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(ABSTRACT)

A response surface analysis is concemed with the exploration of a system in order to deter-

mine the behavior of the response of the system as levels of certain factors which influence the re-

sponse are changed. It is often of particular interest to predict the response in some region of the

allowable factor values and to find the optimal operating conditions of the system.

In an experiment to search for the optirnum response of a surface it is advantageous to predict

the response with equal, or nearly equal, precision at all combinations of the levels of the variables

which represent locations which are the same distance from the center of the experimental region.

Measures of the quality of prediction at locations on the surface of a hypersphere are presented in

this thesis. These measures are used to form a graphical method of assessing the overall prediction

capability of an experimental design throughout the region of interest.
·

Rotatable designs give equal variances of predicted values corresponding to locations on the

same sphere. In this case, the center of the sphere coincides with the center of the rotatable design.

However, there is a need for a method to quantify the prediction capability on spheres for non-

rotatable designs. The spherical variance is a measure of the average prediction variance at locations

on the surface of a sphere. The spherical variance obtained with a design provides an assessment

of how well the response is being estirnated on the average at locations which are the same distance

from the region center. This thesis introduces two _measures which describe the dispersion in the

variances of the predicted responses at aH locations on the surface of a sphere. These prediction



vaxiance dispersion (PVD) measures are used to evaluate the ability of a design to estimate the re-

sponse with consistent precision at locations which are the same distance from the region center.

The PVD measures are used in conjunction with the spherical variance to assess the prediction

capability of a design.

A plot of the spherical variance and the maximum and minimum prediction variances for

locations on a sphere against the radius of the sphere gives a comprehensive picture of the behavior

of the prediction variances throughout a region, and, hence, of the quality of the predicted re-

sponses, obtained with a particular design. Such plots are used to investigate and compare the

prediction capabilities of certain response surface designs currently available to the researcher. The

plots are also used to investigate the robustness of a design under adverse experimental conditions

and to determine the effects of taking an additional experimental run on the quality of the predicted

responses.
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Chapter I

I. Introductron

Researchers in many areas such as engineering, chernistry, medicine and agronomy often ex-

plore a system to determine the behavior of the response of the system as levels of certain factors

which influence the response are changed. The system under investigation may be, for example, a

manufacturing process or a biological system. In many such situations the researcher also wishes

to find levels of the influential variables which produce optimal behavior in the response. The

collection of procedures used to explore the behavior of the response and to define the optimal

operating conditions of the system in which the response is a random variable is called Response

Surface Methodology (RSM).

As a function of the influential, or independent, variables present in the system, the response

is represented as a surface in the space of the independent variables. The true functional relation-

ship between the response and the independent variables is usually unknown or complicated. Thus,

the response surface is often modelled as a simple function of the independent variables. The model

serves to describe the general behavior of the responses and to predict individual values of the re-

sponse at specified combinations of the levels of the independent variables.
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The determination of the nature of the response surface is accomplished through experimen-

tation and observation of the response. The choice of the experimental design has a major impact

on the quality of the inferences drawn from the experiment. A well designed experiment is a valu-

able tool in the investigation of the response of a system.
U

There are many characteristics of a design which may be considered when selecting a response

surface design. Some design criteria are discussed in Chapter II. All the available criteria by which

a design may be judged are single-valued measures of some design characteristic, for example, the

generalized variance of the coefficients of the response surface model. Since the estimation of the

response is of primary importance in a response surface analysis, the focus of this research is on the

assessment of the prediction capability of an experimental design in some region of the allowable

factor values.

As an example of how the quality of the predicted values may be assessed, consider a system

in which there is one independent variable, say x, which is thought to influence the behavior of the

response, y. Suppose the response function is approximated by a simple linear regression model,

for values of x in the interval [ + 1, — 1 ]. Further, suppose that only three experimental runs are

available for experirnentation.

One possible design plan the researcher may adopt is to take two of the observations at x= 1

and the remaining observation at x= — 1. This is the D-optimal strategy in this situation. That is,

the generalized variance of the coefficients B0 and ß, is as small as possible with this design for

x6[ + 1, -1 ]. The average variance of the predicted values integrated over locations x in the

interval [ + 1, — 1 ] obtained with this design is 0.5. Note that all variances reported here are in

the units of the error variance associated with the model. The actual prediction variances range

from l at x= — l, to l /3 when estimating the response at x= l/3, the average of the settings of x
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used in the experiment. In fact, the response which occurs when x has a value of + 1 is estimated

with a variance which is half of the variance of the estimated response at x= — l.

Altematively, the researcher may choose to take an experimental run at at each of the levels

+ 1, 0 and — 1 of the independent variable x. Although the average prediction variance for values

of x in the interval [ + 1, — 1 ] is the same as that obtained with the D·optimal design, the accu-

racy in the estimated responses at most levels of x is quite different from that obtained with the

previous design. The second design strategy yields prediction vanances ranging from 5/6, the same

when the level of x is at + 1 or — 1, to 1/3 at x= 0. The responses at locations which are the same

distance from x= 0, the center of the set of design points, are estimated with equal precision with

this design.

The nature of the prediction variances is easily graphed in the single variable case, as in the

sketch below. The gaph provides a ready comparison of the prediction capabilities for the two

design plans. '

n.�_

PLAN 2
ä¤ /
E Z \ /==·- .
gu- PLAN 1
E Ei

-I l l

X
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In this simple example one might easily have deduced the different behaviors of the prediction

variances in the interval for each design. However, the nature of the prediction variances is much

more complicated and less intuitive when two or more variables are known to influence the re-

sponse. There is a need in experimental situations involving any number of variables to look at the

prediction variances throughout the region of interest in order to leam where the responses are es-

timated well and poorly, and to judge the accuracy of the estimated responses obtained with the

design. Clearly, no single-valued measure constructed to describe the prediction capability of a

design can give a comprehensive description of the prediction variances throughout a region.

The impetus behind this research is the need in a response surface analysis to have a general

understanding of the nature of the prediction variances in the region of the independent variables

for the experimental design. To aid the researcher in achieving an overall view of the prediction

capability of a design, criteria will be presented which, when viewed as a unit, depict the behavior ·

of the prediction variances throughout some region for a specific design and model. It will be

possible to display the variance criteria in a graph, thus facilitating the assessment of the quality of

the predicted responses attained with the design.

The general exploration of the response surface and search for the optimum response usually ‘

proceeds in all directions from the center of the region of interest. Thus, it is natural to attempt to

describe the composition of the set of prediction variances at all locations which are the same dis-

tance from the region center. These locations are points on the surface of a hypersphere about the

region center. The prediction variance criteria developed through this research characterize the

behavior of the variances of the estimated responses on spheres in the region. The quality of pre-

diction ir1 some region may be surveyed through the graphical representation of the prediction

variance criteria as functions of the radius of the sphere.

The prediction variance criteria are introduced in Chapter III. The criteria measure the av-

erage prediction variance on a sphere and the dispersion ir1 the prediction variances on a sphere for

a specific experimental design and response surface model. The criteria will be implemented so that
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one may be able to illustrate the effects of a change in the experimental conditions on the prediction

variances obtained with a design. ‘

The behavior of the measures as the radius of the sphere increases, that is, as the response is

estimated further from the region center, is considered in Chapter IV. Other properties of the

measures are also established in this chapter. In particular, the invariance of these measures to the

units of the design variables used in the analysis is investigated.

Lastly, the measures are applied to some response surface designs currently available to the

researcher. In Chapter V plots of the critexia against the radius of the sphere are used to investigate

and compare the prediction capabilities of these designs. It will be seen that the graphical method

of assessing the prediction capability of an experimental design provides a comprehensive picture

of the quality of information about the response obtainable from that design.
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Chapter II

II. Background Material

2.1 RSM - An Experimental Strategy

Response surface methodology has its roots in an industrial laboratory. G. E. P. Box (1954)

and others, (see also, Box and Wilson (1951) and Box and Youle (1955)), originated the develop-

ment of what is now called response surface methodology (RSM) as a consequence of exploring

the behavior of the yield of a chemical process and trying to improve the yield by control of perti-

nent variables in the process. They recognized that experirnentation is a sequential process ir1 this

situation and adopted an iterative plan which consisted of (1) postulating a model for the response,

(2) selecting an experimental design, and (3) analyzing the resulting data. This cycle was continued

until satisfactory results were obtained. Since that time, RSM has evolved through efforts by re-

searchers to explore and improve systems such as chemical processes.

RSM is a unilied collection of theories and procedures which provide an experimental strategy

for analyzing evolving problems in a laboratory setting. lncluded in the collection are the principles
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and theories of experimental design, optirnization techniques, estirnation methods and statistical

inference.

The experimental design, which is the focus of this thesis, is perhaps the most important as-

pect of a response surface analysis. A good experimental design along with the proper analysis of

“the data will provide the researcher with reliable information about the system. Without a good

design, however, even the most ingenious analysis will leave many of the questions posed by the

researcher unanswered.

2.2 Exploring the System

2.2.1 The System Model

Let y denote the response of the system which depends on the influential factors

§,, iz, ..., ik present in the system. It is assumed that the experimenter has control over the

values of §,, , ik in the experiment and that these variables are continuous. We can defrrre

the system mathematically as

y E

where 6 is the usual random error term. The functional form off is unknown. However, it can

be approximated by a low order polynomial in some region of the allowable values of the inde-

pendent variables §,_ §z_ , Q, . It is convenient to express the polynomial model in terms of the

design variables, x,_ xz_ , xk , of the system, rather than the variables iz, iz, , ik , which are

expressed in the natural units of the system. The design variables are simply centered and scaled

versions (simple linear transformations) of the natural variables. In an experiment where N meas-
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urements of the response are taken at the levels @,1, @,2, , @,,1, say of the independent variable

@,, the corresponding design variable x, is defined by

x,,, = , u = l, 2,...,N (2.2.1)

.. N
where @, = Zl@,,,/N and s, is an appropriate scale term.

A first order model for the observed response in terms of the design variables is

ky = ßo + _>3‘ß1¤<r+ 8
l Z

and a second order polynornial model is of the form

16 16 2 16 16y=ßo + Eßm + Zß1m+ E Zßww + 8-
l=1 l= 1 I = 1 j= 1

1<j

Often a first order model is employed in a small region of the design variables where there is

thought to be little curvature in the response function. Such a model might be used to locally ap-

proxirnate the response function in the initial stages of the experiment to find a new region in the

space of the independent variables where the response is higher (or lower). In larger regions or as

the search draws nearer to the optirnum response a second order model is used to approximate the

response function in that region.

First and second order models are simple in form and often provide adequate approxirnations

to the true response function in some region. Although there are many other models which could

be adopted, these are the most frequently chosen empirical models used to investigate a system.

Thus, only first and second order models will be considered in this research. However, much of

what is accomplished here can be extended to Other empirical or theOre’tiCal I1‘10delS.
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2.2.2 The Experimental Design

In the experiment N observations of the response are made at N combinations, not all nec-

essarily distinct, of the levels of the k independent variables x,_ x2, , x,„ . The set of combina-

tions of levels, or settings, chosen to be analyzed is the experimental design. The individual settings

are design points. In our discussion there are N design points. The matrix consisting of the N de-

sign points is called the design matrix.

i
The experimental design is a valuable tool in the investigation of a response surface. The

careful choice of a design is crucial to the quality and reliability of the information obtained from

the experiment. Several criteria an experimenter might use in choosing an experimental design are

described in the next section.

2.2.3 A Convenient Form of the Model

The functional relationship between the observed responses and the input variables in the

experiment can be described in matrix form by

2 = XB + s.

where X = (y, y,
y„)’

is the vector of observed responses,

ß is the p >< 1 vector of parameters which appear in the chosen model,

5 = (6, 5, r—:„)’ is the vector of random errors associated with X . For our purposes the

errors are assumed to be independent, identically distributed random variables with mean 0 and

variance oz .

X is an N >< p matrix which reflects the experimental design. X will be referred to as the

model-matrix to distinguish it from the design matrix.
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The nature ofX depends on the choice ofmodel. For example, the parameters of a first order

model are B0 and B,, , Bk . The vector of parameters is then, B = (B0 B, Bk)' . The matrix

X corresponding to a first order model is

1�„.

1 x2] X22 „. x2k

X =
i i i U _

( 2.2.2)

1 XNI XN2 „. XNIC

where xü represents the level of variable xj for the i-th setting of the factors used in the experiment,

i = 1, 2, . . . , N and j = 1, 2, . . . , k. There is a natural extension to higher order models.

2.2.4 Estimation

‘ The vector of unknown parameters is estimated using ordinaryleast squares methods by

1: = (X'X)_ ‘X'r

The variance/covariance matrix of the estimated coefficients under the assumption that

a ~ (Q, ¤’!> is

V«»<ß> = ¤2<X*¤o"-

The estimated values of the response at the design points are

x = (vr Yz
yN)’ = XB,

and the estimated value of the response at any location 5 in the region of interest is
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rt;) = xß-

Thus, the variance of a predicted value of the response at a point 5 is given by

V«~<y<a>> = ¤2a'<X'X>‘
‘a-

Note that for a first order model 5 is of the form (1 x, xi)’ and for a second order model

5 = (1 x, x,„ xi xi x,„-,x,,)’.

2.3 Some Design Properties and Criteria

An experimenter may judge the quality of an experimental design against many criteria. Some

design properties and criteria which are often considered when choosing a design are presented in

this section. Naturally, different criteria may lead to the selection of different designs. The criterion

and, therefore, the design used should be consistent with the focus of the experiment. Of course,

there are times when comprornises among several criteria have to be made.

2.3.1 Alphabetic Optimality

Often the researcher is interested in providing a workable model for the response of the sys-

tem. Usually, the response is modelled as a linear or a quadratic function of the independent vari-

ables or factors present in the system. In any case, as the goal is to come up with the best model

for the response, a design is chosen which will yield the best estimates of the true parameters in the

selected model. Thus, a design which provides a good fit to the model will minirnize, in some sense,

the variances of the estirnated coefiicients.
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One variance cnterion which has been considered in the literature is the generalized variance

of the coefficients. The generalized variance is defined to be the determinant of the variance

/COV3.I‘l8I1CC matrix of the vector of estimated coefficients, .

D = |V<v<ß)| = |¤2<X’X>—‘|

where I · I denotes the determinant. A design which is the best with respect to the generalized

variance is one which minirnizes I(X'X)"I , or, equivalently, maximizes I(X'X)I . Such a design

is said to be D-optirnal.

Kiefer a.nd Wolfowitz (1959, 1960) define a D-optimal design as a continuous probability

measure which determines the proportion of experimental runs which should be taken at each of

the settings in the space of all perrnissable design settings to minimize D. As a consequence, a

D-optimal design cannot always be achieved in practice. However, realistic designs which are ap-

proximations to such D-optimal designs, and which are frequently nearly D-optimal are used in

practice, (see, e.g., Nalimov, et. al. (1970)). For a rnore detailed overview of D-optimality and

D-optimal designs the interested reader is referred to St. John and Draper (1975).

Mar1y other optimality criteria have been studied. All focus on making the

variance/covaiiance matrix of or, more precisely, some real-valued functional form of it, small.

Some of these are listed below.

1. An A-optirnal design is one which minirnizes the trace of (X'X)" .
u

This is equivalent to minimizing the sum

of the variances of the estimated coefficients.

2. An E-optimal design is one which minimizes the maximum

eigenvalue of (X’X)“‘ .

3. A G-optimal design is one which minimizes the maximum
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value of o2;’(X'X)";,

the variance of the predicted response, over all

locations in some region of the allowable factor values.

2.3.2 Prediction Variance Criteria

The G-optimality criterion pertains specifically to the quality of the predicted values of the

response in a certain region of the factor values. The prediction capability of a design is of partic-

ular importance in response surface problems. Recall that RSM is primarily concemed with the

deterrnination of the behavior of the response. Hence, in RSM at least, useful experimental designs

are ones which predict well in a specified region of the allowable factor values. It is reasonable to

expect that a design chosen to best fit the data to the selected model will also predict the response

well at the design points. However, it is also desirable that the response be well estirnated

throughout the region of interest. The integated prediction variance, IV, first described by Box

and Draper (1959, 1963), is a measure of the prediction capability of a design in a specified region.

Essentially, IV is the average prediction variarnce in a region R. For a design D and region R, the

IV is defined as

WU?) = äh V¢V(.}l(£))d£
° (2.3.1)

where N = the total number of design points and K
"‘
= h dg; is the volume of the region R.

In practice, the region R is taken to be a sphere or cube in the space of the independent variables.

The design which minimizes IV is considered to be best with respect to this criterion. The factor

of N takes into account the efliciency of the design. Thus, a design with a smaller number of points

is preferred over a more costly design with similar prediction capability. By integating the mearn
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square error of a predicted response over a region, Box and Draper also irnvestigated the effects of

bias due to inadequate model specification on the prediction capability of a design.

2.3.3 Design Comparisons

Designs defined in the same region of the design variables can be compared to the D·optimal

and G-optimal designs by considering their D- and G-efliciencies respectively, (Atwood (1969)).

D-eiliciency measures the efficiency of a given design for a model containing p parameters

relative to the D·optirnal designs for the same model. Thus, if X is the model-matrix for a design,

say D' , with N design points and XD is the model-matrix for the D·optirnal design of size ND , the

D—eiliciency for design D' is defined to be

*ID-eüicicmCy(D p
l(Xo'XD) / No]

Note that the D-efiiciency is the ratio of the generalized variances for the two designs scaled

by their respective sizes. A design which has a D-efliciency of 1.0 is a D-optirnal design.

The G-efficiency of a design D' with N design points and model-matrix X relative to the G-

optimal design with ND design points and model-matrix XG is

l d

G·efliciency(D ) = ——L = —L _
dI'Il3.X dmax

where dc = mgzx NGg;’(XD·XD)"; = p for a G-optirnal design, (Kiefer and Wolfowitz (1960))

arnd d„,„, = mäxx N,;’(X'X)"; . Here R denotes the region of the design variables under consid-

eration.
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G~efliciency then is the ratio of the maximum prediction variances in some region for the two

designs. A G-optimal design has a G-efliciency of 1.0 since, in that case, dm, = do , the smallest

maximum prediction variance among the designs considered.

Many studies have been done to compare the D- and G-efliciencies within certain classes of

designs. See, for example, Nalimov, et. al. (1970), Box and Draper (1971) and Lucas (1976).

However, few studies have appeared in the literature which consider the integrated variance criterion

as a means of comparing competirng designs, (Draper (1982) and also Box (1982)).

2.3.4 Rotatability

In response surface problems, accurate prediction of the response is very important. Esti-

mation of the optimal response is of special interest in such problems. Since the optimal operating

conditions of the system are unknown, one generally begins the search for the optimum in all di-

rections from the center of the design. Consequently, it is advantageous to predict equally well or,

nearly equally well, at all locations that are the same distance from the center of the design. That

is, the variance of the estimated response at a location should not depend on the direction of the

location but only on the distance from the center of the design. So, for all points on a k-

dirnensional hypersphere of radius r, i.e., points 5 such that élxf = rz , require

Var(_1;(5)) = g(r2)o'“ . This design property is termed rotatability, (see Box and Hunter (1957)).

This property is particularly suited to designs used in the exploration of a response surface where

the behavior of the response on spheres is of particular interest and the independent variables are

continuous.

Rotatability is a property of the experimental design and can be characterized in terms of the

elements of the moment matrix N"X'X corresponding to the design. Formally, the moment

matrix contains the design moments given by
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Moments of the form [i] are called first order moments; [ij] are second order moments, and so on.

The moment matrix for a first order model contains design moments of the first and second order

only. The design moments through order four are included in the moment matrix when a second

order model is fit to the observed response.

Necessary and sufficient conditions for a design used to fit a first order model to be rotatable

are that the design moments [i] and [ij] with ish j are zero, and the pure second moments [ii] have

the same value for all i = 1,2, ,k. A first order design which satisfies these conditions is an

orthogonal design. ln the case of a second order model, a design is rotatable if and only if the odd

moments involved, [i], [ij], [iij], [iii] and [iiij] with ish j are all zero, the pure second moments [ii] are

the same for all i = 1,2, ,k, and the pure fourth moments [iiii] are three times the mixed fourth

moments [iijj] (see Box and Hunter (1957) or Myers (1976) for details). Note that a design which

is rotatable in the first order case may not necessarily be rotatable when a second order model is

used.
V

In practice, rotatable designs are often used in response surface problems. However,

rotatability can be lost if, for example, one or more of the design runs is lost during the

experiment . Also, many design points may be required to achieve rotatability in a design. This

is frequently the case when there are a large number of variables describing the response. Thus, the

researcher may choose a non-rotatable design to save time and money, particularly at the beginning

stages of the experiment.

The use of a rotatable design does not guarantee good estirnation of the response of the sys-

tem. Non·rotatable designs often have better prediction properties than rotatable designs which

could be used in the same situation. However, it is desirable to have consistent prediction at lo-
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cations which are the same distance from the center of the design. In recent papers, Khuri (1988)

and Draper and Guttman (1988) have set forth measures to determine how near a non-rotatable

design is to possessing the rotatability property of equal prediction variances on a sphere.

The measure presented by Khuri (1988) provides a comparison of design moments of a

non-rotatable design and a rotatable design of the same size. Both designs are restricted to [i] = 0

and [ii] = a constant for all i = 1, 2, . . ., k. The comparison of design moments is achieved by

calculating the Euclidean distance of a vector containing the moments of the design, call this vector

y, to the corresponding vector for an appropriate rotatable design, say y . The vector y is chosen

from the set of all vectors containing the design moments corresponding to rotatable designs of the

appropriate size. It is closest to the vector y in the sense that the Euclidean distance between the

two vectors is smaller than the distance for any other vector belonging to the set. The distance

between the two vectors is subtracted from the Euclidean norm of the vector of design moments

for the non-rotatable design. The actual measure of rotatability, <I> , is formed as a percentage and

is shown below.

<I> =100{|l;.¢ll2 —

lluNotethat if the design under consideration is rotatable, the distance between the design moment

vectors y and y is 0 and <l> = 100. A large value of this measure indicates that the moments of

the design closely resemble the moments of a rotatable design. In this case, the design is said to

be ’near rotatab1e’.

Draper and Guttman (1988) investigate the nearness to rotatability of a design by consideririg

the shape of a specified prediction variance contour of the design. The contour chosen for exam-

ination is an outer contour which passes through at least one point on the edge of the design region.

The shape of the outer contour for a design is approximated by a curve of the form

§|x,1“‘
= 1. (2.3.2)

1=1
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The exponent m is gotten by forcing the curve (2.3.2) through the true variarnce contour at two

points. To simplify the calculation of the prediction variance only second order designs for which

the following moment restrictions hold were considered in the development : [i] = 0, [ii] = B,

[iiii] = C, [iijj] = D for alli = l, 2, . . ., k, i #= j, andi all odd moments through order four are

equal to zero. The evaluation of m would be much more difficult without these moment re-

strictions.

The value ofm thus found provides an approximate picture of the outer variance contour of

the design. This picture is compared to the sphexical shape of the prediction variance contours of

a rotatable design. By this comparison a judgement can be made regarding how near a non-

rotatable design is to possessing the rotatability property of equal prediction variances on spheres.

For this reason, m is termed the index of rotatability.

The property of rotatability pertains to the predicted responses on spheres about the center

of the design. The condition that the first moment, [i], be equal to zero for a rotatable design sig-
i

niiies that the design center coincides with the center of the region of the design variables. For this

reason, the measures of deviation from rotatability proposed by Khuri and by Draper and Guttman

require that the first moment of the design be equal to zero. However, it is usually of interest to

investigate the prediction capability of a design on spheres about the center of the region of the

design variables. If the experimental design is not centered at the center of the region of irnterest

these indices can not provide an indication of the similarity of the prediction variances on spheres

about the region center. The problem of assessing the consistency on spheres as well as the quality

of the prediction variances on spheres about the center of the region of irnterest will be considered

ir1 Chapter III.
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2.4 Some Families of Designs

This section catalogs some types of designs currently available to the researcher involved in

a response surface analysis. The prediction capability of these designs will be investigated as a part

of this research. Only 2* factorial and fractional factorial designs will be considered when the re-

sponse surface is approximated by a first order model. All other designs described here are second

order designs used for litting a second order model to the response of the system.

2.4.1 Two Level Factorial Designs

Each of the design variables appears at two levels (usually at + 1 and -1) in a 2* factorial

design. A full factorial plan consists of all possible combinations of the design variables at these

levels. The design matrix for a 2* factorial design is presented below.

1 1

1 — 1
— 1 1
— 1 — 1

These designs and certain fractions of the 2* factorials are frrst order orthogonal and, therefore,

rotatable designs. Designs in this class possess many desirable properties; for example, they provide

minimum integrated variance of predicted values and minimum generalized variance of the esti-

mated coetlicients among first order designs. Certain of them provide minimum mean square error

of prediction as well.
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2.4.2 Central Composite Designs

The 2* factorial designs do not allow for the estimation of the coefficients of a second order

model. Central composite designs (ccd) extend the first order factorial designs to be appropriate in

the second order model case. A ccd in k variables is formed by augmenting a 2* factorial or frac-

tional factorial design with a set of axial points as follows :

i 1 :k 1 zi: 1

cx O O

-0 0 0
0 a 0

0 —a O

0 0 cr

0 0 —a

Experimental runs taken at the center of the design may also be added. The experirnenter

chooses the axial value, rz , and the number of center points, n„ , to achieve certain design properties.

For instance, rotatability can be achieved with the appropriate choice of or . As an example, the

design matrix for a rotatable ccd in three variables with one center point is
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1 1 1

1 1 — 1

1 — 1 1
— 1 1 1

l — 1 — 1
— 1 1 —- 1
— 1 — 1 1

_ — 1 — 1 - 1

1.682 0 0
— 1.682 0

i
0

0 1.682 0

0 — 1.682 0

0 0 1.682

0 0 — 1.682

0 0 0

Although ccds in more than two variables require fewer design points than the 3* factorial

designs, they often require considerably more trials than the minimum necessary for fitting a second

order model. The tive levels used in the design (unless a = 1.0 ) may also be prohibitive in some

experimental situations.

2.4.3 Box-Behnken Designs

Box-Behnken designs were introduced as an economical alternative to ccds, (Box and

Behnken (1960)). Box-Behnken designs generally require fewer design points and only use three
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levels of the design variables. Like the ccds, however, Box·Behnken designs require many more

design points than is needed for estimating the pararneters of a second order model.

The designs are constructed from balanced incomplete block structures. For designs in three,

four or five variables, portions of the Box-Behnken designs are 22 factorial designs ir1 two of the

variables and the level of the remaining variables is zero. There are such portions, one for each

pair of variables. For six or more variables the blocks of the Box-Behnken designs are forrned from
23 factorials in three of the variables with the remaining variables at a level of zero. Not all such

blocks are used in the design however. The Box·Belmken design for an experiment in three vari-

ables is

-1 -1 0
— 1 1 0

1 — 1 0

1 1 0
i

— 1 0 — 1

— 1 0 1
A

1 0 - 1

1 0 1

_ 0 — 1 — 1

0 — 1 1

0 1 — 1

0 1 1

0 0 0

The remaining designs in this section are all saturated or nearly saturated experimental de-

signs. A saturated or minimum point design is one for which the number of design points required

is equal to the minimum number of observations required to estimate the pararneters of the model.
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Nearly saturated designs require or1ly a few more points than the minimum number necessary to

fit the model. Both saturated and nearly saturated designs are extremely economical. Consequently,

they are of interest, especially when observations are expensive or time is short.

2.4.4 Small Composite Designs

Small composite designs have the same structure as central composite designs. The factorial

portion of a small composite design consists of a fraction of a 2* factorial design. It is not a re-

quirement, as it is for a ccd, that the design have all odd design moments equal to zero.

1 l 1

1 — l — 1
— l 1 — 1 .
— l — l 1

a 0 0
— :1 0 0

0 a 0

0 — a 0

0 0 a

0 0 — a
i

0 0 0

This is a small composite design in three variables. The factorial portion is a one-half fraction

of a
2‘
factorial array constructed by taking the delining contrast to be I = ABC. The choice of

the axial value, a , and the number of center points is left to the discretion of the experimenter.
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2.4.5 Hybrid Designs

Roquemore (1976) devised hybrid designs to be near-minimum point designs which are near

rotatable and which possess properties similar to ccds. The basic structure of a hybrid design is a

ccd in (k — 1) variables with an additional column for the k·th variable. The three variable hybrid

design is of the form

0 0 al

O 0 (12

" 1 " 1 (13

1 '° 1 (13

_
l l (13

1 I G3

cx 0 aa
— a 0 a4

° 0 a a4

0 ——· a a4

In his paper, Roquemore gives several choices for the design parameters a, a,, az, as, or, for

hybrid designs in three and four variables. In some cases, the factorial or axial portion, or both,

of the (k — 1) variable ccd may be rotated or scaled.

2.4.6 Notz Designs ·

Notz designs are minimum or nearly minimum point second order designs using three levels

of the design variables. They have the form of a 2* factorial design, or a specified fraction of it,

augmented with a kxk identity matrix. Thus, in three variables a Notz design is
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1 1 1

1 1 — 1

1 — 1 1
l

— 1 1 1

l — 1 — 1
— 1 l — 1
— 1 —· 1 l
— 1 — 1 — 1

1 0 0 '

0 1 0

0 0 1

Notz designs are not rotatable. Their D·efficiencies compare favorably with other minimum

point designs when the number of factors is small. The reader is referred to Notz (1982) for a more

detailed description of Notz designs.

2.4.7 Hoke Designs

Hoke designs are also minimum or nearly minimum point three level designs. Their con-

struction is based on irregular fractions of a 3* factorial design generated from sets of partially (bal-

anced arrays, (see Hoke (1974) for details). An example of a Hoke design in three variables is
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— 1 — 1 — 1

1 1 — 1

1 — 1 1 Q
— 1 1 1

0 0 — 1S
0 — 1 0

— l 0 0

1 — l — 1
U

— l 1 — 1
— 1 — l 1

2.4.8 Box-Draper Designs

Box and Draper (1971, 1974) implemented a restricted D-optimality criterion to generate _

these designs. The designs were restricted to be minimum poir1t designs with design points located

on or within the unit cube. Subject to these conditions, the design was found which yielded the

largest determinant of the X’Xmatrix. The Box-Draper design in three variables is °
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— 1 — 1 — 1

1 — 1 — 1

p — 1 1 — 1
— 1 — 1 1

0.1925 0.1925 - 1

0.1925 — 1 0.1925
— 1 0.1925 0.1925

— 0.2912 1 1

1 — 0.2912 1

1 1 — 0.2912

2.4.9 Computer Generated Minimum Point D-Optimal Designs

There are several computer algorithms available which search for a set of design points which

yield the smallest generalized variance for a specified model. Two of these procedures are

DETMAX (Mitchell (1974)) and the branch and bound algorithm due to Welch (1982). Both al-

gorithms require the user to supply a set of candidate design points from which the N points of the

design are to be selected.

The three variable designs listed in Table 2.1 were generated by these algorithms. MB 10 was

generated using DETMAX in a study by Mitchell and Bayne (1978). The other three designs were

generated by the branch and bound algorithm described by Welch (1982). ln all cases, the set of

candidate points was the set of design points of a 33 factorial design. Thus, each of the designs re-

presents a fraction of a 33 factorial design.
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Table 1.
Design Points for Computer Generated Second Order Designs

with Three Factors at Three Levels

N Design * Design Points **

10 MB10 020 220 110 102 000 211
200 012 222 121

10 WC10 002 010 021 101 112 200
202 211 220 222

10 WD10 000 002 021 101 110 200
202 21 1 220 222

1 1 WC 1 1 000 002 020 022 1 10 121
200 202 21 1 220 222

* The last two digits of the design name indicate the number of design points, N.
MB = D-optimal design generated by DETMAX in Mitchell and Bayne
(1978).

WD = D-optimal design generated by the branch and bound algorithm
in Welch (1982).

WC = A compromise design generated by a modification of the
branch and bound algorithrn in Welch (1982). This design was
selected to achieve the smallest maximum prediction variance
at the design points and the smallest average prediction
variance over the distinct design points among designs in the
class for which

IX’Xl 2 0.95 lXD’XDI , where lXD’XDl "is the generalized variance for the D-optimal design.
Thus, the D-optimality criterion was used in conjunction
with prediction variance criteria.

** The levels are recorded as 0, l and 2 for convenience. The actual levels of the design
variables used are -1, 0 and 1 respectively.
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Chapter III

III. Assessment of Prediction Capability on Spheres

3.1 Existing Methods

Response surface studies are used to improve system output. Often this involves frnding the

combination of levels of the iniluential variables which optimizes the response of the system. Im-

provement would occur if, for example, the yield of the system is maximized or if the deviation of

the response from a certain norm is minimized.

Having chosen a design in an appropriate region of the independent variables, the exper-

irnenter begins the search for the optirnum response in all directions from the center of the region.

The behavior of the response at all points in the region which are the same distance from the region

center, that is, points on the surface of a k-dimensional hypersphere, will determine the direction

of the search. For this reason, the assessment of the quality of the estimated responses on spheres

is an essential consideration in the selection of an experimental design.

”
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Clearly, the proper description of the prediction capability on all spheres in the region for a

design could not be accomplished with a single-valued criterion. Indeed, it would require a norm

which depends on the radius, r, of the k-dirnensional hypersphere. The criterion would have a value

for each r, from the center to the edges of the region. An ideal way to view such a continuum of

norrns is to plot the values of the criterion against the radius r. A comparison of such plots,for

competing designs will aid in the selection of a good experimental design.

3.1.1 The Problem with D-Efficiency

The D·efficiency or D-optimality criterion for choosing a response surface design has been

given considerable attention in the Literature, (see St. John and Draper (1975) for a comprehensive

bibliography through 1975). It is often recornrnended to the researcher if only one design criterion

is to be considered. Also, many designs have been constructed to have the D-optimality property

or to be nearly D·optirna1, (see, for example, Box and Draper (1971, 1974), Atkinson (1973),

Mitchell and Bayne (1978) and Welch (1982)).

D-efficiency is an assessment of the precision of the coefficients of the estimated response

surface model. It has been shown (Kiefer and Wolfowitz (1960)) that for continuous designs the

property of D-optimality is equivalent to the prediction variance property of G—optimality. That

is, the design which achieves maximum IX'X I among all designs appropriate for the model also

achieves the minimum maximum prediction variance in the region. However, there is no con-

nection between the D·efticiency and G·ef1iciency of a design which is not D·optimal.

Although D·optima.lity is linked to prediction capability through the equivalence theorem of

Kiefer and Wolfowitz (1960), the D·efficiency criterion does not provide an assessment of the

quality of prediction on spheres. In particular, it does not provide a graphical representation of the
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prediction variances at locations on spheres. Thus, the D-efliciency criterion is not a suitable

measure of prediction capability on spheres.

3.1.2 Prediction Variance Contours

Plots of constant prediction variance in pairs of the independent variables is the classical

method of viewing prediction variances in the region. In an experiment involving only two inde-

pendent variables, the contour plot provides a complete picture of the prediction capability of the

experimental design. By careful investigation of the contours the researcher can ascertain the nature

of the prediction variances at locations which are the same distance from the region center.

As an example, consider titting a first order model in two variables with a 2* factorial design

with three experimental runs in the center of the region. Contours of equal prediction variances

are plotted in Figure l. Values for the contours are given by the legend V below the plot. The

variance is evaluated apart from oz ; that is, the contours are plots of Var(_;;(_.>_g))/02 . It is clear by

the circular nature of the contours that the response is being estimated with equal precision at all

locations which are the same distance from the center. That is, the 2* factorial design is a rotatable

design. Suppose, however, that measurement of the levels of the variables was inaccurate due to a

faulty measurement device so that the actual design settings used in the experiment are as follows:

0.75 0.90

. — 0.90 0.90

0.80 — 0.90

— 0.80 — 0.75

0 0

0 0

0 0
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From the prediction variance contour plot for this design given in Figure 2 it can be seen that

the irnproper settings hinder the predicting ability of the 22 factorial design at nearly all locations in

the region. The contours are somewhat elongated indicating that, although there appears to be

nearly equal prediction variances on spheres, the design no longer possesses the rotatability prop-

erty. Also, the prediction capability dirninishes more rapidly as one predicts further from the center

when there are irnproper settings. For example, the variance of an estimated response at

x, = 1.5 and xz = 0 is 0.7 when the readings on the settings are accurate. The actual prediction

variance when the readings are not accurate is 1.0, a sizeable increase. _

The use of contour plots in an experiment involving k > 2 independent variables requires a

plot of prediction variance contours for each pair of variables. The remaining k — 2 variables are

held fixed to form the contours for two variables. The information from each plot must be pieced

together to form a picture of the prediction variances for the design. This is often a difficult task.

Prediction variance contour plots are rarely used in practice, particularly, when more than three

independent variables are present in the system.
2

3.1.3 Prediction Variance Pictures for Rotatable Designs

Recall that a rotatable design, by definition, yields equal variances of the predicted response

at all locations which are equidistant from the center of the region of interest. If the design is

rotatable, a plot of the prediction variance, Var(_y(;c))/o'2 = g(r2) , against the radius r provides all

the pertinent information about the prediction variances on spheres for the design. Thus, the

rotatability property facilitates the investigation of prediction capability on spheres for a design.

Comparisons of rotatable designs on a per radius basis could easily be made by comparing plots

of their prediction variances as functions of the radius r.

Prediction Capability on Spheres . 32



1 00' *’ / ,/

\0
0.16 1 / / \ \
/ 1 / 0 \\ ‘~\ \ I· 1 / 01 5 0 0/ / 1

{ \ {1

0.00 1
· 0

0

\‘ 11

\\ \
\\\\

X-1-0.50—0.05 —0.00 0.05 0.50

02

0 —— 0.2 —— 0.0 -——~ 0.5—— 0.0 —-—- 0.0 —-— 0.0
—··· 0.2

FIGURE 0.
00000000 0000ION0£ 0000000005

?0R 0 2—SOU000ED 000000000 0ESOON

Prediction Capability on Sphcrcs _ 33



11
1.50 , „

- -\_ ‘<— ~.// /”/ \‘\ \\ \ 1
\~

\\
1

0.15 1 ,1 // \ X 1
/ \ \X \/ / \ 51

1 / ß 1 1 11.10 '\ t 1
5 1 11X \ ./ 1 5

\ \X \ 1
-1.16

/2 "/ /\\ \\ \„_\ --—· . xx /11 "//
/\\ ~‘~~\_i

�l—_;-·-.-¢_;/-é}1\\ ’/-1.50 ‘~ ~ ‘ ‘ ’
-1.50 -0.15 -0.00 0.15 1.50

12
1 —— 0.2 ——- 0.5 -——- 0.0-.. 1.0 ——- 1.1 ——— 1.01
-—· 1.0

1100111 2. _P01111011011 1111111001 00111011115
1011 1 2-$00111110 1101011111 0151111

11111 111P110PE11 51111005

Prediction Capability on Sphcres 1 34



The use of plots of N Var{_}i(gc_))/03 against the distance from the region center to compare

rotatable designs has been advocated since RSM was first established. Box and Hunter (1957)

suggested choosing a rotatable design for which the prediction variance at the center of the region

is equal to the prediction variance at locations on a sphere of radius l. The uniform precision

property prevents the prediction variance from increasing rapidly as the responses are being esti-

mated further from the region center. The prediction variance plots were used to choose the

rotatable design from among a set of rotatable designs which most nearly had the uniform precision

property. Such plots have fallen into disuse as a method of viewing the prediction capability of a

rotatable design.

The prediction variances for two rotatable designs are compared over a range of radii in Fig-

ure 3. The design which generated the curve identified by the solid line (design 1) is a 23 factorial

design. The design corresponding to the second curve (design 2), identified by the dashed line, is

a 23 factorial design with two additional points in the center of the region. Since there are a different

number of design points in each design, N = 8 versus N = 10, the prediction variances have been

weighted by the sample size, N. This has the effect of rewarding the smaller design, design 1 in this

example, for being more cost efficient than the larger design. From the plot it is clear that the de-

sign without the center runs is more efficient than the larger design. Although the addition of two

center points to the 23 factorial design naturally results in increased precision in the estimation of

the response at all locations, the precision gained is not enough to warrant taking the extra exper-

imental runs. Of course, center runs may be added to a design for other reasons, for example, to

gain degrees of freedom for a test of lack of fit of the model. _

3.1.4 Prediction Variance Pictures for Non-Rotatable Designs

The prediction capability of a design which is not rotatable is more difficult to assess since the

variance of a predicted response in this case depends on the exact location, direction and distance
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from the center, at which the response is being estimated. The integrated prediction variance for a

design provides a single measure of the prediction quality over some regen. However, this does

not gve adequate information about how well the response is being estirnated on spheres. There

is a need for a norm which is a function of the radius of the hypersphere and which lends itself to

graphical representation as in the case ef a rotatable design.

To compare the quality of prediction on hyperspheres among non-rotatable designs, er be-

tween non-rotatable and rotatable designs, Hussey, Myers and Houck (1987) introduced the notion

of averagng the variances of the estirnated responses over the surface of a sphere. The spherical

variance, V', over the surface of a k·dirnensional hypersphere of radius r, defined by
k

U, = {gz Xxx? = rz} for a design D is gven by

V’<D> = %j„ V«»o<s>>da <3.1.1>
G f

where
‘P"

= jur dg; is the surface area of U, .

4 Note the similarity ef the spherical variance and the integrated prediction variance described

previously. Indeed, apart from a factor of N , spherical variance is a special case of integrated pre-

diction variance when the regen under censideratien is the surface of a k-dimensional hypersphere

of radius r. The spherical variance can be plotted against the radius, r, to obtain a picture of the

average behavior of prediction variances on spheres for a non-rotatable design.

To illustrate the use of the spherical variance to compare designs, consider three designs te

fit a first order model in three variables to the response of a system. Suppose the researcher is in-

terested ir1 predicting the response in a hypersphere of radius \/3- = 1.732 . The center of the

sphere is at (x, x, x,) = ( O 0 0) . Let D1 denote the first candidate design, a 23 factorial design.
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1 1 1

1 1 — 1

1 — 1 1 _
— 1 1 1

D1 =
1 — 1 — 1

— 1 1 — 1
— 1 — l 1
— 1 — 1 — 1

D1 is a rotatable design in the first order model case. The second design, D2, is a 2* factorial in

which two of the design points have been inadvertantly dropped from the design. D2 is not

rotatable.

1 1 — 1

1 — 1 1
— l l l ·

D2 =
1 — 1 — 1

— 1 l — 1
— 1 — 1 1 °

The third design selected for comparison is a non-rotatable three level design with 8 design points

given by
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l 1 1

l l 0

_ l 0 l

0 1 1
D3 = — l - 1 0

— 1 0 — l

0 — l — l
— 1 — l — l

Observe that each design has center at (x, x, x,) = (0 0 0) . That is, the design center and

center of the region under consideration are the same.

The average prediction variance for each design was computed for 21 values of the radius, r,

ranging from r = 0, (representing prediction at the region center), to r = «/3- = 1.732, (repres-

enting prediction at locations on the perimeter of the region of interest). The results are presented

for comparison in Table 2 and in a plot of V' versus r in Figure 4. The spherical variances for each

design have not been weighted by the appropriate sample size even though the sample sizes differ

for the three designs. The second design, D2, was originally intended to be identical to the 23 fac-

torial design. Eight experimental runs were attempted using the D2 design, however, two were ei-

ther not completed or the information gathered from the two was lost. Thus, it would not be fair

to
’reward’

the design for a loss of information by weighting the spherical variances by the number

of completed design runs. For this reason, the designs were compared as if each consisted of eight

design points.

The rotatable design Dl is the best of the three designs with respect to average prediction

variance for all radii. The loss of two design points in D2 resulted ir1 a considerable loss of precision

as well. Note that with no additional information in the center, usually provided by center runs,

D2 does not predict nearly as well as Dl and D3 in the center. D3, chosen solely for its use in il-
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Table 2.
Spherical Variances for Example Designs of Section 3.1.5

DESIGN *

RADIUS D1 D2 D3

0.0000 0.1250 0.1667 0.1250
0.0866 0.1259 0.1685 0.1277
0.1732 0.1288 0.1742 0.1357
0.2598 0.1334 0.1835 0.1491
0.3464 0.1400 0.1967 0.1678
0.4330 0.1484 0.2135 0.1920
0.5196 0.1587 0.2342 0.2214
0.6062 0.1709 0.2585 0.2562
0.6928 0.1850 0.2867 0.2964
0.7794 0.2009 0.3185 0.3419
0.8660 0.2187 0.3542 0.3928
0.9526 0.2384 0.3935 0.4491
1 .0392 0.2600 0.4366 0.5107
1.1258 0.2834 0.4835 0.5776
1.2124 0.3087 0.5341 0.6500
1.2990 0.3359 0.5885 0.7276
1.3856 0.3650 0.6466 0.8107
1 .4722 0.3959 0.7085 0.8991
1 .5588 0.4287 0.7741 0.9928
1.6454 0.4634 0.8435 1.0919
1.7320 0.5000 0.9166 1.1964

* The example designs are first order designs in three variables.

D1 = A 23 factorial design, N = 8.

D2 = A
2‘
factorial design with the design points

(1l1)and(-1-l·1)rnissir1g,N= 6.

D3 = A 3-level design, N = 8.
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lustration, has comparable predictionvariance to D1 for locations close to the center of the design.

However, the prediction quality of D3 quickly diminishes as one predicts further out from the

center of the design.

In addition to the average prediction variance, the prediction variance, Var(J}(;))/oz , was

calculated for the individual locations gven in Table 3 for each design. These locations were se-

lected to represent prediction near the center, r = 0.5 , toward the middle, r = 1, and on the

boundary, r = 1.732, of the regen under consideration. The prediction variances are presented in

Table 4. Note that the design D1 is estimating the responses at locations the same distance from

the center of the regen with equal precision. Designs D2 and, in particular, D3 have noticeably

different variances for the predicted responses at equidistant locations from the center of the regen.

These designs are not providing consistent estirnation of the response on spheres. It is apparent

from this illustration that the spherical variance does not gve a complete picture of the prediction _

capability on spheres of a non-rotatable design. Measures to fill out the description of prediction

capability en spheres will be presented in the next section.

3.2 Prediction Variance Dispersion Measures

3.2.1 The Need for Prediction Variance Dispersion Measures

The spherical variance provides a view of the prediction variance properties of a non-rotatable

design which was not previously available to the researcher. Although the spherical variance

measures how well the responses are estimated on the average at locations on a sphere, it does not

indicate the consistency with which these responses are estimated. As with any average, the

spherical variance requires a measure of how well the average describes the prediction variances as
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Table 3.
Locations for Calculation of Prediction Variance

for Example Designs of Section 2.1.5

RADIUS xl xl xl

0.5 P1 0.5 0.0 0.0
P2 0.2887 0.2887 0.2886‘
P3 0.25 0.433 0.0

1.0 P4 1.0 0.0 0.0
P5 0.577 0.577 0.578
P6 0.456 0.89 0.0

1.732 P7 1 .732 0.0 0.0
P8 1.0 1.0 1.0
P9 1.5 0.865 0.0

Table 4.
Prediction Variances for the Locations Given in Table 3.

DESIGN *

RADIUS LOCATION D1 D2 D3

0.5 P1 0.15625 0.22916 0.21429
P2 0.15625 0.29166 0.14286
P3 0.15625 0.25623 0.18335

1.0 P4 0.25 0.41667 0.48214
P5 0.25 0.66664 0.19642
P6 0.25 0.51814 0.36620

1.732 P7 0.5 0.91662 1.19637
P8 0.5 1.66667 0.33929
P9 0.5 1 .24060 0.82508

* The example designs are first order designs in three variables.

D1 = A 23 factorial design, N = 8.

D2 = A 23 factorial design with the design points
(1ll)and(-l-l·l)rnissing,N = 6.

D3 = A 3·1evel design, N = 8.

Variances are Var(_};(x)) / oz where the locations gg = (xl xl xl )' are given in Table3.
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a whole. To judge how well the spherical variance represents the prediction capability of a design,

two measures which describe the dispersion in the variances of the predicted responses on a sphere

will be developed in this section. These prediction variance dispersion (PVD) measures will be

based on the usual ideas of variability.

There is no variability in the variances of the predicted responses on a sphere for a rotatable

design. Dispersion in the variances for a non-rotatable design indicates a deviation from

rotatability. Hence, the magnitude of the dispersion measure corresponding to a sphere for a design

gauges how near that design is to possessirng the rotatability property of equal prediction variances

on the sphere.

The indices proposed by Khuri (1988) and by Draper and Guttman (1988), and discussed in

section 2.3.4, also attempt to quantify how near a design is to possessing the rotatability property.

However, each is a single·valued measure which describes the ’nearness to rotatability’ of the design

as a whole and does not address the consistency ofprediction on spheres. The PVD measures, on

the other hand, describe the consistency with which the response is estimated on a particular sphere.

Consideration of these measures across, a range of radii will allow the researcher to ascertain at what

distances from the region center the design is estimating the response with nearly equal precision

and where the design is providing estirnates with inconsistent accuracy.

3.2.2 Measuring the Dispersion in Prediction Variances

If we view each location 5 on the surface of the k-dimensional hypersphere defined by U,

as a possible value of a vector·valued random variable, say X , then the spherical variance, V' , is

analogous to the mean or expected value of Var(;;(X))/0* . Note that the factor
‘P
= [lv,

d5]"‘

in the definition of V' plays the role of the probability density function of X . Thus, the random
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variable X is assumed to be uniformly distributed over the surface of the hypersphere defined by

U, .

Consider, now, measures of the variability in Var(_;i(X))/62 where X takes values in U, .

The simplest dispersion measure is the range of the values. A range for Var(_}:·(X))/62 is

R0fV(r) = max Var(_;;(5))/62 — min Var(;;(5))/62 . (3.2.1 )
5 6 U, 5 6 U,

Perhaps the most conventional measures of dispersion are the variance and standard deviation.

The variance of a random variable is the expected value of the squared deviation from the mean.

Thus, the random variable Var(ß(X))/62 with mean V' has variance given by

V'? dx (3-2-2)’
6

As before,
‘I·'
represents the probability density function of X .

Since the form of Var(_v(5)) depends on the chosen model, the forms of the range and vari-

ance will also depend on the model. Further results for the spherical variance, RofV and VofV

measures will be derived when the assumed model of the response is first order. In addition, the

form of the VofV will be extended to the case of fitting a second order model in two independent

variables to the response. An optimization algorithm will be implemented to find the RofV in the

second order case. A general form of the spherical variance due to Hussey, Myers and Houck

(1987) will also be given.

3.2.3 Some Notation

Before proceeding, we shall set forth some notation which will be used in developing range-

and variance-type measures as discussed previously. The prediction variance dispersion measures
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and spherical variance will be investigated further under three experimental situations. Model-

specific forms will be derived under a first order model for the response in case I and case II. The

experimental situation in which the design is centered about the origin of the region of interest will

be considered frst. The more complicated case in which the design center and region center differ

will be investigated in case II. The evaluation of these measures in the second order model case

will be discussed under case III.

Case I : A first order model; the design center and region center are the same.

Suppose a first order model in k variables is fit to the response with a design centered about

the center of the region of the independent variables. This is the region of interest. Let

,5; = (x, x,,)’ be a setting of the levels of the variables x,, x2, , x,„ present in the system

and write
;c‘
= ( 1 g )' . Defrne the Nx(k+ 1) matrix

X‘
by [1 X] where 1 is an Nxl vector of

ones and X is an Nxk matrix whose columns are the last k columns of the matrix defined by

(2.2.2) for a first order model. X' is the model-matrix. The first order model can be written as

( x = X*ß + Q Q

where ß = (B0 B,
B,„)’

and Q is defined as before (see section 2.2.3).

ivIn the present discussion, the columns of the submatrix X are centered so that Zixü = 0 for
all j = 1, 2, ..., k. In this way, the vector of ones in

X‘
is orthogonal to the submatrix X . This

assumption allows us to write the
(X‘'X') and (X''X')" matrices in the following convenient forms

,, , N Q'
X X = .

Q X'X

and
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1,,, _ ·— Q'

Q (XX)

Consider the eigenvalue decomposition of (X
’X)"

. Define P to be the kxk orthogonal ma-

trix for which

P’(X’X)_ IP = A

where A = diagonal(7„,, A2, , A,) is the diagonal matrix containing the eigenvalues of (X’X)" .

Since P is an orthogonal matrix we have that
P’P

= PP' = I the identity matrix. Consequently,

the variance of a predicted response for a first order model can be written as

Var(}i(;)) = ¤2[ é + ;’PP’(X'X)— ‘PP’;]

= ¤2[ + ;'A;] (3.2.3)
. 2 1 " 2= o' I:— + E Az- ]N i=l f l

where z = (z, z, z,„)' = P'; . P is an orthogonal transformation taking ;into z . Note that
_ lr k

Zlzf = z'; = ;’; = Ex? . Thus, for any point ; located on U, , the surface of a k-dirnensional

hypersphere of radius r, the corresponding point after orthogonal transformation by P, that is,

;= P’;,isalsoon U,.

Case II : A first order model; the design center and region center are not the same.

The case of centered columns of the submatrix X for a first order model corresponds to the

origin of the design and the origin of the region of the independent variables being the same. The

center of the design, however, is not always identical to the center of the region of interest. In

general, define the location of the center of the design to be Z; = (/1, h, hk
)’
; the center of the

region is Q = (0 0 0
)’
in the design variables. When Z; 7* Q the columns of the submatrix

X are not centered. It will prove useful to consider a translation of the axis system corresponding
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to the design variables xl , xl, , xl to an axis system with origin at the center of the design.

That is, the point b in the x—axis system is the point Q in the new axis system. Call the variables

inthe new axis system wl, wl, , wl,where wl = xl — hl, i = l, 2, , k.

In terms of the w·variables, the variance of a predicted response at a point

Lv = (wl wl w,„)' = (xl- hl xl-hl x,„—hl)' = x — Lzisgivenby

=·whereLv' = ( l E
)’,

and W' = [J, W] . The Nxk submatrix Wis analogous to the submatrix

X in case I. In this case, the columns of W are centered versions of the corresponding columns of

X . Using the development of case I for a prediction variance at a location in the w·axis system,

V6»1§16>> = 6%% + 11’(W'W)_l12],

which can. be written in terms of the original design variables as

<V(V(w)) 6 N (2; h)( W) (2: h)
_ 2 1 , -1 _ , -1 „ -1- 6 [Tl- + x(W'W) az 2x(W’W) Z1 + b(W’W) iz]

It will be convenient to express the prediction variance in terms of the eigenvalues of the

(W'W)" matrix. Let P be the kxk orthogonal matrix of the eigenvalue decomposition of

(W’W)". Then,

Z'^Z ‘ ZZ/\m + m'/\m]1
3.2.4

- 2 1 " 2 k k 2 ( )
' Ö. ZÄIZI'°N

z=1 z=1 1=1
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where z = (z, z,„)' = P'; and m = (m, m, mi)' = P'L1.

A = diagonal( 7t, , K2, , Xi) is the diagonal matrix containing the eigenvalues of (W’W)".

Note that if the design is centered about the origin of the region in the design variables, that is, if

L1 = Q , this formulation reduces, as it should, to the expression given in (3.2.3).

Case III : A second order model.

Suppose now that a second order model is used to approximate the response surface. In this

case, define ;° = ( 1 x, x,„ xi xi xlxz x,x, ,x,, )' and the model-matrix

l x 2 2ll X11: X11 X11: X11X12 X11X13 X1,1:— 1X11:
2 21 X21 X21: x2l X21: X21X22X21X231

2 2
xNl XN1: xNl

xNIcThevariance of a predicted response estimated at a location ; = (xl x, xi )' in the re-

gion of the design variables is

Var(y(;)) = ¤2[,;‘(,1”X)“‘,;"‘ J . (3.2.5)

The formulation of the prediction variance used in the first order model case cannot be extended

to this case due to the curvature present in the second order model.

Spherical region moments.

The notion of spherical region moments will be useful in the development of a model-specific

form for the spherical variance and for the variance of Var(;Ü(;))/oz for locations on the surface of
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k
a hypersphere defined by U, = { ; :12lxf = rz} . A spherical region moment of order 5 is defined

to be

gk dgk

where
‘{"‘

= jur dg is the surface area of U, and 215, = 5 .

If any 5, is 0 that subscript is dropped from the designation of the moment. Since U, is a

symmetric region, the spherical moment 6,,,,2,,, is zero whenever any 5, is odd.

The spherical region moments which will be utilized in the development for the first order

model case are second order spherical moments given by

_ 2 _ rz
G2 — Wjurxi (1; — ,

and the fourth spherical moments

4
= W 4 = 3r V

°"
lUrx’ de k(k + 2)

and

622 = T5 xfsqzdg = -—-E-I;.U« uk + 2)

ln addition to the second and fourth order moments, spherical moments of order six and eight will

also be required when the assumed model is second order. The sixth order spherical moments are °

Ur 2(k + 4)(k + 2)

and
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6
r 2(k + 4)(k + 2)

and the eighth order spherical moments are

o = T; x4x4 dg = li-bg44 Ur ‘ J 2(k + 6)(k + 4)(k + 2)
”

0*62U? J 2(k + 6)(k + 4)(k + 2)

8 l05r868 = ‘Pj„x8 dx = ———————-8 2(k + 6)(k + 4)(k + 2)

Here k is the number of variables in the multiple integral, which, for our purposes, is the number

of factors in the system. See Stroud (1971) for details of the integration.

Note that the spherical region moments do not depend in any way on the experimental design

or form of the model used in the analysis. Region moments, as the name suggests, only depend

on the region of interest. In the case of spherical moments, they are functions of the radius, r, and

dimension, k, of the hypersphere under consideration.

Define the spherical region moment matrix S by

s = wju 8’“;" 818 (3.2.6)

where the structure of ;c° depends on the model ir1 use. In particular, g' has been defrned in this

section for first and second order models. The matrix S contains the spherical region moments

pertinent to a specific model.
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3.2.4 The Range of Variances on the Surface of a Hypersphere

The general form of the range of variances of the predicted responses on the surface of a

hypersphere of radius r defmed by U, is given by

R0fV(r) = max Var(};(5))/0*2 — min Var(ji(5))/02 .
5 E U, 5 6 U,

More specific forms of the range will be discussed under the three cases described in the preceding

section.

Case I : A first order model; the design center and region center are the same.

To find a specific form for RofV first consider the maximum and minimum values that the

prediction variance can achieve in this situation. Specifically, it is necessary to find the optimum

values for Var(_;;(5))/02 when 5 is in U, . From the preceding section, this is equivalent to opti-

mizing the function

1 V ^ — 1 + 7t 2 7t 2 7, 2 7—? ,2, + 222 kzk (3.2. )
o

when 5 = (x, x, x,,)’ and, therefore, 2 = (2, 2, z,,)’ are in U, . The coefficients, 7,,, lk, of

the variables in the function are the eigenvalues of the full rank matrix (X'X)" and, hence, positive.

For convenience, suppose that the variables are ordered in such a way that

First consider the case where the eigenvalues are all distinct, that is,
k

O < 7L, < 7t, < < K,. To maximize (3.2.7) subject to the condition that E12} = r2 requires that

the variable whose coefficient is the largest; i.e., the variable that has the highest weight, be as large

as possible. Thus, for the first order case, the maximum variance of prediction on U, occurs for
k

2,, = i rand 2, = 2, = = 2,,-, = 0 to achieve E12? = r2 . The corresponding maximum is
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^ k
max l-Var(y(,;)) = max [L + Z K12?]
;6U, O-2 z6U, N 1:1

” _ 1 2— -7V- + Akr

where X, is the largest eigenvalue of (X’X)" .

Similarly, to find the minimum prediction variance on U, , place all the mass allotted to
k

2,, ;, , 2,, by the condition E12} = rz on the variable whose coeflicient is the smallest. Now
k

the minimum occurs for 2, =- i rand; = 2, = = 2,, = 0to achieve Z2} = rz . The mini-
i' I

mum prediction variance on U, is then

^ kmm mm [L + 3 2.,2}]ge U, O-2 ZE U, N 1: 1

where 7t, is the smallest eigenvalue of (X'X)" . A more rigorous proof of these results appears in

Appendix A.l for the special case of k = 2 variables.

When two or more of the eigenvalues are the same, the maximum and minimum values may

occur at more than one point on U, . The resulting optimal values, however, remain the same.

As an illustration, consider X, = 7,, and all other eigenvalues distinct. Clearly, the maximum pre-

diction variance at locations on U, is as before. The minimum, however, may occur at any point

on U, for which 2} + 2} = rz and, hence, 2, = = 2,, =‘0 . The corresponding minimum value

though is l/N + 7t,r2 where K, = 7; is the smallest eigenvalue of (X'X)" . So the optirnum values

of the prediction variance on U, are not effected by multiplicities in the eigenvalues of (X’X)" .

It is of interest to note that if all the eigenvalues of (X'X)" are the same then the prediction
1,

variance reduces to a function of _Z‘2f , the distance from the center of the design, alone. This

means that the responses at every location on the surface of a hypersphere of radius r are estimated
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with the same precision. Hence, a design for which the eigenvalues of (X'X)" are all equal is a

rotatable design in the first order case.

Ultimately, the range of variances of predicted responses on the surface of a hypersphere of

radius r for a first order model is

R0fV(r) = Ki + Mcrz] — [7% + Mrz]
( 3.2.8)

_ 2— V (Mz “ X1)

where M and M are the largest and smallest eigenvalues of (X'X)" respectively.

Clearly, the range of prediction variances at locations on any hypersphere of radius r will be

zero for a first order rotatable design. For non·rotatable designs, RofV is an increasing function

of the radius r. Thus, the ability of a non-rotatable design to predict nearly equally well at all lo-

cations on the surface of a hypersphere of radius r diminishes as one predicts the response further

from the center of the region under consideration. The consistency of the quality of prediction for

a given r depends on the closeness of the eigenvalues of (X'X)" through the range M — M .

Case II : A first order model; the design center and region center are not the same.

Under these circumstances, the problem of optimizing Var(_1)(x))/oz subject to

,3; = (xl xl xk
)’
being on the surface of a hypersphere of radius r centered at x = Q is

equivalent to the constrained optimization of Va1(;)(_w))/oz in the w-variables. In terms of the

w-axis system, the constraint requires that the point yg = (wl wz wk
)’
lie on the surface of a

hypersphere of radius r with center at _w = Q - lg .

Using the method of Lagrangian multipliers for finding the stationary points of a function,

the maximum and values are found by solving the following set of simultaneous

equations:
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-£Q—=0, -_@=0, @= 0, (3.2.9)owl owz öwk op

- 1 ^ _ k 2 _ 2where Q — 7Vwty(»1)) uf 2 (wr + hr) r ]
(5 I = l

= ä + w'(W'W)-lu — l1l:(l!° + h)'(w + h) — rz],

and u is the Lagrangian multiplier. The solution to this problem has been worked out in detail in

Appendix A.2.

A stationary point of the system defined by (3.2.9), expressed in the design variables, has the

form

·° ‘ k ’

where P is the orthogonal matrix for wl1ich P’(W'W)‘
‘P
= A = diagonal( kl K, K, ) and ml

is the i·th element of the vector m =
P’b

. The value of pr deterrnines the status of the stationary

point. In particular, the stationary point is a location ofmaximum prediction variance on a sphere
k

of radius r if pr > kk, the largest eigenvalue of (W’W)", and i;l(7l%)2 mf = rz . The sta-

tionary point is a minimum on the sphere if u < lt, , the smallest eigenvalue of

k(W'W), and
i§l(—Ü-ä)

m, rz In both cases, the second condition on u guarantees the

the stationary point will be on the surface of the hypersphere of radius r.

The relationship between the radius r and the Lagrangian multiplier u was established by

Draper (1963) in connection with his work on ridge regression analysis. The reader is referred to

Figure 14 of section 4.1.2 for a plot of r against u. It is of interest to note that for a given sphere,

there is only one value of ri which will yield a maximum (minimum) value for the prediction vari-

ance. The proof of this result may be found in Draper (1963). Thus, if the design center is not

identical to the center of the region of interest, there is only one combination of levels of the inde-

pendent variables which produces the largest (smallest) variance of prediction on that sphere.

Prediction Capability on Spheres 55



Let gmx denote the stationary point defined by go which yields the maximum prediction var-

iance on the sphere and, similarly, gm, is the stationary point which yields the minimum prediction

variance on the sphere. The maximum and minimum prediction vaxiances on the sphere are re-

spectively,

1 ^ _ =�=' =�¤' =�¤
-1 ¤�¤géagr ?V<v(y(E)) — Ämax(X X ) Ä-imax

= L +
k
N kim: 2

N Ei
i(—,q————i- gmx)

and

_
1 X ) Lämm

= L +
k
N

Mm; 2 .
N llmin)

where umx and umg are the appropriate Lagrangian multipliers. The range of the prediction vari-

ances on the surface of a hypersphere of radius r is given by

L
o o

= iL1l1((7»1m1)2[(—,(;—-1)2 — (—;-1)2]} (3 210)
L

_ 1:1 Z-llmax Z-llmin LL ‘

1:1
L Z- llmax Z - llmin

Case III : A second order model.

When a second order model is used to approximate the true response function the variance

of a predicted response is given by (3.2.5). The formulation of RofV requires the optimization of

%Va,(§(;)) = [g*L(X'X)—1g* ] (3.2.11 )
6
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where g' and the model-matrix X are appropriate for a second order model, (see section 3.2.3).

The optimization of this function over locations on the surface of a hypersphere is a very difficult

task. It is necessary to use a computer search algorithm to find the extreme values of ( 3.2.11 ).

There are many optimization packages available, but few can satisfactorily handle the problem of

optirnizing a nonlinear function subject to a nonlinear equality constraint on the variables.

For the illustrations presented ir1 this thesis, the Modular In-core Nonlinear Optimization

System (referred to as MINOS hereafter) computer package (Murtagh and Saunders (1983)) was

used to generate maximum and minimum values of the prediction variance. The range of the pre-

diction variances on the surface of a sphere is computed as the difference in the corresponding

maximum and minimum values generated by MINOS.

The algorithm also provides a location at which the optimal value is obtained. There may

be other points on the sphere which yield the same extreme value. These points may be found by

selecting initial values for the independent variables in a different section of the sphere. Although

there exist absolute maximum and minimum values for the prediction variance at locations on a

sphere, the MINOS algorithm only provides local extremum. A thorough search of the surface of

the sphere, however, should yield the absolute extremum for the problem. The MINOS algorithm

is briefly described in Appendix A.3.

3.2.5 The VofV on the Surface of a Hypersplrere

The variance of the prediction variances for locations on a sphere defined by (3.2.2) will be

considered under the three cases described in section 3.2.3.

Case I : A first order model; the design center and region center are the same.
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Under the speciiications established for case I in section 3.2.3, the average prediction variance

on the surface of the k·dirnensional hypersphere defined by U,, the spherical variance, is

V' = W (-L + ii 2 2 d1;;, N gl vz; ) Z

= ‘é,"+O”3 El; (3.2.12)z=1

- l _,_ rz k
- _ .... E 2N k z=1 I

where 7L, , z, , i = 1,2, , k and the second spherical moment oz = zf dz are defined in section

3.2.3. Observe that the average prediction variance on any sphere is a function of the average of

the eigenvalues of the (X'X)" matrix. The squared deviation of the variance of an individual pre-

dicted response from the average variance of the predicted responses at locations on U, is, apart

from o2,

1 ^ 2 k 2 k 2
A

1:71/aV(,Y(Ä)) " :1:E }*·;Z; ” O'; E Ä;]
5 l = 1 l = 1

k k k k k k= 3 22zf + 2 3 3 2,2,2222 — 2o2( 3 2,z§)( 3 2,) + ¤§( 3 2,)2.
l=1 i=lj=l i=1 i=l i=l

1<j

The variance of the variances of the predicted responses at locations on U, is the expected value of

the expression above. Thus,

k 2 k k 2 k 2I/O_/II/(T) = U4 E Ä; + ZÖ22 E " O”2(
E ·

i = 1 l= 1 j =1 i = 1

z<j

where 0,, and oz, are spherical moments of order four. Substitution of

2 4 4r 3r r= ...... , = . d = .....°2 2 °" 2(2 + 2) an °22 2(2 + 2)
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above yields VolV on the surface of a hypersphere of radius r for the first order model case with k

factors present in the system as

4 k k kV0fV(r) = 7Ä—[(/< — UE Ä? — ZE E MM]
k(k+2) z=1 z=1j=1

z<j
4 k k

(3.2.13)
k (k + 2) i=1!=1

z<j ·
2r4 k °" 2= -—l K — Äku. + 2,

,§,‘ Z ’

- k
where 7». = XIX,/k .

It is interesting that VofV can be expressed simply in terms of the empirical variance of the

eigenvalues of (X’X)" . Again, the dispersion in the prediction variances on a hypersphere of radius

r depends on the dispersion in the eigenvalues of (X'X)" . When the eigenvalues are the same, that

is, when the design is rotatable, the VoiV is equal to zero on any sphere. Thus, the VoiV, as well

as the RoiV, provide reasonable measures of deviation from rotatability for a design.

A more appropriate measure of the variability in the variances of the predicted responses at

locations on U, is the standard deviation of these variances. Let SDofV(r) = + \/ V0fV(r) de-

note the standard deviation of the variances of the predicted responses at all locations which are a

distance r from the center of the region.

i
Case II : A first order model; the design center and region center are not the same.

Consider the evaluation of V' in the w-axis system. The prediction variances to be averaged

in this case correspond to locations y = (w, w, w,, )' on the surface of the hypersphere of
k

radius rwith center at lg = Q — Z; . Let U;° = {nz : [;l(w, + h,)2 = rz} denote the surface of this

hypersphere and
‘P; ‘

= ju},. dy be the surface area of U;' . Then,
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NP A

e

- 1 k 2 k k 2-— ‘PjUr
( ·-F + igllizi igljtiffli )d;

k k ( 3.2.14)
N z=1 z=1

- l +
rz k k 2— —— —- Z }„ + Z X- -N k z=1 I z=1

lm;

by a transfermation ef variables and (3.2.4). The interim steps required in this formulation appear

in Appendix A.4.

Now,

V’]2 dw
_, 1 k k k

k k— (L + ¤12 t1+2Nz=1 z=1

The second equality results from a transfermatien ef variables and the results of equations

(3.2.4) and (3.2.14). After simplification, the variance ef the variances of the estimated responses

en the surface ef a hypersphere ef radius r under case ll is

2r4 k ‘ 2 r2 k 2 2V = ————— X — 71. + 4- 71 3.2.150/VV) Mk + 2) i§l( 1 ) k ig! 1m1 ( 1

— k

where K = XIX,/k . The reader is referred to Appendix A.5 for details.

If the design center corresponds to the center of the hypersphere, then, not surprisingly, the

V' and VofV given here correspend te the V' and VofV derived under case I. It is of more interest

te note that the V' and VofV fer a design which is net centered about the origin of the regen ef
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interest are inflated over those for the same design which has been centered to the origin. Since the

eigenvalues are the same for both designs, the amount by which the V' and VofV differ for the two

designs increases as the design is removed further from the region center. Thus, it is to the re-

searcher’s advantage to select a design which is centered about the center of the region of interest

to achieve more precise estimates of the response as well as more consistent estimation of the re-

sponse on spheres.

Case III : A second order model.

In general, the spherical variance can be written as

V' = tr{S(X’X)_l} (3.2.16)

where tr { ·} denotes the trace of a matrix, and S is the spherical region moment matrix defined

by (3.2.6) corresponding to the model. The matrix X in this definition is the full model-matrix as

described in section 2.2.3. This result is given by Hussey, Myers and Houck (1987) in their paper

introducing the spherical variance. The form of the matrix S for a second order model ir1 k variables

is given there. In this form, and with knowledge of the matrix S , the V' is easily computed in the

second order model case. However, because of the difficulty in deriving a form for the VofV when

the model is second order, only the V' and VofV for a second order model in k = 2 variables will

be considered here. It was decided not to pursue the development of the VofV further since this

criterion does not lend itself as well to graphical representation as does the V' and, as will subse-

quently be shown, the RofV.

So, suppose that a second order model in two variables is fitted to the response of the system.

In this situation, x' = ( 1 x, x, xf x§ xixz
)’
and S has the form

Prediction Capability on Spheres · 61



1 0 0 02 02 0

0 Ö-2 0 0 0 0

0 O 02 0 0 0
S = .

02 0 0 04 022 0

_ 02 0 0 022 04 0

0 0 0 0 0 022

Let the elements of (X’X)" be denoted by cü for i,j = 0, l, 2, 3, 4, 5. Here the superscript i indi-

cates the row and j the column in which the element cü appears. It tums out (see Appendix A.6)

that the spherical variance in terms of the spherical moments and elements of (X'X)" is

2 . . 2 . .Vr = COO +
O_2[

Z (2cO,z+2 + Czi)] + G4 E cl‘l'2,l+2 _+_
622 ( C55 + ZC34) l

z=1 z=1

Consider now the general form of the VofV as defined in (3.2.2). It is not difficult to show

that

V0/Vtv) = HU, |Ä%Vwtv(a>) J2 das — tV’)2
0
I

—·
[

—
� � 7= ‘PjUra(X'X) ‘&tXX> xda- tv'? (32*)

= tr t tr t StX'X>"}

where T =
‘Pj~„r

55’(X'X)‘
‘g’

d5 . Note that the * superscript on the vector 5 has been dropped

to ease the burden of notation.

For the case of a second order model, T contains spherical region moments through order

eight as well as the elements of the (X'X)" matrix. In this case, the VofV is an eighth degree

polynomial in the radius r of the hypersphere. lt has not been reproduced here since it is lengthy

and does not provide any insight into the characteristics of this dispersion measure. A computer
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program which will evaluate (3.2.17) under the conditions of case III for two variables over a range

of radii is presented in Appendix A.7.

3.3 Illustrations of the Use of the Spherical Variance and

PVD Measures

The spherical variance and PVD measures were developed to aid the researcher in choosing

a satisfactory design for the experimental situation. These criteria facilitate the comparison of

competing designs as well as allow the investigation of the prediction properties of a design. The

examples presented in this section were chosen to illustrate how these measures can be used to

answer questions typically posed by the researcher. In particular, the effects of losing one or more

design runs, inaccurate measurement of the levels of the independent variables and augrnenting a

design point to an already existing design on the predictionicapability of several first order designs

will be examined. A comparative study of some families of second order designs is presented in

Chapter V.

3.3.1 A Plot Depicting Prediction Capability on Spheres

The spherical variance, VofV and RofV criteria, each of which describes some property of the

prediction variances on the surface of a sphere, can be represented on a graph for varying values

of the radius of the sphere. It would be most practical to depict the average prediction variances

and the dispersion in the variances on spheres in a single plot. It has already been shown that the

average behavior of prediction variances on spheres is readily viewed in a plot of the V' versus the

radius of the sphere, r. The simplest way to include the dispersion in the prediction variances in
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this picture is to plot the maximum and minimum prediction variances corresponding to each ra-

dius. The distance between the curves of maximum and minimum prediction variances at a given

radius r is the range of the prediction variances on the sphere of radius r. Together, the three curves,

V', maximum ar1d minimum variances, provide a clear and concise description of the prediction

capability on spheres for a design.

Alternatively, ’confidence bands’ of the form V' t c SDofV(r) for some constant c about the

spherical variance curve could be included to indicate the variability in the prediction variances for

each r. Such bands will not be considered further since it is apparent that they are considerably

more difficult to interpret than the graph of maximum and rninirnum prediction variances on

spheres.

3.3.2 Illustration of the Effects of Loss of Design Points

Suppose that during the exploration of the response of a system in three variables a first order

model is fitted to the response in some region of the independent variables. At this stage it is rea-

sonable to employ a 2* factorial design to analyze the behavior of the response in the region. The

23 factorial design, being an orthogonal design, yields independent estimates of the coefficients of

the first order model and equal variances of the predicted responses on spheres about the region

center.

If the researcher suspects that some of the design points might be lost during experimentation,

he or she may wish to make additional experimental runs to soften any adverse effects the loss of

design points might have on the prediction capability of the design. Usually, extra experimental

runs of this sort are taken at the center of the region. In this way, the orthogonality and rotatabilty

properties are maintained for the 23 factorial design, and for any orthogonal and rotatable first order

design. It has already been observed that the increased precision on spheres gained by adding two
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experimental runs in the center of the 23 factorial design is not enough to merit the additional cost

of the two center points, (see Figure 3, section 3.1.4). However, it would be worthwhile to deter-

mine if the center runs will provide protection against the deterioration of the prediction capability

of the 23 design if one or more design points are lost.

Consider the investigation of the prediction variance properties on spheres for a 23 factorial

design in which two design points have been lost. For this illustration, suppose the resulting design

is the second design, D2, given in the example of section 3.1.5. This design has six design points

and no center points. The curves of maximum and minimum prediction variances for this design

are depicted in Figure S. The spherical variance is represented as the solid curve between the

maximum and minimum prediction variance curves. The curves were constructed under the for-

mulation of case I since this particular design is centered about the region of interest.

The comparison of this design with the full 23 factorial design presented in Figure 3 clearly

indicates that the estirnation of the response is typically much worse when infonnation has been

lost. Note that the minimum prediction variance curve corresponding to the 23 design with two

missing points lies above the prediction variance curve for the full factorial. Thus, the accuracy of

prediction for the 23 factorial design is everywhere better than that of the 23 factorial with two

missing. Figure 5 shows that the accuracy of the predicted responses at locations on spheres is

somewhat inconsistent when predicting near the center of the region but worsens considerably as

the response is estimated on spheres far from the region center. Prediction of the response is worst

in the directions of the missing design points ( 1 1 1 ) and ( -1 -1 -1 ). One set of the locations

of maximum prediction variance on spheres is pictured in Figure 7. For a given radius the maxi-

mum prediction variance is attained where the three variables take on the same values on the

sphere. Hence, the lines depicting the values of x, , x, and x, in Figure 7 coincide in this case.

The variances plotted in Figure 5 have been weighted by the number of design points,

N = 6 here, to perrnit the comparison of this design with a 23 factorial design with the same two

points lost and two additional runs in the center. The weighted spherical variance and maximum
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and minimum prediction variances over locations on the surface of a hypersphere of radius r are

given in Figure 6 for this design; N= 8 here. Careful scrutiny of Figures 5 and 6 reveals that the

larger design is not as efficient as the smaller design in predicting the response on spheres. Thus,

the addition of two center runs to a 23 factorial would not provide suitable protection to the pre-

diction properties on spheres against the loss of two design points. Consequently, in this situation,
I
and especially if experimental runs are costly, the researcher would do well to save the additional

runs intended for the center to be used to improve the prediction capability of the design in a sub-

sequent stage of experimerrtation.

It is not surprising to observe a loss in precision when information is lost, particularly when

the sample size is small at the start. The spherical variance and PVD measures enable the researcher

to gauge the extent of the damage to the prediction capability of the original design. With these

criteria the researcher can also irrvestigate the consequences of implementing a different design and,

thereby, choose the most favorable experimental strategy.

3.3.3 Illustration of the Effects of Improper Design Settings

Sometimes in an experiment the levels of the variables are irnproper. That is, there is error

in the measurement of the variables caused by a faulty measurement device or inaccurate reading

of the measurement. For instance, if the therrnostat which regulates the temperature of a chemical

process routinely gives readings below the actual temperature, the actual design settings used in an

experiment involving the temperature of the process are not those prescribed in the experimental

design plan. The properties of the design used in the experiment are usually not known since, even

if it is known that the settings are irnproper, the true values used are not known to the researcher.

However, the effects of irnproper settings on the prediction capability of a design can be examined

in general with a few case examples.
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As an example, consider a
2‘
factorial design with one center point used to fit a first order

model in some region of the design variables. Suppose the levels of some of the variables are sub-

ject to inaccurate measurement. For purposes of illustration, two types of irnproper settings will

be considered. In the first type the levels of all the variables are measured improperly and the actual

values obtained deviate from the values specified in the design plan by one to ten percent. Thus,

if the required level of a variable is xl = l , say, the value of xl, measured as xl = l, is actually

something between 0.99 and 0.90. The design given by (3.3.1) exhibits this type of irnproper set-

tings.

Improper settings occur in only two of the four variables in the second classification of im-

proper settings. The measurement of the levels in these two variables, however, is highly inaccurate;

some values are between twenty-five and fifty percent of their measured values. That is, a variable

recorded at a level of 1 may actually be between 0.75 and 0.50. A design which can be classified

as having this type of improper settings appears in (3.3.2).
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0.99 0.95 0.95 0.90

0.99 0.95 0.95 - 0.90

0.99 0.95 - 0.95 0.90

0.99 - 0.95 0.95 0.90

- 0.99 0.95 0.95 0.90

0.99 0.95 - 0.95 - 0.90

0.99 - 0.95 0.95 - 0.90 ·
— 0.99 0.95 0.95 — 0.90

0.99 -0.95 - 0.95 0.90 (3.3.1 )

- 0.99 0.95 - 0.95 0.90 _

- 0.99 - 0.95 0.95 0.90

0.99 - 0.95 - 0.95 - 0.90

-0.99 0.95 -0.95 -0.90

- 0.99 - 0.95 0.95 - 0.90

-0.99 -0.95 -0.95 0.90

- 0.99 - 0.95 - 0.95 - 0.90

0 0 0 0 ·
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1 1 1 1

1 1 1 — 1

l 1 — 0.6 1

1 — 0.5 1 1
— 1 1 1 1

1 1 — 0.6 — 1

· 1 — 1 1 — 1
— 1 0.5 — 1 — 1

1 — 1 — 0.6 1 ( 3.3.2 )

l
— 1 0.7 — 0.6 1
— 1 — 1 1 1

1 — 1 — 0.6 — 1
— 1 1 — 0.6 — 1
— 1 — 1 1 — 1

A — 1 — 1 — 0.6 1

- 1 — 0.7 — 0.6 — 1

- 0 0 0 0

These 2* factorial designs with improper settings will be used to investigate the effects of the two

types of improper settings on the prediction capability on spheres of a 2* factorial design.

The spherical variances for the three designs are compared in Figure 8. It is apparent that

on the average, at least, the loss of precision due to improper design settings is greatest when the

levels are off by as much as twenty—five to fifty percent from their recorded values. A comparison

of the more complete pictures of prediction capability on spheres for the two designs with improper

settings in Figures 9 and 10 reveals too that there is a much wider range of variances of the predicted

responses on spheres for this design. The accuracy of prediction on spheres is highly inconsistent
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for all spheres. For the design representing the first type of improper settings there is little

dispersion in the prediction variances at locations on a sphere.

In both cases, the spherical variance and maximum and minimum prediction variance curves

allowed an easy assessment of the effects of improper settings on the prediction capability of the full

factorial design. Using more extensive case studies, general statements about the effects of different

types of improper settings on the prediction variances of a particular design could be made.

3.3.4 Illustration of the Effects of Augmenting a Point to the Design

The exploration of a response surface is a sequential process. Often one or more experimental

runs are taken to supplement a design used in the previous stage of experimentation. Points may

be augrnented to an existing design for many reasons. Additional design points may be required

to estimate the parameters of a higher order model or to replace lost points, or additional points

may be taken in an effort to improve the statistical properties of the design.

This example will illustrate the effects of augrnenting one design point to a design in order to

maximize 1x*X I at that stage. The resulting design will be D-optirnal among all designs which

consist of the original design plus one additional point from the region of the independent variables.

Dykstra (1971) showed that such a conditionally D-optirnal design can be achieved by placing the

additional point at the location in the region which yields the largest prediction variance under the

original design. The spherical variance and maximum and minimum prediction variance curves

will be used to examine the consequences of this course of action on the prediction variance prop-

erties on spheres of the design.

Suppose now that the design given in (3.3.3) is used to fit a first order model in four variables

to the response of a system. The plot depicting the nature of the prediction in Figure 11 clearly

indicates that the response is not being estimated very well with this design. An additional exper-
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imental run will be ta1<en at the location of maximum prediction variance in an effort to improve

this picture. _

1 1 1 1

1 1 1 — 1

1 1 1 1 7

— 1 — 1 — 1 1

1 1 1 1

. 1 1 — 1 — 1

1 — 1 1 - 1

1 1 1 — 1

- 1 — 1 - 1 1 ( 3.3.3)

- 1 - 1 - 1 1

- 1 — 1 1 1

1 1 - 1 - 1
— 1 - 1 1 - 1

- 1 1 - 1 - 1
— 1 — 1 - 1 1

- 1 - 1 — 1 - 1

0 0 0 0

Locations of the maximum prediction variances on spheres in a hypersphere ef radius 2 ap-

pear in Figure 12. The maximum prediction variance occurs en the perimeter ef this regen at levels

xa = 1.49809 , xa = - 1.19679 , xa = -0.560883 and xa = 0.0939163. This point is aug-

mented to the design in (3.3.3). The spherical variances and maximum and minimum prediction

variances on spheres for the augrnented design are plotted in Figure 13. The additional point did

much to improve the maximum prediction variances and, therefore, the spherical variances of the
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design. The maximum prediction variance in the region is reduced by more than half with the ad-

ditional point at the location of maximum prediction variance. The location of the maximum

prediction variance in the region has not changed however. Note that the minimum prediction

variance curve was not effected by the addition of the point.

The addition of a point to maximize Ixxl , since it reduces the maximum prediction vari-

ance, also improves the prediction capability of the design. However, this may not be the most

effective strategy to employ to achieve better prediction capability on spheres. A different criterion

for selecting the location of a point to be augmented to an existing design will be discussed in

Chapter IV. Also in Chapter IV the characteristics of the spherical variance and prediction variance

dispersion measures as functions of the radius will be investigated. Some statistical invariance

properties of the measures will be set forth there as well.
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Chapter IV

IV. Properties of the Spherical Variance and PVD

Measures

4.1 Trends in the Prediction Variance Functions

The spherical variance and PVD measures are functions of the distance, r, from the center

of the region of the independent variables at which the responses are being estirnated. In this sec-
l

tion, the behavior of these prediction variance functions will be exarnined as the responses are es-

tirnated further from the region center, that is, on hyperspheres of increasing radius. Trends in the

spherical variance and PVD measures will be discussed when the assumed model for the response

is first order, (case I and case II). Results pertaining to the behavior of these functions as r increases

have not been obtained when the fitted model is second order. In this case, trends in the V' and

maximum and minimum prediction variance curves may be observed for the second order designs

described in section 2.4. These illustrations appear in Chapter V.
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4.1.1 Trends in the Spherical Variance as r Increases

When a first order model in k variables is used to approxirnate the response function the

spherical variance corresponding to a particular design is given by

2 k k
N k z=1 l z=1 I I

This representation of the V' is appropriate to both case I and case II as described in section 3.2.3.
I

If the design center is the same as the center of the region of the independent variables (case I),

m, = 0 for all i = 1, 2, ..., k and the general form of the V' given above reduces to the specific form

for case I given by equation (3.2.12). ·

In either case, X, , X2 , , X,, , which depend on the design, are the eigenvalues of a positive
k

defrnite matrix. Hence, X, > 0 for all i = 1, 2, ..., k and XIX, > 0 for any response surface design.

The rate of change of the spherical variance as the radius, r, increases is

k -gg- = 2rZX,/k = 2rX ,
OV z=1

which is positive for r > 0 and is equal to zero if and only if r = 0. Thus, as the radius of the

hypersphere over which the prediction variances are being averaged increases, the spherical variance

also increases. On the average the precision of the estirnated responses dirninishes as one predicts

further from the center of the region in the first order model case. The design with the smallest

possible sum of the eigenvalues among all competing designs will yield the least amount of increase

in the average prediction variance on a sphere per unit increase in r.

k
Under the conditions of case I, the design which has minimum XIX, among all designs of size

N also has minimum V' per radius r among those designs. Note that, when the design center is the
k

same as the region center, o2( 1/N + EX,) is the sum of the variances of the estirnated coefficients

of the first order model. In this case,

Properties of the Spherical Variance and PVD Measures 83



k ^
* * -_X0V<1'(ß1)/O2 = tf {(X 'X ) 1}

l i

- 1 + k
- .. E )„.

N z=1 [

where all terms are defmed in section 3.2.3 under case I.

To minimize the sum of the variances of the coefficients apart from 02 for fixed N, the design
k

should be chosen which has the smallest value of ZIX, . This design is then the A-optimal design

among all first order designs of size N. Thus, for case I, the design which has minimum spherical

vmiance per radius among all first order designs with N design points is the A—optima.l design.

4.1.2 Trends in the Rof'V as r Increases

Case I : A first order model; the design center and region center are the same.

Consider first the behavior of the maximum and minimum prediction va.riances on a sphere

as theradius of the sphere increases. Recall that,

max -LVar(_1i(5)) = J- + Xkrz
5 E U, O-2 N

and

man L + 1 r2
5 6 U, O-2 N 1

k

where U, = {5: Xxx? = rz} defines the surface of the hypersphere, and X, a.nd X, are respectively

the largest and smallest eigenvalues of (X’X)". Only the case where X, > X, will be considered

here. If X, = X, the design is rotatable, the maximum and minimum prediction variance curves

coincide and the RofV is equal to zero for all r.
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It is apparent that both the maximum and minimum prediction variance curves are increasing

functions of the radius, r. However, since Ä, > Ä,, the maximum prediction variances are in-

creasing more quickly than the minimum prediction variances. Thus, the difference in the maxi-

mum and minimum prediction variances on a sphere, that is, the RotV, is increasing as the radius

of the sphere increases. Indeed, the rate of increase in the RofV is u

ör

for Ä, > Ä, and r > 0. The dexivative is equal to 0 ifand only if r = 0 when Ä, > Ä, .

Case II : A first order model; the design center and region center are not the same.

The maximum and minimum prediction variances on a sphere of radius r in this case are

given by

I ^ I k Mm: 2—V = —— + Ä· 4.1.lgéäör G2 ¤F(Y(l))

Nwhere1.1 > Ä and
£(-—�,%—-Ä'ml)2 = rz andmu k I'! I

_
llmax

’

- 1 ^ 1 '< Mml 2——V = —— + Ä 4.1.2S21}, ,,2
“"y‘£”

N E,
*‘V—„— 11...1..)

‘ l

where 11 - < Ä and é( Älml )2 = rz. They are functions of the radius r through themm I v v

Lagrangian multipliers 1.1,,,,,,, and 11,,,,,,. Therefore, before considering the nature of the maximum and

minimum prediction variance curves it is necessary to determine the relationship between the ra-

dius, r, and 1.1,.,,,,, , 1.1,,,,,,.
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Let kt denote the Lagrangian multiplier for the prediction variance optimization problem de-

scribed by (3.2.9). The multiplier u defines a stationary point of the prediction variance on the

surface of a sphere of radius r if

k }k_.m._Zl (jjj)2 = rz. (4.1.3)
li

If pi = pkw > Äk the stationary point is the point of maximum prediction variance on the sphere

of radius r. The stationary point is the point of minimum prediction variance on the sphere if

kt = um < Äl . The nature of the relationship between r and ;.1„„„ , pmkn is sketched in Figure 14.

The convexity of the curve between succeeding values of the eigenvalues was first established by

Draper (1963). ·

The following lemma is necessary to establish the trends in the maximum and minimum

prediction variance functions as r increases. The proof of the lemrna is given in appendix B. 1.

Lemma 4.1.1: Let r > 0 and ii be defined by (4.1.3).

i) If 11 = pm, > kk, as r increases from 0 to GO ,

umkkk decreases. That is, k

ö forpmax>kk.

ii) If u = umkkk < kk , as r increases from 0 to ¤O ,

pmkkk increases. That is,

Ö .
forp.mkkk<kk.
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Consider now the maximum prediction variance curve defined by (4.1.1). By Lemma 4.1.1,

the distance between umx and any eigenvalue, 7t,, decreases as r increases. Consequently, an in-

crease in r yields an increase in [ Mm} / ( 7L, — um, )2 ] for each i = 1, 2, ..., k and, therefore, in their
k

sum. A similar argument gives that Eil: Mm} / ( lt, — u„,,,, )2 ] increases as rincreases. These results

lead to the following theorem.

Theorem 4.1.1: Under the conditions of case II,

i) the maximum prediction variance on a sphere of radius r

given by (4.1.1) is an increasing function of the radius;

ii) the minimum prediction variance on a sphere of radius r

given by (4.1.2) is an increasing function of the radius.

Proof of i)· Let Q = ill. (jr-Lil)2 Then�
I-1

{
1
_

llmax
. ,

ÖQ öQ öllmax k 3 2 l 3 Ii öllmaxlör öumax ör I;] ‘m‘ ( 1* llmax) ör

Sinceumx > kk 2 7t,,-,... 2 Ä, > 0,(7t,·— 1.1,,,,,,) < 0fora1li=1, 2, ..., k.
k

Hence, E Mm} (X, — u„,„,)" < 0 .i� l
Ü ÖBy Lemma 4.1.1, (i), —lé';_-li < 0 for u,„„, > 7t,, . Thus, > 0 and the maximum pre-

diction variance, -Ä/— + Q, is an increasing function of r.

The proof of ii) is similar and will not be presented here.

ln both case I and case II the maximum and minimum prediction variances and the range

of the prediction variances on a sphere get larger as the radius of the sphere increases. The esti-

mation of the response is less precise in general as one predicts further from the region center.

When the design and region centers are the same, the variances of the predicted responses at lo-

cations of equal distance from the region center vaiy more widely as the distance increases. How-
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ever, it is believed that the RofV may not always be increasing in the radius r when the region and

design centers are at different locations. The trend in the RofV in this case probably depends on

the distance between the design and region centers.

4.1.3 Trends in the V0fV as r Increases I

The form of the variance of the prediction variances at locations on a sphere of radius r is

given by (3.2.15) and reproduced below for the first order model case.

2r4 k ‘ 2 rz k 2 2V = ———— 7. — 7. + 4— X- -0fV(V) Mk + 2) i§l( 1 ) k il?} 1m.

This formulation of the VofV applies to case I as well as case II. Therefore, case I and case II will

be considered concurrently.

It is obvious that as r increases the VofV(r) will also increase. The rate at which VofV(r)

increases is

ÖV0fV(V) 8r3 k " 2 8r k 2 2
—···7—···· =

——·—··* Ä. "' Ä "l' ··* Ä ..1. 1..1. + 2)
,§,‘ I I 1. E, I"'!

Note that the amount of the increase in VofV(r) per unit increase in r depends not only on the

dispersion in the eigenvalues but also on the distance of the design center from the center of the

region of the independent variables. The dispersion in the prediction variances will not increase as

quickly if the design is centered at the center of the region under consideration.

Whether the experimental design can be classified under case I or case II, the quality of the

estimated responses on spheres worsens as one predicts further from the center of the region. This

can be seen from the increases in the V' and the maximum and minimum prediction variances as

the radius of the sphere increases. The results of this section also show that variances corresponding
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to predicted responses on the surface of a sphere about the region center become more dispersed,

that is, prediction is less consistent, as the radius of the sphere increases. The extent of the depre-

ciation of the prediction capability of the design as the response is estimated further from the region

center depends on the size and similarity of the eigenvalues lt, Among competing

designs, the smallest increases in the PVD measures would occur with the design which has the least

deviation among the eigenvalues. To avoid large increases in the spherical variance and maximum

and minimum prediction variances, a design with small as well as similar eigenvalues should be

used.

4.2 Invariance Properties of the Spherical Variance and

PVD Measares

Measures of the prediction capability of a design should not depend on the natural units of

the independent variables involved. For this reason, the independent variables are often expressed

in terms of design variables which are scale-free. The choice of center and scale factors for the de-

sign variables is arbitrary. For example, the independent variables may be coded to be between
—l and + 1 or to take values between -2 and + 2 or 0 and 3. ‘

Often in a response surface analysis the region of the design variables is moved in the search

for the optimum response of the system. The prediction capability of a design, however, should

not be effected by the application of that design to a different region. Thus, the pictures of pre-

diction capability developed using the spherical variance and PVD measures should be the same for

a particular design regardless of the coding of the independent variables.

In this section, it will be shown for the first and second order model cases that the spherical

variance and PVD measures are invariant to the center and scale chosen for the design variables of
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the system. It will also be shown that they are invariant to orthogonal transformation of the in-

dependent variables. These invariance properties are established for the V' and PVD measures via

the invariance of the prediction variance to the units of the design variables. Further, sufficient

conditions for the RofV and VofV to be invariant to the number center points of the design will

be determined. Invariance to the number of center points is of particular interest in the consider-

ation of the deviation from rotatability for a design.

4.2.1 Invariance to the Scale of the Design Variables

Consider a design, with corresponding design matrix Dx, used to fit the model X = Xß + 5, in

k design variables, x, , x, , , x,x . Without loss of generality, let the design variables be such that

the center of the region of the x -variables is gg = Q and the scale of the x -variables is equal to l

for all x, . The variance of a predicted value in terms of the x·variables is

= ¤’ a"'<X'X> ‘E <4.2.1>

where X is the appropriate model-matrix and x' is as described in section 3.2.3 for a first and second

order model. The nature of X and x' depends on the model.
I

Suppose z, , 2, , , z,x are a different set of design variables to be used in the investigation

of the response. Suppose that the region of the z-variables is centered at ; = Q and the scale of the

z-variables is equal to q > 0, different from the scale of the x-variables. In this case, the z-variables

can be written in terms of the x-variables as z, = qx, for i = l , 2 , , k. The design matrix in

the scaled z-variables corresponding to Dx is thus,

D. = D„Q
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for Q = diagonal( q, q, , q). Note that Q is a kxk non-singular diagonal matrix. In terms

of the scaled variables the model takes the form X = ZX + 5,. The prediction variance at a location

2 = (2, 22 2,,
)’
= Q; corresponding to the model in the scaled variables is

V6r,,„<i?<2>> = 62 6"<Z'Z>‘ ‘z" . (4.2.2)

Here Z, is the appropriate model-matrix in terms of the z -variables. Z and g' depend on the

model. In particular, if the model under consideration is a polynomial in the independent variables,

Z = XQ* (4.2.3)

where X is the model-matrix in the original design variables and

;“'“
= Q";. (4.2.4)

The matrix Q' is diagonal and non—singular. If the model is a first order polynomial the model-

matrix Xis given by (2.2.2), ;' = ( l x, x2
x,„)’

and

1 0 0 0

0 q 0 0 w
0 0 q 0

Q* ='°'''= diagonal(l q q q). (4.2.5)

0 0 0 q

Altemately, if the model is a second order model in the independent variables the model

matrix Xand vector ;' are defined under case III in section 3.2.3. In this case, the matrix Q' is given

by

Qi
= diagonal(l q q qz qz qz qz). (4.2.6)
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The form of Q' is easily extended to higher order models.

In this situation, it is apparent that due to the difference in scaling of the design variables the

predicted response at a location ; achieved by the analysis using the x-variables will not be the same

as the predicted response at Z = Q; obtained by the a.nalysis III the z-variables. However, the var-

iances of these predicted responses will be the same. The following theorem establishes that under

the circumstances described above the prediction variance at any location does not depend on the

scale of the design variables.

Theorem 4.2.1: Suppose a polynomial model of order d (d= l or 2 here) in k variables is used

to approxirnate the response of a system. The prediction variance is invariant to the scale

· of the design variables of the model. Using the notation set forth above, this is equivalent

to

~ A 1 A

0 o

U
for any ; in the space of the original x-design variables and Z = Q;. Varbx and Varbz

are given by (4.2.1) and (4.2.2).

Proof: Consider the models X = Xß + 6 and X = ZX + 6 as described in the previous discussion.

Consider the estimation of the response at an arbitrary location ; in the space of the

x·variables. The prediction variance at this location is given by (4.2.1). Prediction at ; in

the x-variables is equivalent to prediction at Z = Q; in the scaled variables. The prediction

variance at Z = Q; is
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= Z*;(Z;Z) *1;*
O' .

i &*I(XIX)
— 1Ä* ‘

- l "
o

by (4.2.3) and (4.2.4) and since Q' is symmetric and non·singular. The matrix Q' is given

by (4.2.5) when d= 1 and (4.2.6) when the model is second order. Since the location 5

was arbitrarily chosen, the theorem is proved.

Consider now the prediction variances on a sphere of radius r, in the region of the x-variables.
lr

Let U,x = {5: Zlxf = rf} denote the surface of the sphere. Let
· 1. lr

U,z = {gz 212} = qzzlxf = rf = (qr)2} denote the surface of the corresponding sphere in the

scaled variables. Clearly, if 5 6 U,x then g = Q5 6 U,z. Since Q is a one-to·one transformation

of5 into g there is only one location 5 6 U,x and one g 6 U,z for which g = Q5. Thus, Q provides

a one-to·one mapping of U,x into U,Z.

By Theorem 4.2.1, for any location on the surface of a hypersphere of radius r in the region

of the x-variables defined by U,x , the prediction variance there is the same as the prediction variance

at the corresponding location on U,Z. Therefore, the prediction variances at all locations on U,x

are the same as those on U,z . As a consequence, the average prediction variance, the maximum

and minimum prediction variances and the dispersion in the prediction variances on a sphere will

be the same whether the x·design variables or the z-design variables are used. Thus, the V' , max-

imum and minimum prediction variances and the RofV and VofV are invariant to the scale of the

design variables used in the analysis.
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4.2.2 Invariance to the Center of the Design Variables

Once again consider a system involving k independent variables. Suppose the variables are

coded to the design variables xl , xl , , xl, through a simple linear transformation such as that

described by (2.2.1). Although it is usual to code the independent variables to have center at

,5 = Q, this is not always the case. Let h = (hl hg hl,
)’
denote the center of the region of the

design variables in this situation. For convenience and without loss of generality, suppose h = Q.

Let zl , 2, , , 2,, represent a diiferent coding of the independent variables for which

zl = xl + ml for some ml and i = 1, 2, , k. The new coding of the variables is equivalent to

a translation of the axes in the k·dimensional region of the x·variables to the k-dimensional region ·

of the 2-variables. It is of interest to compare the prediction variances on spheres about the different

centers of the region of the x·variables and the region of the 2-variables for a design.

In terms of the x-design variables the prediction variance at a x is

The vector x' and model-matrix X are defined as before for a first and second order model, (see

section 3.2.3). The subscript D, indicates that the x·variables were used to compute the variance.

The prediction variance at a location 2 = x + m in the space of the z·variables is given by

=�forappropriate model-matrix Z and vector z'.

The following lemma will be necessary to establish the invariance of the prediction variance

to the center of the design variables for the first and second order model cases.

Lemma 4.2.1: Consider iitting a polynomial model of first or second order to the response
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of a system in k variables with a design. Let the design variables x, , x2, , x,, and

2, , 22 , , 2,, be as defined in the previous discussion. Then, there exists a pxp matrix

L of rank p for which

Z = XL

where p is the number of parameters in the model and Z and X are the appropriate

model-matrices in the z-variables and x -variables respectively. Also, 2° = L'x°.

Proof: The proof Lemma 4.2.1 appears in appendix B.2. Forms for the matrix L in the first

and second order model cases are given there also.

As a consequence of Lemma 4.2.1 the following result is obtained.

Theorem 4.2.2: For the case of fitting a first or second order model to the response of a system

with design variables the prediction variance is invariant to the center of the design variables

used in the analysis.
’

Proof: It_ is necessary to show that

0 0

for any gg in the region of the x-variables and corresponding 2 = x + gp where

gg = (m,

m2Consider a location x in the region of the x -variables. By definition, the prediction

variance at the corresponding location, 2 in the space of the 2 -variables is

=By

Lemma 4.2.1, Z = XL and 2° = L’x'. Thus,
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=.—
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^" —' arr) (Y(>£)) -2 xG

Similarly, for any location g in the region of the z -va1iables, 5 = 3 — gz and

V¤r„,<ß(z>)/¤“ = V<v„,,<1?<a>>/¤’~

This holds for any 5, z and any gz, so the prediction variance does not depend on

the center of the design variables. In other words, the prediction variance is invariant to

the center of the region of the design variables.

Now retum to the consideration of the prediction capability on spheres for a design. Any

location 5 on the surface of a sphere of radius r about the center of the region of the design variables

x, , x,, has one and only one corresponding location in the region of the z-variables. The cor-

responding z = 5 + m is located on the surface of a sphere of radius r about the region center of

the z-variables. The prediction variances are the same at corresponding locations by Theorem 4.2.2.

Therefore, the prediction variances expressed in design variables on the surface of a hypersphere of

radius r are invariant to the location of the center of the sphere. It is intuitively obvious then, that

the spherical variance, maximum and minimum prediction variances and the PVD measures are

not effected by the position of the center of the region of the design variables in k-dimensional

space.
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4.2.3 Invariance to Orthogonal Transformation of the Independent Variables

The optimization of the response of a system usually requires an extensive search in the region

of the independent variables. The researcher begins the search for the optimum response by mod-

elling theresponse as a simple function of the factors present in the system in a suitable region of

the independent variables. Based on the information acquired at this stage, the model may be up-

dated to a more complicated form, or the region of search extended or shifted or both.

For instance, if a stationary point has been obtained in some region, the region may be shifted

to a new region with center at the stationary point. This action facilitates the determination of the

nature of the stationary point. It has already been seen that the picture of prediction capability for

a design is not effected by a translation of the region of the design variables.

To further aid in the determination of the status of the stationary point and the behavior of

the response about it, a canonical analysis of the response function is performed. In a canonical

analysis the response function is expressed in terms of the principal component axes of the new

region. That is, the axes in the new region corresponding to the design variables are rotated through

the origin by an orthogonal transformation to the principal components of the system.

It is of interest to determine the effect of an orthogonal transformation of the design variables,

such as would occur in a canonical analysis, on the spherical variance and PVD measures for a

design. Let the response function be expressed in terms of the variables xl , x, , , x,, in some

region. It is not necessary that x, , x2, , x,, be design variables. Let D, represent the design

matrix in terms of the x~variables. A

Now consider an orthogonal transformation of the x-variables to a new axis system in the

variables z, , 2, , , 2,, as follows:
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2 = (zi 22 zk)’

= Rg; = R(xI x2 xk)'

where R is an orthogonal kxk matrix. The resulting axis system in the 2-variables is a rotation

through the origin of the axis system in the x-variables.

The result that the prediction variance at a location remains unchanged by the rotation of the

region through its origin is proved in the next theorem for polynomial models.

Theorem 4.2.3: Suppose the model for the response is a polynomial of order d in k variables.

The variance of an estimated response obtained with a design is invariant to the orthogonal

transformation of the independent variables.

Proof: Let x, , x2 , , x,, denote the variables of the model and D, the design matrix in terms

of the x ·variables. Then, VarDx(};(gc))/oz = g;"(X’X)° lx', where g;' and Xhave their usual

meaning. -

Suppose gr = (xl x2 x,„ )’ is transformed by an orthogonal matrix R to

2 = (2, Q 2,,
)’.

That is, 2 = Rg;. Let D, denote the design matrix expressed in the

z-variables, then D, = D„R’. Now, Var„z(_;Ü(2))/oz = _Z„(Z'Z)°l_Z°, where 2' and Z have

their usual meaning.

There exists an orthogonal matrix, say R', for which ·

z* :2R*Ä*2

= xx".

R' is called the Schlaifllian matrix corresponding to the transformation matrix R. The

reader is referred to Aitken (1948) or Myers ((1976), (appendix a.l)) for verification of this

result.
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Since R' is an orthogonal matrix, its inverse exists and is equal to R°" = R".

Equivalently, (R")" = R'. So, the prediction variance in terms of the z-variables can be

written as

—%V¤#D,<y<z>> = .£'R"<R'X'XR">"R‘;‘
6
....

1 ^— 7V¤rDx(y(x))
6

for z = R5. Thus, for any location 5 the prediction variance at 5 is equal to the corre-

sponding prediction variance in the region of the z-variables. That is, the prediction vari-

ance is invariant to the orthogonal transformation of the independent variables.

k
Note that, if 5 6 U, = {5 : Zlxß = rz }, the surface of a k-dimensional hypersphere of radius

r, then _; = R5 is also a member of U,. Thus, the prediction variances on a sphere of radius r about

the center of region are the same under an orthogonal transformation of the x·variables. Since a

location 5 on a sphere is taken into one and only one location z on that sphere by the orthogonal

transformation, the average and maximum and minimum values of the prediction variances on a

sphere also remain unchanged by orthogonal transformation of the variables. Similarly, the

dispersion measures RofV and VotV are invariant to orthogonal transformation of the independent

variables.

To summarize, the spherical variance, maximum and minimum prediction variances and the

PVD measures are all invariant to the center and scale of the design variables chosen for the anal-

ysis. The orientation of the region of the variables in k-dimensional space also has no bearing on

the picture of the prediction capability of a design generated with these measures. Thus, once a
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picture of the prediction capability on spheres for a particular design has been developed in terms

of a given set of design variables, it is not necessary to generate another picture for a different set

of design variables.
L

4.2.4 Invariance of RofV and VofV to the Number of Center Points of the

Design

When the center of the design and the center of the region of the design variables are the same,

the RofV and VofV indicate how near the design is to possessing the rotatability property. The

equality of variances on spheres about the design center is unaffected by variation of the number

of experimental runs taken at the center of the design in a rotatable design. Thus, it is of interest

to determine if the RofV and VofV, as measures of deviation from rotatability, are invariant to the

number of center points, n„, of the design. ln this section, sufficient conditions for the PVD

measures to be invariant to flo will be given for the cases of fitting a first and second order model

to the response of the system.

Consider a design in k variables of size N = rz + n,,, where No is the number of center points

of the design. In this discussion, the region of the design variables will be considered to have center

where all the design variables take the value 0. A center point is a point for which the levels of all

the design variables are at 0. The prediction variances obtained with the design depends on the
‘ design settings through the (X'X) matrix, or, more specifically, its irrverse.

Suppose, first, that the design is to be used to fit a frrst order model to the response. Let the

design variables be denoted by x, , x2, ..., x,„. In this situation, the X’X matrix has the form

given below.
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„
N gl

X
’X

=
g A

N N N —
where N = n + n„, g = ( Zlx„, Zlxü 21;,,,.

)’
and

I
E xiil E xulxu2 xulxuk

E xulxu2 E xßz E xu2xuk

Z xulxuk Exu2xukNote

that g / N is the location of the center of the design.

The prediction variance at a location ; = (x, x, x,. )' with _;° = ( 1 x, x2 ...x„
)’
for a first

order model is

"l5‘V‘”U’(ä)) = ;*'(X'/Y)- 1;*
o'

, -1 -1 2 , -1 x’A_‘@’/1-];;=[N_QA Q] _W‘
XAN _ QIA £

� �

I
—

1 I
—
l;A @/4-1;]

N ·· gz'/4 s;

The formulation of this result requires the use of the inverse of a pattem matrix and matrix algebra.

It will not be reproduced here.

A condition for which the RofV and Vofv are invariant to the number of center points of the

design in the first order model case is presented in Theorem 4.2.4.
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Theorem 4.2.4: Suppose a first order model and design of size N = n + no are used to estimate

the response of a system. Let x, , x2 , , x,, denote the design variables in this situation.

Then, the RofV and VofV are invariant to the number of center points, no, of the design

if the design center is located at the center of the region of the design variables. This con-

dition is equivalent to the requirement that the first design moments of the design be equal

to zero, i.e.,

. 1 N .[1] = —Z xu, = 0 foralli = 1,2,...,k.
N u = 1

(See section 2.3.4 for a description of design moments.)

Proof: The proof is presented for the RofV. The result for the VofV is similarly proved and will

not be shown here.

Suppose the center of the region of the design variables is at 5 = Q. Also, suppose

the center of the design is located at 5 = Q, the region center. This implies that,

N N N Ig; = ( Zxul Zxuz Zxuk) = Q.
u = 1 u = 1 u = 1

i
Under this condition, the prediction variance given by (4.2.9) reduces to

1 V
^ 1 1

+
[A
_

1— <vfy(zc)) — — 2; x.G2 N

A
Let 5,,,,,, and 5,,,,,, represent the locations of the maximum and minimum prediction

variances respectively on the surface of a hypersphere of radius r. Then, the range of the

prediction variances on the sphere is

I
—
l I

—
1RO!]/(fi) " Ämax A Ämax

_
Ämin A Ämin ·
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The elements of the matrix A and, hence, those of A
"‘,

do not depend on the value

of n„. Therefore, the RofV does not depend on no in this case. That is, if the design center

is the same as the region center, the RolV is invariant to the number of center points of the

design.

In the second order model case, the conditions for the invariance of RofV and VolV to the

number of center points involve not only the first order moments, but all design moments through

order four of the design. The conditions are stated in the following theorem.

Theorem 4.2.5: Suppose a second order model and design of size N = n + no are used to

estimate the response of a system. Let x, , x2 , , x,„ denote the design variables in this

situation. Then, the RoiV and VoiV are invariant to the number of center points of the

design if the following conditions hold:
I

i) A11 odd moments through order four are equal to zero, that is,

Iii] = 0 foralli = 1, 2, ..., k,

[ij]= 0 foralli7*j,
l

[iii] = [iij] = 0 foralli 7* j,

» l:iiii]=0 foralli7*j.

ii) The second pure moments of the design are equal. That is,

[ii] = a/N, a constant for alli = 1,2,..., k.

iii) The fourth pure moments are equal. That is,

[iiii] = b/N, a constant for alli = 1,2,..., k.

iv) The even fourth mixed moments are equal. That is,

[iijj] = c/N, a constant for all i,j = 1,2, ...,k withi 7* j.
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Proof: The proof follows that of Theorem 4.2.4. It appears in appendix B.3.

Note that the conditions set forth in Theorems 4.2.4 and 4.2.5 are only suflicient conditions

for the RolV and VofV to be invariant to no. Any rotatable design satisfies these conditions, thus,

showing that the rotatability property is not altered by the addition of experimental runs at the

center of the design. The dispersion in the prediction variances on spheres may be altered by the

addition of center points if the non·rotatable design does not meet the requirements of Theorems

4.2.4 or 4.2.5.

4.3 A New Criterion for Design Augmentation

There is very little breadth in the area of design augmentation in the literature. Virtually all

the results in this area pertain to the augmentation of a design to achieve a conditionally D-optimal -

design, (see, for example, Dykstra (1971), Hebble and Mitchell (1972) or Gaylor and Merrill

(1968)). Recall that a conditionally D·optima1 design in some region is achieved by augmenting

the point in that region which yields the largest increase in IX
’X
I.

This strategy results in the most irnproved estirnation of coefficients of the model as measured

by the generalized variance of the coefiicients. Although the prediction capability of the design is

naturally enhanced by the addition of a point to maximize lX’Xl, there is no evidence that this

particular choice of an additional design point will yield the most irnprovement in the prediction

capability of a design. Indeed, the addition of a point which directly improves the prediction vari-

ances, or some function of them, would most likely result in better irnprovement of the prediction

capability of a design.

With a view to improving the precision of the estimated responses on spheres for a design,

one might consider augmenting a point to the design in order to make the resulting spherical vari-
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ance on some sphere as small as possible. It is thought that the greatest improvement in the

spherical variances across all spheres would result from the minimization of the spherical variance

on the sphere corresponding to the largest V' for the original design. The minimization of the

spherical variance is conditional on the settings of the original design.

Consider a design with N design points to fit a model in k variables. Let p be the number

of parameters in the model and X be the model-matrix in this situation. The prediction variance

at a location 5 = (x, x2 x,,)' is given by Var(;;(5))/oz = 5"(X’X)"5' where the elements of

5' depend on the model as before (see section 3.2.3). Let V' denote the spherical variance corre-

sponding to this design and model. Let 5, denote the point which is to be added to the design.

The model-matrix corresponding to the design augmented by 5, is then,

X
X, = * .gal

where 5, has the same fonn as 5° .

Letting }i,(5) represent the predicted response at 5 obtained with the augmented design, the

prediction variance for the augmented design is

The inverse is found by applying the Sherman·Morrison·Woodbury theorem (Rao (1973) problem l

2.8, p. 33) which states that for a positive defmite pxp matrix A and pxl vector 50 ,

(A+&o£o) l=A l‘—*———*:;—·
1 +

50’A
50

Thus,
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A ..I I _ .. X"(X' "
’ ”'

X'. ‘
‘_"

1;o‘
l + L,'(X’X) L,

A X*·(X·,n’ ‘x"x"(X'X>‘ E= %Va*(y(£))—G
1 + L/(X'X) Ea

The spherical variance resulting from the augmentation ofL to the design is given by V; be-

low.

- 1 1 ^
VZ —' dg

(4.3.1 )
l

= VA _1
+ X„'<X'X>° 2.

lr
where U, = {,5: Xxx} = rz} represents the surface of a hypersphere of radius r with surface area

given by
‘I·"‘

= j„I dg;. The matrix S is the matrix of spherical region moments defined by (3.2.6)

for the model. The derivation of this result very closely follows the derivation of the V' given in

Hussey (1983). '

The suggested criterion requires the point L be chosen so that V; is rninirnized. Since the

second term of the right hand side of (4.3.1) is nonnegative, this is equivalent to choosing L to

maxirnize the quantity

V eZ'<XX>"s<X'm‘ 1;;
1 + r..'<X'X>‘ ‘X„

This result provides a new prospect for the development of a design augrnentation strategy

in response surface studies. To a researcher interested in predicting the response of a system, par-

ticularly on spheres, the spherical variance criterion may be more appealing than the conditional
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lX’X l criterion. Extensive case studies are needed to compare the prediction capabilities of aug-

mented designs formed under the two criteria.

4.4 The Dilemma over the Choice ofDesign Center

It has already been seen that in the first order model case it is to the researcher’s advantage

to choose a design which is centered about the center of the regon of interest. In this case, the

spherical variance and the dispersion in the prediction variances on spheres are smaller when the

design and regon centers are the same. It is suspected that this statement holds for second order

designs as well.

The improved prediction capability is a strong motivation for centering the design about the

regon center. However, centering maybe foregone to achieve some other design property such as

high D-eiliciency. The dilernma arises over the decision to move the regon of interest to coincide

with the newidesign center after some design points have been lost or added during experimentation.

The regon of interest is often shifted during the exploration of a response surface and search

for the optimum response. It is the opinion of the author that the regon of interest should not

be changed to accommodate a change in the design caused by a loss of points or a poorly designed

experiment. Rather, the design should be changed if the regon under consideration is changed.

Ultimately, the choice of design center and regon of interest belongs to the researcher.

Whether the design center and regon center have been chosen to be the same or not, the spherical

variance and PVD measures are equipped to provide a picture of the prediction capability on

spheres for the design in that regon.
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For the illustrations of the use of the spherical variance and RofV to assess the quality of

prediction for second order designs in Chapter V, the centers of the example designs have been left

as originally specified by their authors. In the cases where design points have been lost, the region

under consideration has not been changed to coincide with the new design region. Thus, compar-

isons between the original design and the designs resulting from lost data are made ir1 the same re-

gion. i
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Chapter V

V. Graphrcal Assessment of the Prediction

Capabihty of Certain Second Order Designs

The experimental designs catalogued in section 2.4 represent various experimental plans the

researcher may choose to explore a response surface. Some, such as the composite, Box-Behnken

and hybrid designs, are often used in practice. Recently, there has been increasing interest in the

minimum and nearly minimum point designs as economical altematives to the larger response

surface designs such as the central composite design (ccd). Most of the investigations into the de-

sign properties of saturated and nearly saturated designs has been concemed with the D-efliciencies

of the designs (for example, Lucas (1976), Mitchell and Bayne (1978) and Nalirnov, et. al. (1970)).

Few studies have given attention to the quality of the predictions obtained with these designs.

It is the purpose of this chapter to exarnine through the use of graphics the prediction capa-

bilities of some of the second order designs presented lI1 section 2.4. General pictures of the be-

havior of the prediction variances throughout a region will be developed for the designs via the

spherical variance and RolV functions. In some cases, the locations of the maximum and minimum

prediction variances will be used to indicate at which combination of levels of the variables pre-
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diction quality is poorest and where it is best. Several sets of comparisons of competing designs

will also be made. For example, comparisons between two ccds and the Box-Behnken design in

three variables will be conducted in section 5.1.2. The use of the RofV to detect deviation from

rotatability for a design will be discussed as a separate issue in the last section. First, however, the

prediction capability of some members of the family of central composite designs will be examined.

Specifically, the effect of the choice of the design parameters ot and No on the picture of the predic-

tion capability for a ccd will be considered. Also, the loss of prediction capability will be assessed

when one or more design points have been dropped from a rotatable ccd.

The experimental designs considered in this chapter are second order designs in three variables

with the exception of the 32 factorial design in section 5.3.1. The behavior of the prediction vari-

ances for the three variable designs will be investigated across a range of radii, from r = 0, (re-

presenting prediction at the region center), to r = «/3 = 1.732 , (representing prediction at

locations on the perimeter of the region of interest). Thus, the region of the design variables under

consideration is a hypersphere of radius r = «/3 = 1.732 centered about the point

xs = 0, xs = 0, xs = 0 in three dimensional space. All prediction variances have been weighted

by N, the size of the design, unless otherwise noted.

5.1 The Family of Central Composite Designs

5.1.1 Comparisons of Prediction Capability in Three Variable CCDs

Central composite designs (section 2.4.2) are distinguished by the values of the design pa-

rameters a a.nd ns. The axial value, a, may be chosen to achieve the rotatability property. A dif-
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ferent value may be required to achieve other design properties, for example, minimum integrated

variance among all ccds of the sarne size.

The plots of spherical variance in Figure 15 provide a comparison of the average predicting

ability of three ccds. Each of the three designs is the same, 23 factorial portion plus one center

point, except for the axial values. The design labelled
’l’

1I1 Figure 15 is a rotatable ccd. The axial

value is a = 1.682. Design 2 and design 3 have axial values of 1.35 and 1.0, respectively. Note that

a three variable ccd has its center at the point x, = 0, x2 = 0, x, = 0, the region center.

The closer a is to the center of the region the better prediction is in an area about the center.

Beyond a radius of about 1 the designs with larger axial values, that is, with more design points in

this part of the region, provide more precise estimation of the response. The relatively low vari-

ances obtained with design 3 on spheres near the region center may be explained by the closeness

of the axial points to the center of the region. Thus, the axial points, as well as the center points,

provide information about the response near the center. The ccds with larger axial values mainly

rely on the information provided by center runs to estimate the response near the center.

There is no dispersion in the prediction variances on spheres for the rotatable design,

(design 1). Plots of the maximum and minimum prediction variarice curves representing dispersion

in the variances on spheres appear in Figure 16 for design 2 and Figure 17 for design 3. The

dispersion in the variances for design 2, with an axial value close to the rotatable value, is slight.

For both designs the variances remain very stable on and within a sphere of radius 1. On radii

beyond the region encompassed by the axial points, (a 0 0 ), ( — ot 0 0 ), etc, the third design

with a = 1.0 yields less precise and more inconsistent estimation of the response than the designswith larger axial values. F
It should be noted that the experirnenter who chooses to use a ccd with a = 1.0 is most likely

not interested in predicting the response on spheres beyond a radius of 1. Rather, the experirnenter

probably wishes to predict only at locations for which the levels of the design variables are no less
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than — 1 and no more than + 1, that is, at locations on or within the unit cube. If this is the case,

the best and most logical choice of design from among the three ccds is the ccd with rx = 1.0.

When there is sizeable dispersion in the prediction variances on spheres, it is of interest to

know at what locations the response is being poorly estimated and where the response is being well

estimated. For both the non—rotatable example designs the worst prediction variance on a sphere

occurs where two of the variables are at level zero and the third is at a level equal to + or - the

radius of the sphere for all radii. That is, the maximum prediction variances occur on vectors from

the origin through the axial points of the design. On the other hand, the minimum prediction

variance on a sphere is found at all locations for which the magnitudes of the three design variables

are the same. For example, the most precise predicted values on the outermost sphere, r = 1.732,

occur at the locations (xl xl xl) = ( l 1 1), ( 1 1 -1), ( 1 -1 1), etc. lt has been found that

the maximum and minimum prediction variances on spheres appear to be located at the same

points regardless of the number of center runs ailixed to the ccd.

The relatively poor estimation at locations around the center of the region for designs 1 and

2 can be improved by the addition of center runs to the design. For example, the spherical variance

curves of Figure 18 indicate the effects of taking 1, 3, 4 or 6 experimental runs in the center of the

rotatable ccd. Since this design is rotatable, the spherical variance for a sphere actually represents

the prediction variances at every location on that sphere. The rotatability property of equal vari-

. ances on spheres is not lost by the addition of center runs to the design.

Taking 3 or 4 center runs results in comparable prediction variances to those obtained with

design 3, (cr = 1.0, nl, = 1 ), on spheres about the region center to a radius of about 1. However,

the quality of prediction obtained with the rotatable ccd is still much better when predicting further

from the center. Six center runs do not appear to greatly improve the prediction variances about

the region center over the improvement resulting from the addition of 3 or 4 center points.
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In general, for any a-value, additional experimental runs taken at the region center yield in-

creased precision in the predicted values at locations near the center. As an increasing number of

center points are taken, the variances at locations on the outskirts of the region appear to worsen

due to the additional cost involved in taking the extra runs. Figure 19 illustrates the improvement

in the prediction capability of the three example ccds when 3 center points are taken rather than just

one. The improvement in the prediction variances at locations near the region center is not as

dramatic for design 3, with a = 1.0, as for the designs with larger axial values. Considering the

dispersion in the variances on spheres for the three designs, which has not been changed by the

additional center runs, designs 1 and 2 are clearly preferred over design 3 when 3 runs are taken at

the region center.

5.1.2 Comparison of a Box-Behnken Design with Two CCDs

The researcher may choose to use a Box-Behnken design (section 2.4.3) rather than a some-

what larger ccd in some experimental situations. In particular, this may be the case if it is desired

that no more than three levels of each design variable be used for experimentation. Box·Behnken

designs are believed to be rotatable or nearly rotatable. Lucas (1976) has shown that they have high

D-efficiencies in a sphere of radius 1.

The prediction capability of a three variable Box·Behnken design is depicted in Figure 20.

This particular design has one center run. More runs taken at the center would improve the pre-

diction variance picture on spheres close to the region center. Note that comparatively little

dispersion in the variances on spheres about the design center, which is the region center, is present,

especially compared to the ccd with a = 1.0. '
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The prediction capability of the Box-Behnken design with one center point is compared to

that of a rotatable ccd ( a = 1.682) and a three level ccd ( ot = 1.0) in Figure 21. Both ccds have

one center point and N = 15 design points. The Box-Behnken design has 13 design points.

ln the region near the center, from r = 0 to 1, the Box-Behnken design is somewhat better

than the rotatable ccd. However, the ccd with ot = 1.0 yields considerably better precision of the

estimated responses in this region.

The average prediction variance on a sphere obtained with the ccd with a = 1.0 suffers con-

siderably when estirnating the response at locations which lie beyond a radius of 1. On the outskirts

of the region the Box-Behnken performs somewhat better on average than the ccd with ot = 1.0.

The rotatable ccd, which has information in this region provided by the axial and factorial points,

fares much better in terms of prediction capability near the perimeter of the region.

As a competitor to the central composite designs the Box-Behnken design has the advantage

of requiring a fewer number of experimental runs than a ccd and only three levels of the design

variables. As with the ccds, the prediction va.riances at locations near the region center could be

improved with additional experimental runs taken at the center of the region. The spherical vari-

ance comparisons of Figure 2la show the improvement afforded by the addition of three more

center runs to the Box-Behnken design with one run in the center. The relatively slight dispersion

in the prediction variances on spheres is a positive feature of the Box-Behnken design. This con-

sistent accuracy of prediction on spheres is not effected by the addition of center points to the de-

sign.

5.1.3 Robustness of a Rotatable CCD to Loss of Design Points

The purpose of this section is to use the spherical variance and maximum and minimum

prediction variances to examine the effects of losing design points during experimentation on the

' Graphical Assessment of Prediction Capability 121
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prediction capability of a central composite design. A ccd with design parameters a = 1.682 and

no = 3 has been chosen for the illustration. This design is rotatable, however, rotatability will be

lost when points are dropped from the design.

lnitially, consider the loss of one of the axial points, specifically, the point ( — 1.682 0 0 ),

from the design. The resulting change in the quality of prediction on spheres is depicted in Figure

22. The prediction variances have not been weighted by the size of the designs in this case. The

original prediction variance curve for the complete ccd is indicated by the * symbol on the graph.

It is very nearly identical to the minimum prediction variance curve for the design after the axial

point has been lost. At some locations at least the quality of prediction is maintained.

On the average the prediction variances have not been greatly disturbed by the loss of the

point. The greatest loss of precision occurs for the estimated responses at the locations of maxi-

mum prediction variance. The locations of maximum prediction variance have been computed

through the MINOS algorithm (section 3.2.4) for radii to These locations tum out to be on

a line from the origin through the location of the lost axial point - exactly where one might expect

the greatest loss in precision to occur. Judging from the small average prediction variances on

spheres, the prediction variances at most other locations appear to be little changed by the loss of

the point.

Now, suppose a second axial point is lost during the experiment. In this example, the points

( -1.682 0 0 ) and ( 0 0 1.682 ) have been dropped from the design. Figure 23 shows the

spherical variance, maximum and minimum variance curves for the depleted design. The prediction

variance curve obtained with the full ccd is included for comparison. The prediction capability of

the design has not diminished substantially from that of the design with one axial point lost, (see

Figure 22; the * symbol again denotes the original prediction variance curve of the complete ccd).

With the loss of two axial points the prediction capability of the ccd has weakened at lo-

cations on the lines through the region center which go through the lost axial points. The largest
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prediction variances, however, occur at the locations given in Figure 24. The maximum prediction

variances on spheres also occur at another set of locations. In this set, the roles of x, and x3 are

interchanged and all levels are now positive. These locations are on lines which are close to the

lines going through the lost axial points.

The results of Figures 22 and 23 indicate that the prediction variances at locations near the

center of the region are not appreciably changed by the loss of the axial points. Although some

prediction capability is lost at locations in lines through the origin in the general directions of the

lost axials, the prediction variances there may still be considered reasonable. In conclusion, the

quality of the predicted responses obtained with the rotatable ccd is found to be fairly robust to the

loss of one or two axial points.

The illustrations of this section by no means form an extensive study of the prediction capa-

bility and robustness to loss of design points of the family of central composite designs. The pur-

pose of this section was to show how the graphical method may be used to assess the prediction

capability and robustness to loss of design points of a ccd. The illustrations presented throughout

the chapter, while selected to give some applications of the graphical method which may prove to

be useful to the experimenter, are intended to show the use and interpretation of the prediction

variance functions and their graphical representation.

5.2 Minimum and Nearly Minimum Point Designs

5.2.1 A Comparison of Small Composite and Hybrid Designs

The small composite and hybrid designs were both developed as economical alternatives to

central composite designs. Thus, it is natural to compare the prediction capabilities of the two
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design types. A three variable small composite design (scd) such as that listed in section 2.4.4 with

11 = 1//3, and the hybrid designs identilied as 310 and 3llA by Roquemore (1976) (see section

2.4.5) have been selected for comparison. Each design has one center run and N = ll design

points. The number of design points is just one over the minimum number required to estimate

the parameters of a second order model in three variables. The three variable hybrid designs 310,

31 1A and 31 1B appear in Table 5.

Spherical variance comparisons of the three designs appear in Figure 25. lt is evident that

overall the scd does not perform as well as the hybrid designs. The hybrid 310 plus one center point

design predicts extremely well near the region center. However, its average prediction capability

quickly diminishes as one predicts on spheres further from the region center. The 311A design, on

the other hand, predicts poorly at locations near the center, but relatively well at locations near the

periphery of the region.

Comprehensive pictures of the prediction capability on spheres are presented in Figure 26 for

the scd, 27 for the hybrid 310 and in Figure 28 for the hybrid 31 1A design. From the plots it is seen

that the scd provides the least consistent estirnation of the response on spheres. There is also a

sizeable amount of dispersion in the prediction variances on the outer spheres of the region obtained

with the 310 design. The variances of the estimated responses are nearly equal on spheres

throughout the region for the hybrid 31 1A design.

For the hybrid 310 design the poorest prediction variances on the outer spheres occur where

the x3-axis intersects the spheres. These are points along the lines through the origin directed at the

axial points (0 0 11) and (0 0 — 11 ). The variances at these locations are slightly higher when

x, is positive. The best prediction variances on the outer spheres can be found at locations for

w11ich x, and x2, the variables involved in the two variable ccd portion of the hybrid, are the same,

and the level of the third variable is slightly smaller in magnitude than the other two.
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Table 5.
Roquemorc's Hybrid Designs in Three Variables

310* 311A 311B

0 0 1.2906 0 0 2 0 0 ./6
0 0 -.1360 0 0 - 2 0 0 - ./6
-1 -1 0.6386 - ./2 — „/2 1 -0.7507 2.1063 1

1 -1 0.6386 ./2 - ./2 1 2.1063 0.7507 1
-1 1 0.6386 - „/2 „/2 1 0.7507 -2.1063 1

1 1 0.6386 „/2 «/2 1 - 2.1063 — 0.7507 1
1.1736 0 - 0.9273 2 0 - 1 0.7507 2.1063 - 1

- 1.1736 0 - 0.9273 - 2 0 - 1 2.1063 - 0.7507 — 1

0 1.1736 -0.9273 0 2 -1 -0.7507 -2.1063 -1
0 - 1.1736 — 0.9273 0 - 2 - 1 - 2.1063 0.7507 - 1

0 0 0 0 0 0

* The hybrid 310 design does not require a center run to have a nonsingular X'X matrix.

For the illustrations of section 5.2.1 a center run is affrxed to the hybrid 310 design.
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It is interesting that for the scd the largest prediction variance on a sphere of radius r corre-

sponds to the response at the locations (61 a -61), (61 -61 61),

( -61 Cl 61) and ( -61 -61 -61), for 61 > 0, on the sphere. That is, the points of maximum pre-

diction variance on a sphere lie on lines from the origin through the factorial points which were not

included in the fractional factorial portion of the scd. Analogously, the locations of the best esti-

mated responses on a sphere are found where vectors from the origin through the factorial points

of the sed intersect the sphere.

5.2.2 A Comparison of Some Small D·Efficient Designs

The prediction capability of the econornical designs due to Box and Draper (1971, 1974),

Hoke (1974) and Notz (1982) will now be considered. The three variable Box-Draper design is

given in section 2.4.8. The Notz design is listed in section 2.4.6. The lloke design selected for

comparison is the design cornmonly referred to as Hoke D2. This design is the one listed in section

2.4.7.

These particular designs were chosen for comparison because they have comparable D-

efficiencies on a unit hypercube. The D-efliciencies of the three designs are presented in the chart

below. It is of interest to know if they also have similar predicting abilities throughout the region

under consideration.

D-efliciencies for example designs

Design N D-efficiency ( % )

Box-Draper 10 89.2
Hoke D2 10 84.3
Notz 11 84.3
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The spherical variance curves are presented for comparison in Figure 29. The maximum and

minimum prediction variance curves along with the V' appear in Figures 30, 31 and 32.

On spheres which lie within the unit cube the designs have similar prediction variance pic-

tures, with the Box-Draper design performing somewhat better than the other two. A comparison

with the spherical variance curves of Figure 15 indicates that in this region these designs also per-

form well compared to some of the ccds considered in section 5.1.1. The accuracy of prediction is

fairly consistent on spheres inside the unit cube for the Box-Draper and Notz designs. However,

there is notable dispersion in the prediction variances on spheres inside the unit cube and

throughout the region obtained with the Hoke D2 design.

On the average, at least, the precision of the estimated responses on spheres outside the unit

cube quickly diminishes for the example designs. This is not surprising since these designs were

not constructed to predict the response in this region. They have no design points, and, conse-

quently, no f1rst~hand information, beyond the comers of the unit hypercube. The Hoke and Notz

designs, in particular, do not perform well in this region. The prediction variances on spheres are

very unstable under both designs. Clearly, the Box~Draper design has the best overall prediction

capability throughout the region.

5.2.3 Comparisons of Computer Generated D-Optimal Designs

The remaining minimum point designs to be investigated in this section are the computer

generated designs of Mitchell and Bayne (1978) and Welch (1982).

The designs listed in Table 1 of section 2.4 were generated to be D-optirnal among all designs

of the same size consisting of points on the unit cube. The D-efficiencies of the ten point designs

are equal to 86.3%. The pictures of the prediction capability of the MB10 and WCIO designs are

nearly identical. Only the MB10 design will be used for illustration. The WD10 design, which has
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the same D-efficiency, has notably higher spherical and maximum prediction variances on spheres

ir1 the region. It is gratifying to note that Welch’s compromise design, WC10, which resulted from

an effort to improve the prediction variances over the design points, yields a better overall prediction

variance picture than the WDl0 design.

Compaxisons of the average prediction variances on spheres for the MB 10 and WDl0 desigrs

may be derived from Figure 33. The spherical variance curve obtained with the WCll design is

also plotted there. Plots depicting the more complete behavior of the prediction variances on

spheres are in Figure 34 for MBIO, Figure 35 for WD10, and in Figure 36 for WCll.

The WCll design has a D-efficiency of 94.4%. Although WC1l has a higher D-efiiciency

than the ten point designs, its predicting ability is not as good in general. The MBIO design, and

the WC10 design as well, in particular, have better overall prediction variance pictures and still have

reasonable D-efficiencies.

In this and the preceding section it has been shown that designs with the same D-efficiencies

do not necessarily possess the same ability to estimate the response. Nor is a design with a high

D·efliciency relative to competing designs guaranteed to produce more precise estimates of the re-

sponse or better behavior of the prediction variances on spheres throughout the region. The D-

efficiency criterion was not developed to be a measure of the prediction capability of a design.

Obviously, from the illustrations presented here, it should not be used as one. The plots of the

spherical variance and maximum and minimum prediction variances on spheres throughout a re-

gion very ably·depict the nature of the prediction variances for a design.
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5.3 Measuring Deviation from Rotatability

Throughout the illustrations of this chapter, the dispersion in the prediction variances on

spheres has been discussed. The amount of dispersion in the variances on a sphere indicates how

consistent the precision of the estimated responses is on the sphere. Since the dispersion ir1 the

prediction variances on a sphere measures the similarity of the variances on that sphere, it is rea-

sonable to use a measure of the dispersion to guage the deviation from rotatability for a design.

Thus, the RofV will be used in this section as a means of deterrnining how near a design is to

possessing the rotatability property of equal prediction variances on spheres.

The ranges of the prediction variances on spheres about the design center will be plotted for

the 32 factorial design and the three variable hybrid designs of Roquemore (1976). These designs

are presented in the papers by Khuri (1988) and Draper and Guttman (1988) to illustrate their in-

dices of rotatability, (see section 2.3.4). The conclusions drawn from the plots representing the

dispersion in the prediction variances on spheres will be compared with the results obtained with

the rotatability indices of Khuri and of Draper and Guttman where applicable.

5.3.1 The Deviation from Rotatability of a 32 Factorial Design

The ranges of the prediction variances on spheres obtained with a 3* factorial design are de-

picted in Figure 37. The prediction variances for the design in two variables have been considered

on spheres of radii ranging from r = 0 to r = x/2 = 1.4142. Note that the variances have not been

weighted by the size of the design.

The RofV on a sphere is the distance between the maximum and rninirnum prediction vari-

ance curves at the radius of the sphere. For example, on a sphere of radius 1.40 the maximum
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prediction variance occurs at x, = dz 1.40, x2 = 0 and is equal to 1.496; the minimum prediction

variance at x, = zb 0.98995, x2 = dz 0.98995 is 0.776. Thus, RolV(r= 1.40) is

1.496 — 0.776 = 0.72 which is relatively large considering the size of the prediction varianccs

throughout the region. The locations of the maximum and minimum prediction variances were

generated by the application of the MINOS optimization algorithrn specifying r = 1.40 for this

design.

Beyond a radius of about 1.0 the prediction variances on a sphere appear to be far from equal,

indicating that the design is not close to being rotatable on those spheres. It should be noted that

the increased dispersion observed on the outer spheres of the region may partially be an artifact of

the larger prediction varianccs which occur in that part of the region. Obviously, as the variances

get larger the observed variability among them will naturally increase. However, for the non-

rotatable designs considered in this research, the RolV was always observed to increase as the radius

increased. Thus, the variances on a sphere on the outskirts of the region are expected to be more

dispersed than the variances on a sphere closer to the design center. The researcher should be

cautioned to take into account the magnitude of the prediction varianccs when considering their

dispersion.

Khuri found the 32 factorial design to be 93.08% rotatable with his measure of rotatability.

Although the prediction varianccs on a sphere are nearly equal when the radius of the sphere is

small, it is apparent from Figure 37 that there is a fair amount of dispersion among the variances

on larger spheres. In light of this, Khuri’s assessment of the degree to which the 32 factorial design

possesses the rotatability property seems a little high. Unfortunately, there are no guidelines avail-

able to indicate how near rotatable a design is which is measured to be 93.08% rotatable.

The index of rotatability due to Draper and Guttman is calculated to be m= 3.73 for the 32

factorial design. Based on the benchmark values for m given in their work (given in Figure 3 of

Draper and Guttman (1988)), this value correctly indicates that the outer prediction variance con-

tour of the 32 factorial is shaped like a square with rounded comers. Clearly, the outer prediction
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variance contour is very different from the outer variance contour of a rotatable design, which is a

circle in two variables and is indicated by an index of rotatability of m = 2. The index of rotatability

indicates that the variances are not equal on the outer spheres of the region. This is the only in-

formation provided by Draper’s and Guttman’s index. To determine the disparity among the var-

iances on a sphere passing through the outer contour, or any contour, it is necessary to look at the

values of the other contours which pass through the sphere. The dispersion in the values of the

prediction variance contours which pass through the sphere is the dispersion in the prediction var-

iances on that sphere. The index of rotatability does not indicate the better behavior of t11e vari-
' ances on the irmer spheres of the region.

5.3.2 The Deviation from Rotatability of Hybrid Designs

The three variable hybrid designs constructed by Roquemore, and labelled as 310, 31 1A and

311B, are considered to be nearly rotatable designs. The dispersion in the prediction variances on

spheres for the 310 design is produced in Figure 38. This particular 310 design has been centered

to look at the behavior of the prediction variances on spheres about the design center. Also, the

form of the design used here has ten design points and no center runs, unlike the 310 hybrid in

section 5.2.1. The maximum and minimum prediction variance curves corresponding to the 311A

and 311B designs are plotted in Figures 39 and 40 respectively. Both of these designs have 11 design

points, one of which is a center point. Note that the variance axes of Figures 39 and 40 are on a

larger scale than that of Figure 38. This was done to get a more detailed picture of the dispersion

in the prediction variances for the 311A and 31 1B designs.

Clearly, the 310 hybrid design is the least rotatable of the three. Once again, the amount of

dipersion on the outer spheres may not be as substantial as it appears due to the increased size of

the variances on those spheres. The 311A and 311B designs have nearly equal prediction variances

on all spheres throughout the region, indicating that they are very near to possessing the rotatability
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property. There is somewhat more dispersion in the prediction variances on spheres for the 31 IA

design than the 311B design. This contradicts Roquemore’s conclusion that the 311A design is the

most nearly rotatable of the three. His conclusion is based on the observation of the shape of the

prediction variance contours, and, in particular, the outermost contour in the design region, for each

design. It has been seen that the mcasurement of deviation from rotatability for a design via the

shape of the contours alone can be misleading and may lead to erroneous conclusions about the

consistency of the prediction variances on spheres for a design.

The application of Khuri’s measure of rotatability to the hybrid designs finds the 310, 311A

and 311B designs to be respectively 94.89, 99.40 and 98.99 percent rotatable. It is felt that the

percent rotatability measure for the 310 design is high considering the dispersion in the variances

on the outer spheres of the region. The measures for the 311A and 311B designs appear reasonable.

They are in keeping with the conclusion that the 311A and 311B designs are nearly rotatable.

However, using Khuri’s measure one would conclude that the 311A is more near to possessing the

rotatability property than the 311B hybrid design.

Since the 310 and 31 IA hybrid designs are not symmetric, that is, their third design moments
i

are not all equal to zero, Draper’s and Guttman’s index of rotatability cannot be applied to these

designs. For the symmetric 31 IB design the index of rotatability is m= 1.764. This is quite close

to the value of m= 2, the index of rotatability for a rotatable design. Thus, the outer prediction

variance contour of the 311B design is nearly spherical in shape. The implication is that the 311B

hybrid design is a nearly rotatable design. .

The indices ·of rotatability introduced by Khuri and by Draper and Guttman do not actually

measure the dispersion in the prediction variances on spheres. Instead, they attempt to quantify the

difference between certain characteristics of a non-rotatable design, specifically the design moments

and shape of the prediction variance contours, and the corresponding characteristics of a rotatable

design. They are artificial measures of deviation from rotatability.
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The RofV, on the other hand, truly measures the dispersion in the prediction vaxiances on

spheres. Plots of the maximum and minimum prediction variance functions enable the depiction

of the dispersion in the variances across all spheres in a specified region. From the plots a com-

prehensive description of the deviation from rotatability of a design may be obtained. A single-

valued measure of deviation from rotatability, such as those introduced by Khun and by Draper

and Guttman, can not satisfactorily characterize the dispersion in the prediction vaxiances for a

design in this fashion. Nor can such measures indicate the quality of prediction for a design which

is one of the features of the picture of prediction capability generated with the graphical method

presented in this thesis.
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Chapter VI

VI. Concluding Remarks and Further Research

6.1 Concluding Remarks

The estimation of the response is an important consideration in the exploration of a response

surface. It is reasonable to look at the quality of prediction on spheres in order to assess the overall

prediction capability of a design. The spherical variance and the prediction variance dispersion

measures provide. a comprehensive description of the behavior of the prediction variances on a

sphere. Plots of the spherical variance and maximum and minimum prediction variance functions

against the radius of the sphere permit an honest assessment of the prediction capability of a design

in some region. The plots give an overview of the changing prediction variances in the region that

cannot be achieved with a single measure of prediction capability. A record of the locations of

maximum a.nd minimum prediction variances on spheres throughout the region gives the researcher

knowledge of where prediction is at its worst and best. This knowledge can be used to advantage

in the interpretation of results and the planning of the next step in the exploration of the response

surface.
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The plots can be used to exarnine the effects on the prediction variances of a change in the

design plan, whether it be unforseen, such as the loss of a design point, or planned, such as the

augmentation of a design. Deviation from rotatability for a design can be measured from the

maximum and minimum variance curves representing the range in the variances on spheres. The

graphical representation of V' and the maximum and minimum prediction variances also allows for

the easy comparison of competing designs. The plots may be used as the sole basis or in con-

junction with other design criteria to select an experimental design.

Naturally, there are many factors to be considered in the assessment of the prediction capa-

bility of a design in a given experimental situation. Whether the picture of the behavior of the

prediction variances is acceptable or not is a judgement to be made by the researcher. The spherical

variance and prediction variance dispersion functions and their graphs provide a useful means of

assessing the quality of the estimated responses on a sphere and throughout the region.

6.2 Directions for Further Study

The principal goal of this research was to introduce graphical methods of assessing the pre-

diction capability of an experimental design. In particular, it was desired to display the behavior

of the prediction variances at locations which are the same distance from the center of the region

under consideration. The spherical variance and PVD measures are a most satisfactory result of this

endeavor. This research project has also produced several directions for further study in this area.

Trends in the spherical variance and PVD measures for the second order model case need to

be further investigated. From the illustrations of Chapter V, it is believed that, in most cases, the

spherical variance, and the maximum and minimum prediction variance functions, decrease from

a radius of r = 0 to some minimum value, and then increase steadily beyond that point. It would
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be of interest to determine the relationship between the radius at which the spherical variance begins

climbing and the position of the design points in the region.

For certain designs the RofV and VofV are not necessarily invariant to the number of center

points of the design. When setting up an experimental plan, it would be useful to know if the

dispersion ir1 the variances on spheres could be appreciably improved with the addition of a few

center points to such a design. To this end, a study of the effects of the addition of center points

to designs which do not satisfy the conditions of Theorems 4.2.4 or 4.2.5 is warranted.

Some designs, such as the designs of sections 5.2.2 and 5.2.3, were constructed to predict at

locations on or within the unit cube. The consideration of the prediction variances on spheres

within the cube can be accomplished as described in this thesis. ln the illustrations of sections 5.2.2.

and 5.2.3 the spherical variance and the maximum and minimum prediction variances on spheres

were computed under the assumption that it was of interest to predict at all locations in a spherical

region. However, if the response is to be estimated only at locations on spheres of radius greater

than l which lie on or within the unit cube, the computation of the variance functions should be

modified to reflect the cuboidal region of interest. It would be a simple matter to modify the

MINOS algorithm to obtain the optimal prediction variances at locations on or within the unit

cube. The modification of the form of the spherical variance, however, will be more difficult.

The most obvious extension to the results presented here is to derive forms for the spherical

variance and PVD measures for other models besides first and second order polynornials. Also, it

would be useful to develop fonns for the prediction variance functions under more general as-

Sumptlous ou the error term of the model or different methods of estimation of the model param-

eters, such as ridge regression estimation.

The forms of the prediction variance functions depend on the assumed model. A measure

which describes the bias ir1 the estimated responses at locations on a sphere induced by inadequate

specitlcation of the model would provide a very informative complement to the spherical variance
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and PVD measures. Together, these measures could be used to develop comprehensive pictures

of the prediction capability and robustness to model misspecification for a design.

A broad area of further study to which the ideas developed here could be applied is design

augmentation. It will be necessary to create an algorithm to implement the sphencal vaxiance cri-

terion presented in section 4.3. There are other criteria which might be used to select a point toi

be addedito a design. For example, a criterion which selects the new point in order to minimize

some function of the bias, or, perhaps, more appropriately, the mean square error of prediction, at

locations in a region would merit development and further investigation.
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Appendix A

Appendices for Chapter III

Apperzdix A.] ·

Optimization of the Prediction Variance UnderCase I for k = 2 Variables

Suppose that 0 < X, < K2 . We wish to find values of 2, and 22 which optimize the function

given by (6.1) with k = 2 under the constraint that 2} + 2} = rz . For ease of notation, write

L(2l , 22) =
ä

-4- K12?

+Theconstraint implies that 2} = r} — 2} , and, thus, we may write
U

L(zl, 22) =
é + (K2 — 7tl)z§ + Klrz . (A.l.1)
1
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Since (K2 — A,) > 0 we see that to maximize (A.l.l) zi should be made as large as possible

(see Figure A.l). Under the constraint the largest possible value of zi is ri ; that is, 22 = 1 r , will

maximize L. Thus, 2, = 0 to satisfy the constraint. The maximum value of L is then

L(2, =0, 22= 1r) = %+7t2r2

where K2 is the largest eigenvalue of (X
’X)"

.

Conversely, to minimize L(z, , 22) the weight of zi should be made as small as possible.

To do this, take 22 = 0 . The condition that zi + zi = ri gives 2, = 1 r . The minimum value

of L(z, , 22) occurs for 2, = 1 r and 22 = 0 and is

L(2,= 1r,N

where K, is the smallest eigenvalue of (X
’X)“‘

.

If X, = X2 then L(2, , 22) is a constant for zi + zi = ri , (see Figure A.2). In this case, the _

maximum and minimum values of L are trivially the same.
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Appendix A.2

Optimization of the Prediction Variance Under Case II

Under the formulation of Case II in section 3.2.3, the optimization of Var(y(;))/oz on the

surface of a hypersphere of radius r centered about the point; = Q is equivalent to the optimization

of Var(;i(1;¤))/oz subject to }_v = ; — L1 being on a sphere of radius r centered about y = Q — lg.

The solution to this constrained optimization problem may be found using the method of

Lagrangian multipliers by solving the system of simultaneous equations defined by equation (3.2.9).

The development of the solutions to (3.2.9) is presented in this section.

Let Q be as defined in (3.2.9) and jr represent the Lagrangian multiplier. By (3.2.4), Q can

be expressed as

Q = ß + ZA; — 2ZAm + m’Am — 11(Z; — rz)

where z = (2, 2, 2,,)’ = P'; = P'(y + Lt) and L1 = (m, m,
m,,)’

= P’L1. The k >< k matrix P
I

is the orthogonal matrix which decomposes the matrix (W’W)" into the diagonal matrix A con-

taining the positive eigenvalues of (W'W)".

It is convenient to write the set of partial derivatives , ,32- in matrix form °
ow, ow, ow,

as

ÄQ_ = (
ÖQ ÖQ öQ )» ‘

öl! ÖWI öwz
U.

öwk ·
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(see Graybill (1976)) for some defrnitions and rules of matrix derivatives). By the chain rule for

derivatives and with -2% = = I, the identity matrix, (3.2.9) is equivalent to

vw ow 0; Ö;

and 29 = 0.op Q

Now, for g = P'; and P an orthogonal matrix,

= = p·ÄQ. = QÖ; 0; 0; Ö;

implies that

0;

Thus, equation (A.2.1) is satistied by the solution to the equations

‘ —(£=2/\z—2/\m—2uzOz
.2.2= 2<^ — ul); — 2Am (A )

= Q

and = g'; — rz = 0. For g ¢ Q (Case II), the solution vector, go, is then

Zo =

<^whereu is such that 3,,2,, = rz. In terms of the x·variab1es, the solution to (A.2.l) and a stationary

point of the prediction variance on the surface of a hypersphere with center at ; = Q is given by

Pzo = P<^
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Note that ;,,’;c,, = rz.

The status of the stationary point go, and, hence, go, depends on the matrix of second partial

derivatives of Q. Let H(;) represent the matrix of second partial derivatives evaluated at the point

_z, for the problem expressed as in (A.2.2). Then,

H(z) = 2(^ — ul)
k, — ii 0 0

0 X2 “ [J. ..„ 0

= ¤ �
.

lf H(g,,) is a negative defrnite matrix, then the stationary point will be a location of maximum pre-

diction variance on the sphere. Conversely, the stationary point will represent a location of mini-

mum prediction variance if the Hessian matrix H(g,,) is positive defrnite.

First consider the solution of (A.2.2.) to find the location(s) of the maximum prediction var-

iance on a sphere of radius r. In order for H(g,,) to be negative defrnite the quadratic form

, " 2

must be less than zero for all I = (I, I, Ik)' ¢ Q. Only values of ii which are larger than kk, the

largest eigenvalue of (W'W)" satisfy the requirement for HQ) to be a negative defrnite matrix. To

verify this statement, suppose ii is such that k, < k, < < kk_, < tt < kk and let

I‘°' = (0 0 0 l)’. Then,

I*’P/(2));* = (kk · M) > 0 -

Thus, there exists a vector I
#‘=

Q for which I’H(g,)g is not less than zero. Therefore, H(;,,) is negative

defmite provided ii > kk. Thus, _z,,, or go = P30 , is a point of maximum prediction variance on a

sphere of radius r if pi > kk and = 0 . The second condition on ii is equivalent to
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. k 2: 2 2 2
ZOZ0=i=

l

Note that ;„’;c„ = ;„'P’P;„ = _2j„';„ = r2 since P is an orthogonal matrix. Thus, _„x;„ is a location of

maximum prediction variance on a sphere of radius r. _

Similarly, it can be shown that H(_.z„) is a positive detinite matrix for X, > 0 for all '

i = 1, 2, ..., k if and only if u < K, the smallest eigenvalue of (W’W)". Consequently, go , or

gro = P;,, is a location of the minimum prediction variance on a sphere of radius r if u < Ä., and
k ki 2 2 2Pihä) mi ‘ '·
Again the second condition on ti guarantees that ;„ is a point on the sphere.
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Appendix A.3

Description of the MINOS Optimization Algorithm

The MINOS optimization package (Murtagh and Saunders (1983)) is a fortran-based algo-

rithm. Familiarity with the fortran language is helpful but not necessary to use the package. The

MINOS 5.1 version was used to solve the optimization problems in this thesis.

MINOS is designed to solve general constrained optimization problems. The objective

function, the function to be optimized, may be linear or nonlinear in the variables. For the opti-

mization of the prediction variance the objective function is a nonlinear function in the variables

xl, x2, , xi of the form

For the second order model case, _x° = ( l x, x,, xi xi x,,-,x,„)'. (X’X)" is a

matrix of constants with respect to the optimization.

The constraints of the problem may be linear, nonlinear or both. In this case the variables
k

are constrained to be a point on a sphere of radius r. That is, Zlxi = ri, a nonlinear constraint.

To solve the problem of optimizirrg a nonlinear objective function subject to nonlinear con-

straints MINOS uses a projected augmented Lagrangian algorizhm. The reader is referred to

Murtagh and Saunders (1983) and the references listed there for a detailed description of this algo-

rithm. Basically, through a series of iterations the algorithm attempts to optimize the objective

function subject to linear constraints using a modified method of Lagrangian multipliers. The

nonlinear constraints of the problem are replaced by linear approximations in this algorithm.
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To implement the MINOS package the user must input the form of the objective function

and the first derivatives or gradients of the objective function. The constraint function and its first

derivatives must also be specified. It is not necessary that functional forms for the first derivatives

be known, however, the program will run more efliciently if they are given. The objective and

constraint functions and their respective derivatives are specified in the MAIN program.

Other information about the problem is input into a separate file called the MPS file. In this

file the number of variables in the problem, the type of optimization requested, that is, whether it

is desired to maximize or minimize the function, and the value of the constraint, rz in this case, are

specified. Initial values for the variables must be given in the MPS file. Bounds may be placed

on the possible values of the variables here also. lt is recommended that the variables be bounded

to use the program since this often greatly improves the efficiency of the algorithm. Limits on the

number of iterations used and other parameters of the algorithm may also be specified in the MPS

file. The MINOS user’s guide (Murtagh and Saunders (1983)) lists the parameters which the user

may specify in the algorithm. Descriptions and examples of their use are found there as well.
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Appendix A.4

Derivation of the Spherical Variance Under Case II

The spherical vaxiance under case II is developed in section 3.2.5. In this section the interim

steps required for the dexivation of V' in equation (3.2.14) are given. ·

lr

Let U, = {; : Zlxf = r*} denote the surface of a hypersphere of radius r in the x·variables.
V

/<

In the w-axis system U, is represented as U;“ = {y : ,Xl(w, + /1,)* = r*}. Further, let *1** = L), d;

and WQ = fwd; denote the surface of the hypersphere in the x -axis and w-axis systems respec-

tively. Then, the average prediction variance on the surface of a hypersphere of radius r centered

about ; = Q is W

-
‘I’ ^Vr *' Egjyr VW (.V(£))d2¢.

= lvl-”— Var (}i(w))dw2 lu? — — ‘
6

By (3.2.4)

1 k 2 k
" 2Vr lglkizi “ zlglkimizi"I'for

Z = P'; = P'(1_g + h). The transformation of y into Z takes the surface U;" into
lr

U, = {Z: 2:12} = r*} and the surface area WQ into
‘I"‘

= jur dZ.

Before proceeding, recall that
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TIU zidg = 0

and

2
= 62=is

the second order spherical region moment as defined in section 3.2.3. Now, simplification of

(A.4.l) yields

2
1 k 2Vr = WWIU dg + zid;

7 Z; 1 Y

Ic k 2_
2 E ZidZ + E}ci}'Tliz=1

' i=1 '
1 k

" 2
i

= l- + li k 7. +
k 7.- ?

N k igl I t§1 lm!
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Appemlix A.5

Derivation of the V0fV Under Case II

Using the notation set forth in Appendix A.4, the variance of the prediction variances on the

surface of a hypersphere defined by equation (3.2.2) for case II can be expressed in the w-vanables

as

V0_/V(r) = WW L]., [Var (1i(y))/02 — Vrjlzdy .

Application of the results of (3.2.4) and (3.2.14) and a transformation of variables yields

k k k
läliz? —

Zglkimizi1

16 k 2 2— <—- + 0*2 Z Xi + E Kimi) dg . (A.5.l)
· N z=1 z=1

k 2 k k 2

' z=1 z=1 i=1

After expansion the integrand of (A.5. 1) becomes

k k k k k k k kiälkgzf + Zigljglliljzizqz igljglxikjzf
g<j g<j

2 2 3 2 2

2 2 2
+ Ai mi Zi'+'+

4Ö (2 ?t?m·z + zz 7t-?»-m-z- + 22 7t?»·m-z-> + 62(z >.)22 zzl Kjzjzz Kjljjj 2 I
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Integration of (A.5.2) over the surface of the hypersphere and subsequent division by the

surface area
‘P"

yields

k k k k k .= 6,, 3 2} + 2622 }; Z 2222 — 6§( 3 A2)2 + 462( 3 ifm?)
z=1 z=1j=1 z=1 z=1

z<;
4 4 4 2

=QL: 2.} + —?-2;;;.,22 — L-(2292 + 4I-(2;.},71})k(k + 2) k(k + 2) ¤<1 k2 k

where 0,, = ———:!-1-— and 022 = ——Ü--— are the fourth order spherical region moments defined
k(k + 2) k(k + 2)

in section 3.2.3. The expression for the VotV on a radius r given by equation (3.2.15) follows easily

from this result upon recognizing that (Eli): = ZX? +
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Appendix A.6

Derivation of the Spherical Variance Under Case III for k= 2 Variables

A general form for the spherical variance when the model is second order is given by (3.2.16),

V' = tr{S(X'X)'l}

In the case where there are two independent variables present in the model the product of the

spherical region moment matrix S and the 6 >< 6 symmetric matrix (X’X)" is

1 0 0 0,2 G2 0 C00 C01 CO2 CO3 CO4 C06
0 G2 0 0 0 0 C01 Cll C12 C13 C14 C15

— 0 0 G2 0 0 0 CO2 C12 C22 c23 C24 C25
0,2 0 0 G4 C22 0 CO3 C13 C23 C33 c34 C35
G2 0 0 C22 O4 0 C04 C14 C24 C34 C44 C45 _
0 0 0 0 0 622 cos CIS C25 C35 C45 C66

The element in the i-th row and j-th column of (X'X)" is denoted by cü where the numbering of

the rows and columns begins with zero.

Since the trace of the resulting matrix is the quantity of interest, only the diagonal elements

of S(X'X)" are presented here. The diagonal elements are given by row and column below.
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Row Column Diagonal Element

0 0 600 + o2(603 + 604)

1 1 628*
24

45

5 022655

The trace of the matrix is the sum of the diagonal elements. Hence, gathering like terms, the

spherical variance for a second order model in two variables is

Vr _ 00 +
2
( 0,i+2 iö +

2 i+2,i+2 SS 34— 6 02 [Z1 26 + 6 6 + o22(6 + 26 ).
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Appendzx A. 7

Program to Generate the VofV Under Case III for k= 2 Variables

A computer macro which evaluates the VoiV as given by equation (3.2.17) for a second

order model and design in two variables is presented in this section. The macro is written in the

SAS programming language using the MATRIX procedure.

* *********#***$¥*##****¥**#*****##*******8****#*¥***********¥**;

* This SAS macro computes the spherical variance and the VoN *;

* for second order designs in two variables. *;
* The program is formulated using the MATRIX procedure in SAS *;

* The spherical variance and the VofV are computed for a range *;

* of radii, from r=0 to r= 1.40 in this case. *;

MACRO COMPUTE ·

PROC MATRIX ;

FETCH X DATA=DESIGN (DROP=DESIGN);

FETCH DESIGN DATA=DESIGN (KEEP= DESIGN);

SRAD = J(1,21);

SVR = J(1,21);

SVOV = .l(1,21);

N = NROW(X); -

X = J(N„1)||X:
XPX = X’*X;

C = INV(XPX);
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* N is the number of design points. *;

* X is the model-matrix for the design. *;

* C is the inverse of the X'X matrix. *;

* An element of C is designated by C(i,j) *;

* for rows,columns i,j = l,2,3,4,5,6. *;

Tl = C(6,6) + 2#C(4,S);

T2 = C(2,2) + 2#C(1,4);

T3 = C(3,3) + 2#C(l,S);

T4 = C(2,3) + C(l,6);

T5 = C(2,5) + C(3,6);

T6 = C(4,4) + C(5,5);

PO = J(6,6,0);

PO(l,l) = C(l,1);

'I'T2l = (C(2,2)+C(3,3)+(2#(C(l,4)+C(l,5))))||(2#C(l,2))||

(2#C(l„3))1IC(lJ)llC(l„1)iI0:
"VT22 = 0|lC(l„1)l10||0||0lI0:
TT23 = 0l|O|lC(1„1)ll0I|0Il0:
TV24 = OIIOIIOHOHOIIOZ

TT2S = 0|}O||O||0|lOli0;

"VT26 = OIIOIIOIIOIIOIIO;

Tl”2 = ”l'I'2l/[TT22//T'l"23/fITI'24//'l'I°2S//'I'T26;

TF41 = ((3#T6)+Tl)II(2#((3#C(2„4))+T5))lI(2#((3#C(3-5))+C(3·4)+C(2„6)))
!!((3#T2)+T3)|I((3#T3)+T2)I|(2#T4):

TT42 = 0!l((3#T2)+T3)Il(2#T4)ll(6#C(l„2))l|(2#C(l„2))II(2#C(l.3));

TT43 = 0|IOII((3#T3)+T2)lI(2**C(l„3))ll(6#C(l„3))||(2#C(1�2));
TT44 = O|l0lI0Il(3#C(l„1))llC(l„1)lI0:

TNS = 0ll0lI0lIOII(3#C(1„l))||0;
TT46 = 0llO!l0lI0li0llC(l„l);

l
TT4 = 'I'l'4l/fl'T42//TT43/f[’l‘44/fl'l'4S//l'l‘46;
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T1'61 = O|[0||O||((5#C(4,4))+C(5,5)+T1)||((5#C(S,5))+C(4,4)+T1)||

(2#(C(4.6) + C(5.6)));
TT62 = 0|!(5#C(4,4)+C(5,5)+T1);|(2#(C(4,6)+C(S,6)))||(2#(5#C(2,4)+T5))

TT63 = 0||0|/(5#C(5,5)+C(4,4)+T1)||(2#(C(3,4)+C(3,5)+C(2,6)))||

(2#(5#C(3,5)+C(3,4)+C(2,6)))/i(2#(C(2,4)+T5));

T1'64 = 01|0||0||(5#T2+T3)||(T2-+—T3)|{(2#T4);

'IT65 = 0|\0|}01|0||(5#T3 +T2)||(2#T4);

TT66 = 0|}0|!0I|0|}011(T2-1-T3);

TT6 = T1"61/H’I“62//'1"I“63//'l'I'64/f1"T65//TT66;

TT81 = OHOIIOIIOIIOIIO;
TT82 = OHOIIOIIOIIOIIO:
TT83 = 01I0I|0|l0|I0H0:
'IT84 = 0||0||0!\(35#C(4,4)+5#T1+3#C(5,S))l|(S#T6+3#T1)}|

(2#(5#C(4,6)+3#C(5,6)));

TT85 = 0||0{|0||0[1(35#C(5,S)+5#T1+3#C(4,4))||(2#(5#C(S,6)+3#C(4,6)));

TT86 = 0!|01|0|/0I|0||(S#T6+3#Tl);
”I'l‘8

= T'I'81//'1’1'82//'1"1"83/f['T84//’1’I'85/f1’1“86;

S=1 0 0 0.5 0.5 0/

0 0.5 0 0 0 0/

0 0 0.5 0 0 0/

0.5 0 0 0.375 0.125 0/

0.5 0 0 0.125 0.375 0/
·

0 0 0 0 0 0.125;

L = 0;

DO R = 0 TO 1.414214 BY 0.0700;

R2 = R##2; R4 = R2##2; R6 = R2##3; R8 = R2##4;

L=L+1;

SRAD(1,L) = R;
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I

* Calculation of the spherical variance —- VR. *;

* For each radius, R, the corresponding VR is put in SVR. *;

NS = S#((S=l)*1 +(S=O.S)*R2 + (S=0.125)*R4 + (S=O.375)*R4); ·

V = NS*C;

VR = TRACE(V);
”

SVR(1,L) = VR;

CO2 = R2#/2;

CO4 = R4#/8;

CO6 = R6#/16;

CO8 = R8#/128;

P2 = CO2#TI“2;

P4 = CO4#'1'I'4;

P6 = CO6#TT6;
U

.

P8 = CO8#'I'T8;

T'I’=P0+P2—+-P4+P6+P8;

T = T1" + TI"; g

D = D1AG(’I'T);

T = T - D;

* NS is the sphericai region moment matrix evaluated at R.
*;P

1

* T is the matrix T evaluated at R. *;

¥ *******************#****¤R***I¢***¥*¤k*$*****¤t***=|¤*¤t¤k***********lr;

* Calculation of the VofV -- VOFV *;

* For each radius, R, the corresponding VOFV is put in SVOV. *;

FIRST = TRACE(T*C);

SECOND = TRACE(NS*C);

THIRD = SECOND##2;
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VOFV = TRACE(T*C) — (TRACE(NS*C))##22

CK_VOFV = TRACE(T*C) - (VR)##2;

»¤

CK_VOFV is an alternative way to compute the VotV. *; .

ns

VOFV;

END;

VAR = DESIGNl|N||SVR||SVOV;

OUTPUT VAR OUT=STAT§

PROC PRINT;

%
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* TI'1€ SAS (lala SIEIICYTIETIIS I‘1€C€SS2.I'y {O CI'€8.l€ [I'I€ dillä set *§

* named DESIGN appear below. *;

* X1, X2 are the independent variables; XISQ, X2SQ and XIX2 *;

* define the remaining columns of the modeI—matrix X. *;

* The column of ones is affixed to the modeI—matrix within *;

* the macro. *;

* The design may be identified by the value of the variable DESIGN. *;

* An example set of design points is also given. *;
ar ¤�¤¤�:=�¤n¤�¤¤�==�¤=�=¤�=¤�=�¤¤�¤=�¢=�=¤�=n=*=�¤=�=¤�==�¤¤u=�¤=�¤¤�¤=�¤¤�=¤�¤=u�¤nur¤�¤¤�=¤«=�=¤�=¤�¤=�¤=�¤¤�¤¤�¤¤�¤=�¤¤�r=�¤t=¤�¤�:=�=�¤¤�¤¤�¤=�¤¤�¤=�¤=«¤�¤¤�¤¤�¤=�=nr;

DATA DESIGN;

INPUT X1 X2;

XISQ = XI*XI;X2SQ = X2*X2; X1X2 = X1*X2;

DESIGN = I;

CARD&

l 1

1 -1
I

-1 1

·1 -1

-I.414213562 0

1.4l42I3562 0

0 -I.4I4213S62

0 I.4I42l3562

O 0

0 O

COMPUTE;

* The command COMPUTE calls the macro, thereby, generating the *;

* spherical variances and VofVs for this design. *;

* They may be found in the new data set STAT. *;
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Appendix B

Appendices for Chapter IV ,

Appendix B.]

Proof of Lemma 4.1.1 _

The Lagrangian multiplier, u, involved in the optimization of Var(_y(Lc))/oz under the condi-

tions of case II is related to the radius, r, of the hypersphere by

k 9, . L

VLemma4.1.1 pertains to the behavior of this relationship for values of u = umx > kk and

u = um < K,. For u = umx > lk the function f is continuous and decreasing. Thus, the inverse

function exists and is continuous. By a well known theorem from calculus, (see, for example,

Swokowski (1979)).
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öllmax
= 1

Ör ör
övmax

f¤r IJ = 11„„.„ > M-

Similarly, for values of pt = 11,,,,,, < 70,, f is continuous and increasing and, therefore, the in-

verse function offexists. Thus, for 11 = 11,,,,,, < 70,,

öldmin = lu
ör ör °

öllmin

Now, in either case, differentiation of/(1.1) with respect to 11 yields

ör _ k Mm: 2 -l k (Äzmz)2l2,<w—,- -> l 2 [,2, ,,, - ,,,- «
Therefore,

2gi =
k Mm; 2 l k (Mm;) -1 B12

ÜF

210111= 11.... > M Or I1 = 11..... < M-

Utilizing these results, the lemma may now be proved.

Proof of Lemma 4.1.1 : Recall that O < K, S X2 S S 7,,,. Then, it is obvious from equation

(B.1.2) that,

1) 1fu=11„.„.>M„

ö 0, a-0,or
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ii) ifu = um. < M

ör °
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Appendix B.2

Proof of Lemma 4.2.1

Consider a translation of the axis system of the x-design variables to the axis system

of the 2-variables as set forth ir1 section 4.2.2. That is, 2; = x, + m, for some m, and

i = l, 2, , k. To prove Lemma 4.2.1 it is necessary to establish the existence of ma·

trices L which satisfy the conditions of the lemma in the first and second order model cases.

In general notation, the model in terms of the x-variables may be written as

_
2 = Xß + Q

where X is the appropriate model-matrix. In terms of the translated z-variables the model
u

is

2 = ZI + Q

for appropriate model-matrix Z. The two models are equivalent.

First consider fitting a first order model to the response with a design in k variables.

In this case, the model—matrices and parameter vectors of the models have the forms
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1 X11 Xik ßo
1 X21 X21« ßl

1 xNl Xzvk ßk

and

1 xll + rn]. ... +"Tk1

+ rn] ... + [nk Y1

1 XNI + ml ... xNk + mk Yk

The vector of parameters, 1, is readily seen to be related to the vector ß in the fol-

lowing manner:

Bo “ mißi
‘°
mzßz mkßk
ßt
ßz

X = ·

ßk

This may be written as

1 = Gß

U for
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l —ml —mk

0 1 0 0

0 0 1 0
G = . . . . .

0 0 0 1

The matrix G is a p >< p matrix of rank p, where p = k + l , the number of parameters in

the model. Each row of 1 = Gß is an estimable function of ß . Thus, the model in terms

of the x -variables may be reparametexized as (see Graybill (1976), p. 493)

2 = Xß + e
= XG"1 + g

which is equivalent to the model

2 = Z1 + ¤

Therefore,

Z = XG'1 .

Thus, choose the matrix L of the lemma to be

l ml mk
0 1 0 0
0 0 1 0

L = G'] = . . . . .

0 0 0 1

It is easily veriiied that Z = XL for thee model-matrices X and Z of a first order model.
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Note that

l 1
xl xl + ml

L'x"' = L' . = . = ;* _

for any pointx = (xl xl xl)' and; = (xl + ml xl + ml xl + ml)'.

Now consider the case of iitting a second order model to the response. In this case,

the mode1·matrices X and Z and their associated parameter vectors of the model are

l 2 2
*11 *111 *11 *111 *11*12 *1,1-1*111

2 21 l *21 *211 *21 *211 *21*22 *2,1-1*211

X=l

2 2
*1111 *11111 *1111 *1111 *1111*1112 *1v,1«—1*1v1«

Z has the same form as X with the values xll replaced by al = xll + ml. The vectors of

parameters in this case are

ß = (B11 B1 ßk B11 B11 B12 B13 ßk—l,k)'

and

I = (Yo Y1 Yk Y11 Ykk Y12Y13Here

the number of parameters in the model is p = 2k + (I;) + 1 .
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As in the first order case, the vector X is a reparameterization of Q of the form

X = GQ. It can be shown that the matrix G of the reparameterization is given by

1
__.

Q I — T —M
G = (8.2.1) -Q O I O

Q O O I

where O and Q are a matrix and vector with all elements equal to zero; and I represents the

identity matrix.

m' = (mz mz mk),
@’,’

= (m? mg mg),

@’Thematrix T is a diagonal k >< k matrix with the element in the i -th row and i-th column
k . .equal to 2m,. The k >< ( ) matrix M rs
2

B12 ßl3 ßrk ß23 ßk—l,k

mz mz mk 0 0
lll] 0 .„ 0 ÜT3 ... 0

0 lm .„ 0 Ü22 ... 0

O 0 0 0 0
M = . . . . .

0 O 0 0 ... mk

0 0 .„ llll 0 .„ lnk _ 1

(each column is identified by the corresponding element of Q to which it will be multiplied

in the product GQ). G is a p >< p matrix of rank p, therefore,
G·‘

exists.

Appendix B. l9l



Now, with X, Z, ß, 1 described above for the second order case, and G given by

(B.2.l), the model is

1 = Xß + g

= x6"1 + 8 .

This is equivalent to the model in terms of the 2-variables, thus, it must be that

Z = XG'! .

Let L = G", then L is a p >< p matrix of rank p for which

Z = XL .

This result and the result that 3* =
L’x*

are easily veriiied by multiplication of matrices.

For a second order model

x* = (1 xl x? xk1lxk)’ ,

for any point x = (xl xl x,l)’ in the space of the x-variables. The vector 3* has the

same form with x, replaced by 4 = xl + ml for i = 1, 2, ..., k. The matrix L of the

lemma is given below.

1 m' m2' m3'
Q I T M

L = .
Q O I O

Q · O O I
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Appendix 8.3

Proof of Theorem 4.2.5

In this section it will be shown that under the conditions stated in Theorem 4.2.5 the

form of the RofV for a second order model and design is invariant to the number of center _

points, no, of the design. The proof for the result that the VofV is also invariant to nl, in

this case closely follows that for the RofV. It will not be presented here.

Let N = rz + nl, denote the number of design points in a design used to fit a second

order model to the response of a system. The design has nl, points at the center of the re·

gion of the k design variables, xl, xl, ..., xl. Without loss of generality, suppose the

center of the design variables is at x = Q. Also, suppose the four conditions of Theorem

4.2.5 hold for the design.

Under the conditions of 4.2.5, the X'X matrix has the form given below.

N Q' g' Q'

Q A O O
X'X = (8.3.1)

g O 8 O

Q O O C

where

N N N
gu

= 1 u = l u = 1

= (a a
a)’

by condition ii) .
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The matrix A is a k >< k diagonal matrix. The diagonal elements are N · [ii], which

are all equal to a by condition ii). The off~diagonal elements of A are N times the second

mixed moments of the design, and, hence, equal to zero. Thus, A is of the form

A = diagonal (a, a, ..., a).

The matrix B consists of N times the fourth pure moments on the diagonal and N times

the even fourth mixed moments on the off-diagonal positions. By application of conditions

iii) and iv), the matrix B is a k >< k symmetric matrix of the form

b c c c _

c b c c

c c c b

where 1 is a k >< 1 vector of ones. The >< matrix C is a diagonal matrix with di- V
agonal elements equal to c by condition iv). The elements in the off—diagonal positions of

C are odd fouith moments and, consequently, equal to zero by condition i). That is,

AC
= diagonal (c, c, ..., c).

Again, O and Q represent a matrix and vector with all elements equal to zero.

To calculate the prediction variance it is necessary to determine the inverse of X'X.

Before proceeding some matrix calculations which will be required in the formulation of

(X'X)" and the prediction variance are given.

l) The inverse of the matrix B exists and has the form
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B'] = b*l + c*l_L’

b* c* c* c*

c* b* c* c*

c* c* c* b*

b — c b + (k — l)c�

2) By an application of the Sherman-Morrison-Woodbury theorem (see section 4.3)

I
- ·

B'} IB'l

N — QB 0 .

3)

3 _4B'l = (a(b* + (k — 1)c*) a(b* + (k — 1)c"'))

= (a* a* 61*).

with B" defined by calculation 1).

By the repeated application of the inverse of a symmetxic pattern matrix, the inverse

of X’X in equation (B.3.l) is

(N i gIB°lQI)'l Qi i —_ gIB'lg)°lQIB'l QI

1 Q A" 0 0
(X’X)” = · ·— (N — .<1’B'lQ)"B°l2 0 (B — ——-Qj>" 0

Q 0 0 c"'
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Now, for a second order model the prediction variance at a location

g = (xl x2
x,„)’

with

xki
Ä]

EE!)

where

, _ 2 2 2Q —(x1 x2 xk)

and

Q"=(xlx2is

% Var (y(;)) = x*’(X'X)";* .o'
,-1-1 ,-1 ,-1-1,-1. =(/V—gB 2) +;A;··2(N··gB 2):.1BgZ

+ gw — é‘§—>"g + geg .

Note that from calculation 3),
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2xt
2x2

(a* a* 61*)
i

2xlc

k

l=l

2k

since Zlxf = Ä'; = rz, where r is the radius of the sphere on which the point Ä lies. This

result and the result of calculation 2) yields the following expression for the prediction

variance.

Ä V«r<y<2>> = uv — g·ß"a>" + ;·A·‘2' 0’

- - - B.3.2

__ __ I 'I *1
*
2 2 I 1

4(N QB 2)

(GV)Considerthe RofV in this case on the surface of a hypersphere of radius r. Let Ämu

and Ämm represent the locations of the maximum and minimum prediction variances re-

spectively on the surface of the sphere. Note that

, k 2 2Ä max Ämax = i;Ixi,max = r

and

, k 2 2Ä minÄmin = i;lxi,min = r ·
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Then, the range of the prediction variances on the surface of the sphere is

1
A

1
A

RO/VU) = 77oo

ZW · ¤’B"Q>" W2
+ @'„..„.ß".Q„..,. — <~ — g'ß"Q>"<«*#>2

I 'I I °l °l
*
2· {EMA l°min · ZW · QB 2) ¤ r

+ I B'l 2
_ _ I 'l ·l

*
2 2$2 min Lmin (N Q B

Q)Thisfollows from equation (B.3.2) with substitution of ;c„,„ and _2;„,,„ for gc where appro-

priate. The obvious simplilication yields

Note that the elements of the matrices A, B and C are sums of Xun xf, and x„,x„j for
‘ u = 1, 2, , N, i,j = 1, 2, , k where x„, is the u—th setting of the i-th variable used

in the design. As such, the elements of A, B and C, and, hence, those of A", B" and

C", do not depend on the value of n„. Therefore, the RoiV does not depend on rt, in this

case. That is, if the second order design satisfies the conditions of Theorem 4.2.5, the RotV

is invariant to the number of center points of the design.
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