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Abstract: It is very well known that the use of a load-holding valve (LHV) in a hydraulic system
introduces additional energy consumption. This article presented a simplified graphical method
for analyzing the power requirements of hydraulic systems equipped with load-holding valves for
overrunning load control. The method helps to understand the performance of load-holding valves
during actuator movement. In addition, it allows visualization of the influence on the overall system
consumption of the main parameters (pilot ratio, set pressure) and others such as flow rate, back
pressure, and load force. The method is attractive because, with only the pressures at the three ports
and the valve relief function curve, it is sufficient to evaluate the energy consumption and to define
the power ratio as an index indicating the percentage of energy that is to be used to open the LHV
valve. The method was applied to real cases, in particular to two types of lifting mobile machines. It
was validated following several outdoor tests on two mobile machines where experimental data were
obtained. During tests, both machines were equipped with a set of seven different performance LHV
valves. The described method could be beneficial for hydraulic machine manufacturers engaged in
designing lifting devices when selecting a suitable valve for energy efficiency applications, especially
now that the trend towards electrification is a reality.

Keywords: load-holding valve; counterbalance; overcenter; energy balance; hydraulic systems;
mobile machinery

1. Introduction

Load Holding Valves (LHV) are simple but critical components of any mobile machine.
Basically, they are used in hydraulic circuits to avoid uncontrolled movements of cylin-
ders and motors due to an overrunning or gravity-assisted load, but also are frequently
found in positioning circuits and regenerative circuits. The LHVs have had significant
technical-commercial impact and are required by law (directives and standards) thanks
to their additional safety functionalities. They provide fully secured load holding and no
leakage, shock absorption, cavitation protection at load lowering, overload protection, and
perform as line rupture safety valves. In addition, they must show some functionalities to
guarantee a good dynamic performance of the entire hydraulic system, such as: prevent
overflow when applying stepped pilot pressure, quick closing when the pilot pressure
disappears, opening action independent of load pressure, and good flow control capabil-
ities. A significant amount of equipment uses LHV valves, such as: excavators, cranes,
trucks with one or more arms (aerial platforms, inspection vehicles, concrete pumping
equipment), telescopic handlers, forklifts, fruit pickers, recreational facilities, industrial
presses, drills, and industrial winches, among many other machines.

LHVs valves are modulating devices that allow free flow from the valve to the cylinder
and block reverse flow from the cylinder to the valve until load pressure, pilot pressure,
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or a combination of both opens them (traditional pressure–spring balance principle, see
Figure 1). Though they are simple in design, their application can often frustrate technicians
and engineers. The known problems of LHVs are the excessive power consumption
associated with over-pressurization of the flow supply and their tendency to introduce
instability. The solutions to both issues are opposed to each other since what works well
for stability is harmful for energy savings.
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Figure 1. The traditional principle of pressure–spring load-holding valve model. (a) ISO 1219 symbols;
(b) Functional scheme of the load holding valve, LHV.

Any application engineer interested in energy consumption needs to answer the
following question: how can the power requirements of a LHV be calculated for a given set
of operating conditions? To meet this challenge, the paper attempted to present a simplified
graphical method to analyze the power requirements of hydraulic systems equipped with
LHVs for overrunning load control. This paper is organized as follows: Section 1 presents
the introduction of the work exposed in this paper. Section 2 presents a brief schematic
of the load-holding valves and a typical application to control the movement of a linear
actuator. Special emphasis is also given to the graphical representation of the characteristic
curves of both components. Section 3 is devoted to a short review of state of the art.
Section 4 conceptually exposes the graphical method to perform a power balance. Section 5
focuses on describing the experimental tests and shows examples of the use of this analysis
methodology. Finally, in Section 6, conclusions on the proposed method are discussed.

2. Review of Load-Holding Valves

It is believed that the first designs were the work of the Vickers engineers staff in the
1930s and the first valves to appear on the market were developed by Racine. Since then,
these valves have received different denominations based on their design and functionality:
counterbalance valve, overcenter valve, holding valve, load-control valve, pilot-assisted
load-control valve, load-holding valve, and motion-control valves, among others.

The main discussion arises in the use of the names counterbalance and overcenter
valve. Counterbalance valves are basically pressure relief valves in combination with a
check valve to create a unidirectional back pressure in a hydraulic system to prevent the
actuator running away with accelerating loads (see Figure 1a left). The valve poppet is
balanced by two pressures and a spring. The force generated by the load pressure (P1)
tends to open the valve orifice, while the spring force and the force caused by the back
pressure (P2) tend to close the valve orifice. The overcenter valve, on the other hand,
can be considered in a simplified form as a counterbalance valve with an external pilot
line (P3), being more energy efficient in systems with variable loads (see Figure 1a right).
Considering the latest innovations in this valve type, the authors are motivated to look
for a more generic name, such as load-holding valve, LHV. Figure 1b shows the scheme
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of a load-holding valve. Usually, the P4 connects to the P2, but P4 is also left directly to
atmospheric reference.

According to Figure 1b, where A4 = A1 + A2 + A3, the force balance on the LHV
poppet (Equation (1)) allows for calculating the pressure required to open the valve and
starts to move the load. In order to hold the load, the valve cracking pressure (or setting
pressure) must be set higher than the load pressure. Because of the hysteresis of the moving
parts of the valve (mainly due to friction), there is a difference between cracking and reseat
pressure (the pressure at which the valve closes) with the reseat pressure being lower than
the cracking pressure. Hysteresis is one of the reasons why the typical LHV valve setting is
approximately 30% higher than the load pressure to ensure that the reseating pressure will
be high enough to maintain the load.

P1 + P3Rv = PM + P2(Rv + 1) (1)

where, P1 is the load pressure, P3 is the pilot pressure, PM = Fspring/A1 is the spring
pressure, P2 is the return pressure, and Rv is the pilot ratio. The pilot ratio is given by the
ratio between the pilot pressure area and the relief area.

Rv =
A3

A1
(2)

In Figure 2a, a typical application is shown. A directional valve is used in conjunction
with an LHV to control the movement of an actuator. The pilot port of the LHV is connected
to the opposite side of the actuator.
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Figure 2. Typical application hydraulic circuit. (a) LHV valve is connected to the chamber on the rod
side; (b) LHV valve is connected to the chamber on the piston side.

The force balance also makes it possible to determine the pressures in the hydraulic
cylinder chambers (piston and rod side) as a function of a given load. This balance is
established for two situations of the hydraulic cylinder, that is, when the LHV valve is
connected to the chamber on the rod side (see Figure 2a) and when it is connected to the
chamber on the piston side (see Figure 2b).

For case 2a
P1Rc − P3 = PLoad (3)

Rc =
S2

S1
(4)

PLoad =
FLoad

S1
(5)

where, P1 is the rod side chamber pressure, P3 is the pilot pressure (equal to piston side
chamber pressure), P2 is the return pressure, and Rc is the hydraulic cylinder section ratio.
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The sectional area ratio of the cylinder is given by the ratio between the effective sections of
rod and piston side.

The load, F, can be considered resistive load (opposite direction for the actuator
velocity “sign −”), or overruning load (same direction concerning the actuator speed “sign
+”), as depicted in Figure 2.

Assuming that P2 is very small and combining Equations (1) and (3), the pressures
of the hydraulic cylinder chambers can arise from the pressures of the hydraulic cylinder
chambers as a function of the spring pressure, PM, and the equivalent load pressure, PLoad.

P1 =
1

1 + RcRv
PM +

Rv

1 + RcRv
PLoad (6)

P3 =
Rc

1 + RcRv
PM −

1
1 + RcRv

PLoad (7)

Analogously, for case 2b
P1 − P3Rc = PLoad (8)

where, P1 is the piston side chamber pressure, P3 is the pilot pressure (equal to the rod side
chamber pressure), and P2 is the return pressure.

In the same way, assuming that P2 is very small and combining Equations (1) and (8),
the pressures of the hydraulic cylinder chambers can be expressed as a function of the
spring pressure, PM, and the equivalent load pressure, PLoad.

P1 =
Rc

Rc + Rv
PM +

Rv

Rc + Rv
PLoad (9)

P3 =
1

Rc + Rv
PM −

1
Rc + Rv

PLoad (10)

Two types of operating curves can be found in the technical documents related to
LHVs. On the one hand, the so-called “steady-state operating curve” expresses the load
pressure as a function of the pilot pressure (P3 vs. P1). Figure 3 shows, for cases (2a) and
(2b), the plots of the hydraulic actuator/LHV system based on Equations (1), (2) and (8),
corresponding to the steady-state operating curves. The red lines are the characteristic
curves of the LHV with different pilot ratios, while the solid black line corresponds to
the unloaded hydraulic cylinder, and the dashed gray line corresponds to the hydraulic
cylinder with an overrunnig load equivalent to 100 bar. Consequently, intersection point A
corresponds to the LHV opening point and intersection point B to the LHV set pressure.
This shows the effect of the setting pressure PM and the pilot ratio Rv on the operation of
the LHV. It is significant to note that this representation is used by some manufacturers
to highlight differential aspects in the performance of the latest LHV versions, such as the
two-stage valve, the multiple pilot ratio (adaptive) valve, and the setting self-adjusting
(load match) valve.

Another variant of the operating curve for cases (2a) and (2b) is shown in Figure 4.
These plots express the pressures P1 and P3 of the system hydraulic actuator/LHV in
the cylinder chambers as a function of the equivalent load pressure, PLoad, which is the
graphical representation of the two systems of linear Equations (6), (7), (9) and (10). The
positive axis direction refers to overrunning loads, while the negative direction corresponds
to resistive loads. The red line corresponds to the P1 pressure and the black line to the pilot
pressure, P3. It can be seen that when the equivalent load pressure decreases, the pilot
pressure increases.
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Figure 3. Steady-state operating curves P1 = f (P3) for the two cases (2a) and (2b). Point A corresponds
to the LHV opening point and point B to the LHV set pressure.

The plots in Figure 4 were first introduced by Professor Nicola Nervegna [1] and
Professor Luca Zarotti [2]. Ritelli and Vacca used these graphs to evaluate energy aspects
in [3], considering the hydraulic power consumption equal to the product of the pressure
and the flow rate through the valve. If the flow rate is constant, the hydraulic power is
proportional to the pressure in the actuator chamber P1. Although these graphs have a high
conceptual and qualitative value from the energetic point of view, the steady-state operating
curves P1 = f (P3) shown in Figure 3 can be used to evaluate the power requirements of
the hydraulic system with LHV valves, as will be discussed in the following sections.

Table 1 shows the specifications of the essential hydraulic components that make up
the hydraulic circuit used. These specifications were to draw Figures 3 and 4, while Table 2
shows the coordinates of the most significant points of the curves shown in Figure 4.

Table 1. The specifications of the primary hydraulic components of the hydraulic circuit imperative
to depict graphs included in Figures 3 and 4.

Cylinder LHV System/Load

Piston diameter 100 mm Pilot ratio 4 Relief valve 250 bar
Rod diameter 63 mm Setting pressure 325 bar PLoad (min) 0 bar
Section ratio 0.603 Load max 270 bar PLoad (example) 100 bar

Nominal flow 90 L/min
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Table 2. List of critical points in the diagrams in Figure 4 in bar.

Case (2a) x y x y

A Pvlp Pvlp 250 250
B (1/Rv)·PM 1/Rv PM 81 81
C Rc·PM 0 196 0
D Rc PM PM 196 325
E (1/Rv)·PM 0 81 0
F Pvlp 0 250 0

Case (2b) x y x y

A Rc Pvlp Pvlp 151 250
B Rc/Rv 1/Rv PM 49 81
C PM 0 325 0
D PM PM 325 325
E (Rc/Rv)·PM 0 49 0
F Rc Pvlp 0 151 0
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Figure 4. Steady-state operating curves Pi(P1, P3) = f (Pload) for the two cases (2a) and (2b). The
meanings of points A–F are defined in Table 2.

3. The State of the Art

Figure 5 shows a historical compilation of publications published under the following
designations: overcenter, counterbalance, and load-holding valves. This list is not exhaus-
tive, but it is sufficient to show the evolution of the scientific and technological aspects. Two
clear periods can be observed in this figure: a first period, extending from the beginning
to the middle of the first decade of the 21st century, which is characterized by a scientific
interest in finding out the causes or origins of instabilities, followed by a second stage
focusing on finding designs and/or circuits capable of minimizing or eliminating their
effects. In a second period, defined approximately by the last decade, new valve designs
appear, modeling is carried out by means of concentrated parameter methods and/or
distributed parameter methods, and studies related to energy consumption are found.
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3.1. About Instability

As mentioned, the severity of the oscillations is affected by a wide variety of param-
eters, some of which are hard to predict or change: external load on the actuator, the
properties of the mechanical structure, the damping and hysteresis of the LHV, the operator
input, as well as the volumes and restrictions in the hydraulic lines. All of these have been
subjected to extensive investigations by, among others, refs. [4–14].

It is believed that the inherent stability problem of LHV is due to the fact that there is a
phase lag between the pilot pressure and the outlet pressure of the actuator, and oscillations
can be reduced by separating the pilot pressure and the actuator inlet pressure [15]. To
improve the dynamic response of LHV, ref. [16] suggested that a pressure feedback system
can indirectly eliminate oscillations and improve the stability of the hydraulic system.
Another novel approach was developed by Sorensen et al. [17], using a low-pass filtered
value of the secondary circuit load pressure for the pilot connection of the LHV. From the
conceptual point of view, Groof [18] showed a simple criterion that can predict instability.
The criterion is based on a third-order equation and indicates when a system is stable
or unstable. It focuses only on the hydraulic system, without taking into account the
mechanical stiffness of the complete system. When the LHV is mounted on the rod side
of the cylinder (in Figure 2a), the criterion used for checking the stability of the system is
defined by Equation (11), and when the LHV is mounted on the piston side of the cylinder
(in Figure 2b) is defined by Equation (12)

Grelie f ChB

Rc
>

Gpilot

ChA
(11)

Grelie f ChB

ChA
>

Gpilot

Rc
(12)
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where, Gpilot, gradient of pilot function, describes the opening characteristic as a function of
the pilot pressure

Gpilot =
dQthroughLHVvalve

dPpilot
(13)

Grelief, gradient of relief function, describes the opening behavior of the valve depended
on the load pressure

Grelie f =
dQthroughLHVvalve

dPrelie f
(14)

Ch, hydraulic capacitance is given by the increase in effective stored fluid volume dV
per change in pressure dP. The subscripts A and B indicate the hydraulic conduction and
the volume of the cylinder hydraulic chamber on the corresponding side.

Ch =
dV
dP

(15)

By way of illustration and for scenario (2b), the above criterion (Equation (12)) can be
expressed by Equation (16).

V2

V1
> RvRc

(
2P1 A1

1 + 2P1 + k·xLHV − k f ·xLHV ·P1

)
(16)

where,

k, elastic constant of the spring of LHV
kf, flow force constant
V1, hydraulic cylinder piston side chamber volume
V2, hydraulic cylinder rod side chamber volume
xLHV, lifting height of the spool/poppet with respect to the seat surface of the LHV

According to the previous paragraphs, the most influential parameters of the stability
are the setting pressure and the pilot ratio. A reduction of the pilot ratio results in a
more stable operation, but at the cost of a higher pressure level and thus higher energy
consumption, see ref. [3]. This is especially significant for small external loads. Adding
damping when designing the hydraulic circuit is another proven approach. By increasing
volumes, adding orifices, using logic valves, etc., more damping is introduced into the
system. Special attention has been devoted to the pilot line. By manipulating the pressure
in different ways on the LHV pilot port line (adding delays, creating a difference in the
path back and forth), positive effects have been achieved. Sciancalepore and Vacca [19]
proposed a solution by using LHVs to control the actuator speed while also reducing
energy consumption. It consists of controlling the pilot port of the LHV through an external
pressure source (adjustable pilot). Two different control strategies are presented: the “Smart
LHV”, where the LHV does not control the actuator velocity but it minimizes the system
pressure; and the “Smart System” that uses the LHV to efficiently control the actuator
velocity during overrunning load conditions.

3.2. About Modeling

Most of these investigations are related to modeling the steady-state and dynamic
characteristics of load-holding valves in the time and frequency domains using a lumped
parameter approach. However, most attempts to establish physical or semi-physical models
of such valves have encountered many challenges, e.g., related to friction and resulting
hysteresis, non-linear discharge area characteristics, varying discharge coefficients, and
varying flow forces.

Today, there are several commercially available software packages such as MATLAB/
Simulink™ (The MathWorks, Inc., Natick, Massachusetts, United States), AMESim™ (Siemens
AG, Munich, Germany), Dymola™ (Dassault Systèmes, Paris, France), Maple/MapleSim™
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(Waterloo Maple Inc., Waterloo, AB, Canada), and 20-Sim™ (Controllab Products B.V.,
Enschede, The Netherlands) that make work much more manageable. These packages may
be classified into two different modeling approaches: a simple semi-physical model and a
non-physical model (black box).

In the first approach, static modeling method based on force balance and the Bernoulli
orifice pressure–flow equation is used to achieve the load velocity control ability of the
valve. It does not take phenomena like friction and flow forces into account. In other
cases, the dynamic modeling method is based on Newton’s second law and fluid continuity
equation. In both cases, experimental verification was required. In the second approach,
the model uses two different pressure ratios to compute the flow through the valve together
with a number of parameters that must be experimentally determined. Despite this, LHVs
are rarely modeled accurately due to the effort required to obtain basic model parameters
and the complexity involved in identifying equations for flow forces and friction.

Computational fluid dynamics (CFD) may be used to provide insight into some
of these phenomena, but often experimental work and semi-physical or non-physical
modeling approaches are required for time-domain simulation. Very interesting and to
highlight are the works of refs. [14,20].

3.3. About Energetic Aspects

The energetic analysis of fluid power systems is becoming a requirement of machin-
ery manufacturers, taking into account the trend towards the electrification of machines
and the limited battery capacity. Many researchers are involved [21–25], and some are
specific to studying the different hydraulic load retention systems in mobile and industrial
applications [15,26,27].

Ritelli and Vacca [3] focused on the analysis of LHV energy savings. They quanti-
fied the energy consumption of LHVs with different pile ratios, showing that in a crane
application, it is possible to achieve 59% energy savings with high pile ratios.

Regarding the energy efficiency of LHVs, there are some relevant previous efforts.
LHVs with external and mixed control types were considered by ref. [13]. Significant
examples are also the LoadMatch™ model, recently commercialized by Sun Hydraulics,
which dynamically changes the valve setting as a function of the load pressure. In contrast,
other works focus on introducing an external control to the LHV to influence its opening
based on the instantaneous loading conditions. The most important contribution in this
direction is the work in ref. [17], which proposed to use an auxiliary hydraulic circuit to
control the pilot of the LHV, and ref. [28], which presented a method to control the pilot
port of the CBV through an external pressure source (adjustable pilot). For both cases
of “Smart CBV” and “Smart System”, remarkable energy savings of 75% and up to 90%,
respectively, were observed.

Despite scientific and technological advances reported and the wide variety of models
and algorithms, it can be said that the use of this type of valve is far from easy. This
wide range of tools is often not available to application engineers. In addition, the use of
these tools still require a high level of application-specific knowledge. The impact outside
academia remains limited. One reason may be that the design of hydraulic systems depends
to some extent on the application.

In this paper, the authors highlighted the importance of understanding how LHVs
work, not only in the critical opening condition but also outside of this condition, with the
aim of helping to select the most suitable valve for the application according to its charac-
teristics (extracted from the corresponding technical catalogs). Of course, experimentation
is the best way to judge the system’s power consumption but, the availability of a simple
graphical method in the course to estimate the impact of the LHV on the overall power
consumption may be very useful.

Of course, experimentation is the best way to judge the system’s power consumption.
However, the availability of a simple graphical method in the course to estimate the impact
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of the LHV on the overall power consumption may be very useful. In the next section, a
brief background overview of the different types of performance curves is presented.

3.4. Performance Curves

Choosing the satisfactory LHV valve for a specific application is a challenging task. In
order to apply a LHV correctly, it is crucial to understand how it works and to have sufficient
technical information about its performance. After carefully analyzing the catalogs and
other types of technical documents (release and technical papers, handbooks, user’s manual,
worksheets, prospectus, or brochures) the following comments can be summarized:

a They all provide a simple and generic description of how it works, symbols, valve
cavity, specifications or technical data, and some performance graphs or characteristic
curves. Typical technical data include maximum operating pressure, setting pressure
(cracking pressure) interval, nominal flow, pilot ratio, internal leakage, and hysteresis,
among others.

b Although graphical presentations of performance should help viewers quickly and
easily understand the critical information, there is no unanimous agreement on which
are the most appropriate. Of the different ways of expressing its performance, the
next conditions may be pointed out:

i Pressure drop in pilot operation condition (valve fully opened by the pilot
pressure), (from port 1 to port 2, see Figure 1).

ii Pressure drop in check valve operating condition (free flow) (from port 2 to
port 1) and

iii Pressure drop in pressure relief working condition (valve opened by the load).
Unfortunately, some technical documents or specification sheets do not provide
this minimum information, which is necessary for applying LHVs in a system.

c Generally, the curves shown at the end of Section 2 of this document and in Figures 3 and 4
are not usually included in the catalogs, but only in technical papers and to highlight
the significant improvements in the performance of different valves.

4. Graphic Method to Estimate the Power Balance

The method is attractive because only the pressures in the three ports and the relief
function curve of the valve are sufficient to evaluate the power consumption. The method
has been inspired by the work done at the Agder University, Norway, led by Prof. M.
Hansen [11]. It consists of a simple semi-physical model.

4.1. Description of the Four-Quadrant Diagram

For the description of the graphical method, the four-quadrant diagram of the Carte-
sian plane is a good description of the proposed method (Figure 6). The following variables
are represented on the axes of this diagram:

x-axis (+): pilot pressure (P3) in bar which corresponds to the pressure that prevails in the
actuator rod chamber
x-axis (−): flow through the load holding valve (Q1) in L/min, equal to the flow leaving
the piston side actuator chamber
[-15]y-axis (+): load pressure (P1) in bar, corresponding to the pressure in the actuator
piston chamber
y-axis (−): flow rate entering the piston side actuator chamber (QS) in L/min according to
the configuration of the hydraulic circuit shown in scenario (2b), Figure 2.
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Figure 6. The cartesian plane is divided into four quadrants and characteristic curves of the hydraulic
actuator and the load-holding valve. A represents the intersection between the curve of the cylinder
function and that of the LHV when the force is constant; B is the intersection between the curve of the
operating point of the LHV acting as a relief valve and the flow curve; C is the same as A but zero for
the case of zero force.

The four-quadrant diagram allows us to plot the characteristic curves of an actuator
and holding valve as follows:

- First quadrant “I”: Upper right region. It is used to represent the characteristic curve of
the hydraulic actuator and the characteristic curve P1 = f (P3) of the load-holding valve.

- Second quadrant “II”: Upper left region. It is used to show the characteristic curve of
the load holding valve acting as a pressure-limiting valve (relief function).

- Third quadrant “III”: Lower left region. It is used as an auxiliary two-dimensional space.
- Fourth quadrant “IV”: Lower right region. It is used as an auxiliary two-dimensional space.

Alternatively, it can be used to depict the characteristic curve of the load-holding
valve that expresses the pilot pressure (P3) as a function of the flow rate (Q1) through the
load-holding valve for a predetermined load pressure value (P1)

4.1.1. Steady-State Operating Curve and Hydraulic Cylinder Characteristic Curve

Equations (1) and (3) have been plotted in quadrant I. The intersection between the
two curves gives the operating point of the hydraulic system (actuator/LHV valve) when
the cylinder is subjected to a load, overrunning or resistive, as in Figure 3.

4.1.2. Characteristic Curve P1 = f (Q) of an LHV Valve Acting as a Pressure Limiting Valve
(Relief Function)

Considering the simplified diagram of the holding valve poppet shown in Figure 7
and assuming that P3 is not working and the flow is in a steady-state and incompressible
fluid (ρ is constant), the application of the principle of conservation of momentum to the
control volume allows us to write:

I2 − I1 = P1 A1 − P2 A2 − Fsolid− f luid (17)

Ff luid−solid = −Fsolid− f luid (18)
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where: P1 A1 and P2 A2 denote the net force due to the pressure distribution in the inlet and
outlet sections, respectively, I1 and I2 are the momentum fluxes of the flow entering and
leaving the control surface,

I1 =
ρQ2

A1
(19)

I2 =
ρQ2

A2(x)
cos(α) (20)

where
A2(x) = π·d·sen(α)·x = K2·x (21)

K2 = π·d·sen(α) (22)

and Ffluid-solid is the force on the poppet exerted by the fluid.
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Applying Newton’s second law of motion to the valve poppet (considered a free solid)

Ff luid−solid − (Fspring + Msolid g) = Msolid
.
v (23)

Accepting an equilibrium position defined by the distance, x, considering that Msolid is
negligible then:

Ff luid−solid = Fspring (24)

Fspring = K1(x + x0) (25)

where, K1 is the constant of the spring

Fprecompresion = K1x0 (26)

PM =
Fprecompresion

A1
(27)
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Combining the previous Equations (17)–(27), it follows that the relief function curve

P1 = PM +
Kspring

A1
x + K2Q2 (28)

with
K2 =

ρ

A2
1
− ρ

A1·(πd)·x· tan α
(29)

On the other hand, for a predefined distance between poppet and seat surface, the
flow rate can be calculated by the equation

Qout(y, P) = K2·x·Cd·
√

2
P1

ρ
(30)

or alternatively
P1 = K3Q2 (31)

with

K3 =

 1

K2·x·Cd·
√

2
ρ

2

(32)

In quadrant II, see Figure 8, the relief function curve (Equation (28)) and the flow rate
curve (Equation (31)) are represented (not scaled). The point of intersection between the
two curves (point B) indicates the operating point of the LHV acting as a relief valve; that
is, the valve opens at pressure P and allows fluid flow Q.
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4.1.3. Power Balance Applied to the Actuator/LHV Hydraulic System

Before explaining how the power balance is proposed, it is helpful to explain the
different curves shown in the four-quadrant diagram (Figure 8), as well as the points that
are considered most representative:
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- Curve 10–12: characteristic curve P1 = f (P3) of the LHV valve in the static balance
position (closing condition). It corresponds to the representation of Equation (1). Load
force Fload = 0

- Curve 11–13: characteristic curve P1 = f (P3) of the LHV valve in the permanent regime
when a flow rate Q1 flows through the valve, as a consequence of the opening of
the obturator by the action of pressure P1 and pilot pressure P3. Load force constant
F1 > 0

- Curve O–C: characteristic curve P1 = f (P3) of the hydraulic actuator when it is subjected
to zero force. It corresponds to the representation of Equation (3).

- Curve D–A: characteristic curve P1 = f (P3) of the hydraulic actuator when it is sub-
jected to an overrunning force, F = constant.

- Curve 10–B: characteristic curve P = f (Q) of the LHV valve acting as a pressure limiting
valve (relief function). See Equation (28).

- Curve O–7–B: LHV poppet pressure drop in the open position as a result of the
shutter opening due to the action of the pressure P1 and the pilot pressure P3. See
Equation (31).

Assuming that the operating point of the hydraulic system (hydraulic actuator/LHV
valve) is defined by point A, that is, the intersection of curves (11–13) and (D–A), this point
corresponds to the operating point of the LHV when a flow rate Q1 flows as a result of the
opening of the obturator under the action of pressure P1 and pilot pressure P3, thus defined
by the coordinates (P3, P1).

Other points of interest are:

- point 7: This point is defined by the coordinates (Q1, P1), intersection of the curve
(0–B), with the line of constant pressure equal to P1.

- point 5: defined by the coordinates (Q1, 0)
- point 1: defined by the coordinates (P3, 0)
- point 3: defined by the coordinates (0, QS)

Based on the hydraulic circuit (e.g., scenario 2b) outlined in Figure 2, the following
powers involved in movements are defined:

NM power due to the movement of the actuator as a consequence of being subjected
to the overruning force F.

NM = Foverrunning.vactuator (33)

NS, power supplied by the pump feeding the hydraulic actuator chamber on the
rod side

NS = PSQS = PS(:point 1:)QS(:point 3:) (34)

NLHV, power related to the fluid flow through the LHV valve as a result of the com-
bined action of pressure P1 and pilot pressure P3

NLHV = P1Q1 = P1(:point 9:)Q1(:point 5:) (35)

A simple power balance allows us to establish the following equation:

NLHV = NS + NM (36)

NS power is defined by the rectangle (O123) (yellow area), where side O3 has magnitude
QS and side O1 has magnitude equal to P3. Note that the area (O123) is equal to the area
(O568’). Using the hydraulic actuator curve (for condition F = 0) extended from Quadrant
I to Quadrant III, represented by the “40C” line, the following relationships are established:

P1(:point 8′ :) = RcP3(:point 1:) (37)

Q1(:point 5:) =
QS(:point 3:)

Rc
(38)
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multiplying Equations (37) and (38), it turns out

P1(:point 8′ :)Q1(:point 5:) = P3(:point 1:)QS(:point 3:) (39)

Equation (39) highlights the aforementioned equality, that is the area (O568’) = area
(O123). On the other hand, note that the area of the rectangle (O579) (ABlue + ARed), where
side O5 has magnitude Q1 and side O9 is equal to P1, represents the power NLHV, i.e., the
power related to the fluid flow through the LHV valve. Then, by virtue of Equation (36), it
can be deduced that the area of the rectangle (6798’) (ARed), represents the power due to the
movement of the actuator as a consequence of being subjected to the overrunning force F.

Based on these equations, the ratio φ is defined between the power provided by the
pump and the power related to the flow through the LHV valve, see Equation (40). This
power ratio is an index that indicates the percentage of the pump power needed to open
the LHV valve and, therefore, an index of the energetic goodness of the LHV valve.

φ =
NS

NLHV
=

area(O568′)
area(O579)

=
AreaBlue

(AreaBlue + AreaRed)
(40)

5. Experimental Validation
5.1. Lab Testing

To validate the proposed methodology, first of all, the performance of an LHV valve
was tested. Specifically, the reference valve tested at the LABSON Laboratory (Terrassa-
Barcelona) was the LHV-4 valve (note: there was no particular reason for the choice, only
its availability in the laboratory). Figure 9 shows the diagram of the hydraulic circuit used.
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Figure 9. LHV-4 picture. Diagram of the hydraulic circuit used where: P1: upstream water pressure;
P2: downstream pressure; P3: pilot pressure.

Figure 10 presents the results obtained. Figure 10a shows the steady-state operating
curve of LHV valve, while Figure 10b shows of relief function curve. On the one hand,
the relief functions with setting pressure of 150 and 250 bar are shown. These curves were
evaluated based on the adjustment curves shown in Figure 10a. On the other hand, the
relief curve with setting pressure 100 bar, obtained by varying the pressure P1 with the help
of a proportional pressure relief valve, showed its hysteresis phenomenon.
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  (a) (b)

Figure 10. LHV experimental curves: (a) steady-state operating curves and (b) relief function curve.

5.2. Field Testing

This section describes the experimental tests performed to validate the methodology
proposed in the previous section. Several tests were performed on the hydraulic lifting
cylinder of a telescopic handler (called M1). For the first series of tests, the M1 telehandler
was equipped with the LHV4-M1 valve, the characteristics of which are well known
(Figure 10), replacing the original valves of the commercial version.

Figure 11 shows panoramic images of the experimental tests carried out. The tests
were carried out with different load conditions of the telehander.
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Figure 11. The telehandler machine conveniently instrumented.

The hydraulic cylinder was actuated by means of a manual directional control valve.
The field test was equipped with multiple pressure sensors, a flow sensor, and a cylinder
position sensor. Displacement and angle sensors were also fitted to the boom.

Sensor data acquisition and electronic actuation were carried out with the help of a
multi-axis motion controller RMC200, equipped with input and output modules (Delta
Computer Systems). It is easy to use, and the software provided with it has powerful
plotting capabilities.
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Sensors and their main characteristics are listed in Table 3. Calibration values were
obtained from the manufacturer’s information and from comparison with a standard when
the manufacturer’s information was not available. All values were checked in preliminary
tests. Sensor values were measured and recorded at a frequency of 1 kHz. Higher rates were
not considered necessary for the energy analysis. Digital filtering at 100 Hz was required
for the calculation of the speeds, especially with the angle sensor. The data were processed
with commercial software (DIAdem, Excel) to calculate the total energy consumption.

Table 3. List of main characteristics of used sensors.

Magnitude Manufacturer Model Range Accuracy

Pressure WIKA MH2 0–250/0–400 bar >0.5% span
Flow HYDAC EVS3199TF 6–60 L/min >2% act. val.

Position Micro Epsilon WDS-1500_PS60-SR-U 0–1500 mm >+/−1.5 mm
Angle (tilt) SICK TMM 56E-PMH045 +/−45◦ +/−0.3◦

Temperature Omega PT100 10–100◦ >0.36 ◦C

Figure 12 shows the results obtained with machine M1 in which a 90 × 50 hydraulic
cylinder and the LHV4 valve were installed to move the telescopic arm. Figure 12a shows
the temporal history of the load pressure P1, the return pressure P2, and pilot pressure
P3, together with the hydraulic cylinder position x1 and pump flow QS companion. It
is observed that there is a time interval in which the values P1, P2, P3, and Q1 remained
essentially constant, which corresponds to the downward cylinder movement, x1, and,
consequently, to the time interval in which the valve is working. The companion Figure 12b
shows the working pressure space of rod side P1 versus the pilot P3 pressures, respectively.
The average values are represented by a small circle in Figure 12a,b.
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Figure 12. Example of experimental results obtained on M1 machine using LHV4-M1 valve where:
(a) shows the temporal evolution of the experimentally measured variables. (b) experimental results
plotted on steady-state operating curves for P1 = f (P3).

Procedure

The method is presented over the description set out in Figure 13 with real values
(and Figure 8 as reference).
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Figure 13. Graphical representation of the power balance for a real case.

Actions to be carried out over the first quadrant:

1. Plot the working point A (e.g., P1 = 142 bar and P3 = 58 bar);
2. Plot LHV curve based on its setting point Pm = 250 bar and the pilot ratio 4.25 as it is

shown in Table 1 (e.g., straight-line 1F);
3. Plot an auxiliary line parallel to 1F at the A point projecting it to the pressure axis (e.g.,

E point);
4. Calculate the effect of the return pressure using the equation P2·(Rv + 1), which is

represented by the segment EG. G point represents PM pressure shown in Equation (1);
5. Trace a horizontal line crossing at A point to obtain the working pressure (e.g., point 9);
6. Obtain the differential pressure P1-P2 by plotting 9′ position (e.g., segment length

between 0–9′). Actions in the second quadrant:
7. Plot the relief LHV function curve taking the setting pressure as 250 bar (e.g., the

experimental curve shown in Figure 10b);
8. Draw a horizontal line starting at G and crossing the LHV function curve (e.g., H

point is obtained). Therefore, the K3 constant can be calculated from Equation (3)
obtained using H coordinated, K3 = PH

Q2
H

;

9. The parabolic performance following Equation (31);
10. Trace a horizontal line across 9′ to obtain the coordinates of intersection with the parabolic

curve OH to bring point 7, which corresponds to the orifice working conditions;
11. Draw a vertical segment from point 7 to the flow axis to obtain the flow Q1 through

the valve (point 5);
12. Extend the cylinder actuator characteristic curve from the first quadrant to the third

quadrant (segment “04”, as an extension of segment “08”);
13. The pump flow rate QS is represented by point 3, which is calculated from point 4 by

crossing the vertical axis;
14. Extend line “4–3” to the intersection with the vertical line through point 1, obtaining

point 2;
15. The graphics method provides flow rate (represented by points 3 and 5 compared

with experimental ones, as shown in Table 4).
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Table 4. Working values.

Go down Slow Go down Fast

load pressure P1 bar 132 142
return pressure P2 bar 3 9.21
pilot pressure P3 bar 42 58
supply flow QS l/min 9 18
valve flow Q1 l/min 13 26

setting pressure Pm bar 250 250

Power ratios φ can be obtained applying Equation (40).

- “(0123)” area represents the power, NS (yellow area)
- “(0568′)” area has an identical area of “(0123)” (blue area)
- “(679′8′)” area is equivalent to the power load, F·v (red area)
- “(0579′)” area is the power dissipated in the valve, NLHV = P1Q1, which is equal to

the sum of “(0568′)” and “(679′8′)”

The yellow area, identical to the blue area, shows that using LHV valves in a hydraulic
system introduces additional energy consumption.

To conclude this research work, it is essential to apply and validate the proposed
methodology in more cases. For this purpose, two models of telehandlers (M1 and M2)
were equipped with seven different LHV valves. The mixed sets of valves and machines
were distinguished with LHVi-Mj where i = {1 . . . 7} and j = {1,2}. The relevant data, setting
pressure, and relief characteristic curve were obtained from the commercial catalogs of
the valves.

Figure 14 shows the high correlation between the flows estimated by applying the
proposed method and the experimental tests carried out in the field with the two machines
presented and the set of seven valves used. The high correlation measured through the
coefficient R2 ≈ 0.99 is notable. Taking into account that the proposed method allows esti-
mating the flows and powers involved in the operation of the hydraulic cylinder/holding
valve system, it seems reasonable to compare the calculated values with the actual values
measured in the experimental tests in order to obtain the accuracy of the method. The
estimated and measured flow rates for machine M1 are shown in Figure 14a, where the
dashed lines define an error range of ±7.5%. On the other hand, the values for the machine
M2 are shown in Figure 14b, where the dashed lines define an error range of +8%/−12%.
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Figure 15 shows the power ratio, φ, as a function of the net force to which the lifting
cylinder is subjected for machines M1, Figure 14a, and M2, Figure 14b.

Energies 2022, 15, 4558 20 of 23 
 

 

 

Figure 14. Comparative graphs between measured and estimated flows (QS) for the two machines: 

14 (a) machine M1 and 14 (b) machine M2. 

Figure 15 shows the power ratio, ϕ, as a function of the net force to which the lifting 

cylinder is subjected for machines M1, Figure 14a, and M2, Figure 14b. 

 

Figure 15. Graph power ratio as a function of the net force (for all cases). (a) M1 machine ; (b) M2 

machine. 

Figure 16 shows the order of magnitude of the errors made in the estimation of 

power according to the following definition: 

𝑒𝑟𝑟𝑜𝑟(%) =
𝑁𝑠𝑢𝑝𝑝𝑙𝑦(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑) − 𝑁𝑠𝑢𝑝𝑝𝑙𝑦(𝑚𝑒𝑠𝑢𝑟𝑒𝑑)

𝑁𝑠𝑢𝑝𝑝𝑙𝑦(𝑚𝑒𝑠𝑢𝑟𝑒𝑑)
 (41) 

Figure 15. Graph power ratio as a function of the net force (for all cases). (a) M1 machine; (b) M2 machine.

Figure 16 shows the order of magnitude of the errors made in the estimation of power
according to the following definition:

error(%) =
Nsupply(estimated)− Nsupply(mesured)

Nsupply(mesured)
(41)

Energies 2022, 15, 4558 21 of 23 
 

 

 

Figure 16. Bounds of the power estimation errors of the applied method. 

6. Conclusions 

In this paper, the authors highlighted the importance of understanding how LHVs 

work in the critical opening condition. Outside of this state, it helps select the most suit-

able valve for the application according to its characteristics. 

Going deeper into the knowledge of these valves requires the use of tools (software 

and models). Still, it involves a high level of application-specific knowledge (mainly done 

in academia). On the contrary, the methodology presented in this paper is an ad hoc 

methodology ready to use for an end-user. 

The primary method’s advantage is that the information provided by a catalog and 

the pressure readings in the three ports of the valve is sufficient to estimate the power 

ratio. Despite using DAQ and high-level instrumentation to prove the goodness of this 

methodology, the end-user does not need them to evaluate power. The end-user can use 

simple gauge-pressure sensors to carry out the proposed method and obtain good re-

sults. 

First, the graphic method estimates the flow rate that passes through the valve and 

the pump’s flow rate with great precision. Therefore, the powers involved are calculated. 

Secondly, the functional relationship between the power ratio and the load’s net force is 

established. The less load, the more significant the power provided. Figure 15 summa-

rizes the performance differences found between the several valves tested. Some of the 

contrasted result from the design innovations incorporated in recent years to improve 

performance and especially achieve more significant energy savings. 

Figure 16 shows the method’s validity considering the proposed simplifications and 

hypotheses. The method generally estimates the power ratios within the error range of 

±10%, which can be considered very acceptable. 

Author Contributions: The investigation was led and supervised by L.J.B., E.C. and P.R. Experi-

mental works, models, data processing and illustrations were completed by L.J.B., G.R. and E.C. 

The manuscript was finalized by L.J.B., P.-J.G.-M., G.R. and E.C. All authors have read and agreed 

to the published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Figure 16. Bounds of the power estimation errors of the applied method.

6. Conclusions

In this paper, the authors highlighted the importance of understanding how LHVs
work in the critical opening condition. Outside of this state, it helps select the most suitable
valve for the application according to its characteristics.
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Going deeper into the knowledge of these valves requires the use of tools (software
and models). Still, it involves a high level of application-specific knowledge (mainly done
in academia). On the contrary, the methodology presented in this paper is an ad hoc
methodology ready to use for an end-user.

The primary method’s advantage is that the information provided by a catalog and
the pressure readings in the three ports of the valve is sufficient to estimate the power
ratio. Despite using DAQ and high-level instrumentation to prove the goodness of this
methodology, the end-user does not need them to evaluate power. The end-user can use
simple gauge-pressure sensors to carry out the proposed method and obtain good results.

First, the graphic method estimates the flow rate that passes through the valve and
the pump’s flow rate with great precision. Therefore, the powers involved are calculated.
Secondly, the functional relationship between the power ratio and the load’s net force is
established. The less load, the more significant the power provided. Figure 15 summa-
rizes the performance differences found between the several valves tested. Some of the
contrasted result from the design innovations incorporated in recent years to improve
performance and especially achieve more significant energy savings.

Figure 16 shows the method’s validity considering the proposed simplifications and
hypotheses. The method generally estimates the power ratios within the error range of
±10%, which can be considered very acceptable.
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Nomenclature

Symbol Description Unit
A area m2

Cd orifice coefficient -
Cha hydraulic capacitance m3/bar
F force N
Gpilot gradient pilot function
Grelief gradient relief function
K1 spring constant N/m
K2,3 generic constant -
M mass kg
N power W
P load pressure bar
Ppilot pilot pressure bar
Prelief relief pressure bar
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Q flow rate l/min
R ratio -
S cylinder area m2

V volume m3

v velocity m/s
x position m
subscripts
1 rod side
2 return
3 pilot
c cylinder
LHV Load Holding Valve
s supply
v pilot
greek
ρ fluid density kg/m3

φ energetic goodness’ ratio -
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