowers 

were shown to outperform P25 in the photodegradation of MB under UV irradiation by a factor 

of 1.49. BET and EIS show that, although the TiO2 nanoflowers have a lower specific surface 

area than P25, they were able to improve photocatalytic activity on the basis of reduced charge 

transfer resistance and Warburg impedance. This is largely due to the hierarchical structure of 

the TiO2 nanoflowers, which provides highly crystalline, two-dimensional structures that 

improve electron mobility within the material. This study confirms that hierarchical TiO2 

nanoflowers are a suitable candidate for UV-activated photocatalysis. 
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5.0 Graphene-Wrapped Hierarchical TiO2 Nanoflowers 

The following section is based on previously published work169 and is reproduced by 

permission from The Royal Society of Chemistry.  

It was shown in the previous study that hierarchical TiO2 nanoflowers can be used in 

photocatalysis with improved photocatalytic activity. In order to further improve the 

performance of photocatalytic materials, composites consisting of TiO2 and carbonaceous 

materials have been explored.7 Carbonaceous materials such as carbon nanotubes,184, 185 

activated carbons,186, 187 and graphene188, 189 have been combined with TiO2 to create 

composites with improved performance. Graphene in particular has been shown to provide 

several advantages to pure TiO2 photocatalysis:123 First, graphene consists of a highly 

conjugated planar surface which allows for preferential adsorption of aromatic compounds 

such as methylene blue (MB) through π–π stacking.116, 125, 126 Second, the addition of graphene 

has been shown to cause a red-shift in the absorption spectrum leading to activation under 

visible-light irradiation.7, 116, 125 Third, due to its high electron mobility, the presence of two-

dimensional graphene greatly improves the charge transport properties of the overall material 

and reduces the rate of charge-carrier recombination.116, 125, 127  

Graphene-wrapping of other materials is a more recent method for hybridizing graphene to 

form composites, and has found uses in Li-ion batteries,142, 146 supercapacitors,148, 190 fuel 

cells,191 and solar cells.192 This method of hybridization allows for an increased amount of 

contact between graphene and the photocatalyst, thus improving charge transport 

characteristics.193, 194 Unfortunately, graphene wrapping of metal oxides often involves 

additional functionalization of the material surface which is an undesirable intermediate step. 
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The compounds used for this purpose, such as poly(allylamine hydrochloride),142 (3-

aminopropyl)trimethoxysilane,147 and aminopropyltrimethoxysilane148 are often toxic and 

unnecessarily detrimental to the environment. Little work has been done on graphene-wrapped 

TiO2, and to the best of my knowledge graphene-wrapped TiO2 hierarchical structures have 

not been studied. It is therefore desirable to achieve graphene hybridization of such structures 

using facile methods that do not require pre-functionalization. 

This study reports the synthesis of graphene-wrapped hierarchical TiO2 nanoflowers (G-TiO2) 

using a facile hydrothermal method with significantly improved photocatalytic degradation of 

MB under UV irradiation. Prepared TiO2 nanoflowers are intermixed with graphene oxide 

sheets and hydrothermally reduced to produce a graphene-wrapped TiO2 composite. It is 

proposed that the modification of TiO2 in this manner helps to improve photodegradation 

properties by increasing adsorption through π–π stacking of MB on graphene and improving 

electronic properties by accepting photo-generated electrons and further suppressing 

recombination. Therefore, this hierarchical morphology combines the unique properties of 

TiO2 nanoflowers and the high surface area and conductivity of graphene. 

 

5.1 Experimental Methods & Characterization 

Graphitic oxide (GO) was synthesized from graphite powder using a modified Hummers 

method as described in previous work.121, 122, 195, 196 In a typical synthesis, 360 mL H2SO4 and 

40 mL H3PO4 were added to a 1 L Erlenmeyer flask in an ice bath while stirring. 2 g of graphite 

powder was then added to the flask and stirred for 30 min. 18 g of KMnO4 was added slowly 
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over the course of several hours in order to begin the oxidation of graphite. After all KMnO4 

was added, the solution was heated to 50°C in an oil bath and stirred for 16 h. After this, the 

solution was again placed in an ice bath to allow the mixture to cool to room temperature. 460 

mL DDI water was added drop-wise to the solution over the course of several hours to 

neutralize the mixture. During this reaction, the temperature of the solution was kept below 

10°C. 20 mL of 30% H2O2 was then added to the solution drop-wise. Once the reaction was 

complete, the solution was centrifuged and washed with DDI water, 30% HCl, 50% ethanol, 

5% HCl, and then DDI water again. The resulting material was frozen using liquid N2 and 

freeze-dried to produce a dry GO powder. 

In order to synthesize the G-TiO2 composites, a certain amount of GO (2 mg to 20 mg to 

achieve approximate 1 wt%, 5 wt%, and 10 wt% graphene loadings) was dissolved in a solution 

containing 20 mL water and 10 mL ethanol, and sonicated for 1 h. The solution was then 

centrifuged at 6000 rpm for 5 min to remove any large sheets. TiO2 nanoflower material was 

added and the solution was stirred for an additional 2 h to ensure the complete mixing of GO 

with TiO2. The mixture was then transferred to an autoclave and heated to 120°C for 3 h to 

simultaneously bind the GO to the TiO2 nanoflower surface and reduce GO to graphene. The 

final composites were centrifuged and washed several times with de-ionized water and dried 

overnight at 60°C. 1 wt%, 5 wt%, and 10 wt% composites were denoted as 0.01G-TiO2, 0.05G-

TiO2, and 0.10G-TiO2, respectively. For comparison, the reduction process was repeated 

without TiO2 to produce reduced GO (RGO). 

This procedure can be viewed in conjunction with the procedure for the synthesis of the TiO2 

nanoflower, as discussed in Section 4.1, below in Figure 28. This flow chart clearly illustrates 
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the individual syntheses of TiO2 and RGO products and how TiO2 materials can be introduced 

into a GO solution before reduction to form graphene-TiO2 composites. Because of the 

simplicity of this process, it is possible that a variety of TiO2 morphologies or even other metal 

oxides can be hybridized with RGO. 

TBOT

(TiO2 precursor)

Add 1 mL TBOT to 40 mL acetic acid.

Solvothermal reaction

(140°C, 12 h)

Centrifuge and wash product in DDI 

H2O and ethanol

Sonicate GO solution for 1 h
Anneal precursor to form TiO2 

nanoflowers (700°C, 1 h)

Graphite

(GO precursor)

Add 2 g graphite to 360 mL H2SO4 

and 40 mL H3PO4 in an ice bath

Slowly add 18 g KMnO4; stir at 50°C 

for 16 h

In an ice bath, add 460 mL DDI H2O 

and 20 mL 30% H2O2 drop-wise

Centrifuge and wash GO product in 

DDI H2O, 30% HCl, 50% ethanol, 5% 

HCl, and DDI H2O

Add TiO2 and sonicated GO to 40 mL 

DDI H2O solution; stir for 2 h

Hydrothermal reaction

(120°C, 3 h)

Wash final G-TiO2 product with DDI 

H2O and ethanol

G-TiO2 CompositeTiO2 Nanoflower RGO

Dry product into powder

 

Figure 28: Flow chart outlining production of photocatalysts used in this thesis work. 
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Characterization was done in the same manner as previously found in Section 4.1. FTIR was 

performed using a Thermo Nicolet Avatar 320 FTIR spectrophotometer. Brunauer-Emmett-

Teller (BET) specific surface areas were measured using a surface area and porosity analyzer 

(Micromeritics ASAP2020). Moisture was removed from BET samples by first placing 

material in a vacuum oven at 100 °C overnight. In order to further remove moisture and 

impurities, samples were degassed at 80 °C for 300 min using He. Lower degassing 

temperatures were used due to the temperature sensitivity the graphene samples.  

 

5.2 Results & Discussion 

5.2.1 Structure and Morphology 

SEM was used to characterize the G-TiO2 composites (Figure 29). After modifying the TiO2 

surface with graphene, the final composite material resembles a graphene-wrapped TiO2 

flower (shown in Figure 29c and d; the TiO2 nanoflower precursor is shown in Figure 29a and 

b for reference) and implies that the reaction mechanism involves graphene loading around the 

TiO2 material as opposed to TiO2 loading on the graphene sheet.  

Several reports have shown that the latter mechanism likely occurs when a titanium oxide 

precursor and GO are used as reagents,139, 197, 198 while the former mechanism is possible when 

using prepared TiO2 and GO as reagents.146, 147, 193 In fact, when using TiO2 and GO as reagents 

the loading mechanism is determined by the relative size of the materials, where smaller GO 

sheets tend to load onto larger TiO2 particles and smaller TiO2 particles tend to load onto larger 

GO sheets.193 The wrapping of TiO2 with graphene can therefore be explained by the 
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interaction of the –OH and –COOH functional groups of GO with the surface of TiO2. During 

hydrothermal reduction the removal of these functional groups results in unpaired p electrons 

which more readily bind to the surface atoms of TiO2.147 

 

Figure 29: SEM images of TiO2 nanoflowers before graphene hybridization (c and d) and G-TiO2 after 
graphene hybridization using a hydrothermal reaction (c and d). In the images TiO2 is highlighted as red, and 
graphene is highlighted as blue. 
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TEM images of the G–TiO2 composite are shown in Figure 30. A close-up image of the 

graphene-wrapped flower edge and its respective specific area diffraction (SAD) pattern 

(Figure 30b and inset, respectively), along with the lattice spacing (d101 = 0.35 nm) observed 

in the HRTEM images (Figure 30c and d) clearly illustrating the anatase TiO2 phase.  

 

Figure 30: TEM images of a single G–TiO2 composite (a), and a higher magnification image showing the 
graphene wrapped nanoflower structure (c); the inset shows the SAD pattern of the given region confirming 
the anatase phase. An HRTEM image of a single TiO2 ribbon and wrapping graphene sheets (d), and the tip of 
a ribbon showing a TiO2 lattice spacing of 0.35 nm corresponding to the (101) plane of anatase TiO2. 
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The HRTEM images further verify the wrapping of graphene sheets around a TiO2 ‘petal’, and 

allow for an estimate of the number of graphene layers in the composite to be between five and 

seven. 

Figure 31a shows typical XRD patterns of the G-TiO2 composite alongside the as-prepared 

nanoflower and annealed TiO2 nanoflower. There is no distinguishable difference between the 

TiO2 nanoflower and G-TiO2 composite materials. Calculation of the average crystallite size 

using the Scherrer equation shows that there is no noticeable change after hydrothermal 

reaction (~28 nm). In addition, the XRD pattern of G-TiO2 shows that the graphene phase is 

not readily detected in the composite due to the low loading of graphene – which is in 

agreement with literature.116 Raman spectroscopy was also conducted on the G-TiO2 

composite to further analyze the reduction and crystallinity of GO and reduced GO (RGO) 

(Figure 31b). As previously mentioned (Figure 23b), the Raman spectra of the nanoflower was 

confirmed to be predominantly anatase TiO2 phase with several small rutile phase peaks. These 

rutile peaks are not readily seen in the G-TiO2 spectra because the broad peaks mask these 

modes. 

Further analysis of the carbonaceous materials in the range of 1000 cm-1 to 3500 cm-1 is shown 

in the inset of Figure 31b. The 1350 cm-1 and 1592 cm-1 peaks are assigned to the D and G 

bands, respectively.199 The intensity ratio of the D band to the G band (ID/IG) is used to measure 

the degree of defects in the GO and RGO material and is also illustrated in the inset of Figure 

4b. Before reduction, GO has a lower ID/IG ratio of 0.81, which implies that the initial material 

has a lower amount of defects present. Such low ID/IG values are uncommon but are still found 

in literature.199 After hydrothermal reduction, the ID/IG ratio increases to 0.96. There are several 
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possible reasons for this. First, the reduction process was preceded by extensive sonication, 

which is known to reduce graphitic sheet size.200 Second, the hydrothermal reduction process 

is also reported to increase fragmentation along reactive sites, leading to the formation of 

smaller sp2 domains. Smaller sheet sizes lead to an increased amount of edges, which also act 

as defects and increase D band intensity.132, 199, 201, 202 The 2D band around ~2700 cm-1 can be 

used to assess the number of layers in the graphene sheets.166 Unfortunately, the chemical 

reduction of GO produces too many layers to be accurately evaluated using Raman. This is in 

agreement with TEM images, which shows the number of layers to be greater than 1-3 layers 

which are easily detected by Raman.  

  

Figure 31: Comparison of G-TiO2 and TiO2 nanoflower XRD spectra (a); Comparison of G-TiO2 and TiO2 
nanoflower Raman spectra. Inset shows D and G bands of GO, RGO, and 0.05G-TiO2 (b). 

 

5.2.2 Photocatalytic Performance 

The photocatalytic activity of the G-TiO2 composite was again determined through the 

degradation of methylene blue under UV irradiation. Figure 32a shows the normalized 
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photodegradation of MB over 30 minutes of exposure using 0.01G-TiO2, along with P25 and 

the TiO2 nanoflower for reference. Adding 1 wt% graphene to the TiO2 nanoflower improves 

the rate constant k to 0.104 min-1. This is a ~68% improvement over P25, and a small (~13%) 

improvement over the TiO2 nanoflower. 

Photocatalysis experiments using 0.01G-TiO2, 0.05G-TiO2 and 0.10G-TiO2 were conducted to 

determine the effect of graphene loading on photocatalytic performance. The 0.01G-TiO2 and 

0.10G-TiO2 composites were found to have rate constants of 0.104 min-1 and 0.168 min-1, 

respectively, while 0.05G-TiO2 provides the highest degradation rate constant of 0.211 min-1. 

This optimal loading finds agreement in previous work,163 where there exists a trade-off 

between reduced recombination and increased dye adsorption, and the reduction in available 

photocatalytic surface sites for the generation of electron-hole pairs and subsequent radical 

species.135 The degradation rate of 0.05G-TiO2 is an improvement on the performance of the 

un-modified TiO2 nanoflower by a factor of 2.3, and P25 by a factor of 3.4. 

  

Figure 32: Photodegradation of methylene blue under UV irradiation, comparing the performance of 
commercial P25, the TiO2 nanoflower, and 0.01G–TiO2 (a) and 1 wt%, 5 wt%, and 10 wt% graphene loadings 
(b). C is the measured dye absorption at a given time interval and C0 is the measured dye absorption of the 
solution at absorption–desorption equilibrium. 
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The change in the MB absorbance over time due to 0.05G-TiO2 photocatalysis is shown in 

Figure 33. The change in the characteristic peak is similar to that of the TiO2 nanoflower in 

Section 4, however the absorbance peak is significantly lower at t = 0 min. This is due to the 

strong initial absorbance of the graphene sheets that leads to a lower equilibrium concentration 

C0. It can also be seen that the 0.05G-TiO2 composite removes virtually all traces of MB by t 

= 30 min. It should again be clarified that the removal of MB does not imply the removal of 

all intermediate products. However, the reduction of almost all peaks by t = 30 min implies 

that all optically active intermediates have either been removed or are continually removed via 

photocatalysis. 

 

Figure 33: Change in the characteristic absorbance peak (~664 nm) of MB over time using 0.05G-TiO2 

composite (b). 

 

The results of all experiments discussed so far can be combined into one table to compare the 

reaction rate constants of different materials and graphene loadings (Table 1).  
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Table 1: Rate constant calculations for data obtained from the photo-degradation of MB. 

Sample Rate constant k (min-1) k(i)/k(P25) 

P25 0.0620 n/a 
TiO2 Nanoflower 0.0921 1.49 

0.01G-TiO2 0.104 1.68 
0.05G-TiO2 0.211 3.40 
0.10G-TiO2 0.168 2.71 

 

Surface area measurements were performed on the 0.05G-TiO2 material in order to provide a 

point of comparison between the graphene-wrapped TiO2 nanoflower and the previously 

studied TiO2 materials (TiO2 nanoflower and P25). Recall that the TiO2 nanoflower was found 

to have a BET specific surface area of 16.4 m2 g-1 and an average pore size of 23.2 nm. After 

wrapping with 5 wt% graphene, the surface area more than doubles (33.2 m2 g-1) while the 

average pore size reduces to ~15.6 nm (Figure 34). Measurements of pore volume also follow 

this trend in surface area.  

 

Figure 34: BET measurements of TiO2 nanoflowers and 0.05G-TiO2. Inset: pore size distribution of TiO2 
nanoflowers and 0.05G-TiO2. 
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A summary of BET data is shown in Table 2. Wrapping with graphene causes a substantial 

increase in surface area and reduction in average pore size, which is understandably attributed 

to the high surface area and porosity of graphene. It is important to note that graphene does not 

readily participate in photocatalytic redox reactions like TiO2. Therefore, the additional surface 

is much more likely to improve performance based on preferential methylene blue adsorption 

rather than by providing more total photocatalytic surface sites. 

EIS was performed on the 0.05G-TiO2 in a similar manner to P25 and the TiO2 nanoflower, 

and a Nyquist plot of this data is shown in Figure 35. The Rs value is found to be consistent 

with that of P25 and the TiO2 nanoflower. Fitted values from impedance analysis gave an Rct 

value 38.9 kΩ cm-2 and the Warburg impedance was found to be much smaller than the other 

two materials.   

 

Figure 35: Nyquist plots of P25, the TiO2 nanoflower, and 0.05G-TiO2. Inset: the Randles circuit model for 
impedance analysis: Rs is the solution resistance, Cdl is the double layer capacitance, and ZW is the Warburg 
impedance. 
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Table 2 provides a combined list of all relevant parameters for P25, the TiO2 nanoflower, and 

0.05G-TiO2. It is therefore shown that the addition of graphene further improves performance 

by providing a highly conductive surface that allows for fast transport of injected electrons. 

Material absorption data for 0.05G-TiO2 was acquired using a diffuse reflectance UV-Vis 

recording spectrophotometer (Figure 36). The 0.05G-TiO2 composite is shown to further 

extend the absorption of the TiO2 nanoflower into the visible range, thus further increasing 

absorption efficiency across the entire UV and visible range. The addition of graphene not only 

increases the onset absorption wavelength of the composite but also provides background 

absorption across the entire visible light spectrum. This background absorption is likely due to 

the highly conjugated structure (and subsequent zero band gap) of graphene which makes it 

possible to absorb even lower energy light irradiation. This is further supported by observing 

the black physical appearance of graphene.  

Using a Tauc plot, an approximate band gap of 2.6 eV can be estimated for 0.05G-TiO2. It 

should be noted that the background absorption of graphene is not reflected in the band gap 

estimation because it does not provide onset absorption characteristics that would relay band 

gap information. Therefore, modification with graphene not only increases absorption in the 

UV range but also provides a red shift in absorption to higher wavelengths. Absorption over a 

wider spectrum can also lead to increased charge generation efficiency and subsequently 

increased potential radical generation and target degradation. This red shift is reported to be 

due to the Ti-O-C chemical bond, and is closely associated with the reduction in TiO2 band 

gap due to carbon doping.163, 164 
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Figure 36: Absorbance spectra of P25, the TiO2 nanoflower and 0.05G–TiO2 (a), and band gap estimation using 
a Tauc plot (b). 

 

Table 2: Surface analysis data and fitted values of EIS data modelled in ZSimpWin using a Randles circuit. 

Sample 
BET specific 

surface area (m2/g) 
Average pore 
diameter (nm) 

Pore 
volume 
(cm3/g) 

Rs 

(Ω cm-2) 
Rct 

(kΩ cm-2) 

P25 46.1 12.4† 0.179† 31.4 160 
TiO2 Nanoflower 16.4 23.2 0.116 35.7 68.9 

0.05G-TiO2 33.2 15.6 0.148 29.0 38.9 
†Measured values using instrument. It should be noted that P25 is not a porous material. 

 

FTIR was performed to investigate the functionality and interaction between TiO2 and RGO 

and explore the possibility of a Ti-O-C chemical bond that could be responsible for band gap 

reduction in the G-TiO2 composite (Figure 37). RGO shows peaks at 1718 cm-1 (C=O), 1577 

cm-1 (skeletal vibration), 1399 cm-1 (C-OH), and 1246 cm-1 (C-O-C).203 The TiO2 materials 

share a common broad peak at ~3400 cm-1 (-OH) associated with the adsorption of water. The 

TiO2 nanoflower also has a second peak at 1629 cm-1, which is assigned to the binding 

vibration of the H-O bond.204 The 0.05G-TiO2 composite also shares this peak at 1617 cm-1, 

however it is red shifted due to the presence of the skeletal vibration of RGO. The composite 
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also has two small additional peaks at 1265 cm-1 and 1061 cm-1, which can be assigned to the 

C-O-C and C-O stretching vibration of RGO. Therefore, although other groups164, 205 have 

reported Ti-O-C peaks at 1738, 1260, 1096, and 798 cm-1 which are also seen in our results, 

based on our data it is difficult to confirm the presence of this interaction due to their strong 

similarity to vibrational modes of RGO. 

 

Figure 37: FTIR spectra of RGO, TiO2 Nanoflower, and 0.05G-TiO2. 

 

However, the FTIR results do reveal that the addition of graphene to the TiO2 nanoflower 

introduces negatively charged functional groups (i.e. –OH groups) and lowers its isoelectric 

point (the isoelectric point of TiO2 is within the range of pH = 6 – 7.5).193, 206, 207 The 

photocatalyst experiments are conducted at pH ~ 6.5. Given that MB is positively charged in 

solution,53 it is expected that the negatively charged G-TiO2 composite will attract positively 

charged MB more effectively than TiO2. This in turn contributes to increased MB adsorption 

and degradation. 
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5.3 Summary 

Graphene-wrapped TiO2 nanoflowers were synthesized using a hydrothermal reaction without 

the use of pre-functionalization. These G-TiO2 composites were able to further improve upon 

the photocatalytic activity of the TiO2 nanoflower, and were shown to outperform P25 in the 

photodegradation of MB under UV irradiation by a factor of 3.4. BET reveals that the addition 

of graphene greatly increases the surface area and pore volume of the catalysts, providing more 

surface area for MB adsorption. EIS shows that the presence of graphene can greatly reduce 

intra and inter-particle resistance, as well as Warburg impedance. DRS also shows that the G-

TiO2 composites are able to reduce the overall band gap of the TiO2 nanoflowers and extend 

absorption into the visible-light range. This implies that visible-light photocatalysis is possible 

with these composite materials. Lastly, FTIR gave insight to the possible reasons for the 

reduction in band gap, however these results cannot definitively show the existence of the 

interactions required to explain this reduction. 
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6.0 Conclusions and Future Work 

In summary, the wrapping of graphene around flower-like TiO2 using a simple synthesis 

method has been demonstrated to greatly enhance the photocatalytic activity of TiO2 when 

compared to commercial P25. In doing so, this thesis fulfills the objective presented, that is: 

(i) explore and verify the merits of hierarchical TiO2 structures over normal TiO2 nanoparticles; 

and, (ii) show the enhanced photocatalytic activity of TiO2 via the specific heterostructuring 

of TiO2 with graphene to form graphene-wrapped TiO2. 

In the first study, hierarchical TiO2 nanoflowers were synthesized using a solvothermal 

reaction. The flower structures were shown to consist of smaller nanoribbon and nanoparticle 

morphologies. This TiO2 nanoflower material was shown to outperform P25 by a factor of 

1.49. Using BET and EIS analysis, this improvement is on the basis of improved charge 

transport along the hierarchical structure as opposed to increased surface area. DRS showed 

that the TiO2 nanoflower had a slightly smaller band gap than P25. 

In the second study, the graphene-wrapped hierarchical TiO2 nanostructures show greatly 

improved performance in the photo-degradation of MB under UV irradiation. This improved 

performance should be ascribed to the ability of graphene to increase conductivity, suppress 

recombination, and provide additional, preferential adsorption sites for MB. The optimal 

graphene loading was found to be 5 wt% and is attributed to a balance between the improved 

conductivity and adsorption of graphene and the reduction in photocatalytic surface sites of 

TiO2. 
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Despite the strong performance of the graphene-wrapped TiO2 described in this work, 

additional work should be conducted in order to further verify and improve current results. 

Based on the results obtained from these experiments, the following future work is 

recommended:  

1. Confirm the visible-light activity of graphene-wrapped TiO2 nanoflowers by 

performing visible-light photocatalysis and comparing activity with commercial P25 

under the same conditions. This is an important step in verifying whether this 

graphene-TiO2 composite is a suitable photocatalyst for real-world conditions under 

solar irradiation.  

2. Investigate the feasibility of graphene-wrapping other hierarchical materials, including 

non-TiO2 photocatalytic materials, using similar experimental techniques; evaluate 

their performance. The nanoflower morphology is just one type of hierarchical 

material. Other hierarchical TiO2 materials have also been synthesized with promising 

photocatalytic performance. In addition, novel non-TiO2 photocatalytic materials may 

prove to be even better suited for graphene hybridization and should therefore also be 

explored. 

3. Determine whether (flexible) films or membranes can be made from graphene-

wrapped TiO2 nanoflowers or similar materials to provide a practical candidate for 

higher throughput treatment of waste-water and other pollutants. Batch processes are 

typically impractical for waste-water remediation, and continuous processes with 

highly accessible catalysts are more desirable configurations. 

4. Synthesize tri-phasic structures by including a third material in the composite. This 

material may include plasmon resonance noble metals or small band gap 
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semiconductors for charge-carrier transfer and visible light sensitization. Adding 

additional phases to the photocatalyst can not only increase absorption of the solar 

spectrum, but also improve control over charge-carrier movement, reducing 

recombination and improving photocatalytic efficiency. 

5. Determine the activity of graphene-wrapped TiO2 nanoflowers in other photocatalytic 

applications. Specifically, use the composite material in a hydrogen production 

system, and evaluate the efficiency under both electrolysis and photocatalytic 

(artificial and solar) conditions. These experiments can evaluate the ability of this 

composite to catalyze other redox reactions other than the ones discussed in this work 

and expand the usefulness of such a material to different applications. 

This thesis work has provided a strong foundation for further research in photocatalytic 

materials. Future research should include: the extension of research scope into novel 

photocatalytic materials; the synthesis and evaluation of visible and/or infrared-light activated 

photocatalysts under solar-simulated light; and, the expansion of photocatalytic systems into 

other application areas such as hydrogen production systems and integrated solar fuel cell 

systems. The goal of this future research is to use these foundational concepts in photocatalyst 

synthesis and testing to eventually create practical real-world applications in clean and 

renewable technologies. 
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