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(ABSTRACT)

A response surface analysis is concerned with the exploration of a system in order to deter-
mine the behavior of the response of the system as levels of certain factors which influence the re-
sponse are changed. It is often of particular interest to predict the response in some region of the

allowable factor values and to find the optimal operating conditions of the system.

In an experiment to search for the optimum response of a surface it is advantageous to predict
the response with equal, or nearly equal, precision at all combinations of the levels of the variables
which represent locations which are the same distance from the center of the experimental region.
Measures of the quality of prediction at locations on the surface of a hypersphere are preSented in
this thesis. These measures are used to form a graphical method of assessing the overall prediction

capability of an experimental design throughout the region of interest.

Rotatable designs give equal variances of predicted values corresponding to locations on the
same sphere. In this case, the center of the sphere coincides with the center of the rotatable design.
However, there is a need for a method to quantify the prediction capability on spheres for non-
rotatable designs. The spherical variance is a measure of the average prediction variance at locations
on the surface of a sphere. The spherical variance obtained with a design provides an assessment
of how well the response is being estimated on the average at locations which are the same distance
from the region center. This thesis introduces two measurés which describe the dispersion in the

variances of the predicted responses at all locations on the surface of a sphere. These prediction



variance dispersion (PVD) measures are used to evaluate the ability of a design to estimate the re-
sponse with consistent precision at locations which are the same distance from the region center.
The PVD measures are used in conjunction with the spherical variance to assess the prediction

capability of a design.

A plot of the spherical variance and the maximum and minimum prediction variances for
locations on a sphere against the radius of the sphere gives a comprehensive picture of the behavior
of the prediction variances throughout a region, and, hence, of the quality of the predicted re-
sponses, obtained with a particular design. Such plots are used to investigate and compare the
prediction capabilities of certain response surface designs currently available to the researcher. The
plots are also used to investigate the robustness of a design under adverse experimental conditions
and to determine the effects of taking an additional experimental run on the quality of the predicted

réesponses.



Acknowledgements

I would like to express my sincere gratitude and appreciation to Dr. Raymond Myers for all

his help and sharing of ideas and especially for his understanding, patience and faith.

The generous time, comments and suggestions given by Drs. Klaus Hinkelmann, Marvin
Lentner, Jeffrey Birch and Robert Foutz are also appreciated. I also thank Dr. Bradley Skarpness
for his interest in the problem and his efforts in finding an appropriate computer algorithm. To

I extend many thanks for many hours kindly spent. I am very grateful as well
to for her skillful typing of part of this manuscript and for her

immeasurable help with script. To ; thanks for the lettering and for being there.

I am thankful for the many fine people I have met and worked with here, and especially for
and for their friendship and comradeship through the years.
To my parents and family for their faith and support and for teaching me the most important les-

sons in life - no amount of thanks is great enough.

Acknowledgements : iv



Table of Contents

L Introduction ........... .. iiiiiiitiiieiininniinneennennnennnennnennns 1
II. Background Material . ...........ciitiitiitiiiininnneenennennenneneennns 6
2.1 RSM - An Experimental Strategy . ..............uuuiutinuiinnnnnnennnennn.. 6
2.2 Exploring the System . .......... i 7
22.1 The System Model ......... .. .. .. . . . . . e 7
2.2.2 The Experimental Design .. ............. .0ttt 9
2.2.3 A Convenient Form of the Model ............... ... . ... ... ..., 9
224 EstiMation . ... ...ttt iiii ittt e 10
2.3 Some Design Properties and Criteria . .............. .00t i runnnn .. 11
2.3.1 Alphabetic Optimality ... ... ...ttt 11
2.3.2 Prediction Variance Crteria . ... ......c.vvtreenneneneeneennennenannnn 13
2.3.3 Design COMPALISONS . . . ..ttt ittt ettt 14
234 Rotatability ... ... ... e e e e 15
2.4 Some Families of DeSigns .. ... ....otttiiniie ittt 19
2.4.1 Two Level Factorial Designs . .............coiiiiinriir .. 19
2.4.2 Central Composite DesIgNs . .. .....covunirinetn i, 20

Table of Contents v



243 Box-Behnken Designs . ........ ... 21

2.4.4 Small Composite Designs . ............uiii . 23
2.4.5 Hybrid Designs ... ...ttt 24
2.4.6 NOtZ Designs . ... e 24
247 Hoke Designs ... .......uiiiimiin ittt EEREE 25
2.4.8 Box-Draper Designs ... .........uiuiiuiiii i 26
2.49 Computer Generated Minimum Point D-Optimal Designs . .................. 27
III. Assessment of Prediction Capability on Spheres .....................c.ccvuu. 29
3.1 Existing Methods . ... . .. 29
3.1.1 The Problem with D-Efficiency ............. ... . 0., 30
3.1.2 Prediction Variance CONtOUIS . ... ...ttt it i 31
3.1.3 Prediction Variance Pictures for Rotatable Designs ......................... 32
3.1.4 Prediction Variance Pictures for Non-Rotatable Designs . .................... 35
3.2 Prediction Variance Dispersion Measures . ................oueeurnennennnnnns 41
3.2.1 The Need for Prediction Variance Dispersion Measures ..................... 41
3.2.2 Measuring the Dispersion in Prediction Variances ......................... 44
323 Some NOotation ...t vi ittt ettt e et e e e 45
3.2.4 The Range of Variances on the Surface of a Hypersphere ................... 51
3.2.5 The VofV on the Surface of a Hypersphere ..................... ... ...... 57
3.3 Illustrations of the Use of the Spherical Variance and PVD Measures .............. 63
3.3.1 A Plot Depicting Prediction Capability on Spheres . ........................ 63
3.3.2 Ilustration of the Effects of Loss of Design Points ......................... 64
3.3.3 Illustration of the Effects of Improper Design Settings ...................... 66
3.3.4 Ilustration of the Effects of Augmenting a Point to the Design ................ 76
IV. Properties of the Spherical Variance and PVD Measures . ...............co0u.n. 82
4.1 Trends in the Prediction Varance Functions ................................ 82

Table of Contents vi



4.1.1 Trends in the Spherical Variance asr Increases ............................ 83

4.1.2 Trends in the RofV asrlncreases ............... ... ... uuuuiiunini.. 84
4.1.3 Trendsinthe VofVasrincreases ............. ... ... . ... . 0. .. 89
4.2 Invariance Properties of the Spherical Variance and PVD Measures .. ............. 90
4.2.1 Invanance to the Scale of the Design Variables ........................... 91
4.2.2 Invariance to the Center of the Design Variables .......................... 95
4.2.3 Invariance to Orthogonal Transformation of the Independent Varables .......... 98

4.2.4 Invariance of RofV and VofV to the Number of Center Points of the Design .... 101
4.3 A New Criterion for Design Augmentation . ......................ccuuu.... 105

4.4 The Dilemma over the Choice of Design Center ............................ 108

V. Graphical Assessment of the Prediction Capability of Certain Second Order Designs ... 110

5.1 The Family of Central Composite Designs ... ..........cooviuerennnnn... 111
5.1.1 Comparisons of Prediction Capability in Three Variable CCDs ............... 111
5.1.2 Comparison of a Box-Behnken Design with Two CCDs . .................. 118
5.1.3 Robustness of a Rotatable CCD to Loss of Design Points .. ................ 121

5.2 Minimum and Nearly Minimum Point Designs . ............................ 128
5.2.1 A Comparison of Small Composite and Hybrid Designs . ................... 128
5.2.2 A Comparison of Some Small D-Efficient Designs ........................ 135
5.2.3 Comparisons of Computer Generated D-Optimal Designs .. ................ 136

5.3 Measuring Deviation from Rotatability ................................... 146
5.3.1 The Deviation from Rotatability of a 3 Factorial Design . .................. 146
5.3.2 The Deviation from Rotatability of Hybrid Designs . ...................... 149

V1. Concluding Remarks and Further Research ................................ 155

6.1 Concluding Remarks ............. .. i, 155

6.2 Directions for Further Study . ............. it 156

Table of Contents vii



R erences .. ...ttt ittt ittt eeieeeseeeeesesoeeensosasssseneanans 159

Appendices for Chapter III .. ... ... ... ittt tniiiinnnnnnnnnnn 162
Appendix Al .. 162
AppPendix A 2 .. 166
APPENdiX A 3 .. 170
ApPendiX A4 . e 172
Appendix A5 ....... ... ..., e e e e e 174
ApPPendiX A6 ... e [ 176
ApPendix A7 .. e e 178
Appendices for Chapter IV .. ... ittt it ittt ieietrennnnneneennns 184
Appendix B.l ... e 184
Appendix B2 ... e e 187
Appendix B3 ... ... ... .. . B R 193
721 199

Table of Contents . viii



List of Tables

Table .  Design Points for Computer Generated Second Order

Designs with Three Factors at Three Levels . . . .

Table 2.  Spherical Variances for Example Designs of

Section3.1.5 , . . . . i i 4 e e e e ..

Table 3. Locations for Calculation of Prediction Variance for

Example Designs of Section 3.1.5 « « « « . .+ .

Table 4. Prediction Variances for the Locations

GiveninTable 3.« ¢« ¢« ¢ ¢« ¢ o o ¢ o o o &

Table 5.  Roquemore’s Hybrid Designs in Three Variables

List of Tables

28

40

43

- 43
. 130



List of Figures

Figure 1.
Figure 2.

Figure 3.
Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.

Figure 13.

Figure 14.

Prediction Variance Contours for a 22 Factorial Design, . . . . . .

Prediction Variance Contours for a 22 Factorial Design
with Improper Settings « « ¢« ¢ ¢« ¢ ¢« ¢ ¢ ¢ o o o 0 s 0 o @

Comparison of Prediction Variances for Two Rotatable Designs . . .
Comparison of Spherical Variances for Three First Order Designs . .

Spherical Variance, Maximum and Minimum Prediction Variances
for a 2* Factorial with 2 Missing and No Center Points + « « « « .

Spherical Variance, Maximum and Minimum Prediction Variances
for a 2% Factorial with 2 Missing and 2 Center Points '« . « . . . .

Locations of Maximum Prediction Variance on Spheres
for a 22 with 2 Missing and No Center Points « « « « « « o + o &

Comparison of Spherical Variances for 2¢ Factorial Designs . . . . .

Spherical Variance, Maximum and Minimum Prediction Variances for a
2* Design with Improper Settings in 4 Variables, 1-10 Percent Off. . .

Spherical Variance, Maximum and Minimum Prediction Variances for a
2 Design with Improper Settings in 2 Variables, 25-50 Percent Off . .

Spherical Variance, Maximum and Minimum Prediction Variances
for the 2-Level First Order Design of Section 3.3.4 . « . « « + . .

Locations of Maximum Prediction Variances on Spheres
for the 2-Level First Order Design of Section3.3.4 ., . . . . . . .

Spherical Variance, Maximum and Minimum Prediction Variances
for the 2-Level First Order Design of Section 3.3.4
A Design Point Augmented at the Location of Maximum Variance . .

Plot of 7 Against p _

o o e o o o e e e o o e o e o o o e o

List of Figures

33

34
36
42

67

68

69
73

74

75

78

79

80

87



Figure 15.
Figure 16.

Figure 17.

Figure 18.

Figure 19.
Figure 20.

Figure 21.

Figure 21a.

Figure 22.

Figure 23.

Figure 24.

Figure 25.
Figure 26.

Figure 27.

Figure 28.

Figure 29.
Figure 30.

Figure 31.

Figure 32.

Figure 33.

Comparison of Spherical Variances for CCDs with One Center Point

Spherical Variance, Maximum and Minimum Prediction Variances
fora CCD with a = 1.35and One Center Point « « + « « . . .

Spherical Variance, Maximum and Minimum Prediction Variances
fora CCD with @ = 1.00 and One Center Point « « « « o « o« .

Comparison of Spherical Variances for CCDs with a = 1.682
and a Varying Number of Center Points . « . « « « « o o . .

Comparison of Spherical Variances for CCDs with Three Center Points

Spherical Variance, Maximum and Minimum Prediction Variances
for a Box-Behnken Design with One Center Point . « . . . . .

Comparison of Spherical Variances for Two CCDs and a Box-Behnken Design
.- one Cente!' POi.ﬂt . . . . . 3 . . . . . ] 3 . . . . . . . . .

Comparison of Spherical Variances for Two CCDs and a Box-Behnken Design
.- FOUI Center POiIltS . 3 . . . . 3 . . . . . . . . 3 . - . Y .

Spherical Variance, Maximum and Minimum Prediction Variances

foraCCDwithOne Design Point Lost « & « ¢« « ¢ ¢ « o o « o &

Spherical Variance, Maximum and Minimum Prediction Varances

fora CCD with Two Design Points Lost .« « ¢« « ¢ ¢ ¢« « « « « &

Locations of Maximum Prediction Variance on Spheres

fora CCD with Two Design Points Lost . . . « ¢« « & « o« o o -
Comparison of Spherical Variances for Two Hybrid Designs and an SCD

Spherical Variance, Maximum and Minimum Prediction Variances
foran SCD witha = 1.732and | CenterPoint . . . . . . . .

Spherical Variance, Maximum and Minimum Prediction Variances
for a Hybrid 310 Design with 1 Center Point , . . . . . « . .

Spherical Variance, Maximum and Minimum Prediction Variances
for a Hybrid 311A Design with | Center Point . . . . . . . .

°

Comparison of Spherical Variances for Some Small D-Efficient Designs

Spherical Variance, Maximum and Minimum Prediction Variances
for the Box-Draper Design « « « « ¢« ¢« o ¢« o ¢ o o o o & &

Spherical Variance, Maximum and Minimum Prediction Variances
forthe Hoke D2 Design . « ¢ v « v« ¢ ¢ ¢ ¢ o o o o o « @

Spherical Variance, Maximum and Minimum Prediction Variances
forthe NotzDesign « & ¢ & ¢ ¢ o ¢ ¢ o o o ¢ « o o o o

Comparison of Spherical Vanances for Computer Generated Designs

List of Figures

.

113

114

115

117
119

120

122

123

125

126

127
131

132

133

134
137

138

139

140

142

xi



Figure 34.

Figure 35.

Figure 36.

Figure 37.

Figure 38.

Figure 39.

Figure 40.

Spherical Variance, Maximum and Minimum Prediction Variances
for the Mitchell-Bayne MB10 Design ., . . . . . . . . . .

Spherical Variance, Maximum and Minimum Prediction Variances
for the Welch WDIO Design '« « ¢« & v v ¢ ¢ ¢ ¢ o o o &

Spherical Variance, Maximum and Minimum Prediction Variances
forthe Welch WC11 Design & « v v v v v v ¢ o o o &

Spherical Variance, Maximum and Minimum Prediction Variances
forthe 32 Factorial Design « + « « o« o o o o o o o » «

Spherical Variance, Maximum and Minimum Prediction Variances
forthe Hybnd 310 Design . » v ¢ v v v ¢ 4 v o o & o

Spherical Variance, Maximum and Minimum Prediction Variances
forthe Hybrid 311A Design . v v ¢ v o o o o o o o o .

Spherical Variance, Maximum and Minimum Prediction Variances
forthe Hybrid 311B Design v v « « « v « o« o« « o o o &

List of Figures

143

144

145

147

150

151

152

xil



Chapter I

I. Introduction

Researchers in many areas such as engineering, chemistry, medicine and agronomy often ex-
plore a system to determine the behavior of the response of the system as levels of certain factors
which influence the response are changed. The system under investigation may be, for example, a
manufacturing process or a biological system. In many such situations the researcher also wishes
to find levels of the influential variables which produce optimal behavior in the response. The
collection of procedures used to explore the behavior of the response and to define the optimal
operating conditions of the system in which the response is a random variable is called Response

Surface Methodology (RSM).

As a function of the influential, or independent, variables present in the system, the response
is represented as a surface in the space of the independent variables. The true functional relation-
ship between the response and the independent variables is usually unknown or complicated. Thus,
the response surface is often modelled as a simple function of the independent variables. The model
serves to describe the general behavior of the responses and to predict individual values of the re-

sponse at specified combinations of the levels of the independent variables.
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The determination of the nature of the response surface is accomplished through experimen-
tation and observation of the response. The choice of the experimental design has a major impact
on the quality of the inferences drawn from the experiment. A well designed experiment is a valu-

able tool in the investigation of the response of a system.

There are many characteristics of a design which may be considered when selecting a response
surface design. Some design criteria are discussed in Chapter II. All the available criteria by which
a design may be judged are single-valued measures of some design characteristic, for example, the
generalized variance of the coefficients of the response surface model. Since the estimation of the
response is of primary importance in a response surface analysis, the focus of this research is on the
assessment of the prediction capability of an experimental design in some region of the allowable

factor values.

As an example of how the quality of the predicted values may be assessed, consider a system
in which there is one independent variable, say x, which is thought to influence the behavior of the

response, y. Suppose the response function is approximated by a simple linear regression model,
y = Bo + le + € N

for values of x in the interval [ + 1, —1]. Further, suppose that only three éxperimental runs are

available for experimentation.

One possible design plan the researcher may adopt is to take two of the observations at x= 1
and the remaining observation at x= — 1. This is the D-optimal strategy in this situation. That is,
the generalized variance of the coefficients B, and B, is as small as possible with this design for
xe|[ +1, —1]. The average variance of the predicted values integrated over locations x in the
interval [ +1, —1] obtained with this design is 0.5. Note that all variances reported here are in
the units of the error variance associated with the model. Thé actual prediction variances range

from 1 at x= — 1, to 1/3 when estimating the response at x=1/3, the average of the settings of x
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used in the experiment. In fact, the response which occurs when x has a value of + 1 is estimated

with a vaniance which is half of the variance of the estimated response at x= — 1.

Alternatively, the researcher may choose to take an experimental run at at each of the levels
+1, 0 and — 1 of the independent variable x. Although the average prediction variance for valucs
of x in the interval | + 1, —1] is the same as that obtained with the D-optimal design, the accu-
racy in the estimated responses at most levels of x is quite different from that obtained with the
previous design. The second design strategy yields prediction variances ranging from 5/6, the same
when the level of xisat +1or —1,to 1/3 at x=0. The responses at locations which are the same
distance from x=0, the center of the set of design points, are estimated with equal precision with

this design.

The nature of the prediction variances is easily graphed in the single variable case, as in the
sketch below. The graph provides a ready comparison of the prediction capabilities for the two

design plans.

FREDICTION VARLANGE
7
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In this simple example one might easily have deduced the different behaviors of the prediction
variances in the interval for each design. However, the nature of the prediction variances is much
more complicated and less intuitive when two or more variables are known to influence the re-
sponse. There is a need in experimental situations involving any number of variables to look at the
prediction variances throughout the region of interest in order to learn where the responses are es-
timated well and poorly, and to judge the accuracy of the estimated responses obtained with the
design. Clearly, no single-valued measure constructed to describe the prediction capability of a

design can give a comprehensive description of the prediction variances throughout a region.

The impetus behind this research is the need in a response surface analysis to have a general
understanding of the nature of the prediction variances in the region of the independent variables
for the experimental design. To aid the researcher in achieving an overall view of the prediction
capability of a design, criteria will be presented which, when viewed as a unit, depict the behavior
of the prediction variances throughout some region for a specific design and model. It will be
possible to display the variance criteria in a graph, thus facilitating the assessment of the quality of

the predicted responses attained with the design.

The general exploration of the response surface and search for the optimum response usually
proceeds in all directions from the center of the region of interest. Thus, it is natural to attempt to
describe the composition of the set of prediction variances at all locations which are the same dis-
tance from the region center. These locations are points on the surface of a hypersphere about the
region center. The prediction variance criteria developed through this research characterize the
behavior of the variances of the estimated responses on spheres in the region. The quality of pre-
diction in some region may be surveyed through the graphical representation of the prediction

variance criteria as functions of the radius of the sphere.

The prediction variance criteria are introduced in Chapter III. The criteria measure the av-

erage prediction variance on a sphere and the dispersion in the prediction variances on a sphere for

a specific experimental design and response surface model. The criteria will be implemented so that
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one may be able to illustrate the effects of a change in the experimental conditions on the prediction

variances obtained with a design.

The behavior of the measures as the radius of the sphere increases, that is, as the response is
estimated further from the region center, is considered in Chapter IV. Other properties of the
measures are also established in this chapter. In particular, the invariance of these measures to the

units of the design variables used in the analysis is investigated.

Lastly, the measures are applied to some response surface designs currently available to the
researcher. In Chapter V plots of the criteria against the radius of the sphere are used to investigate
and compare the prediction capabilities of these designs. It will be seen that the graphical method
of assessing the prediction capability of an experimental design provides a comprehensive picture

of the quality of information about the response obtainable from that design.
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Chapter 11

II. Background Material

2.1 RSM - An Experimental Strategy

Response surface methodology has its roots in an industrial laboratory. G. E. P. Box (1954)
and others, (see also, Box and Wilson (1951) and Box and Youle (1955)), originated the develop-
ment of what is now called response surface methodology (RSM) as a consequence of exploring
the behavior of the yield of a chemical process and trying to improve the yield by control of perti-
nent variables in the process. They recognized that experimentation is a sequential process in this
situation and adopted an iterative plan which consisted of (1) postulating a model for the response,
(2) selecting an experimental design, and (3) analyzing the resulting data. This cycle was continued
until satisfactory results were obtained. Since that time, RSM has evolved through efforts by re-

searchers to explore and improve systems such as chemical processes.

RSM is a unified collection of theories and procedures which provide an experimental strategy

for analyzing evolving problems in a laboratory setting. Included in the collection are the principles
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and theories of experimental design, optimization techniques, estimation methods and statistical

inference.

The experimental design, which is the focus of this thesis, is perhaps the most important as-
pect of a response surface analysis. A good experimental design along with the proper analysis of
“the data will provide the researcher with reliable information about the system. Without a good
design, however, even the most ingenious analysis will leave many of the questions posed by the

researcher unanswered.

2.2 Exploring the System

2.2.1 The System Model

Let y denote the response of the system which depends on the influential factors
€, &, .., & present in the system. It is assumed that the experimenter has control over the
values of §;, &,, ..., & in the experiment and that these variables are continuous. We can define

the system mathematically as
y=rf¢&, & .., &)t e

where ¢ is the usual random error term. The functional form of f'is unknown. However, it can
be approximated by a low order polynomial in some region of the allowable values of the inde-
pendent variables §, &, ..., & . Itis convenient to express the polynomial model in terms of the
design variables, x; X, ..., X, of the system, rather than the variables &,, &,, ..., &, , which are
expressed in the natural units of the system. The design vanables are simply centered and scaled

versions (simple linear transformations) of the natural variables. In an experiment where N meas-
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urements of the response are taken at the levels §,, &,, ..., &y say of the independent variable

€, the corresponding design variable x; is defined by

-— N
where &, = Zléi,‘/N and s, is an appropriate scale term.
A first order model for the observed response in terms of the design variables is
k
y=5B + .Zlﬁixz +t e
i =
and a second order polynomial model is of the form

k k 2 k k
y=B + IBx; + I Bpxi + X IRy + e
= 1= 1=1j=1
i<j

(2.2.1)

Often a first order model is employed in a small region of the design variables where there is

thought to be little curvature in the response function. Such a model might be used to locally ap-

proximate the response function in the initial stages of the experiment to find a new region in the

space of the independent variables where the response is higher (or lower). In larger regions or as

the search draws nearer to the optimum response a second order model is used to approximate the

response function in that region.

First and second order models are simple in form and often provide adequate approximations

to the true response function in some region. Although there are many other models which could

be adopted, these are the most frequently chosen empirical models used to investigate a system.

Thus, only first and second order models will be considered in this research. However, much of

what is accomplished here can be extended to other empirical or theoretical models.
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2.2.2 The Experimental Design

In the experiment N observations of the response are made at N combinations, not all nec-
essarily distinct, of the levels of the k independent variables x; x,, ..., x,. The set of combina-
tions of levels, or settings, chosen to be analyzed is the experimental design. The individual settings
are design points. In our discussion there are N design points. The matrix consisting of the N de-

sign points is called the design matrix.

The experimental design is a valuable tool in the investigation of a response surface. The
careful choice of a design is crucial to the quality and reliability of the information obtained from
the experiment. Several criteria an experimenter might use in choosing an experimental design are

described in the next section.

2.2.3 A Convenient Form of the Model

The functional relationship between the observed responses and the inbut variables in the

experiment can be described in matrix form by
y=AXB + ¢

where y = (», », ... yy)’ is the vector of observed responses,

B is the p x 1 vector of parameters which appear in the chosen model,

g = (& € ... &) is the vector of random errors associated with y . For our purposes the
errors are assumed to be independent, identically distributed random variables with mean 0 and
variance o2 .

X is an N x p matrix which reflects the experimental design. X will be referred to as the

model-matrix to distinguish it from the design matrix.
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The nature of X depends on the choice of model. For example, the parameters of a first order
model are B, and B,, ..., B, . The vector of parameters is then, § = (B, B, ... B,)’. The matrix

X corresponding to a first order model is

1 x” x12 e Xik

1 le x22 e Xk

x=| I (222)

1 XNt XN2 o XNEK

where x;, represents the level of variable x; for the i-th setting of the factors used in the experiment,

i=12...,Nandj = 1,2,...,k Thereis a natural extension to higher order models.

2.2.4 Estimation

The vector of unknown parameters is estimated using ordinary least squares methods by

A

B=xn""'xy

The varance/covariance matrix of the estimated coefficients under the assumption that

e~ (0 a¥)is
Var® = oXx0 "
The estimated values of the response at the design points are
£ =y 3y - IN) = Xé:
and the estimated value of the response at any location x in the region of interest is
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y(x) = xB.
Thus, the variance of a predicted value of the response at a point x is given by
Varp(@) = o’ X' (X0 '

Note that for a first order model x is of the form (1 x, x, ... x;)’ and for a second order model

—— ’
X=(1x . x2 . X X%y oo X1 X))

2.3 Some Design Properties and Criteria

An experimenter may judge the quality of an experimental design against many criteria. Some
design properties and criteria which are often considered when choosing a design are presented in
this section. Naturally, different criteria may lead to the selection of different designs. Thé criterion
and, therefore, the design used should be consistent with the focus of the experiment. Of course,

there are times when compromises among several criteria have to be made.

2.3.1 Alphabetic Optimality

Often the researcher is interested in providing a workable model for the response of the sys-
tem. Usually, the response is modelled as a linear or a quadratic function of the independent vari-
ables or factors present in the system. In any case, as the goal is to come up with the best model
for the response, a design is chosen which will yield the best estimates of the true parameters in the
selected model. Thus, a design which provides a good fit to the model will minimize, in some sense,

the variances of the estimated coefficients.
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One variance criterion which has been considered in the literature is the generalized variance
of the coefficients. The generalized variance is defined to be the determinant of the variance

/covariance matrix of the vector of estimated coefficients, ﬁ .
D = |Var(B)| = lo*(x'x)~ '

where | - | denotes the determinant. A design which is the best with respect to the generalized
variance is one which minimizes |(X"X)~!| , or, equivalently, maximizes | (X'X)| . Such a design

is said to be D-optimal.

Kiefer and Wolfowitz (1959, 1960) define a D-optimal design as a continuous probability
measure which determines the proportion of experimental runs which should be taken at each of
the settings in the space of all permissable design settings to minimize D. As a consequence, a
D-optimal design cannot always be achieved in practice. However, realistic designs which are ap-
proximations to such D-optimal designs, and which are frequently nearly D-optimal are used in
practice, (see, e.g., Nalimov, et. al. (1970)). For a more detailed overview of D-optimality and

D-optimal designs the interested reader is referred to St. John and Draper (1975).

Many other optimality criteria have been studied.  All focus on making the
variance/covariance matrix of B , or, more precisely, some real-valued functional form of it, small.

Some of these are listed below.

L. An A-optimal design is one which minimizes the trace of (X’X)"! .
' This is equivalent to minimizing the sum

of the variances of the estimated coeflicients.

2. An E-optimal design is one which minimizes the maximum

eigenvalue of (X’X)~!.
3. A G-optimal design is one which minimizes the maximum
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value of o2x'(X"X)~'x,
the variance of the predicted response, over all

locations in some region of the allowable factor values.

2.3.2 Prediction Variance Criteria

The G-optimality criterion pertains specifically to the quality of the predicted values of the
response in a certain region of the factor values. The prediction capability of a design is of partic-
ular importance in response surface problems. Recall that RSM is primarily concerned with the
determination of the behavior of the response. Hence, in RSM at least, useful experimental designs
are ones which predict well in a specified region of the allowable factor values. It is reasonable to
expect that a design chosen to best fit the data to the selected model will also predict the response
well at the design points. However, it is also desirable that the response be well estimated
throughout the region of interest. The integrated prediction variance, IV, first described by Box
and Draper (1959, 1963), is a measure of the prediction capability of a design in a specified region.
Essentially, IV is the average prediction variance in a region R. For a design D and region R, the

IV is defined as

V(D) = % Var(p(x))dx

(2.3.1)
= NK[px'(XX)~ "xdx

where N = the total number of design points and K-! = jR dx 1is the volume of the region R.
In practice, the region R is taken to be a sphere or cube in the space of the independent variables.
The design which minimizes IV is considered to be best with respect to this criteion. The factor
of N takes into account the efficiency of the design. Thus, a design with a smaller number of points

is preferred over a more costly design with similar prediction capability. By integrating the mean
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square error of a predicted response over a region, Box and Draper also investigated the effects of

bias due to inadequate model specification on the prediction capability of a design.

2.3.3 Design Comparisons

Designs defined in the same region of the design variables can be compared to the D-optimal

and G-optimal designs by considering their D- and G-efficiencies respectively, (Atwood (1969)).

D-efficiency measures the efficiency of a given design for a model containing p parameters
relative to the D-optimal designs for the same model. Thus, if X is the model-matrix for a design,
say D*, with N design points and X}, is the model-matrix for the D-optimal design of size N, , the

D-efficiency for design D" is defined to be

D-cﬂiciency(D*) = (XX /N %
|(XpXp) / Npl

Note that the D-efficiency is the ratio of the generalized variances for the two designs scaled

by their respective sizes. A design which has a D-efficiency of 1.0 is a D-optimal design.

The G-efficiency of a design D* with N design points and model-matrix X relative to the G-

optimal design with N; design points and model-matrix X is

G-eﬁiciency(D') =

where d; = max Ngx'(XeX5)~'x = p for a G-optimal design, (Kiefer and Wolfowitz (1960))
and d,,, = max N x'(X’X)~'x . Here R denotes the region of the design variables under consid-

eration.
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G-efficiency then is the ratio of the maximum prediction variances in some region for the two
designs. A G-optimal design has a G-efficiency of 1.0 since, in that case, d,,, = d, , the smallest

maximum prediction variance among the designs considered.

Many studies have been done to compare the D- and G-efficiencies within certain classes of
designs. See, for example, Nalimov, et. al. (1970), Box and Draper (1971) and Lucas (1976).
However, few studies have appeared in the literature which consider the integrated variance criterion

as a means of comparing competing designs, (Draper (1982) and also Box (1982)).

2.3.4 Rotatability

In response surface problems, accurate prediction of the response is very important. Esti-
mation of the optimal response is of special interest in such problems. Since the optimal operating
conditions of the system are unknown, one generally begins the search for the optimum in all di-
rections from the center of the design. Consequently, it is advantageous to predict equally well or,
nearly equally well, at all locations that are the same distance from the center of the design. That
is, the variance of the estimated response at a location should not depend on the direction of the
location but only on the distance from the center of the design. So, for all points on a k-
dimensional hypersphere of radius r, ie., points x such that é‘.lx,? = r2 , require
Var(y(x)) = g(r’)o? . This design property is termed rotatability, (see Box and Hunter (1957)).
This property is particularly suited to designs used in the exploration of a response surface where
the behavior of the response on spheres is of particular interest and the independent variables are

continuous.

Rotatability is a property of the experimental design and can be characterized in terms of the
elements of the moment matrix N~'X'X corresponding to the design. Formally, the moment

matrix contains the design moments given by
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Moments of the form [i] are called first order moments; [ij] are second order moments, and so on.
The moment matrix for a first order model contains design moments of the first and second order
only. The design moments through order four are included in the moment matrix when a second

order model is fit to the observed response.

Necessary and sufficient conditions for a design used to fit a first order model to be rotatable
are that the design moments [i] and [ij] with i+ are zero, and the pure second moments [ii] have
the same value for all i = 1,2, ... k. A first order design which satisfies these conditions is an
orthogonal design. In the case of a second order model, a design is rotatable if and only if the odd
moments involved, [i], [1j], [ij], [iii] and [iiij] with i+ ] are all zero, the pure second moments [ii] are
the same for alli = 1,2, ... \k, and the pure fourth moments [iiii] are three times the mixed fourth
moments [iijj] (see Box and Hunter (1957) or Myers (1976) for details). Note that a design which
is rotatable in the first order case may not necessarily be rotatable when a second order model is

used.

In practice, rotatable designs are often used in response surface problems. However,
rotatability can be lost if, for example, one or more of the design runs is lost during the
experiment . Also, many design points may be required to achieve rotatability in a design. This
is frequently the case when there are a large number of variables describing the response. Thus, the
researcher may choose a non-rotatable design to save time and money, particularly at the beginning

stages of the experiment.

The use of a rotatable design does not guarantee good estimation of the response of the sys-
tem. Non-rotatable designs often have better prediction properties than rotatable designs which

could be used in the same situation. However, it is desirable to have consistent prediction at lo-
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cations which are the same distance from the center of the design. In recent papers, Khuri (1988)
and Draper and Guttman (1988) have set forth measures to determine how near a non-rotatable

design is to possessing the rotatability property of equal prediction variances on a sphere.

The measure presented by Khuri (1988) provides a comparison of design moments of a
non-rotatable design and a rotatable design of the same size. Both designs are restricted to [i] = 0
and [ii] = a constant foralli = 1, 2, .. ., k. The comparison of design moments is achieved by
calculating the Euclidean distance of a vector containing the moments of the design, call this vector
u, to the corresponding vector for an appropriate rotatable design, say v. The vector v is chosen
from the set of all vectors containing the design moments corresponding to rotatable designs of the
appropriate size. It is closest to the vector u in the sense that the Euclidean distance between the
two vectors is smaller than the distance for any other vector belonging to the set. The distance
between the two vectors is subtracted from the Euclidean norm of the vector of design moments
for the non-rotatable design. The actual measure of rotatability, @ , is formed as a percentage and

is shown below.
® = 100{Nall2 = llu—yll?)/1lull?

Note that if the design under consideration is rotatable, the distance between the design moment
vectors ¥ and v is 0 and & = 100. A large value of this measure indicates that the moments of
the design closely resemble the moments of a rotatable design. In this case, the design is said to

be ‘near rotatable’.

Draper and Guttman (1988) investigate the nearness to rotatability of a design by considering
the shape of a specified prediction variance contour of the design. The contour chosen for exam-
ination is an outer contour which passes through at least one point on the edge of the design region.
The shape of the outer contour for a design is approximated by a curve of the form

k
lgllx,l“‘ = 1. (2.3.2)
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The exponent m is gotten by forcing the curve (2.3.2) through the true variance contour at two
points. To simplify the calculation of the prediction variance only second order designs for which
the following moment restrictions hold were considered in the development : [i] = 0, [i] = B,
[wi] = C, [ijj] = Dforalli = 1,2,.. .,k i # j, and'all odd moments through order four are
eﬁual to zero. The evaluation of m would be much more difficult without these moment re-

strictions.

The value of m thus found provides an approximate picture of the outer variance contour of
the design. This picture is compared to the spherical shape of the prediction variance contours of
a rotatable design. By this comparison a judgement can be made regarding how near a non-
rotatable design is to possessing the rotatability property of equal prediction variances on spheres.

For this reason, m is termed the index of rotatability.

The property of rotatabﬂity pertains to the predicted responses on spheres about the center
of the design. The condition that the first moment, [i], be equal to zero for a rotatable design sig-
nifies that the design center coincides with the center of the region of the design variables. For this
reason, the measures of deviation from rotatability proposed by Khuri and by Draper and Guttman
require that the first moment of the design be equal to zero. However, it is usually of interest to
investigate the prediction capability of a design on spheres about the center of the region of the
design variables. If the experimental design is not centered at the center of the region of interest
these indices can not provide an indication of the similarity of the prediction variances on spheres
about the region center. The problem of assessing the consistency on spheres as well as the quality
of the prediction variances on spheres about the center of the region of interest will be considered

in Chapter III.
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2.4 Some Families of Designs

This section catalogs some types of designs currently available to the researcher involved in
a response surface analysis. The prediction capability of these designs will be investigated as a part
of this research. Only 2* factorial and fractional factorial designs will be considered when the re-
sponse surface is approximated by a first order model. All other designs described here are second

order designs used for fitting a second order model to the response of the system.

2.4.1 Two Level Factorial Designs

Each of the design variables appears at two levels (usually at + 1 and -1) in a 2* factorial
design. A full factorial plan consists of all possible combinations of the design variables at these

levels. The design matrix for a 22 factorial design is presented below.

11

1 -1
-1 1
..—1 —l-

These designs and certaiﬁ fractions of the 2* factorials are first order orthogonal and, therefore,
rotatable designs. Designs in this class possess many desirable properties; for example, they provide
minimum integrated variance of predicted values and minimum generalized variance of the esti-
mated coefficients among first order designs. Certain of them provide minimum mean square error

of prediction as well.

Background Material 19



2.4.2 Central Composite Designs

The 2* factorial designs do not allow for the estimation of the coefficients of a second order
model. Central composite designs (ccd) extend the first order factorial designs to be appropriate in
the second order model case. A ccd in k variables is formed by augmenting a 2* factorial or frac-

tional factorial design with a set of axial points as follows :

=1 £1] =1
a 0 0
—a 0 0
0 a 0
0 -a 0
0 0 a
0 0 —-a

Experimental runs taken at the center of the design may also be added. The experimenter
chooses the axial value, a , and the number of center points, 7, , to achieve certain design properties.
For instance, rotatability can be achieved with the appropriate choice of & . As an example, the

design matrix for a rotatable ccd in three variables with one center point is
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i -
1 l 1
1 l -1
1 =1 1
-1 1 1
1 -1 -1
-1 1 -1
=1 -1 1
-1 -1 -1
1.682 0 0
—1.682 0 0
0 1.682 0
—1.682 0
0 0 1.682
0 0 —1.682
0 0 0

Although ccds in more than two variables require fewer design points than the 3* factorial
designs, they often require considerably more trials than the minimum necessary for fitting a second
order model. The five levels used in the design (unless @ = 1.0 ) may also be prohibitive in some

experimental situations.

2.4.3 Box-Behnken Designs

Box-Behnken designs were introduced as an economical alternative to ccds, (Box and

Behnken (1960)). Box-Behnken designs generally require fewer design points and only use three
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levels of the design variables. Like the ccds, however, Box-Behnken designs require many more

design points than is needed for estimating the parameters of a second order model.

The designs are constructed from balanced incomplete block structures. For designs in three,
four or five variables, portions of the Box-Behnken designs are 2? factorial designs in two of the
variables and the level of the remaining variables is zero. There are (,;) such portions, one for each
pair of variables. For six or more variables the blocks of the Box-Behnken designs are formed from
2% factorials in three of the variables with the remaining variables at a level of zero. Not all such

blocks are used in the design however. The Box-Behnken design for an experiment in three vari-

ables is
-1 -1 0
-1 1 0
1 -1 0
1 1 0
-1 0 -1
-1 0 1
1 0 -1
1 0 1
0 -1 -1
0 -1 1
0 1 -1
0 1 1
0 0 O

The remaining designs in this section are all saturated or nearly saturated experimental de-
signs. A saturated or minimum point design is one for which the number of design points required

is equal to the minimum number of observations required to estimate the parameters of the model.
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Nearly saturated designs require only a few more points than the minimum number necessary to
fit the model. Both saturated and nearly saturated designs are extremely economical. Consequently,

they are of interest, especially when observations are expensive or time is short.

2.4.4 Small Composite Designs

Small composite designs have the same structure as central composite designs. The factorial
portion of a small composite design consists of a fraction of a 2* factorial design. It is not a re-

quirement, as it is for a ccd, that the design have all odd design moments equal to zero.

1 1 1
1 -1 -1
-1 1 -1
-1 -1 1
a 0 0
—-a 0 0
0 a 0
0 —a 0
0 0 a
0 0 —-a
0 0 0

This is a small composite design in three variables. The factorial portion is a one-half fraction
of a 23 factorial array constructed by taking the defining contrast to be I = ABC. The choice of

the axial value, a , and the number of center points is left to the discretion of the experimenter.
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2.4.5 Hybrid Designs

Roquemore (1976) devised hybrid designs to be near-minimum point designs which are near
rotatable and which possess properties similar to ccds. The basic structure of a hybrid design is a
ccd in (k — 1) variables with an additional column for the k-th variable. The three variable hybrid

design is of the form

- -
0 0 o
0 0 a,
=1 =1 a4
I =1 a3
-1 1 o4
1 1 o
a 0 a4
-a 0 a4
0 a a
0 —a o4

In his paper, Roquemore gives several choices for the design parameters a, a,, a,, a;, a, for
hybrid designs in three and four variables. In some cases, the factorial or axial portion, or both,

of the (k — 1) variable ccd may be rotated or scaled.

2.4.6 Notz Designs

Notz designs are minimum or nearly minimum point second order designs using three levels
of the design variables. They have the form of a 2* factorial design, or a specified fraction of it,

augmented with a kxk identity matrix. Thus, in three variables a Notz design is
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1 1 1
1 1 -1
I -1 1
-1 1 1
1 -1 -1
-1 I -1
-1 =1 1
-1 =1 -1
1 0 0
0 1 0
0 0 1
L d

Notz designs are not rotatable. Their D-efficiencies compare favorably with other minimum
point designs when the number of factors is small. The reader is referred to Notz (1982) for a more

detailed description of Notz designs.

2.4.7 Hoke Designs

Hoke designs are also minimum or nearly minimum point three level designs. Their con-
struction is based on irregular fractions of a 3* factorial design generated from sets of partially bal-

anced arrays, (see Hoke (1974) for details). An example of a Hoke design in three variables is
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-1 -1 -1
1 1 -1
I -1 1

=1 1 1
0 0 -1
0 -1 0

-1 0 0
I -1 -1

-1 1 -1

-1 -1 1

2.4.8 Box-Draper Designs

Box and Draper (1971, 1974) implemented a restricted D-optimality criterion to generate
these designs. The designs were restricted to be minimum point designs with design points located
on or within the unit cube. Subject to these conditions, the design was found which yielded the

largest determinant of the XX matrix. The Box-Draper design in three variables is
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-1 -1 -1

I -1 -1

-1 1 -1
-1 -1 1
0.1925 0.1925 -1
0.1925 -1 0.1925

-1 0.1925 0.1925

=0.2912 1 1
1 —0.2912 I
1 I -=0.2912

2.49 Computer Generated Minimum Point D-Optimal Designs

There are several computer algorithms available which search for a set of design points which
yield the smallest generalized variance for a specified model. Two of these procedures are
DETMAX (Mitchell (1974)) and the branch and bound algorithm due to Welch (1982). Both al-
gorithms require the user to supply a set of candidate design points from which the N points of the

design are to be selected.

The three variable designs listed in Table 2.1 were generated by these algorithms. MB10 was
generated using DETMAX in a study by Mitchell and Bayne (1978). The other three designs were
generated by the branch and bound algorithm described by Welch (1982). In all cases, the set of
candidate points was the set of design points of a 33 factorial design. Thus, each of the designs re-

presents a fraction of a 3? factorial design.
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Table 1.
Design Points for Computer Generated Second Order Designs
with Three Factors at Three Levels

N Design * Design Points **

10 MB10 020 220 110 102 000 211
200 012 222 121

10 WC10 002 010 021 101 112 200
202 211 220 222

10 WD10 000 002 021 101 110 200
202 211 220 222

11 WCI11 000 002 020 022 110 121
200 202 211 220 222

* The last two digits of the design name indicate the number of design points, N.

MB = D-optimal design generated by DETMAX in Mitchell and Bayne
(1978).

WD = D-optimal design generated by the branch and bound algorithm
in Welch (1982).

WC = A compromise design generated by a modification of the
branch and bound algorithm in Welch (1982). This design was
selected to achieve the smallest maximum prediction variance
at the design points and the smallest average prediction
variance over the distinct design points among designs in the
class for which |X"X| = 0.95 | X,’X,| , where | X, X, |1
is the generalized variance for the D-optimal design.

Thus, the D-optimality criterion was used in conjunction
with prediction variance criteria.

** The levels are recorded as 0, 1 and 2 for convenience. The actual levels of the design
variables used are -1, 0 and 1 respectively.
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Chapter 111

III. Assessment of Prediction Capability on Spheres

3.1 Existing Methods

Response surface studies are used to improve system output. Often this involves finding the
combination of levels of the influential variables which optimizes the response of the system. Im-
provement would occur if, for example, the yield of the system is maximized or if the deviation of

the response from a certain norm is minimized.

Having chosen a design in an appropriate region of the independent variables, the exper-
imenter begins the search for the optimum response in all directions from the center of the region.
The behavior of the response at all points in the region which are the same distance from the region
center, that is, points on the surface of a k-dimensional hypersphere, will determine the direction
of the search. For this reason, the assessment of the quality of the estimated responses on spheres

is an essential consideration in the selection of an experimental design.
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Clearly, the proper description of the prediction capability on all spheres in the region for a
design could not be accomplished with a single-valued criterion. Indeed, it would require a norm
which depends on the radius, 7, of the k-dimensional hypersphere. The criterion would have a value
for each 7, from the center to the edges of the region. An ideal way to view such a continuum of
norms is to plot the values of the criterion against the radius 7. A comparison of such plots_for

competing designs will aid in the selection of a good experimental design.

3.1.1 The Problem with D-Efficiency

The D-efficiency or D-optimality criterion for choosing a response surface design has been
given considerable attention in the literature, (see St. John and Draper (1975) for a comprehensive
bibliography through 1975). It is often recommended to the researcher if only one design criterion
is to be considered. Also, many designs have been constructed to have the D-optimality property
or to be nearly D-optimal, (see, for example, Box and Draper (1971, 1974), Atkinson (1973),

Mitchell and Bayne (1978) and Welch (1982)).

D-efficiency is an assessment of the precision of the coefficients of the estimated response
surface model. It has been shown (Kiefer and Wolfowitz (1960)) that for continuous designs the
property of D-optimality is equivalent to the prediction variance property of G-optimality. That
is, the design which achieves maximum |X"X| among all designs appropriate for the model also
achieves the minimum maximum prediction variance in the region. However, there is no con-

nection between the D-efficiency and G-efficiency of a design which is not D-optimal.

Although D-optimality is linked to prediction capability through the equivalence theorem of
Kiefer and Wolfowitz (1960), the D-efficiency criterion does not provide an assessment of the

quality of prediction on spheres. In particular, it does not provide a graphical representation of the
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prediction variances at locations on spheres. Thus, the D-efficiency criterion is not a suitable

measure of prediction capability on spheres.

3.1.2‘ Prediction Variance Contours

Plots of constant prediction variance in pairs of the independent variables is the classical
method of viewing prediction variances in the region. In an experiment involving only two inde-
pendent variables, the contour plot provides a complete picture of the prediction capability of the
experimental design. By careful investigation of the contours the researcher can ascertain the nature

of the prediction variances at locations which are the same distance from the region center.

As an example, consider fitting a first order model in two variables with a 22 factorial design
with three experimental runs in the center of the region. Contours of equal prediction variances
are plotted in Figure 1. Values for the contours are given by the legend V below the plot. The
variance is evaluated apart from o2 ; that is, the contours are plots of Var(fz(g))/cr2 . It is clear by
the circular nature of the contours that the response is being estimated with equal precision at all
locations which are the same distance from the center. That is, the 2? factorial design is a rotatable
design. Suppose, however, that measurement of the levels of the variables was inaccurate due to a

faulty measurement device so that the actual design settings used in the experiment are as follows:

0.75 0.90
-0.90 0.90
0.80 —0.90
—-0.80 =0.75
0 0

0 0

0 0

| J
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From the prediction variance contour plot for this design given in Figure 2 it can be seen that
the improper settings hinder the predicting ability of the 22 factorial design at nearly all locations in
the region. The contours are somewhat elongated indicating that, although there appears to be
nearly equal prediction variances on spheres, the design no longer possesses the rotatability prop-
erty. Also, the prediction capability diminishes more rapidly as one predicts further from the center
when there are improper settings. For example, the variance of an estimated response at
x, = 1.5 and x; = 0is 0.7 when the readings on the settings are accurate. The actual prediction

variance when the readings are not accurate is 1.0, a sizeable increase.

The use of contour plots in an experiment involving k > 2 independent variables requires a
plot of prediction variance contours for each pair of variables. The remaining k — 2 variables are
held fixed to form the contours for two variables. The information from each plot must be pieced
together to form a picture of the prediction variances for the design. This is often a difficult task.
Prediction variance contour plots are rarely used in practice, particularly, when more than three

independent variables are present in the system.

3.1.3 Prediction Variance Pictures for Rotatable Designs

Recall that a rotatable design, by definition, yields equal variances of the predicted response
at all locations which are equidistant from the center of the region of interest. If the design is
rotatable, a plot of the prediction variance, Var(y(x))/o? = g(r?) , against the radius r provides all
the pertinent information about the prediction variances on spheres for the design. Thus, the
rotatability property facilitates the investigation of prediction capability on spheres for a design.
Comparisons of rotatable designs on a per radius basis could easily be made by comparing plots

of their prediction variances as functions of the radius 7.
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The use of plots of N Var(y(x))/c? against the distance from the region center to compare
rotatable designs has been advocated since RSM was first established. Box and Hunter (1957)
suggested choosing a rotatable design for which the prediction variance at the center of the region
is equal to the prediction variance at locations on a sphere of radius 1. The uniform precision
property prevents the prediction variance from increasing rapidly as the responses are being esti-
mated further from the region center. The prediction variance plots were used to choose the
rotatable design from among a set of rotatable designs which most nearly had the uniform precision
property. Such plots have fallen into disuse as a method of viewing the prediction capability of a

rotatable design.

The prediction variances for two rotatable designs are compared over a range of radii in Fig-
ure 3. The design which generated the curve identified by the solid line (design 1) is a 23 factorial
design. The design corresponding to the second curve (design 2), identified by the dashed line, is
a 23 factorial design with two additional points in the center of the region. Since there are a different
number of design points in each design, N = 8 versus N = 10, the prediction variances have been
weighted by the sample size, N. This has the effect of rewarding the smaller design, design 1 in this
example, for being more cost efficient than the larger design. From the plot it is clear that the de-
sign without the center runs is more efficient than the larger design. Although the addition of two
center points to the 2° factorial design naturally results in increased precision in the estimation of
the response at all locations, the precision gained is not enough to warrant taking the extra exper-
imental runs. Of course, center runs may be added to a design for other reasons, for example, to

gain degrees of freedom for a test of lack of fit of the model.

3.1.4 Prediction Variance Pictures for Non-Rotatable Designs

The prediction capability of a design which is not rotatable is more difficult to assess since the

variance of a predicted response in this case depends on the exact location, direction and distance

Prediction Capability on Spheres : 35



SINIOd HAIN3D 2 HIIM IYIHOLOVY OQ3END-2 v B N9IS3O
SINIOd H3LN3AD ON HLIM TIVIHOLOYS 03GND-2 ¥ % NeISad
8Z1I8 BdNYS A8 03LHSIAM SIINVIHVA NOILOIOFHd
SN9IS30 ITEVIVIOH OMLI HOS S3IINVIHVA NOILOIO3YHD 40 NOSIHVYJIWOD

‘€ aHN9I A
A P~ N9IS3a
sNIAvY
m«m«m«mﬁv«mﬁm«««o«momo\.omomovom.om.oﬁ.c
i S | JUE NI T I I T R W N W I IR S RN SO IS W T W

o

0

WWTWWW‘H‘H‘}

o/ N -
FONVIHVYA NOILOIOS3Hd

<r

Vel

36

Prediction Capability on Spheres



from the center, at which the response is being estimated. The integrated prediction variance for a
design provides a single measure of the prediction quality over some region. However, this does
not give adequate information about how well the response is being estimated on spheres. There
is a need for a norm which is a function of the radius of the hypersphere and which lends itself to

graphical representation as in the case of a rotatable design.

To compare the quality of prediction on hyperspheres among non-rotatable designs, or be-
tween non-rotatable and rotatable designs, Hussey, Myers and Houck (1987) introduced the notion
of averaging the variances of the estimated responses over the surface of a sphere. The spherical
variance, V', over the surface of a k-dimensional hypersphere of radius r, defined by

k
U= (x: g,‘xf = r?} for a design D is given by
V(D) = izju, Var(p(x))dx (3.1.1)
o

where W~! = {, dx is the surface area of U, .

Note the similarity of the spherical variance and the integrated prediction variance described
previously. Indeed, apart from a factor of N, spherical variance is a special case of integrated pre-
diction variance when the region under consideration is the surface of a k-dimensional hypersphere
of radius r. The spherical variance can be plotted against the radius, 7, to obtain a picture of the

average behavior of prediction variances on spheres for a non-rotatable design.

To illustrate the use of the spherical variance to compare designs, consider three designs to
fit a first order model in three variables to the response of a system. Suppose the researcher is in-
terested in predicting the response in a hypersphere of radius \/ 3 = 1.732 . The center of the

sphereisat (x; x; x;) = (0 0 0). Let D1 denote the first candidate design, a 23 factorial design.
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1 1 1
1 1 -1
I -1 1
-1 1 1
DI =
I -1 -1
-1 1 =1
-1 -1 1
-1 -1 -1

D1 is a rotatable design in the first order model case. The second design, D2, is a 2 factorial in
which two of the design points have been inadvertantly dropped from the design. D2 is not

rotatable.

1 1 =1
1 -1 |
-1 1 1
D2 =
I -1 -1
-1 1 =1
-1 -1 1

The third design selected for comparison is a non-rotatable three level design with 8 design points

given by
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1 1 1
1 1 0
1 0 1
0 1 1
D3 =
-1 =1 0
-1 0 -1
0o -1 -1
-1 -1 -1

Observe that each design has center at (x, x; x;) = (0 0 0) . That is, the design center and

center of the region under consideration are the same.

The average prediction variance for each design was computed for 21 values of the radius, 7,
ranging from r = 0, (representing prediction at the region center), to r = \/ 3 = 1.732, (repres-
enting prediction at locations on the perimeter of the region of interest). The results are presented
for comparison in Table 2 and in a plot of V* versus r in Figure 4. The spherical variances for each
design have not been weighted by the appropriate sample size even though the sample sizes differ
for the three designs. The second design, D2, was originally intended to be identical to the 2* fac-
torial design. Eight experimental runs were attempted using the D2 design, however, two were ei-
ther not completed or the information gathered from the two was lost. Thus, it would not be fair
to ‘reward’ the design for a loss of information by weighting the spherical variances by the number
of completed design runs. For this reason, the designs were compared as if each consisted of eight

design points.

The rotatable design D1 is the best of the three designs with respect to average prediction
variance for all radii. The loss of two design points in D2 resulted in a considerable loss of precision
as well. Note that with no additional information in the center, usually provided by center runs,

D2 does not predict nearly as well as D1 and D3 in the center. D3, chosen solely for its use in il-
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Table 2.
Spherical Variances for Example Designs of Section 3.1.5

DESIGN *

RADIUS D1 D2 D3

0.0000 0.1250 0.1667 0.1250
0.0866 0.1259 0.1685 0.1277
0.1732 0.1288 0.1742 0.1357
0.2598 0.1334 0.1835 0.1491
0.3464 0.1400 0.1967 0.1678
0.4330 0.1484 0.2135 0.1920
0.5196 0.1587 0.2342 0.2214
0.6062 0.1709 0.2585 0.2562
0.6928 0.1850 0.2867 0.2964
0.7794 0.2009 0.3185 0.3419
0.8660 0.2187 0.3542 0.3928
0.9526 0.2384 0.3935 0.4491
1.0392 0.2600 0.4366 0.5107
1.1258 0.2834 0.4835 0.5776
1.2124 0.3087 0.5341 0.6500
1.2990 0.3359 0.5885 0.7276
1.3856 0.3650 0.6466 0.8107
1.4722 0.3959 0.7085 0.8991
1.5588 0.4287 0.7741 0.9928
1.6454 0.4634 0.8435 1.0919
1.7320 0.5000 0.9166 1.1964

* The example designs are first order designs in three variables.
D1 = A 23 factorial design, N = 8.
D2

A 23 factorial design with the design points
(111)and(-1-1-1) missing, N = 6.

D3 = A 3-level design, N = 8.
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lustration, has comparable prediction variance to D1 for locations close to the center of the design.
However, the prediction quality of D3 quickly diminishes as one predicts further out from the

center of the design.

In addition to the average prediction variance, the prediction variance, Var(}hz(g))/o2 , was
calculated for the individual locations given in Table 3 for each design. These locations were se-
lected to represent prediction near the center, r = 0.5 , toward the middle, » = 1, and on thé
boundary, r = 1.732, of the region under consideration. The prediction variances are presented in
Table 4. Note that the design D1 is estimating the responses at locations the same distance from
the center of the region with equal precision. Designs D2 and, in particular, D3 have noticeably
different variances for the predicted responses at equidistant locations from the center of the region.
These designs are not providing consistent estimation of the response on spheres. It is apparent
from this illustration that the spherical variance does not give a complete picture of the prediction
capability on spheres of a non-rotatable design. Measures to fill out the description of prediction

capability on spheres will be presented in the next section.

3.2 Prediction Variance Dispersion Measures

3.2.1 The Need for Prediction Variance Dispersion Measures

The spherical variance provides a view of the prediction variance properties of a non-rotatable
design which was not previously available to the researcher. Although the spherical variance
measures how well the responses are estimated on the average at locations on a sphere, it does not
indicate the consistency with which these responses are estimated. As with any average, the

spherical variance requires a measure of how well the average describes the prediction variances as
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Table 3.
Locations for Calculation of Prediction Variance
for Example Designs of Section 2.1.5

RADIUS X, X, X3
0.5 P1 0.5 0.0 0.0
P2 0.2887 0.2887 0.2886
N P3 0.25 0.433 0.0
1.0 P4 1.0 0.0 0.0
Ps 0.577 0.577 0.578
Pé 0.456 0.89 0.0
1.732 P7 1.732 0.0 0.0
P8 1.0 1.0 1.0
P9 1.5 0.865 0.0
Table 4.
Prediction Variances for the Locations Given in Table 3.
DESIGN *
RADIUS LOCATION D1 D2 D3
0.5 P1 0.15625 0.22916 0.21429
P2 0.15625 0.29166 0.14286
P3 0.15625 0.25623 0.18335
1.0 P4 0.25 0.41667 0.48214
P5 0.25 0.66664 0.19642
P6 0.25 0.51814 0.36620
1.732 P7 0.5 0.91662 1.19637
P8 0.5 1.66667 0.33929
P9 0.5 1.24060 0.82508

* The example designs are first order designs in three variables.
D1 = A 23 factorial design, N = 8.

D2 = A 23factorial design with the design points
(111)and (-1-1-1) missing, N = 6.

D3 = A 3-level design, N = 8.

Variances are Var(}(,x)) | 6% where the locations x = (x, x; x;)’ are given in Table3.
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a whole. To judge how well the spherical variance represents the prediction capability of a design,
two measures which describe the dispersion in the variances of the predicted responses on a sphere
will be developed in this section. These prediction variance dispersion (PVD) measures will be

based on the usual ideas of variability.

There is no varnability in the variances of the predicted responses on a sphere for a rotatable
design. Dispersion in the variances for a non-rotatable design indicates a deviation from
rotatability. Hence, the magnitude of the dispersion measure corresponding to a sphere for a design
gauges how near that design is to possessing the rotatability property of equal prediction variances

on the sphere.

The indices proposed by Khuri (1988) and by Draper and Guttman (1988), and discussed in
section 2.3.4, also attempt to quantify how near a design is to possessing the rotatability property.
However, each is a single-valued measure which describes the ‘nearness to rotatability’ of the design
as a whole and does not address the consistency of prediction on spheres. The PVD measures, on
the other hand, describe the consistency with which the response is estimated on a particular sphere.
Consideration of these measures across a range of radii will allow the researcher to ascertain at what
distances from the region center the design is estimating the response with nearly equal precision

and where the design is providing estimates with inconsistent accuracy.

3.2.2 Measuring the Dispersion in Prediction Variances

If we view each location x on the surface of the k-dimensional hypersphere defined by U,
as a possible value of a vector-valued random variable, say X , then the spherical variance, V", is
analogous to the mean or expected value of Var(};(X))/cy2 . Note that the factor ¥ = [j'uf dx]~!

in the definition of V7 plays the role of the probability density function of X . Thus, the random
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variable X is assumed to be uniformly distributed over the surface of the hypersphere defined by
U, .

Consider, now, measures of the variability in Var(3(X))/o? where X takes values in U, .

The simplest dispersion measure is the range of the values. A range for Var(p(X))/o? is

RofV(r) = max Varp(x))c® - grél?] Var(p(x))/c* . (3.2.1)

Perhaps the most conventional measures of dispersion are the variance and standard deviation.
The variance of a random variable is the expected value of the squared deviation from the mean.

Thus, the random variable Var(y(X))/o? with mean V* has variance given by
VoV = ¥f, [-Lvartp) — V1P dx (32.2)
"o
As before, ¥ represents the probability density function of X .

Since the form of Var(fz(gc)) depends on the chosen model, the forms of the range and vari-
ance will also depend on the model. Further results for the spherical variance, RofV and VofV
measures will be derived when the assumed model of the response is first order. In addition, the
form of the VofV will be extended to the case of fitting a second order model in two independent
variables to the response. An optimization algorithm will be implemented to find the RofV in the
second order case. A general form of the spherical variance due to Hussey, Myers and Houck

(1987) will also be given.

3.2.3 Some Notation

Before proceeding, we shall set forth some notation which will be used in developing range-

and variance-type measures as discussed previously. The prediction variance dispersion measures
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and spherical variance will be investigated further under three experimental situations. Model-
specific forms will be derived under a first order model for the response in case I and case II. The
experimental situation in which the design is centered about the origin of the region of interest will
be considered first. The more complicated case in which the design center and region center differ
will be investigated in case II. The eyaluation of these measures in the second order model case

will be discussed under case III.

Case I : A first order model; the design center and region center are the same.

Suppose a first order model in k variables is fit to the response with a design centered about
the center of the region of the independent variables. This is the region of interest. Let
X = (x; x; ... x;)" be a setting of the levels of the variables x,, x,, ..., x, present in the system
and write x° = (1 x)". Define the Nx(k+ 1) matrix X" by [1 X ] where 1 is an NxI vector of
ones and X is an Nxk matrix whose columns are the last k columns of the matrix' defined by

(2.2.2) for a first order model. X" is the model-matrix. The first order model can be written as
y=XB +s
where § = (B, B, ... B.)’ and g is defined as before (see section 2.2.3).

N
In the present discussion, the columns of the submatrix X are centered so that .le,j = 0 for
allj = 1, 2, ..., k. In this way, the vector of ones in X" is orthogonal to the submatrix X . This

assumption allows us to write the (X~ X") and (X X")~! matrices in the following convenient forms

and
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1
*/ * Q’
X'xH)y '=|N .
0 XX

Consider the eigenvalue decomposition of (X"X)~!. Define P to be the kxk orthogonal ma-

trix for which
PXX)"P = A

where A = diagonal(A;, A,, ..., A,) is the diagonal matrix containing the eigenvalues of (X' X)~! .
Since P is an orthogonal matrix we have that P’P = PP’ = [ the identity matrix. Consequently,

the variance of a predicted response for a first order model can be written as

Var(p(x)) = oL 7&,— + X PP'(XX) " 'PPx ]
o[ # + z7Az] (3.2.3)

2r 1 X, 2
=~ + -
c[N iglk,z,]

where z = (2, z, ... z)’ = P’x . P is an orthogonal transformation taking xinto z . Note that
k k

.le? =Z2z=x'x= lzlx,? . Thus, for any point x located on U, , the surface of a k-dimensional
hypersphere of radius r, the corresponding point after orthogonal transformation by P, that is,

z2=Px,isalsoon U,.

Case II : A first order model; the design center and region center are not the same.

The case of centered columns of the submatrix X for a first order model corresponds to the
origin of the design and the origin of the region of the independent variables being the same. The
center of the design, however, is not always identical to the center of the region of interest. In
general, define the location of the center of the designtobe A = (A, A, ... A, ) ;the center of the
regionis 0 = (0 0 ... 0) in the design variables. When 4 # 0 the columns of the submatrix

X are not centered. It will prove useful to consider a translation of the axis system corresponding
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to the design variables x;, x,, .., X, to an axis system with origin at the center of the design.
That is, the point A4 in the x-axis system is the point 0 in the new axis system. Call the variables

in the new axis system w,, w,, .., w,,wherew, = x, — A, i =1, 2, .., k.

In terms of the w-variables, the variance of a predicted response at a point

w=(wmw .. w)=(x—-hx;—h .. x,—h) = x — hisgven by
_1 *

Varpw)) = o*w (W Wy

where w” = (1 w)’, and W = [1 W]. The Nxk submatrix W is analogous to the submatrix
X in case 1. In this case, the columns of W are centered versions of the corresponding columns of

X . Using the development of case I for a prediction variance at a location in the w-axis system,
Varyw) = o’ [~ + w(w'm~'w],

which can be written in terms of the original design variables as

Var(y(w)) = 02[# + (x- bYW (x-m)]

L=+ xWW) s = 26WIN ' + KWW ']
It will be convenient to express the prediction variance in terms of the eigenvalues of the

(WW)~! matrix. Let P be the kxk orthogonal matrix of the eigenvalue decomposition of

(W'W)~!. Then,

Var(p(w)) o’[%V + ZAz - 2ZAm + m'Am]

N \ \ (3.2.4)
= 0'2 [ W + Z 7&.,212 -2 2 ;\.imizi + z )\.im[z ]
i=1 i=1 i=1
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where z = (2,2 .. ) = Px and m= (m my ... m) = Ph.

A = diagonal(A,, A,, .., A,) is the diagonal matrix containing the eigenvalues of (W W)~
Note that if the design is centered about the origin of the region in‘ the design variables, that is, if
A = 0, this formulation reduces, as it should, to the expression given in (3.2.3).

Case III : A second order model.

Suppose now that a second order model is used to approximate the response surface. In this

case, define x* = (1 x .. x, x2 .. x} xx; xx3 .. X_,X;) and the model-matrix

1 2 2

X X X1 e X XXz XXz e X -1 Xk
2 2

1 X21 Xak x2] x2k X2IX22 x21x23 Xz,k_ ,x2k

X =

1 2 2

le ves .xNk xN] . xNk lexNz xNIxN3 vee xN,k_ lxNk

- -
The variance of a predicted response estimated at a location x = (x;, x; .. x;) in the re-

gion of the design variables is
vary(x) = ot [x (X0 "5 1. (325)

The formulation of the prediction variance used in the first order model case cannot be extended

to this case due to the curvature present in the second order model.

Spherical region moments.

The notion of spherical region moments will be useful in the development of a model-specific

form for the spherical variance and for the variance of Var(}(x))/o? for locations on the surface of
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k
a hypersphere defined by U, = { x: Izlx,z = r’} . A spherical region moment of order 6 is defined

to be
- 5,8 )
05,8,...5, = \YJ'U, x %L xpk dx,
A k
where W~! = (, dx is the surface area of U, and ')318, =3.

If any §, is O that subscript is dropped from the designation of the moment. Since U, is a

symmetric region, the spherical moment 0, .5, is zero whenever any §, is odd.

The spherical region moments which will be utilized in the development for the first order

model case are second order spherical moments given by

and the fourth spherical moments

4
5 ds = o2

%a Kk + 2)

and

= __r
k(k +2)

In addition to the second and fourth order moments, spherical moments of order six and eight will

also be required when the assumed model is second order. The sixth order spherical moments are

— 4.2 — 3"
oa = Wy % dx 2k + 4)(k + 2)

and
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6
O = ¥y xds = Ty

and the eighth order spherical moments are

9
2k + 6)(k + 4)(k +2) '

Oyq = ‘PJUrx? xf dx =

15/
2k + 6)(k + 4)(k + 2)

6 2
CGgy = ‘PIU’xi.xj dx =

8
Wi e = 105 _
% = ¥urdt = Sk ok

Here k is the number of variables in the multiple integral, which, for our purposes, is the number

of factors in the system. See Stroud (1971) for details of the integration.

Note that the spherical region moments do not depend in any way on the experimental design
or form of the model used in the analysis. Region moments, as the name suggests, only depend
on the region of interest. In the case of spherical moments, they are functions of the radius, r, and

dimension, k, of the hypersphere under consideration.

Define the spherical region moment matrix S by
S = ‘PJU;& dx (3.2.6)

where the structure of X" depends on the model in use. In particular, x* has been defined in this

section for first and second order models. The matrix S contains the spherical region moments

pertinent to a specific model.

Prediction Capability on Spheres , 51



3.2.4 The Range of Variances on the Surface of a Hypersphere

The general form of the range of variances of the predicted responses on the surface of a
hypersphere of radius r defined by U, is given by

RofV(r) = max Var(p(x))/c® - min Varp(x)/o” .

e U,

More specific forms of the range will be discussed under the three cases described in the preceding

section.

Case I : A first order model; the design center and region center are the same.

To find a specific form for RofV first consider the maximum and minimum values that the
prediction variance can achieve in this situation. Specifically, it is necessary to find the optimum
values for Var(_};(gg))/o2 when x is in U, . From the preceding section, this is equivalent to opti-

mizing the function

L varpa) = % + M2+ AR .+ My (3.27)
o

when x = (x; x, ... ;)" and, therefore, z = (2, 2, ... )" are in U, . The coefficients, A,, ... A,, of
the variables in the function are the eigenvalues of the full rank matrix (X’X)~! and, hence, positive.
For convenience, suppose that the variables are ordered in such a way that

0<A <A< .. <A,

First consider the case where the eigenvalues are all distinct, that is,
0 <A, <A, < ... <. To maximize (3.2.7) subject to the condition that :ﬁlzf = r? requires that
the variable whose coefficient is the largest; i.e., the variable that has the highest weight, be as large
as possible. Thus, for the first order case, the maximum variance of prediction on U, occurs for

k
zz==zxrandz =z = .. = z_, = 0to achieve le? = r?. The corresponding maximum ts
po
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1 . 1 % 2
—V — 4+ ¥ Az
I!éaX’ 2 ar(y(;)) grréax, [ ] i=l)\.lZ‘ ]

-j_lv. + 7\.1{"2

where A, is the largest eigenvalue of (X’X)~!.

Similarly, to find the minimum prediction variance on U, , place all the mass allotted to

k
2, 2, .., Z by the condition ‘Elz,? = r? on the variable whose coefficient is the smallest. Now
k
the minimum occurs for z; = £ randz, = z, = .. = z, = 0to achieve ‘Elz,? = r? . The mini-

mum prediction variance on U, is then

. 1 A . 1 k 2
—_—V r(}; = —_ 4 z A
sﬂél?lr 0.2 ar(y(x)) gneng, [ N i=1;\'lzl ]
= _]i/ + ?\.lf'2

where A, is the smallest eigenvalue of (X'X)~! . A more rigorous proof of these results appears in

Appendix A.l for the special case of k = 2 variables.

When two or more of the eigenvalues are the same, the maximum and minimum values may
occur at more than one point on U, . The resulting optimal values, however, remain the same.
As an illustration, consider A, = A, and all other eigenvalues distinct. Clearly, the maximum pre-
diction variance at locations on U, is as before. The minimum, however, may occur at any point
on U, for which z2 + z} = r? and, hence, z, = ... = z, = 0. The corresponding minimum value
though is 1/N + A,72 where A, = A, is the smallest eigenvalue of (X'X)~!. So the optimum values

of the prediction variance on U, are not effected by multiplicities in the eigenvalues of (X’ X)~! .

It is of interest to note that if all the eigenvalues of (X’X)~! are the same then the prediction
k
variance reduces to a function of le,.‘ , the distance from the center of the design, alone. This

means that the responses at every location on the surface of a hypersphere of radius  are estimated
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with the same precision. Hence, a design for which the eigenvalues of (X'X)~! are all equal is a

rotatable design in the first order case.

Ultimately, the range of variances of predicted responses on the surface of a hypersphere of

radius r for a first order model is

RofV(r) [%H»krz] - [—]‘7+xlr2]

(3.2.8)

PO = Ay)
where A, and A, are the largest and smallest eigenvalues of (X"X)~! respectively.

Clearly, the range of prediction variances at locations on any hypersphere of radius  will be
zero for a first order rotatable design. For non-rotatable designs, RofV is an increasing function
of the radius r. Thus, the ability of a non-rotatable design to predict nearly equally well at all lo-
cations on the surface of a hypersphere of radius » diminishes as one predicts the response further
from the center of the region under consideration. The consistency of the quality of prediction for

a given r depends on the closeness of the eigenvalues of (X’X)~! through the range A, — A, .

Case II : A first order model; the design center and region center are not the same.

Under these circumstances, the problem of optimizing Var(p(x))/o? subject to
X = (x x; .. x;) being on the surface of a hypersphere of radius r centered at x = 0 is
equivalent to the constrained optimization of Var(p(w))/0? in the w-variables. In terms of the
w-axis system, the constraint requires that the point w = (w; w, ... w, )’ lie on the surface of a

hypersphere of radius » with centerat w = 0 — 4.

Using the method of Lagrangian multipliers for finding the stationary points of a function,
the maximum and minimum values are found by solving the following set of simultaneous

equations:
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and p is the Lagrangian multiplier. The solution to this problem has been worked out in detail in

Appendix A.2.

A stationary point of the system defined by (3.2.9), expressed in the design variables, has the

form

M Ay M ,
= Plr=pm =™~ g )

where P is the orthogonal matrix for which P(W'W)~'P = A = diagonal(), A, ... A,)and m,
is the i-th element of the vector m = P’A. The value of p determines the status of the stationary
point. In particular, the stationary point is a location of maximum prediction variance on a sphere
k A

. . 3 ’ -1 1 22 = 2 -
of radius r if u > A, , the largest eigenvalue of (W'W)-!, and 51(7»1“_“) m r? . The sta
tionary point is a minimum on the sphere if p < A,, the smallest eigenvalue of

k A

-1 i 22 = ..

(WW)~!, and El(-x—l—_—u—) m r* . In both cases, the second condition on u guarantees the

the stationary point will be on the surface of the hypersphere of radius r.

The relationship between the radius r and the Lagrangian multiplier yu was established by
Draper (1963) in connection with his work on ridge regression analysis. The reader is referred to
Figure 14 of section 4.1.2 for a plot of r against p. It is of interest to note that for a given sphere,
there is only one value of p which will yield a maximum (minimum) value for the prediction vari-
ance. The proof of this result may be found in Draper (1963). Thus, if the design center is not
identical to the center of the region of interest, there is only one combination of levels of the inde-

pendent variables which produces the largest (smallest) variance of prediction on that sphere.
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Let X, denote the stationary point defined by x, which yields the maximum prediction var-
iance on the sphere and, similarly, x,, is the stationary point which yields the minimum prediction
variance on the sphere. The maximum and minimum prediction variances on the sphere are re-

spectively,

-1 *

1 A _ =/ *! %
foay ?Var(y(x)) = Xmax(X X)Xy

and

i

. 1 ~ *! X ]
Jrreu?f, ?Var(}’()_f)) xmin(X X ) Emin
Aimy

)2

N W
N =

i ~ Hmin

where p,,, and p.;, are the appropriate Lagrangian multipliers. The range of the prediction vari-

ances on the surface of a hypersphere of radius r is given by

RofV(r) = G—learG(:_cmx» - —C:—Z'VGV(;(Xmin))

k
igl)"i {(hm)® [( X —Lmax > = ( T L Y1) (3.2.10)

i = Hmin

I
I M=
Rs
3
—
—
>
|

lmax)2_(k 1 )2]

{ ~ Hmin

Case III : A second order model.

When a second order model is used to approximate the true response function the variance

of a predicted response is given by (3.2.5). The formulation of RofV requires the optimization of

Lvap) = [0 '] (3.2.11)
¢
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where x° and the model-matrix X are approprate for a second order model, (see section 3.2.3).
The optimization of this function over locations on the surface of a hypersphere is a very difficult
task. It is necessary to use a computer search algorithm to find the extreme values of ( 3.2.11 ).
There are many optimization packages available, but few can satisfactorily handle the problem of

optimizing a nonlinear function subject to a nonlinear eqﬁa]ity constraint on the variables.

For the illustrations presented in this thesis, the Modular In-core Nonlinear Optimization
System (referred to as MINOS hereafter) computer package (Murtagh and Saunders (1983)) was
used to generate maximum and minimum values of the prediction variance. The range of the pre-
diction variances on the surface of a sphere is computed as the difference in the corresponding

maximum and minimum values generated by MINOS.

The algorithm also provides a location at which the optimal value is obtained. There may
be other points on the sphere which yield the same extreme value. These points may be found by
selecting initial values for the independent variables in a different section of the spheré. Although
there exist absolute maximum and minimum values for the prediction variance at locations on a
sphere, the MINOS algorithm only provides local extremum. A thorough search of the surface of
the sphere, however, should yield the absolute extremum for the problem. The MINOS algorithm

is briefly described in Appendix A.3.

3.2.5 The VofV on the Surface of a Hypersphere

The variance of the prediction variances for locations on a sphere defined by (3.2.2) will be

considered under the three cases described in section 3.2.3.

Case I : A first order model; the design center and region center are the same.
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Under the specifications established for case I in section 3.2.3, the average prediction variance

on the surface of the k-dimensional hypersphere defined by U., the spherical variance, is

"N

L to, £,

=-—=+0 3.2.12
N 2 2 M ( )
1 P2k

= — 4 —
N &k ,E'f"

where 4, z,,i = 1,2, ..., k and the second spherical moment o, = \PIUr z? dz are defined in section

3.2.3. Observe that the average prediction variance on any sphere is a function of the average of
the eigenvalues of the (X’X)~! matrix. The squared deviation of the variance of an individual pre-
dicted response from the average variance of the predicted responses at locations on U, is, apart
from a2,

A k
[Lvag) - VP = [ $1d -0y 54,7
g i=1 i=1

k.24 k &k 2.2 LA N 2, k.
= 1217~;Zi + 2_21 'Elxiljzlzj - 202(_Zl7~121 )(_217»1) + 02(.217‘4) .
= i=1j= i= i= =

i<j

The variance of the variances of the predicted responses at locations on U, is the expected value of

the expression above. Thus,
k 2 k k 5 k 2
VofV(r) = 04_217»1 + 2022121 ,217‘9*;' - 02(,217“1)
i= =1 = i=
i<j
where 6, and ©,, are spherical moments of order four. Substitution of
r 3t 4

T —— = — d =t
T BT kv 2T kv 2
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above yields VofV on the surface of a hypersphere of radius r for the first order model case with k

factors present in the system as

4
Vov(r) = —2—L (k- l)m2 - 25 $ap]
kk + 2) i=1j=1
i<j
2t LA 2
=—Z __ 5 s(y-2 3.2.13
e AL (3219
1</
- 2t T2
Kk + 2) 1—1( ~)

_— k
where A = ')_:ll,/k.

It is interesting that VofV can be expressed simply in terms of the empirical variance of the
eigenvalues of (X’X)~! . Again, the dispersion in the prediction variances on a hypersphere of radius
r depends on the dispersion in the eigenvalues of (X’X)~! . When the eigenvalues are the same, that
is, when the design is rotatable, the VofV is equal to zero on any sphere. Thus, the VofV, as well

as the RofV, provide reasonable measures of deviation from rotatability for a design.

A more appropriate measure of the variability in the variances of the predicted responses at
locations on U, is the standard deviation of these variances. Let SDofV(r) = + \/ VofV(r) de-
note the standard deviation of the variances of the predicted responses at all locations which are a

distance r from the center of the region.

Case II : A first order model; the design center and region center are not the same.

Consider the evaluation of V7 in the w-axis system. The prediction variances to be averaged

in this case correspond to locations w = (w; w, ... w,)’ on the surface of the hypersphere of
k&

radius 7 with centeratw = Q — A. Let U* = {w: IEI(W, + h)* = r?} denote the surface of this

hypersphere and ¥;! = fu;v dw be the surface area of U* . Then,
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Vo= w—;’ju;« Var(y(w))dw
g

1 k. 3 k LA
\YJU (—— + E liz,- - 2 E llmizi + 2 )\.im,- )dz
r N i=1 i=1 i=1

(3.2.14)
1 k L
N =1 i=1
| r2 k k 2
=Ll s+ sam
N EM Tt 2

by a transformation of variables and (3.2.4). The interim steps required in this formulation appear

in Appendix A.4.

Now,

VofV(r) = Wyfw [ Varpwy)io® — V7T d

k k k
= ¥, [ + Thd - 23 bz, + 3 hml)
| = 2

i=1

k k
i=1 i=1

The second equality results from a transformation of variables and the results of equations
(3.2.4) and (3.2.14). After simplification, the variance of the variances of the estimated responses

on the surface of a hypersphere of radius » under case II is

otk =2 2k oo
V T — Ao — A + 44— T A 3.2.15
ofV(r) W+ 2) i§1( i ) 7 ‘_>=:1 im ( )

—_— k
where A = .Zlk,./k . The reader is referred to Appendix A.5 for details.

If the design center corresponds to the center of the hypersphere, then, not surprisingly, the
V7 and VofV given here correspond to the V'* and VofV derived under case I. It is of more interest

to note that the ¥ and VofV for a design which is not centered about the origin of the region of
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interest are inflated over those for the same design which has been centered to the origin. Since the
eigenvalues are the same for both designs, the amount by which the V7 and VofV differ for the two
designs increases as the design is removed further from the region center. Thus, it is to the re-
searcher’s advantage to select a design which is centered about the center of the region of interest
to achieve more precise estimates of the response as well as more consistent estimation of the re-

sponse on spheres.

Case III : A second order model.

In general, the spherical variance can be written as
Vo= u{Srxn (3.2.16)

where tr { -} denotes the trace of a matrix, and S is the spherical region moment matrix defined
by (3.2.6) corresponding to the model. The matrix X in this definition is the full model-matrix as
described in section 2.2.3. This result is given by Hussey, Myers and Houck (1987) in their paper
introducing the spherical variance. The form of the matrix S for a second order model in k variables
is given there. In this form, and with knowledge of the matrix S , the V" is easily computed in the
second order model case. However, because of the difficulty in deriving a form for the VofV when
the model is second order, only the V" and VofV for- a second order model in k = 2 variables will
be considered here. It was decided not to pursue the development of the VofV further since this
criterion does not lend itself as well to graphical representation as does the ¥ and, as will subse-

quently be shown, the RofV.

So, suppose that a second order model in two variables is fitted to the response of the system.

.

In this situation, x* = (1 x; x, x} x} x;x;)’ and S has the form
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1 0 0 o o, 0
0 o, O 0 0 0
0 0 o, O 0 0
S =
G, 0 0 (7] Gy 0
o, 0 0 o0y o4 0
0 0 0 0 0 oy

Let the elements of (X’ X)~! be denoted by ¢l fori,j = 0, 1, 2, 3, 4, 5. Here the superscript i indi-
cates the row and j the column in which the element ¢l appears. It turns out (see Appendix A.6)

that the spherical variance in terms of the spherical moments and elements of (X’X)~! is

2 : 2
00 0,i+2 i i+2,i+ 55 4
Vi=¢" + o,[ T(2¢ +c')]+64§c 2 2+<522(c +2c3).

i=1 i=1

Consider now the general form of the VofV as defined in (3.2.2). It is not difficult to show

that

vovn = ¥y, [Lvatpe) P - )
g
- W[y, 20 D xds — (VY (3.2.17)
= w (TN '} - w{Sxn™")

where T = ‘Pj',,r XX'(X'X)"'xx’ dx . Note that the * superscript on the vector x has been dropped

to ease the burden of notation.

For the case of a second order model, T contains spherical region moments through order
eight as well as the elements of the (X"X)~! matrix. In this case, the VofV is an eighth degree
polynomual in the radius » of the hypersphere. It has not been reproduced here since it is lengthy

and does not provide any insight into the characteristics of this dispersion measure. A computer
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program which will evaluate (3.2.17) under the conditions of case III for two variables over a range

of radii is presented in Appendix A.7.

3.3 Illustrations of the Use of the Spherical Variance and

PVD Measures

The spherical variance and PVD measures were developed to aid the researcher in choosing
a satisfactory design for the experimental situation. These criteria facilitate the comparison of
competing designs as well as allow the investigation of the prediction properties of a design. The
examples presented in this section were chosen to illustrate how these measures can be used to
answer questions typically posed by the researcher. In particular, the effects of losing one or more
design runs, inaccurate measurement of the levels of the independent variables and augmenting a
design point to an already existing design on the prediction'capability of several first order designs
will be examined. A comparative study of some families of second order designs is presented in

Chapter V.

3.3.1 A Plot Depicting Prediction Capability on Spheres

The spherical variance, VofV and RofV criteria, each of which describes some property of the
prediction variances on the surface of a sphere, can be represented on a graph for varying values
of the radius of the sphere. It would be most practical to depict the average prediction variances
and the dispersion in the variances on spheres in a single plot. It has already been shown that the
average behavior of prediction variances on spheres is readily viewed in a plot of the V" versus the

radius of the sphere, 7. The simplest way to include the dispersion in the prediction variances in
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this picture is to plot the maximum and minimum prediction variances corresponding to each ra-
dius. The distance between the curves of maximum and minimum prediction variances at a given
radius 7 is the range of the prediction variances on the sphere of radius r. Together, the three curves,
V*, maximum and minimum variances, provide a clear and concise description of the prediction

capability on spheres for a design.

Alternatively, ‘confidence bands’ of the form V* + ¢ SDofV/(r) for some constant ¢ about the
spherical variance curve could be included to indicate the variability in the prediction variances for
each 7. Such bands will not be considered further since it is apparent that they are considerably
more difficult to interpret than the graph of maximum and minimum prediction variances on

spheres.

3.3.2 Illustration of the Effects of Loss of Design Points

Suppose that during the exploration of the response of a system in three variables a first order
model is fitted to the response in some region of the independent variables. At this stage it is rea-
sonable to employ a 23 factorial design to analyze the behavior of the response in the region. The
23 factorial design, being an orthogonal design, yields independent estimates of the coefficients of
the first order model and equal variances of the predicted responses on spheres about the region

center.

If the researcher suspects that some of the design points might be lost during experimentation,
he or she mé.y wish to make additional experimental runs to soften any adverse effects the loss of
design points might have on the prediction capability of the design. Usually, extra experimental
runs of this sort are taken at the center of the region. In this way, the orthogonality and rotatabilty
properties are maintained for the 23 factorial design, and for any orthogonal and rotatable first order

design. It has already been observed that the increased precision on spheres gained by adding two
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experimental runs in the center of the 2 factorial design is not enough to merit the additional cost
of the two center points, (see Figure 3, section 3.1.4). However, it would be worthwhile to deter-
mine if the center runs will provide protection against the deterioration of the prediction capability

of the 23 design if one or more design points are lost.

Consider the investigation of the prediction variance properties on spheres for a 23 factorial
design in which two design points have been lost. For this illustration, suppose the resulting design
1s the second design, D2, given in the example of section 3.1.5. This design has six design points
and no center points. The curves of maximum and minimum prediction variances for this design
are depicted in Figure S. The spherical variance is represented as the solid curve between the
maximum and minimum prediction variance curves. The curves were constructed under the for-

mulation of case I since this particular design is centered about the region of interest.

The comparison of this design with the full 2° factorial design presented in Figure 3 clearly
indicates that the estimation of the response is typically much worse when information has been
lost. Note that the minimum prediction variance curve corresponding to the 23 design with two
missing points lies above the prediction variance curve for the full factorial. Thus, the accuracy of
prediction for the 2° factorial design is everywhere better than that of the 23 factorial with two
missing. Figure 5 shows that the accuracy of the predicted responses at locations on spheres is
somewhat inconsistent when predicting near the center of the region but worsens considerably as
the response is estimated on spheres far from the region center. Prediction of the response is worst
in the directions of the missing design points (1 1 1)and (-1 -1 -1). One set of the locations
of maximum prediction variance on spheres is pictured in Figure 7. For a given radius the maxi-
mum prediction variance is attained where the three variables take on the same values on the

sphere. Hence, the lines depicting the values of x,, x, and x, in Figure 7 coincide in this case.

The variances plotted in Figure 5 have been weighted by the number of design points,
N = 6 here, to permit the comparison of this design with a 23 factorial design with the same two

points lost and two additional runs in the center. The weighted spherical variance and maximum
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and minimum prediction variances over locations on the surface of a hypersphere of radius r are
given in Figure 6 for this design; N=8 here. Careful scrutiny of Figures 5 and 6 reveals that the
larger design is not as efficient as the smaller design in predicting the response on spheres. Thus,
the addition of two center runs to a 23 factorial would not provide suitable protection to the pre-
diction properties on spheres against the loss of two design points. Consequently, in this situation,
and especially if experimental runs are costly, the researcher would do well to save the additional
runs intended for the center to be used to improve the prediction capability of the design in a sub-

sequent stage of experimentation.

It is not surprising to observe a loss in precision when information is lost, particularly when
the sample size is small at the start. The spherical variance and PVD measures enable the researcher
to gauge the extent of the damage to the prediction capability of the original design. With these
criteria the researcher can also investigate the consequences of implementing a different design and,

thereby, choose the most favorable experimental strategy.

3.3.3 Illustration of the Effects of Improper Design Settings

Sometimes in an experiment the levels of the variables are improper. That is, there is error
in the measurement of the variables caused by a faulty measurement device or inaccurate reading
of the measurement. For instance, if the thermostat which regulates the temperature of a chemical
process routinely gives readings below the actual temperature, the actual design settings used in an
experiment involving the temperature of the process are not those prescribed in the experimental
design plan. The properties of the design used in the experiment are usually not known since, even
if it is known that the settings are improper, the true values used are not known to the researcher.
However, the effects of imprpper setfings on the prediction capability of a design can be examined

in general with a few case examples.
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As an example, consider a 2¢ factorial design with one center point used to fit a first order
model in some region of the design variables. Suppose the levels of some of the variables are sub-
ject to inaccurate measurement. For purposes of illustration, two types of improper settings will
be considered. In the first type the levels of all the variables are measured improperly and the actual
values obtained deviate from the values specified in the design plan by one to ten percent. Thus,
if the required level of a variable is x, = 1, say, the value of x,, measured as x, = 1, is actually
something between 0.99 and 0.90. The design given by (3.3.1) exhibits this type of improper set-

tings.

Improper settings occur in only two of the four variables in the second classification of im-
proper settings. The measurement of the levels in these two variables, however, is highly inaccurate;
some values are between twenty-five and fifty percent of their measured values. That is, a variable
recorded at a level of 1 may actually be between 0.75 and 0.50. A design which can be classified

as having this type of improper settings appears in (3.3.2).
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0.99 0.95 0.95 0.90
0.99 0.95 095 —0.90
0.99 095 —-095 0.90
0.99 -—0.95 0.95 0.90
=0.99 0.95 0.95 0.90
0.99 095 =095 -0.90
099 -0.95 095 —0.90
=0.99 0.95 095 —-0.90
099 =095 -0.95 0.90 (3.3.1)
—0.99 095 —0.95 0.90
-099 -0.95 0.95 0.90
099 -—=095 =095 -0.90
—0.99 095 —095 —0.90
-099 -0.95 095 -—0.90
=099 -095 —-095 0.90
-099 -095 -095 —0.90
0 0 0 0
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1 1 1 -1
1 1 -06 1
1 -05 11
-1 1 11
1 1 -06 -1
1 -1 1 -1
-1 05 1 -1
1 -1 =06 I (33.2)

-1 -1 1 1
1 -1 -06 -1
-1 1 =06 -1
-1 -1 1 -1
-1 -1 =06 1

These 2¢ factorial designs with improper settings will be used to investigate the effects of the two

types of improper settings on the prediction capability on spheres of a 24 factorial design.

The spherical variances for the three designs are compared in Figure 8. It is apparent that
on the average, at least, the loss of precision due to improper design settings is greatest when the
levels are off by as much as twenty-five to fifty percent from their recorded values. A comparison
of the more complete pictures of prediction capability on spheres for the two designs with improper
settings in Figures 9 and 10 reveals too that there is a much wider range of variances of the predicted

responses on spheres for this design. The accuracy of prediction on spheres is highly inconsistent

Prediction Capability on Spheres _ 72



d40 IN3DH3d 05-52 'S3TI8VIHVA 2 NI S9INILL3S HILOHAWNI € N9IS3a
440 IN30H3Ad O0T-% ’'S3NAVIHVA b NI SOINILLI3S HILOHCWI 2 N9Isad
SONIL13S H3LOHAWI ON HLIM HLIHNOA 3HL Ol 2 3 N9Is3a
SN9IS30 HiHNO4 3HL Ol 2 HOd S3INVIHVA TIvIIHAHGS 40 NOSIHVJAWOD
‘8 3HN9I1d

£~ ¢ T 7 NI9IS30

sNnIavy

97 Pl ¢l om 80 9°0 P 0 ¢ 0 0°0

JONVIHVA IVOIH3IHLS

73

Prediction Capability on Spheres



0°¢

=40 IN3JHA4 O0T-F °S3IBVIHVA ¥ NI SSNILL3S HI4OHAWI
SONI113S H3dOH4IWI HLIIM N9IS30 HIWNOd 3IHL 01 2 Vv Hod
SIINVIHVA NOILIIOSIHD WNWINIW ONV WNOWIXVW °‘IONVIHVA “IWDIH3HCLS
°6 3HNSI A

sNIiavy

0°0

00°0

"50°0
0170
510
F02°0
520
F0E°0
"GE°0
AL
Gy 0
050
5570

SONVIHVA

74

Prediction Capability on Spheres



440 IN3OH3Id 06-52 'S3INEVIHVA 2 NI SONIL13S HIdOHIWI
SONI113S HAdOHdWI HLIM N9IS3A HIHNOA 3HL 01l 2 v Hod
S3ONVIHVA NOILJIIA3Hd WNWINIW ONV WNWIXYW ‘3ONVIHVA “WOIH3HALS
‘0% 3HN9Id4

SNIAvH

91 Vi ¢l om 80 90 b0 ¢ 0 0°0

1 ) 1 ' 1

IONVIHVA

75

Prediction Capability on Spheres



for all spheres. For the design representing the first type of improper settings there is little

dispersion in the prediction variances at locations on a sphere.

In both cases, the spherical variance and maximum and minimum prediction variance curves
allowed an easy assessment of the effects of improper settings on the prediction capability of the full
factorial design. Using more extensive case studies, general statements about the effects of different

types of improper settings on the prediction variances of a particular design could be made.

3.3.4 Illustration of the Effects of Augmenting a Point to the Design

The exploration of a response surface is a sequential process. Often one or more experimental
runs are taken to supplement a design used in the previous stage of experimentation. Points may
be augmented to an existing design for many reasons. Additional design points may be required
to estimate the parameters of a higher order model or to replace lost points, or additional points

may be taken in an effort to improve the statistical properties of the design.

This example will illustrate the effects of augmenting one design point to a design in order to
maximize |X"X| at that stage. The resulting design will be D-optimal among all designs which
consist of the original design plus one additional point from the region of the independent variables.
Dykstra (1971) showed that such a conditionally D-optimal design can be achieved by placing the
additional point at the location in the region which yields the largest prediction variance under the
original design. The spherical variance and maximum and minimum prediction variance curves
will be used to examine the consequences of this course of action on the prediction variance prop-

erties on spheres of the design.

Suppose now that the design given in (3.3.3) is used to fit a first order model in four variables
to the response of a system. The plot depicting the nature of the prediction in Figure 11 clearly

indicates that the response is not being estimated very well with this design. An additional exper-
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imental run will be taken at the location of maximum prediction variance in an effort to improve

this picture.

-1 -1 -1 1 (3.3.3)

Locations of the maximum prediction variances on spheres in a hypersphere of radius 2 ap-
pear in Figure 12. The maximum prediction variance occurs on the perimeter of this region at levels
x; = 149809, x, = —1.19679, x, = —0.560883 and x, = 0.0939163. This point is aug-
mented to the design in (3.3.3). The spherical variances and maximum and minimum prediction
variances on spheres for the augmented design are plotted in Figure 13. The additional point did

much to improve the maximum prediction variances and, therefore, the spherical variances of the
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design. The maximum prediction variance in the region is reduced by more than half with the ad-
ditional point at the location of maximum prediction variance. The location of the maximum
prediction variance in the region has not changed however. Note that the minimum prediction

variance curve was not effected by the addition of the point.

The addition of a point to maximize | X’X| , since it reduces the maximum prediction vari-
ance, also improves the prediction capability of the design. Ho.wever, this may not be the most
effective strategy to employ to achieve better prediction capability on spheres. A different criterion
for selecting the location of a point to be augmented to an existing design will be discussed in
Chapter IV. Also in Chapter IV the characteristics of the spherical variance and prediction variance
dispersion measures as functions of the radius will be investigated. Some statistical invariance

properties of the measures will be set forth there as well.
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Chapter 1V
IV. Properties of the Spherical Variance and PVD

Measures

4.1 Trends in the Prediction Variance Functions

The spherical variance and PVD measures are functions of the distance, 7, from the center
of the region of the independent variables at which the responses are being estimated. In this sec- |
tion, the behavior of these prediction variance functions will be examined as the responses are es-
timated further from the region center, that is, on hyperspheres of increasing radius. Trends in the
spherical variance and PVD measures will be discussed when the assumed model for the response
is first order, (case I and case II). Results pertaining to the behavior of these functions as 7 increases
have not been obtained when the fitted model is second order. In this case, trends in the V* and
maximum and minimum prediction variance curves may be observed for the second order designs

described in section 2.4. These illustrations appear in Chapter V.
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4.1.1 Trends in the Spherical Variance as r Increases

When a first order model in k variables is used to approximate the response function the
spherical variance corresponding to a particular design is given by
2 ik k
VR ENT M
This representation of the V" is appropriate to both case I and case II as described in section 3.2.3.
If the design center is the same as the center of the region of the independent variables (case I),
m, = Oforalli = 1, 2, .., k and the general form of the V' given above reduces to the specific form

for case I given by equation (3.2.12).

In either case, A;, A,, ...,A;, which depend on the design, are the eigenvalues of a positive
k
definite matrix. Hence, A, > Oforalli = 1, 2, ..., k and .Z]k,- > 0 for any response surface design.
The rate of change of the spherical variance as the radius, r, increases is

i L4 T
— = 2r I N/ k= 2rh
or i=1

which is positive for » > 0 and is equal to zero if and only if r = 0. Thus, as the radius of the
hypersphere over which the prediction variances are being averaged increases, the spherical variance
also increases. On the average the precision of the estimated responses diminishes as one predicts
further from the center of the region in the first order model case. The design with the smallest
possible sum of the eigenvalues among all competing designs will yield the least amount of increase

in the average prediction variance on a sphere per unit increase in 7.

k
Under the conditions of case I, the design which has minimum .}:lk, among all designs of size
N also has minimum V" per radius r among those designs. Note that, when the design center is the
k

same as the region center, 62( /N + lZlk,) is the sum of the variances of the estimated coefficients

of the first order model. In this case,
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k ~o, . x -1
I VarBy/o” = w (XX

where all terms are defined in section 3.2.3 under case 1.

To minimize the sum of the variances of the coefficients apart from o2 for fixed N, the design

k
should be chosen which has the smallest value of "_217«.,. This design is then the A-optimal design
among all first order designs of size N. Thus, for case I, the design which has minimum spherical

variance per radius among all first order designs with N design points is the A-optimal design.

4.1.2 Trends in the RofV as r Increases

Case I : A first order model; the design center and region center are the same.

Consider first the behavior of the maximum and minimum prediction variances on a sphere

as the radius of the sphere increases. Recall that,

2

1 . 1
—_V L+
gaxr 5 Var(y(x)) N Ayr
and

. 1 " 1 2
fél?/, ?Var(y(;)) =5t Ar

k
where U, = {x: ‘Elx,z = r2} defines the surface of the hypersphere, and A, and A, are respectively
the largest and smallest eigenvalues of (X’X)~!. Only the case where A, > A, will be considered
here. If A, = A, the design is rotatable, the maximum and minimum prediction variance curves

coincide and the RofV is equal to zero for all 7.
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It is apparent that both the maximum and minimum prediction variance curves are increasing
functions of the radius, ». However, since A, > A, the maximum prediction variances are in-
creasing more quickly than the minimum prediction variances. Thus, the difference in the maxi-
mum and minimum prediction variances on a sphere, that is, the RofV, is increasing as the radius

of the sphere increases. Indeed, the rate of increase in the RofV is

RO = 270y = 2) > 0
or
for A, > A, and r > 0. The derivative is equal to 0 if and only if r = 0 when A, > A, .

Case II : A first order model; the design center and region center are not the same.

The maximum and minimum prediction variances on a sphere of radius r in this case are

given by

may —Var(y(x)) Ly zx( u )2 (4.1.1)
k

where .., > A, and El( 17:":!' 2 = r?, and
min L Varp@) = - + $a (1———)“'"‘ )2 (4.12)
xe U, 42 i=1l { — Hmin

X Am, . .
where p, < A; and 2(7‘-_:.:)2 = rd. They are functions of the radius, r, through the
Lagrangian multipliers ., and p,,;,. Therefore, before considering the nature of the maximum and
minimum prediction variance curves it is necessary to determine the relationship between the ra-

dius, 7, and Hpees  Hoins
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Let p denote the Lagrangian multiplier for the prediction variance optimization problem de-
scribed by (3.2.9). The multiplier p defines a stationary point of the prediction variance on the

surface of a sphere of radius 7 if

}zlf (=) = P (4.13)

If p = pru > A, the stationary point is the point of maximum prediction variance on the sphere
of radius . The stationary point is the point of minimum prediction variance on the sphere if
B = Umin < A;. The nature of the relationship between r and p,,,, Hma is sketched in Figure 14.
The convexity of the curve between succeeding values of the eigenvalues was first established by

Draper (1963).

The following lemma is necessary to establish the trends in the maximum and minimum

prediction variance functions as 7 increases. The proof of the lemma is given in appendix B.1.

Lemma 4.1.1: Let r > 0 and p be defined by (4.1.3).

i) fyp =y, > A, asrincreases from 0 to o,

Umex decreases. That is,

OMmax

-

<0 forpmay > Ag.

ii) Ifp = pnin <A, asrincreases from 0 to o ,

Wmin increases. That is,

Ol min >0

. for pin < Ay
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Consider now the maximum prediction variance curve defined by (4.1.1). By Lemma 4.1.1,
the distance between p,,, and any eigenvalue, X,, decreases as r increases. Consequently, an in-
crease in r yields an increase in [ A3m2 / (A, — p,, )? Jforeachi = 1, 2, ..., k and, therefore, in their
sum. A similar argument gives that Ekl[ Mm2 [ (A = Wmin )* ] increases as rincreases. These results

lead to the following theorem.

Theorem 4.1.1:  Under the conditions of case II,

i) the maximum prediction variance on a sphere of radius 7

given by (4.1.1) is an increasing function of the radius;

it) the minimum prediction variance on a sphere of radius r

given by (4.1.2) is an increasing function of the radius.

k
Proof of i): Let Q = E.l?u, (T,Z:%—)Z' Then,
G0 _ 00 Oumax _ ,& .3 2 1 3[5umu]
ar a“max ar 2 z him (l ~ Mmax or ’
SINCE Prpax > A 2 Aoy oo 24, >0, (A, — B < Oforalli=1, 2, ..., k.

k
Hence, Z Mmrh — o) 3 < 0.
By Lemma 4.1.1, (i), p,:,,‘ < 0 for Hpey > Ay . Thus, 6Q > 0 and the maximum pre-

diction variance, Ly Q, is an increasing function of r.

N
The proof of ii) is similar and will not be presented here.

In both case I and case II the maximum and minimum prediction variances and the range
of the prediction variances on a sphere get larger as the radius of the sphere increases. The esti-
mation of the response is less precise in general as one predicts further from the region center.
When the design and region centers are the same, the variances of the predicted responses at lo-

cations of equal distance from the region center vary more widely as the distance increases. How-
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ever, it is believed that the RofV may not always be increasing in the radius r when the region and
design centers are at different locations. The trend in the RofV in this case probably depends on

the distance between the design and region centers.

4.1.3 Trends in the VofV as r Increases

The form of the variance of the prediction variances at locations on a sphere of radius r is

given by (3.2.15) and reproduced below for the first order model case.

= 2 2 r 2., z
Vo0 = &+ 2 ,_1( R Ef‘

This formulation of the VofV applies to case I as well as case II. Therefore, case I and case II will

be considered concurrently.

It is obvious that as  increases the VofV(7) will also increase. The rate at which VofV(r)

increases is

VofViny _ 8 k T2 k
or T k(¥ 2) E( AP+ ST

i=1

Note that the amount of the increase in VofV(r) per unit increase in » depends not only on the
dispersion in the eigenvalues but also on the distance of the design center from the center of the
region of the independent variables. The dispersion in the prediction variances will not increase as

quickly if the design is centered at the center of the region under consideration.

Whether the experimental design can be classified under case I or case II, the quality of the
estimated responses on spheres worsens as one predicts further from the center of the region. This
can be seen from the increases in the V' and the maximum and minimum prediction variances as

the radius of the sphere increases. The results of this section also show that variances corresponding
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to predicted responses on the surface of a sphere about the region center become more dispersed,
that is, prediction is less consistent, as the radius of the sphere increases. The extent of the depre-
ciation of the prediction capability of the design as the response is estimated further from the region
center depends on the size and similarity of the eigenvalues X,, X,, .., X,. Among competing
designs, the smallest increases in the PVD measures would occur with the design which has the least
deviation among the eigenvalues. To avoid large increases in the spherical variance and maximum
and minimum prediction variances, a design with small as well as similar eigenvalues should be

used.

4.2 Invariance Properties of the Spherical Variance and

PVD Measures

Measures of the prediction capability of a design should not depend on the natural units of
the independent variables involved. For this reason, the independent variables are often expressed
in terms of design variables which are scale-free. The choice of center and scale factors for the de-
sign variables is arbitrary. For example, the independent variables may be coded to be between

—1 and + 1 or to take values between —2 and + 2 or 0 and 3.

Often in a response surface analysis the region of the design variables is moved in the search
for the optimum response of the system. The prediction capability of a design, however, should
not be effected by the application of that design to a different region. Thus, the pictures of pre-
diction capability developed using the spherical variance and PVD measures should be the same for

a particular design regardless of the coding of the independent variables.

In this section, it will be shown for the first and second order model cases that the spherical

variance and PVD measures are invariant to the center and scale chosen for the design variables of
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the system. It will also be shown that they are invariant to orthogonal transformation of the in-
dependent variables. These invariance properties are established for the ¥~ and PVD measures via
the invariance of the prediction variance to the units of the design variables. Further, sufficient
conditions for the RofV and VofV to be invariant to the number center points of the design will
be determined. Invariance to the number of center points is of particular interest in the consider-

ation of the deviation from rotatability for a design.

4.2.1 Invariance to the Scale of the Design Variables

Consider a design, with corresponding design matrix D,, used to fit the model y = XB + gin
k design variables, x,, x;, .., x,. Without loss of generality, let the design variables be such that
the center of the region of the x -variables is x = Q and the scale of the x -variables is equal to 1

for all x;,. The variance of a predicted value in terms of the x-variables is
Varp 0(x)) = o> x (XX 'x" (4.2.1)

where X is the appropriate model-matrix and x° is as described in section 3.2.3 for a first and second

order model. The nature of X and x° depends on the model.

Suppose z,, 2, .., z are a different set of design variables to be used in the investigation
of the response. Suppose that the region of the z-variables is centered at z = ( and the scale of the
z-variables is equal to ¢ > 0, different from the scale of the x-variables. In this case, the z-vaniables
can be written in terms of the x-variables as z, = ¢gx, fori= 1, 2, ..., k. The design matrix in

the scaled z-variables corresponding to D, is thus,

D, = D,Q
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for Q = diagonal(¢q, ¢, .., ¢). Note that Q is a kxk non-singular diagonal matrix. In terms
of the scaled variables the model takes the form y = Zy + ¢. The prediction variance at a location

z2=1(2z 2z .. z,) = Ox corresponding to the model in the scaled variables is
Varp(0(@) = 22227 'z . (4.2.2)

Here Z, is the appropriate model-matrix in terms of the z -variables. Z and z° depend on the

model. In particular, if the model under consideration is a polynomial in the independent variables,
Z = X0 (42.3)

where X is the model-matrix in the original design variables and
z =Qx. (4.24)

The matrix Q° is diagonal and non-singular. If the model is a first order polynomial the model-

matrix X is given by (2.2.2), x* = (1 x; x; ... x; )’ and

1 0 0 .. 0
0 ¢ 0 .. 0O
0 0 g¢ 0
Q=" - - - |= diagonal(1 ¢ ¢ .. q). (4.2.5)
LO 0 0 q

Alternately, if the model is a second order model in the independent variables the model
matrix X and vector x" are defined under case III in section 3.2.3. In this case, the matrix Q" is given

by

Q" = diagonal(l ¢ ... ¢ ¢* .. ¢* ¢* .. ¢*). (4.2.6)
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The form of Q" is easily extended to higher order models.

In this situation, it is apparent that due to the difference in scaling of the design variables the
predicted response at a location x achieved by the analysis using the x-variables will not be the same
as the predicted response at z = Qx obtained by the analysis in the z-variables. However, the var-
iances of these predicted responses will be the same. The following theorem establishes that under
the circumstances described above the prediction variance at any location does not depend on the

scale of the design variables.

Theorem 4.2.1: Suppose a polynomial model of order d (d=1 or 2 here) in k variables is used
to approximate the response of a system. The prediction variance is invariant to the scale
of the design variables of the model. Using the notation set forth above, this is equivalent

to

L Vary p@) = L-Varp (5(2))
c o
for any x in the space of the original x-design variables and z = Qx. Varp_and Var,

are given by (4.2.1) and (4.2.2).

Proof: Consider the models y = XB + g and y = Zy + ¢ as described in the previous discussion.
Consider the estimation of the response at an arbitrary location x in the space of the
x-variables. The prediction variance at this location is given by (4.2.1). Prediction at x in
the x-variables is equivalent to prediction at z = Qx in the scaled variables. The prediction

variance at z = Qx is
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Z‘I(ZIZ) - IZ*

L varp (@)
o .

Q@ xxQ) 0y

-

= x (XX 'x .

—lz‘Va’D,(J;(a))
(o

by (4.2.3) and (4.2.4) and since Q" is symmetric and non-singular. The matrix Q" is given
by (4.2.5) when d=1 and (4.2.6) when the model is second order. Since the location x

was arbitrarily chosen, the theorem is proved.

Consider now the prediction variances on a sphere of radius r, in the region of the x-variables.

Let U

x

= {x: i_flx,? =1r2} denote the surface of the  sphere. Let
U, = { z:i‘_élz,? = qzi_élx,? = r} = (¢qr)*} denote the surface of the corresponding sphere in the
scaled variables. Clearly, if xe U, then z= QxeU,, . Since Q is a one-to-one transformation
of x into Z there is only one location x € U, and one ze U,, for which z = Qx. Thus, Q provides

a one-to-one mapping of U, into U,, .

By Theorem 4.2.1, for any location on the surface of a hypersphere of radius r in the region
of the x-variables defined by U, , the prediction variance there is the same as the prediction variance
at the corresponding location on U,,. Therefore, the prediction variances at all locations on U,
are the same as those on U,,. As a consequence, the average prediction variance, the maximum
and minimum prediction variances and the dispersion in the prediction variances on a sphere will
be the same whether the x-design variables or the z-design variables are used. Thus, the V7, max-
imum and minimum prediction variances and the RofV and VofV are invariant to the scale of the

design variables used in the analysis.
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4.2.2 Invariance to the Center of the Design Variables

Once again consider a system involving k independent variables. Suppose the variables are
coded to the design variables x,, x,, ..., X, through a simple linear transformation such as that
described by (2.2.1). Although it is usual to code the independent variables to have center at
x = Q, this is not always the case. Let A = (A A, ... h ) denote the center of the region of the

design variables in this situation. For convenience and without loss of generality, suppose 4 = Q.

Let 2z, z, .., 2 represent a different coding of the independent variables for which
z, = x; + m for some myand i =1, 2, ..., k. The new coding of the variables is equivalent to
a translation of the axes in the k-dimensional region of the x-variables to the k-dimensional region
of the z-variables. It is of interest to compare the prediction variances on spheres about the different

centers of the region of the x-variables and the region of the z-variables for a design.
In terms of the x-design variables the prediction variance at a x is
Varp (p(x)) = o*x (XX 'x" .

The vector x* and model-matrix X are defined as before for a first and second order model, (see
section 3.2.3). The subscript D, indicates that the x-variables were used to compute the variance.

The prediction variance at a location z = x + m in the space of the z-variables is given by
A 2 *I 4 -1_*
Varp 9(2)) = 02 (2'2) 'z
for appropriate model-matrix Z and vector Z'.

The following lemma will be necessary to establish the invariance of the prediction variance

to the center of the design variables for the first and second order model cases.

Lemma 4.2.1:  Consider fitting a polynomial model of first or second order to the response
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of a system in k variables with a design. Let the design variables x,, x,, .., x, and

2, Z, .., Z be as defined in the previous discussion. Then, there exists a pxp matrix

L of rank p for which
Z = XL

where p is the number of parameters in the model and Z and X are the appropriate

model-matrices in the z-variables and x -variables respectively. Also, z' = L'x".

Proof: The proof Lemma 4.2.1 appears in appendix B.2. Forms for the matrix L in the first

and second order model cases are given there also.

As a consequence of Lemma 4.2.1 the following result is obtained.

Theorem 4.2.2:  For the case of fitting a first or second order model to the response of a system
with design variables the prediction variance is invariant to the center of the design variables

used in the analysis.

Proof: It is necessary to show that
Lvar, G@) = Lvar, (5(2)
o o

for any x in the region of the x-variables and corresponding z = x + m where

m=(m m ... my)".

Consider a location x in the region of the x -variables. By definition, the prediction

variance at the corresponding location, z in the space of the z -variables is
Varp(y(2) = ¢ 2(2'2)" 'z
By Lemma 4.2.1, Z = XL and 2° = L'x". Thus,
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Similarly, for any location z in the region of the z -varables, x =z — m and

Var, (2))/o* = Vary ((x))/o>

This holds for any x, zand any m, so the prediction variance does not depend on
the center of the design variables. In other words, the prediction variance is invariant to

the center of the region of the design variables.

Now return to the consideration of the prediction capability on spheres for a design. Any
location x on the surface of a sphere of radius » about the center of the region of the design variables
X, .. X, has one and only one corresponding location in the region of the z-variables. The cor-
responding z = x + m is located on the surface of a sphere of radius r about the region center of
the z-variables. The prediction variances are the same at corresponding locations by Theorem 4.2.2.
Therefore, the prediction variances expressed in design variables on the surface of a hypersphere of
radius 7 are invariant to the location of the center of the sphere. It is intuitively obvious then, that
the spherical variance, maximum and minimum prediction variances and the PVD measures are
not effected by the position of the center of the region of the design variables in k-dimensional

space.
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4.2.3 Invariance to Orthogonal Transformation of the Independent Variables

The optimization of the response of a system usually requires an extensive search in the region
of the independent variables. The researcher begins the search for the optimum response by mod-
elling the response as a simple function of the factors present in the system in a suitable region of
the independent variables. Based on the information acquired at this stage, the model may be up-

dated to a more complicated form, or the region of search extended or shifted or both.

For instance, if a stationary point has been obtained in some region, the region may be shifted
to a new region with center at the stationary point. This action facilitates the determination of the
nature of the stationary point. It has already been seen that the picture of prediction capability for

a design is not effected by a translation of the region of the design variables.

To further aid in the determination of the status of the stationary point and the behavior of
the response about it, a canonical analysis of the response function is performed. In a canonical
analysis the response function is expressed in terms of the principal component axes of the new
region. That is, the axes in the new region corresponding to the design variables are rotated through

the origin by an orthogonal transformation to the principal components of the system.

It is of interest to determine the effect of an orthogonal transformation of the design variables,
such as would occur in a canonical analysis, on the spherical variance and PVD measures for a

design. Let the response function be expressed in terms of the variables x,, X, ..., X, in some
region. It is not necessary that x,, x,, .., X, be design variables. Let D, represent the design

matrix in terms of the x-variables.

Now consider an orthogonal transformation of the x-variables to a new axis system in the

variables z,, z,, ..., z as follows:
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2= (212 ... z)

Rx = R(x; x5 ... X))

where R is an orthogonal kxk matrix. The resulting axis system in the z-variables is a rotation

through the origin of the axis system in the x-variables.

The result that the prediction variance at a location remains unchanged by the rotation of the

region through its origin is proved in the next theorem for polynomial models.

Theorem 4.2.3: Suppose the model for the response is a polynomial of order d in k variables.
The variance of an estimated response obtained with a design is invariant to the orthogonal

transformation of the independent variables.

Proof: Let x,, x,, .., x,denote the variables of the model and D, the design matrix in terms

a

of the x -variables. Then, Varp, (y(x))/o? = x"(X'X)~'x’, where x" and X have their usual

meaning.

Suppose x = (x; X, ... x,)’ is transformed by an orthogonal matrix R to

’

z2=(z 7 .. z).
z-variables, then D, = D.R’. Now, Var,_,z(}(z))/O’2 = z'(2’Z)"'z’, where z° and Z have

That is, z = Rx. Let D, denote the design matrix expressed in the

their usual meaning.

There exists an orthogonal matrix, say R*, for which

* x %

z = Rx and

*

Z = XR".

R’ is called the Schlaifflian matrix corresponding to the transformation matrix R. The

reader is referred to Aitken (1948) or Myers ((1976), (appendix a.l)) for verification of this
result.
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Since R is an orthogonal matrix, its inverse exists and is equal to R'~! = R,
Equivalently, (R*)~"! = R°’. So, the prediction variance in terms of the z-variables can be

written as

Lvap,p@) = £"RURXXR™) IR
o

&”R*'R‘(X’X) - IR"R‘)_C'

xt'(X'X)_I&#

L Vary, (@)
g

for z = Rx. Thus, for any location x the prediction variance at x is equal to the corre-
sponding prediction variance in the region of the z-variables. That is, the prediction vari-

ance is invariant to the orthogonal transformation of the independent variables.

Note that, if xe U, = {x: i_ﬁlx,? = r?}, the surface of a k-dimensional hypersphere of radius
r, then z = Rx is also a member of U,. Thus, the predigtion variances on a sphere of radius » about
the center of region are the same under an orthogonal transformation of the x-variables. Since a
location x on a sphere is taken into one and only one location z on that sphere by the orthogonal
transformation, the average and maximum and minimum values of the prediction variances on a
sphere also remain unchanged by orthogonal transformation of the variables. Similarly, the
dispersion measures RofV and VofV are invariant to orthogonal transformation of the independent

variables.

To summarize, the spherical variance, maximum and minimum prediction variances and the
PVD measures are all invariant to the center and scale of the design variables chosen for the anal-
ysis. The orientation of the region of the variables in k-dimensional space also has no bearing on

the picture of the prediction capability of a design generated with these measures. Thus, once a
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picture of the prediction capability on spheres for a particular design has been developed in terms
of a given set of design variables, it is not necessary to generate another picture for a different set

of design variables.

4.2.4 Invariance of RofV and VofV to the Number of Center Points of the

Design

When the center of the design and the center of the region of the design variables are the same,
the RofV and VofV indicate how near the design is to possessing the rotatability property. The
equality of variances on spheres about the design center is unaffected by variation of the number
of experimental runs taken at the center of the design in a rotatable design. Thus, it is of interest
to determine if the RofV and VofV, as measures of deviation from rotatability, are invariant to the
number of center points, n, of the design. In this section, sufficient conditions for the PVD
measures to be invariant to n, will be given for the cases of fitting a first and second order model

to the response of the system.

Consider a design in k variables of size N = n + n,, where r, is the number of center points
of the design. In this discussion, the region of the design variables will be considered to have center
where all the design variables take the value 0. A center point is a point for which the levels of all
the design variables are at 0. The prediction variances obtained with the design depends on the

design settings through the (X”X) matrix, or, more specifically, its inverse.

Suppose, first, that the design is to be used to fit a first order model to the response. Let the
design variables be denoted by x,, x;, ..., x,. In this situation, the X’X matrix has the form

given below.
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N N N
where N=n+n, ¢ = ( leul Elx,,2 Elx,,,‘ )" and
u=- u= u=

2
2z X 2 X%y 3 Xy Xk
2
T X%y, 2z Xy T Xu0Xuk
A =
2
T Xy Xug 2 XXy Z Xy

Note that ¢/ N is the location of the center of the design.

The prediction variance at a location x = (X, x; ... x, )" withx’' = (1 x; x; ...x, )’ for a first

order model 1s

Lvap) = <o
o

&’A—IE’A—IQ

N = oal | (427
&’A_IQCIA—]&

N -4 '¢

[N-¢a7c]! - %[&'A_lc +
+ I’;'A_lg +

The formulation of this result requires the use of the inverse of a pattern matrix and matrix algebra.

It will not be reproduced here.

A condition for which the RofV and VofV are invariant to the number of center points of the

design in the first order model case is presented in Theorem 4.2.4.
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Theorem 4.2.4:  Suppose a first order model and design of size N = n + n, are used to estimate
the response of a system. Let x,, x,, .., X, denote the design variables in this situation.
Then, the RofV and VofV are invariant to the number of center points, n, of the design
if the design center is located at the center of the region of the design variables. This con-
dition is equivalent to the requirement that the first design moments of the design be equal
to zero, i.e.,

[i] = x; = 0 foralli = 1,2, ..k

1

M=

L
Ny
(See section 2.3.4 for a description of design moments.)

Proof: The proof is presented for the RofV. The result for the VofV is similarly proved and will

not be shown here.

Suppose the center of the region of the design variables is at x = 0. Also, suppose

the center of the design is located at x = (, the region center. This implies that,

N N N ,
c = ( qul zxuz ver quk) = Q
u=1 u=1 u=1

Under this condition, the prediction variance given by (4.2.9) reduces to

1 A 1 , =1
— 3 + .
32 Var(y(x)) N X4 'x

Let x..« and X, represent the locations of the maximum and minimum prediction
variances respectively on the surface of a hypersphere of radius ». Then, the range of the

prediction variances on the sphere is

RofV(r) = xmax'4 —llmax = Xmin'4 —llmin .
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The elements of the matrix 4 and, hence, those of 4!, do not depend on the value
of n,. Therefore, the RofV does not depend on 7, in this case. That is, if the design center
is the same as the region center, the RofV is invariant to the number of center points of the

design.

In the second order model case, the conditions for the invariance of RofV and VofV to the
number of center points involve not only the first order moments, but all design moments through

order four of the design. The conditions are stated in the following theorem.

Theorem 4.2.5: Suppose a second order model and design of size N = n + n, are used to
estimate the response of a system. Let x,, x,, .., X, denote the design variables in this
situation. Then, the RofV and VofV are invariant to the number of center points of the

design if the following conditions hold:

i) All odd moments through order four are equal to zero, that is,

[i] = 0 foralli = 1,2, ..,k
[ij] = 0 foralli # j,
lii] = [ij] = 0 foralli # j,
[iij] = 0 foralli # j.

ii)  The second pure moments of the design are equal. That is,

[ii] = a/N, aconstant foralli = 1, 2, ..., k.

i)  The fourth pure moments are equal. That is,

[iii] = b/ N, aconstant foralli = 1, 2, ..., k.

iv)  The even fourth mixed moments are equal. That is,

[ijj] = c¢/N, aconstant forallij = 1,2, .., k withi # j.
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Proof: The proof follows that of Theorem 4.2.4. It appears in appendix B.3.

Note that the conditions set forth in Theorems 4.2.4 and 4.2.5 are only sufficient conditions
for the RofV and VofV to be invariant to n,. Any rotatable design satisfies these conditions, thus,
showing that the rotatability property is not altered by the addition of experimental runs at the
center of the design. The dispersion in the prediction variances on spheres may be altered by the
addition of center points if the non-rotatable design does not meet the fequirements of Theorems

4.2.4 or 4.2.5.

4.3 A New Criterion for Design Augmentation

There is very little breadth in the area of design augmentation in the literature. Virtually all
the results in this area pertain to the augmentation of a design to achieve a conditionally D-optimal -
design, (see, for éxample, Dykstra (1971), Hebble and Mitchell (1972) or Gaylor and Merrill
(1968)). Recall that a conditionally D-optimal design in some region is achieved by augmenting

the point in that region which yields the largest increase in | X".X].

This strategy results in the most improved estimation of coefficients of the model as measured
by the generalized variance of the coefficients. Although the prediction capability of the design is
naturally enhanced by the addition of a point to maximize | X"X|, there is no evidence that this
particular choice of an additional design point will yield the most improvement in the prediction
capability of a design. Indeed, the addition of a point which directly improves the prediction vari-
ances, or some function of them, would most likely result in better improvement of the prediction

capability of a design.

With a view to improving the precision of the estimated responses on spheres for a design,

one might consider augmenting a point to the design in order to make the resulting spherical vari-
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ance on some sphere as small as possible. It is thought that the greatest improvement in the
spherical variances across all spheres would result from the minimization of the spherical variance
on the sphere corresponding to the largest ¥ for the original design. The minimization of the

spherical variance is conditional on the settings of the original design.

Consider a design with N design points to fit a model in k variables. Let p be the number
of parameters in the model and X be the model-matrix in this situation. The prediction variance
at a location x = (x, X, ... x,)"is given by Var(p(x))/o? = X"(X’X)~'x* where the elements of
X" depend on the model as before (see section 3.2.3). Let V" denote the spherical variance corre-
sponding to this design and model. Let x, denote the point which is to be added to the design.

The model-matrix corresponding to the design augmented by x, is then,

X
X, =1 .|
x.—al

where x; has the same form as x°.

Letting y,(x) represent the predicted response at x obtained with the augmented design, the

prediction variance for the augmented design is

* x 1 =x

Lvarg,@) = £ = 50X + xn T
(e}

The inverse is found by applying the Sherman-Morrison-Woodbury theorem (Rao (1973) problem

2.8, p. 33) which states that for a positive definite pxp matrix 4 and pxl vector x,,

A—IKOXO'A_I
1+ xyd lxy

(4 + xx)"' = 47" -

Thus,
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*

_ 20 (e s
1 + EZ’(IY’X)—IJX;

Lvap ) = 2wy
(o

* _1 * *’ _'l *
X (XX XX, (XX) x
_l *

L+ /(X0 'y

L Varp(a) -
ag

The spherical variance resulting from the augmentation of x, to the design is given by V7 be-

low.

o
0

¥ j'u,o—lz Var(y,(x) dx

(4.3.1)
_ - RISy
1+ 500 'y

k
where U, = {x: .le,‘ = r?} represents the surface of a hypersphere of radius r with surface area
given by ¥-! = _’},r dx . The matrix S is the matrix of spherical region moments defined by (3.2.6)
for the model. The derivation of this result very closely follows the derivation of the V* given in

Hussey (1983).

The suggested criterion requires the point x, be chosen so that V7 is minimized. Since the
second term of the right hand side of (4.3.1) is nonnegative, this is equivalent to choosing x, to

maximize the quantity

X0 isen s,
1+ 500 s

This result provides a new prospect for the development of a design augmentation strategy
in response surface studies. To a researcher interested in predicting the response of a system, par-

ticularly on spheres, the spherical variance criterion may be more appealing than the conditional
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| X"X| criterion. Extensive case studies are needed to compare the prediction capabilities of aug-

mented designs formed under the two criteria.

4.4 The Dilemma over the Choice of Design Center

It has already been seen that in the first order model case it is to the researcher’s advantage
to choose a design which is centered about the center of the region of interest. In this case, the
spherical variance and the dispersion in the prediction variances on spheres are smaller when the
design and region centers are the same. It is suspected that this statement holds for second order

designs as well.

The improved prediction capability is a strong motivation for centering the design about the
region center. However, centering may be foregone to achieve some other design property such as
high D-efficiency. The dilemma arises over the decision to move the region of interest to coincide

with the new design center after some design points have been lost or added during experimentation.

The region of interest is often shifted during the exploration of a response surface and search
for the optimum response. It is the opinion of the author that the region of interest should not
be changed to accommodate a change in the design caused by a loss of points or a poorly designed

experiment. Rather, the design should be changed if the region under consideration is changed.

Ultimately, the choice of design center and region of interest belongs to the researcher.
Whether the design center and region center have been chosen to be the same or not, the spherical
variance and PVD measures are equipped to provide a picture of the prediction capability on

spheres for the design in that region.
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For the illustrations of the use of the spherical variance and RofV to assess the quality of
prediction for second order designs in Chapter V, the centers of the example designs have been left
as originally specified by their authors. In the cases where design points have been lost, the region
under consideration has not been changed to coincide with the new design region. Thus, compar-

isons between the original design and the designs resulting from lost data are made in the same re-

gion.
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Chapter V
V. Graphical Assessment of the Prediction

Capability of Certain Second Order Designs

The experimental designs catalogued in section 2.4 represent various experimental plans the
researcher may choose to explore a response surface. Some, such as the composite, Box-Behnken
and hybrid designs, are often used in practice. Recently, there has been increasing interest in the
minimum and nearly minimum point designs as economical alternatives to the larger response
surface designs such as the central composite design (ccd). Most of the investigations into the de-
sign properties of saturated and nearly saturated designs has been concerned with the D-efficiencies
of the designs (for example, Lucas (1976), Mitchell and Bayne (1978) and Nalimov, et. al. (1970)).

Few studies have given attention to the quality of the predictions obtained with these designs.

It is the purpose of this chapter to examine through the use of graphics the prediction capa-
bilities of some of the second order designs presented in section 2.4. General pictures of the be-
havior of the prediction variances throughout a region will be developed for the designs via the
spherical variance and RofV functions. In some cases, the locations of the maximum and minimum

prediction variances will be used to indicate at which combination of levels of the variables pre-
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diction quality is poorest and where it is best. Several sets of comparisons of competing designs
will also be made. For example, comparisons between two ccds and the Box-Behnken design in
three variables will be conducted in section 5.1.2. The use of the RofV to detect deviation from
rotatability for a design will be discussed as a separate issue in the last section. First, however, the
prediction capability of some members of the family of central composite designs will be examined.
Specifically, the effect of the choice of the design parameters a and 7, on the picture of the predic-
tion capability for a ccd will be considered. Also, the loss of prediction capability will be assessed

when one or more design points have been dropped from a rotatable ccd.

The experimental designs considered in this chapter are second order designs in three variables
with the exception of the 32 factorial design in section 5.3.1. The behavior of the prediction vari-
ances for the three variable designs will be investigated across a range of radii, from r = 0, (re-
presenting prediction at the region center), to r = \/ 3 = 1732 , (representing prediction at
locations on the perimeter of the region of interest). Thus, the region of the design variables under
consideration is a hypersphere of radius r = \/ 3 = L732 centered about the point
x, =0, x;, =0, x; = 0in three dimensional space. All prediction variances have been weighted

by N, the size of the design, unless otherwise noted.

5.1 The Family of Central Composite Designs

5.1.1 Comparisons of Prediction Capability in Three Variable CCDs

Central composite designs (section 2.4.2) are distinguished by the values of the design pa-

rameters a and »,. The axial value, a, may be chosen to achieve the rotatability property. A dif-
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ferent value may be required to achieve other design properties, for example, minimum integrated

variance among all ccds of the same size.

The plots of spherical variance in Figure 15 provide a comparison of the average predicting
ability of three ccds. Each of the three designs is the same, 23 factorial portion plus one center
point, except for the axial values. The design labelled ‘1’ in Figure 15 is a rotatable ccd. The axial
value is @ = 1.682. Design 2 and design 3 have axial values of 1.35 and 1.0, respectively. Note that

a three variable ccd has its center at the point x, = 0, x, = 0, x; = 0, the region center.

The closer a is to the center of the region the better prediction is in an area about the center.
Beyond a radius of about 1 the designs with larger axial values, that is, with more design points in
this part of the region, provide more precise estimation of the response. The relatively low vari-
ances obtained with design 3 on spheres near the region center may be explained by the closeness
of the axial points to the center of the region. Thus, the axial points, as well as the center points,
provide information about the response near the center. The ccds with larger axial values mainly

rely on the information provided by center runs to estimate the response near the center.

There is no dispersion in the prediction variances on spheres for the rotatable design,
(design 1). Plots of the maximum and minimum prediction variance curves representing dispersion
in the variances on spheres appear in Figure 16 for design 2 and Figure 17 for design 3. The
dispersion in the variances for design 2, with an axial value close to the rotatable value, is slight.
For both designs the variances remain very stable on and within a sphere of radius 1. On radii
beyond the region encompassed by the axial points, (a 0 0), ( —a 0 0), etc, the third design
with a = 1.0 yields less precise and more inconsistent estimation of the response than the designs

with larger axial values.

It should be noted that the experimenter who chooses to use a ccd with a = 1.0 is most likely
not interested in predicting the response on spheres beyond a radius of 1. Rather, the experimenter

probably wishes to predict only at locations for which the levels of the design variables are no less
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than — 1 and no more than + I, that is, at locations on or within the unit cube. If this is the case,

the best and most logical choice of design from among the three ccds is the ccd with o = 1.0.

When there is sizeable dispersion in the prediction variances on spheres, it is of interest to
know at what locations the response is being poorly estimated and where the response is being well
estimated. For both the non-rotatable example designs the worst prediction variance on a sphere
occurs where two of the variables are at level zero and the third is at a level equal to + or — the
radius of the sphere for all radii. That is, the maximum prediction variances occur on vectors from
the origin through the axial points of the design. On the other hand, the minimum prediction
variance on a sphere is found at all locations for which the magnitudes of the three design variables
are the same. For example, the most precise predicted values on the outermost sphere, r = 1.732,
occur at the locations (x; x; x;) = (1 1 1),(1 1 —=1),(1 =1 1),etc. It has been found that
the maximum and minimum prediction variances on spheres appear to be located at the same

points regardless of the number of center runs affixed to the ccd.

The relatively poor estimation at locations around the center of the region for designs 1 and
2 can be improved by the addition of center runs to the design. For example, the spherical variance
curves of Figure 18 indicate the effects of taking 1, 3, 4 or 6 experimental runs in the center of the
rotatable ccd. Since this design is rotatable, the spherical variance for a sphere actually represents
the prediction variances at every location on that sphere. The rotatability property of equal vari-

- ances on spheres is not lost by the addition of center runs to the design.

Taking 3 or 4 center runs results in comparable prediction variances to those obtained with
design 3, (a = 1.0, ny = 1), on spheres about the region center to a radius of about 1. However,
the quality of prediction obtained with the rotatable ccd is still much better when predicting further
from the center. Six center runs do not appear to greatly improve the prediction variances about

the region center over the improvement resulting from the addition of 3 or 4 center points.
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In general, for any a-value, additional experimental runs taken at the region center yield in-
creased precision in the predicted values at locations near the center. As an increasing number of
center points are taken, the variances at locations on the outskirts of the region appear to worsen
due to the additional cost involved in taking the extra runs. Figure 19 illustfates the improvement
in the prediction capability of the three example ccds when 3 center points are taken rather than just
one. The improvemenf in the prediction variances at locations near the region center is not as
dramatic for design 3, with @ = 1.0, as for the designs with larger axial values. Considering the
dispersion in the variances on spheres for the three designs, which has not been changed by the
additional center runs, designs 1 and 2 are clearly preferred over design 3 when 3 runs are taken at

the region center.

5.1.2 Comparison of a Box-Behnken Design with Two CCDs

The researcher may choose to use a Box-Behnken design (section 2.4.3) rather than a some-
what larger ccd in some experimental situations. In particular, this may be the case if it is désired
that no more than three levels of each design variable be used for experimentation. Box-Behnken
designs are believed to be rotatable or nearly rotatable. Lucas (1976) has shown that they have high

D-efficiencies in a sphere of radius 1.

The prediction capability of a three variable Box-Behnken design is depicted in Figure 20.
This particular design has one center run. More runs taken at the center would improve the pre-
diction variance picture on spheres close to the region center. Note that comparatively little
dispersion in the variances on spheres about the design center, which is the region center, is present,

especially compared to the ccd with a = 1.0.
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The prediction capability of the Box-Behnken design with one center point is compared to
that of a rotatable ccd (o = 1.682) and a three level ced (@ = 1.0) in Figure 21. Both ccds have

one center point and N = 15 design points. The Box-Behnken design has 13 design points.

In the region near the center, from 7 = 0 to 1, the Box-Behnken design is somewhat better
than the rotatable ccd. However, the ccd with a = 1.0 yields considerably better precision of the

estimated responses in this region.

The average prediction variance on a sphere obtained with the ccd with a = 1.0 suffers con-
siderably when estimating the response at locations which lie beyond a radius of 1. On the outskirts
of the region the Box-Behnken performs somewhat better on average than the ccd with a = 1.0.
The rotatable ccd, which has information in this region provided by the axial and factorial points,

fares much better in terms of prediction capability near the perimeter of the region.

As a competitor to the central composite designs the Box-Behnken design has the advantage
of requiring a fewer number of experimental runs than a ccd and only three levels of the design
variables. As with the ccds, the prediction variances at locations near the region center could be
improved with additional experimental runs taken at the center of the region. The spherical vari-
ance comparisons of Figure 2la show the improvement afforded by the addition of three more
center runs to the Box-Behnken design with one run in the center. The relatively slight dispersion
in the prediction variances on spheres is a positive feature of the Box-Behnken design. This con-

sistent accuracy of prediction on spheres is not effected by the addition of center points to the de-

sign.

5.1.3 Robustness of a Rotatable CCD to Loss of Design Points

The purpose of this section is to use the spherical variance and maximum and minimum

prediction variances to examine the effects of losing design points during experimentation on the
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prediction capability of a central composite design. A ccd with design parameters a = 1.682 and
ny = 3 has been chosen for the illustration. This design is rotatable, however, rotatability will be

lost when points are dropped from the design.

Initially, consider the loss of one of the axial points, specifically, the point ( —1.682 0 0),
from the design. The resulting change in the quality of prediction on spheres is depicted in Figure
22. The prediction variances have not been weighted by the size of the designs in this case. The
original prediction variance curve for the complete ccd is indicated by the * symbol on the graph.
It is very nearly identical to the minimum prediction variance curve for the design after the axial

point has been lost. At some locations at least the quality of prediction is maintained.

On the average the prediction variances have not been greatly disturbed by the loss of the
point. The greatest loss of precision occurs for the estimated responses at the locations of maxi-
mum prediction variance. The locations of maximum prediction variance have been computed
through the MINOS algorithm (section 3.2.4) for radii to \/ 3. These locations turn out to be on
a line from the origin through the location of the lost axial point - exactly where one might expect
the greatest loss in precision to occur. Judging from the small average prediction variances on
spheres, the prediction variances at most other locations appear to be little changed by the loss of

the point.

Now, suppose a second axial point is lost during the experiment. In this example, the points
(—1.682 0 0)and (0 0 1.682) have been dropped from the design. Figure 23 shows the
spherical variance, maximum and minimum variance curves for the depleted design. The prediction
variance curve obtained with the full ccd is included for comparison. The prediction capability of
the design has not diminished substantially from that of the design with one axial point lost, (see

Figure 22; the * symbol again denotes the original prediction variance curve of the complete ccd).

With the loss of two axial points the prediction capability of the ccd has weakened at lo-

cations on the lines through the region center which go through the lost axial points. The largest
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prediction variances, however, occur at the locations given in Figure 24. The maximum prediction
variances on spheres also occur at another set of locations. In this set, the roles of x, and x, are
interchanged and all levels are now positive. These locations are on lines which are close to the

lines going through the lost axial points.

The results of Figures 22 and 23 indicate that the prediction variances at locations near the
center of the region are not appreciably changed by the loss of the axial points. Although some
prediction capability is lost at locations in lines through the origin in the general directions of the
lost axials, the prediction variances there may still be considered reasonable. In conclusion, the
quality of the predicted responses obtained with the rotatable ccd is found to be fairly robust to the

loss of one or two axial points.

The illustrations of this section by no means form an extensive study of the prediction capa-
bility and robustness to loss of design points of the family of central composite designs. The pur-
pose of this section was to show how the graphical method may be used to assess the prediction
capability and robustness to loss of design points of a ccd. The illustrations presented throughout
the chapter, while selected to give some applications of the graphical method which may prove to
be useful to the experimenter, are intended to show the use and interpretation of the prediction

variance functions and their graphical representation.

5.2 Minimum and Nearly Minimum Point Designs

5.2.1 A Comparison of Small Composite and Hybrid Designs

The small composite and hybrid designs were both developed as economical alternatives to

central composite designs. Thus, it is natural to compare the prediction capabilities of the two
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design types. A three variable small composite design (scd) such as that listed in section 2.4.4 with
a= \//5-, and the hybrid designs identified as 310 and 311A by Roquemore (1976) (see section
2.4.5) have been selected for comparison. Each design has one center run and N = 11 design
points. The number of design points is just one over the minimum number required to estimate
the parameters of a second order model in three variables. The three variable hybrid designs 310,

311A and 311B appear in Table 5.

Spherical variance comparisons of the three designs appear in Figure 25. It is evident that
overall the scd does not perform as well as the hybrid designs. The hybrid 310 plus one center point
design predicts extremely well near the region center. However, its average prediction capability
quickly diminishes as one predicts on spheres further from the region center. The 311A design, on
the other hand, predicts poorly at locations near the center, but relatively well at locations near the

periphery of the region.

Comprehensive pictures of the prediction capability on spheres are presented in Figure 26 for
the scd, 27 for the hybrid 310 and in Figure 28 for the hybrid 311A design. From the plots it is seen
that the scd provides the least consistent estimation of the response on spheres. There is also a
sizeable amount of dispersion in the prediction variances on the outer spheres of the region obtained
with the 310 design. The variances of the estimated responses are nearly equal on spheres

throughout the region for the hybrid 311A design.

For the hybrid 310 design the poorest prediction variances on the outer spheres occur where
the x;-axis intersects the spheres. These are points along the lines through the origin directed at the
axial points (0 0 @) and (0 0 — a). The variances at these locations are slightly higher when
x; is positive. The best prediction variances on the outer spheres can be found at locations for
which x, and x,, the variables involved in the two variable ccd portion of the hybrid, are the same,

and the level of the third variable is slightly smaller in magnitude than the other two.
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Table 5.
Roquemore’s Hybrid Designs in Three Variables

310+ 311A 3118

0 0 1.2906 0 0 2 0 0 Ve

0 0 —.1360 0 0 -2 0 0 -6
-1 -1 0638 | -+v2 -2 1 |-07507 21063 1

1 -1 06386 V2 -V2 1 21063 0.7507 1

-1 1 06386 | -2 V2 o1 0.7507 —2.1063 1

1 1 0.638 V2 V2 1 | -21063 -0.7507 1
1.1736 0 —0.9273 2 0 -1 0.7507  2.1063 -1
- 1.1736 0 -0.9273 -2 0 -1 21063 —0.7507 -1
0 11736 —0.9273 0 2 -1 | -0757 -21063 -1

0 —1.1736 —0.9273 0 -2 -1 |=-21063 0757 -1

0 0 0 0 0 0

* The hybrid 310 design does not require a center run to have a nonsingular X’X matrix.

For the illustrations of section 5.2.1 a center run is affixed to the hybrid 310 design.
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It is interesting that for the scd the largest prediction variance on a sphere of radius  corre-
sponds to the response at the locations (aa —a), (a —aa),
( —aaa)and( —a —a —a),fora >0, on the sphere. That is, the points of maximum pre-
diction variance on a sphere lie on lines from the origin through the factorial points which were not
included in the fractional factorial portion of the scd. Analogously, the locations of the best esti-
mated responses on a sphere are found where vectors from the origin through the factorial points

of the scd intersect the sphere.

5.2.2 A Comparison of Some Small D-Efficient Designs

The prediction capability of the economical designs due to Box and Draper (1971, 1974),
Hoke (1974) and Notz (1982) will now be considered. The three variable Box-Draper design is
given in section 2.4.8. The Notz design is listed in section 2.4.6. The Hoke design selected for
comparison is the‘design commonly referred to as Hoke D2. This design is the one listed in section

2.4.7.

These particular designs were chosen for comparison because they have comparable D-
efficiencies on a unit hypercube. The D-efficiencies of the three designs are presented in the chart
below. It is of interest to know if they also have similar predicting abilities throughout the region

under consideration.

D-efficiencies for example designs

Design N D-efficiency ( % )
Box-Draper 10 89.2
Hoke D2 10 84.3
Notz 11 84.3
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The spherical variance curves are presented for comparison in Figure 29. The maximum and

minimum prediction variance curves along with the V7 appear in Figures 30, 31 and 32.

On spheres which lie within the unit cube the designs have similar prediction variance pic-
tures, with the Box-Draper design performing somewhat better than the other two. A comparison
with the spherical variance curves of Figure 15 indicates that in this region these designs also per-
form well compared to some of the ccds considered in section 5.1.1. The accuracy of prediction is
fairly consistent on spheres inside the unit cube for the Box-Draper and Notz designs. However,
there is notable dispersion in the prediction variances on spheres inside the unit cube and

throughout the region obtained with the Hoke D2 design.

On the average, at least, the precision of the estimated responses on spheres outside the unit
cube quickly diminishes for the example designs. This is not surprising since these designs were
not constructed to predict the response in this region. They have no design points, and, conse-
quently, no first-hand information, beyond the corners of the unit hypercube. The Hoke and Notz
designs, in particular, do not perform well in this region. The prediction variances on spheres are
very unstable under both designs. Clearly, the Box-Draper design has the best overall prediction

capability throughout the region.

5.2.3 Comparisons of Computer Generated D-Optimal Designs

The remaining minimum point designs to be investigated in this section are the computer

generated designs of Mitchell and Bayne (1978) and Welch (1982).

The designs listed in Table 1 of section 2.4 were generated to be D-optimal among all designs
of the same size consisting of points on the unit cube. The D-efficiencies of the ten point designs
are equal to 86.3%. The pictures of the prediction capability of the MB10 and WC10 designs are
nearly identical. Only the MB10 design will be used for illustration. The WD10 design, which has
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the same D-efficiency, has notably higher spherical and maximum prediction variances on spheres
in the region. It is gratifying to note that Welch’s compromise design, WC10, which resulted from
an effort to improve the prediction variances over the design points, yields a better overall prediction

variance picture than the WD10 design.

Comparisons of the average prediction variances on spheres for the MB10 and WD 10 designs
may be derived from Figure 33. The spherical variance curve obtained with the WC11 design is
also plotted there. Plots depicting the more complete behavior of the prediction variances on

spheres are in Figure 34 for MB10, Figure 35 for WD10, and in Figure 36 for WCI1.

The WCII design has a D-efficiency of 94.4%. Although WCII has a higher D-efficiency
than the ten point designs, its predicting ability is not as good in general. The MBI10 design, and
the WCI10 design as well, in particular, have better overall prediction variance pictures and still have

reasonable D-efficiencies.

In this and the preceding section it has been shown that designs with the same D-efficiencies
do not necessarily possess the same ability to estimate the response. Nor is a design with a high
D-efficiency relative to competing designs guaranteed to produce more precise estimates of the re-
sponse or better behavior of the prediction variances on spheres throughout the region. The D-
efficiency criterion was not developed to be a measure of the prediction capability of a design.
Obviously, from the illustrations presented here, it should not be used as one. The plots of the
spherical variance and maximum and minimum prediction variances on spheres throughout a re-

gion very ably depict the nature of the prediction variances for a design.
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5.3 Measuring Deviation from Rotatability

Throughout the illustrations of this chapter, the dispersion in the prediction variances on
spheres has been discussed. The amount of dispersion in the variances on a sphere indicates how
consistent the precision of the estimated responses is on the sphere. Since the dispersion in the
prediction variances on a sphere measures the similarity of the variances on that sphere, it is rea-
sonable to use a measure of the dispersion to guage the deviation from rotatability for a design.
Thus, the RofV will be used in this section as a means of determining how near a design is to

possessing the rotatability property of equal prediction variances on spheres.

The ranges of the prediction variances on spheres about the design center will be plotted for
the 3? factoiial design and the three variable hybrid designs of Roquemore (1976). These designs
are presented in the papers by Khuri (1988) and Draper and Guttman (1988) to illustrate their in-
dices of rotatability, (see section 2.3.4). The conclusions drawn from the plots representing the
dispersion in the prediction variances on spheres will be compared with the results obtained with

the rotatability indices of Khuri and of Draper and Guttman where applicable.

5.3.1 The Deviation from Rotatability of a 3* Factorial Design

The ranges of the prediction variances on spheres obtained with a 3? factorial design are de-
picted in Figure 37. The prediction variances for the design in two variables have been considered
on spheres of radii ranging from r = 0 to r = \/ 2 = 1.4142. Note that the variances have not been

weighted by the size of the design.

The RofV on a sphere is the distance between the maximum and minimum prediction vari-

ance curves at the radius of the sphere. For example, on a sphere of radius 1.40 the maximum
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prediction variance occurs at x; = + 1.40, x, = 0 and is equal to 1.496; the minimum prediction
variance at x; = = 0.98995, x, = =+ 0.98995 is 0.776. Thus, RofV(r=140) is
1.496 — 0.776 = 0.72 which is relatively large considering the size of the prediction variances
throughout the region. The locations of the maximum and minimum prediction variances were
generated by the application of the MINOS optimization algorithm specifying r = 1.40 for this

design.

Beyond a radius of about 1.0 the prediction variances on a sphere appear to be far from equal,
indicating that the design is not close to being rotatable on those spheres. It should be noted that
the increased dispersion observed on the outer spheres of the region may partially be an artifact of
the larger prediction variances which occur in that part of the region. Obviously, as the variances
get larger the observed variability among vthem will naturally increase. However, for the non-
rotatable designs considered in this research, the RofV was always observed to increase as the radius
increased. Thus, the variances on a sphere on the outskirts of the region are expected to be more
dispersed than the variances on a sphere closer to the design center. The researcher should be
cautioned to take into account the magnitude of the prediction variances when considering their

dispersion.

Khuri found the 3? factorial design to be 93.08% rotatable with his measure of rotatability.
Although the prediction variances on a sphere are nearly equal when the radius of the sphere is
small, it is apparent from Figure 37 that there is a fair amount of dispersion among the variances
on larger spheres. In light of this, Khuri’s assessment of the degree to which the 32 factorial design
possesses the rotatability property seems a little high. Unfortunately, there are no guidelines avail-

able to indicate how near rotatable a design is which is measured to be 93.08% rotatable.

The index of rotatability due to Draper and Guttman is calculated to be m=3.73 for the 3?
factorial design. Based on the benchmark values for m given in their work (given in Figure 3 of
Draper and Guttman (1988)), this value correctly indicates that the outer prediction variance con-

tour of the 3? factorial is shaped like a square with rounded comers. Clearly, the outer prediction
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variance contour is very different from the outer variance contour of a rotatable design, which is a
circle in two variables and is indicated by an index of rotatability of m = 2. The index of rotatability
indicates that the variances are not equal on the outer spheres of the region. This is the only in-
formation provided by Draper’s and Guttman'’s index. To determine the disparity among the var-
lances on a sphere passing through the outer contour, or any contour, it is necessary to look at the
values of the other contours which pass through the sphere. The dispersion in the values of the
prediction variance contours which pass through the sphere is the dispersion in the prediction var-
iances on that sphere. The index of rotatability does not indicate the better behavior of the vari-

ances on the inner spheres of the region.

5.3.2 The Deviation from Rotatability of Hybrid Designs

The three variable hybrid designs constructed by Roquemore, and labelled as 310, 311A and
311B, are considered to be nearly rotatable designs. The dispersion in the prediction variances on
spheres for the 310 design is produced in Figure 38. This particular 310 design has been centered
to look at the behavior of the prediction variances on spheres about the design center. Also, the
form of the design used here has ten design points and no center runs, unlike the 310 hybrd in
section 5.2.1. The maximum and minimum prediction variance curves corresponding to the 311A
and 311B designs are plotted in Figures 39 and 40 respectively. Both of these designs have 11 design
points, one of which is a center point. Note that the variance axes of Figures 39 and 40 arec on a
larger scale than that of Figure 38. This was done to get a more detailed picture of the dispersion

in the prediction variances for the 311A and 311B designs.

Clearly, the 310 hybrid design is the least rotatable of the three. Once again, the amount of
dipersion on the outer spheres may not be as substantial as it appears due to the increased size of
the variances on those spheres. The 311A and 311B designs have nearly equal prediction variances

on all spheres throughout the region, indicating that they are very near to possessing the rotatability
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property. There is somewhat more dispersion in the prediction variances on spheres for the 311A
design than the 311B design. This contradicts Roquemore’s conclusion that the 311A design is the
most nearly rotatable of the three. His conclusion is based on the observation of the shape of the
prediction variance contours, and, in particular, the outermost contour in the design region, for each
design. It has been seen that the measurement of deviation from rotatability for a design via the
shape of the contours alone can be misleading and may lead to erroneous conclusions about the

consistency of the prediction variances on spheres for a design.

The application of Khuri’s measure of rotatability to the hybrid designs finds the 310, 311A
and 311B designs to be respectively 94.89, 99.40 and 98.99 percent rotatable. It is felt that the
percent rotatability measure for the 310 design is high considering the dispersion in the variances
on the outer spheres of the region. The measures for the 311A and 311B designs appear reasonable.
They are in keeping with the conclusion that the 311A and 311B designs are nearly rotatable.
However, using Khuri’s measure one would conclude that the 311A is more near to possessing the

rotatability property than the 311B hybrid design.

Since the 310 and 311A hybrid designs are not symmetric, that is, their third design moments
are not all equal to zero, Draper’s and Guttman'’s index of rotatability cannot be applied to these
designs. For the symmetric 311B design the index of rotatability is m = 1.764. This is quite close
to the value of m=2, the index of rotatability for a rotatable design. Thus, the outer prediction
variance contour of the 311B design is nearly spherical in shape. The implication is that the 311B

hybrid design is a nearly rotatable design.

The indices of rotatability introduced by Khuri and by Draper and Guttman do not actually
measure the dispersion in the prediction variances on spheres. Instead, they attempt to quantify the
difference between certain characteristics of a non-rotatable design, specifically the design moments
and shape of the prediction variance contours, and the corresponding characteristics of a rotatable

design. They are artificial measures of deviation from rotatability.
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The RofV, on the other hand, truly measures the dispersion in the prediction variances on
spheres. Plots of the maximum and minimum prediction variance functions enable the depiction
of the dispersion in the variances across all spheres in a specified region. From the plots a com-
prehensive description of the deviation from rotatability of a design may be obtained. A single-
valued measure of deviation from rotatability, such as those introduced by Khuri and by Draper
and Guttman, can not satisfactorily characterize the dispersion in the prediction variances for a
design in this fashion. Nor can such measures indicate the quality of prediction for a design which
is one of the features of the picture of prediction capability generated with the graphical method

presented in this thesis.
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Chapter VI

VI. Concluding Remarks and Further Research

6.1 Concluding Remarks

The estimation of the response is an important consideration in the exploration of a response
surface. It is reasonable to look at the quality of prediction on spheres in order to assess the overall
prediction capability of a design. The spherical variance and the prediction variance dispersion
measures provideA a comprehensive description of the behavior of the prediction variances on a
sphere. Plots of the spherical variance and maximum and minimum prediction variance functions
against the radius of the sphere permit an honest assessment of the prediction capability of a design
in some region. The plots give an overview of the changing prediction variances in the region that
cannot be achieved with a single measure of prediction capability. A record of the locations of
maximum and minimum prediction variances on spheres throughout the region gives the researcher
knowledge of where prediction is at its worst and best. This knowledge can be used to advantage
in the interpretation of results and the planning of the next step in the exploration of the response

surface.
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The plots can be used to examine the effects on the prediction variances of a change in the
design plan, whether it be unforseen, such as the loss of a design point, or planned, such as the
augmentation of a design. Deviation from rotatability for a design can be measured from the
maximum and minimum variance curves representing the range in the variances on spheres. The
graphical representation of V7 and the maximum and minimum prediction variances also allows for
the easy comparison of competing designs. The plots may be used as the sole basis or in con-

junction with other design criteria to select an experimental design.

Naturally, there are many factors to be considered in the assessment of the prediction capa-
bility of a design in a given experimental situation. Whether the picture of the behavior of the
prediction variances is acceptable or not is a judgement to be made by the researcher. The spherical
variance and prediction variance dispersion functions and their graphs provide a useful means of

assessing the quality of the estimated responses on a sphere and throughout the region.

6.2 Directions for Further Study

The principal goal of this research was to introduce graphical methods of assessing the pre-
diction capability of an experimental design. In particular, it was desired to display the behavior
of the prediction variances at locations which are the same distance from the center of the region
under consideration. The spherical variance and PVD measures are a most satisfactory result of this

endeavor. This research project has also produced several directions for further study in this area.

Trends in the spherical variance and PVD measures for the second order model case need to
be further investigated. From the illustrations of Chapter V, it is believed that, in most cases, the
spherical variance, and the maximum and minimum prediction variance functions, decrease from

a radius of 7 = 0 to some minimum value, and then increase steadily beyond that point. It would
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be of interest to determine the relationship between the radius at which the spherical variance begins

climbing and the position of the design points in the region.

For certain designs the RofV and VofV are not necessarily invariant to the number of center
points of the design. When setting up an experimental plan, it would be useful to know if the
dispersion in the variances on spheres could be appreciably improved with the addition of a few
center points to such a design. To this end, a study of the effects of the addition of center points

to designs which do not satisfy the conditions of Theorems 4.2.4 or 4.2.5 is warranted.

Some designs, such as the designs of sections 5.2.2 and 5.2.3, were constructed to predict at
locations on or within the unit cube. The consideration of the prediction variances on spheres
within the cube can be accomplished as described in this thesis. In the illustrations of sections 5.2.2.
and 5.2.3 the spherical vaniance and the maximum and minimum prediction variances on spheres
were computed under the assumption that it was of interest to predict at all locations in a spherical
region. However, if the response is to be estimated only at locations on spheres of radius greater
than 1 which lie on or within the unit cube, the computation of the variance functions should be
modified to reflect the cuboidal region of interest. It would be a simple matter to modify the
MINOS algorithm to obtain the optimal prediction variances at locations on or within the unit

cube. The modification of the form of the spherical variance, however, will be more difficult.

The most obvious extension to the results presented here is to derive forms for the spherical
variance and PVD measures for other models besides first and second order polynomials. Also, it
would be useful to develop forms for the prediction variance functions under more general as-
sumptions on the error term of the model or different methods of estimation of the model param-

eters, such as ridge regression estimation.

The forms of the prediction variance functions depend on the assumed model. A measure

which describes the bias in the estimated responses at locations on a sphere induced by inadequate

specification of the model would provide a very informative complement to the spherical variance
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and PVD measures. Together, these measures could be used to develop comprehensive pictures

of the prediction capability and robustness to model misspecification for a design.

A broad area of further study to which the ideas developed here could be applied is design
augmentation. It will be necessary to create an algorithm to implement the spherical variance cri-
terion presented in section 4.3. There are other criteria which might be used to select a point to
be added to a design. For example, a criterion which selects the new point in order to minimize
some function of the bias, or, perhaps, more appropriately, the mean square error of prediction, at

locations in a region would merit development and further investigation.
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Appendix A

Appendices for Chapter 111

Appendix A.1

Optimization of the Prediction Variance Under Case I for k = 2 Variables

Suppose that 0 < A, < X;. We wish to find values of z, and z, which optimize the function

given by (6.1) with k = 2 under the constraint that z2 + 22 = 2. For ease of notation, write

L(Zl y 22) = # + )\.1212 + 7\.2222

The constraint implies that z2 = r» — 22, and, thus, we may write

Lz, ) = ,Lv + (= A2+ AR (A.L1)
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Since (A, — A,) > 0 we see that to maximize (A.1.1) z} should be made as large as possible
(see Figure A.1). Under the constraint the largest possible value of zZis #2 ; that is, z, = £ r, will

maximize L. Thus, z; = 0 to satisfy the constraint. The maximum value of L is then

Lz =0,z=%n = -+

where A, is the largest eigenvalue of (X' X)~! .

Conversely, to minimize L(z,, z,) the weight of z? should be made as small as possible.
To do this, take 2z, = 0 . The condition that z2 + z2 = r? gives z, = = . The minimum value

of L(z,, z) occursforz, = £ r and z,= 0 and is

Lizy=%xr,2z=0) = —ll’—+;“r2

where A, is the smallest eigenvalue of (X'X)~!.

If A\, = A, then L(z,, 2,) is a constant for z? + 22 = r?, (see Figure A.2). In this case, the

maximum and minimum values of L are trivially the same.
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Appendix A.2

Optimization of the Prediction Variance Under Case 11

Under the formulation of Case II in section 3.2.3, the optimization of Var(y(x))/o? on the
surface of a hypersphere of radius 7 centered about the point x = Q is equivalent to the optimization
of Var(f)(w))/oz subject to w = x — A being on a sphere of radius r centered about w = Q — A.
The solution to this constrained optimization problem may be found using the method of
Lagrangian multipliers by solving the system of simultaneous equations defined by equation (3.2.9).

The development of the solutions to (3.2.9) is presented in this section.

Let Q be as defined in (3.2.9) and p represent the Lagrangian multiplier. By (3.2.4), Q can

be expressed as
Q= % +ZAz - 2ZAm + m'Am - w7z — r)

where 2 = (2,2, ... 2) = Px=Pw+ A and m= (mm, .. m) = P'h. The k x k matrix P
is the orthogonal matrix which decomposes the matrix (W'W)! into the diagonal matrix A con-

taining the positive eigenvalues of (W' W)

. . . . . % é a0 . .
It is convenient to write the set of partial derivatives ,—Q, -ﬂ— y e ,Q in matrix form
ow, | ow, ow,

as

0 aQ 0 a0 \'
2.2g. 2y

ow; dw, T owy
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(see Graybill (1976)) for some definitions and rules of matrix derivatives). By the chain rule for

. . 0 c(w + . . . . .
derivatives and with -(% = %— = [, the identity matrix, (3.2.9) is equivalent to
99 _0x 9 _ 39 _, (4.2.1)
ow 6w 0x 0x
and —q.g =90
au

Dot . =

implies that

Thus, equation (A.2.1) is satisfied by the solution to the equations

Q _ 2Az — 2Am — 2uz

Py

- %A — 1)z — 2Am (4.2.2)

=0

and %HQ- = 2’z — r* = 0. For m # Q (Case II), the solution vector, z, is then

z=A-u)'Am,

where u is such that 2z, = 2. In terms of the x-variables, the solution to (A.2.1) and a stationary

point of the prediction variance on the surface of a hypersphere with center at x = ( is given by

Xy = Pz = P(A — pD)'Am

_ Ay Xy i ,
—P(}-l_“ml ;"2_“”12 oo mmk> .
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Note that x,'x, = r2.

The status of the stationary point z, and, hence, x;, depends on the matrix of second partial
derivatives of Q. Let H(Z) represent the matrix of second partial derivatives evaluated at the point
Z, for the problem expressed as in (A.2.2). Then,

H@) =2A —uD

}\.‘ - p. 0 s 0
0 A.z - K vee 0

If H(z,) is a negative definite matrix, then the stationary point will be a location of maximum pre-
diction variance on the sphere. Conversely, the stationary point will represent a location of mini-

mum prediction variance if the Hessian matrix /1(z,) is positive definite.

First consider the solution of (A.2.2.) to find the location(s) of the maximum prediction var-

iance on a sphere of radius 7. In order for H(z) to be negative definite the quadratic form
, k 2
Y'H(z)t = tgl(kz = Wy

must be less than zero forall t = (4, 4, ... ) # Q. Only values of u which are larger than A,, the
largest eigenvalue of (W' W) ! satisfy the requirement for H(z,) to be a negative definite matrix. To
verify this statement, suppose p is such that A <X; <. <A, , <pu <A, and let

¢*=(00 ..01). Then,
tMH(z)t* = (0 — 1) > 0.

Thus, there exists a vector ¢ # ( for which ¢'H(z)t is not less than zero. Therefore, H(z) is negative
definite provided u > A,. Thus, z, or x, = Pz , is a point of maximum prediction variance on a

00

sphere of radius 7if p > A, and —(;T = 0. The second condition on  is equivalent to
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Note that x,’x, = z'P'Pz, = 2z = r? since P is an orthogonal matrix. Thus, x, is a location of

maximum prediction variance on a sphere of radius r.

Similarly, it can be shown that H(z) is a positive definite matrix for A, > 0 for all
i=1,2, .., kif and only if p < A, the smallest eigenvalue of (W’'W)'. Consequently, z, , or
Xy, = Pz, is a location of the minimum prediction variance on a sphere of radius » if p < A, and

L(2p)m=r

Again the second condition on p guarantees that x, is a point on the sphere.
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Appendix A.3

Description of the MINOS Optimization Algorithm

The MINOS optimization package (Murtagh and Saunders (1983)) is a fortran-based algo-
rithm. Familiarity with the fortran language is helpful but not necessary to use the package. The

MINOS 5.1 version was used to solve the optimization problems in this thesis.

MINOS is designed to solve general constrained optimization problems. The objective
function, the function to be optimized, may be linear or nonlinear in the variables. For the opti-
mization of the prediction variance the objective function is a nonlinear function in the variables

Xy, X3 .., X of the form
ﬂ’ _1 *
x'(XX) x .

For the second order model case, x°' = (1 x; ... x, X2 ... X2 X% ... X1, )™ XX) 'isa
1 k 1 k 12 k= 1"k

matrix of constants with respect to the optimization.

The constraints of the problem may be linear, nonlinear or both. In this case the variables

k
are constrained to be a point on a sphere of radius r. That is, X x? = r?, a nonlinear constraint.
i=1

To solve the problem of optimizing a nonlinear objective function subject to nonlinear con-
straints MINOS uses a projected augmented Lagrangian algorithm. The reader is referred to
Murtagh and Saunders (1983) and the references listed there for a detailed description of this algo-
rithm. Basically, through a series of iterations the algorithm attempts to optimize the objective
function subject to linear constraints using a modified method of Lagrangian multipliers. The

nonlinear constraints of the problem are replaced by linear approximations in this algorithm.
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To implement the MINOS package the user must input the form of the objective function
and the first derivatives or gradients of the objective function. The constraint function and its first
derivatives must also be specified. It is not necessary that functional forms for the first derivatives
be known, however, the program will run more efficiently if they are given. The objective and

constraint functions and their respective derivatives are specified in the MAIN program.

Other information about the problem is input into a separate file called the MPS file. In this
file the number of variables in the problem, the type of optimization requested, that is, whether it
is desired to maximize or minimize the function, and the value of the constraint, 72 in this case, are
specified. Initial values for the variables must be given in the MPS file. Bounds may be placed
on the possible values of the variables here also. It is recommended that the variables be bounded
to use the program since this often greatly improves the efficiency of the algorithm. Limits on the
number of iterations used and other parameters of the algorithm may also be specified in the MPS
file. The MINOS user’s guide (Murtagh and Saunders (1983)) lists the parameters which the user

may specify in the algorithm. Descriptions and examples of their use are found there as well.
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Appendix A.4

Derivation of the Spherical Variance Under Case II

The spherical variance under case Il is developed in section 3.2.5. In this section the interim

steps required for the derivation of V" in equation (3.2.14) are given.

Let U, = {x: i_élx? = r?} denote the surfacg of a hypersphere of radius » in the x-variables.
In the w-axis system U, is represented as U* = {w : él(w,. + h)* = r?}. Further, let ¥ = jUr dx
and ¥;! = ju;vdv_v denote the surface of the hypersphere in the x -axis and w-axis systems respec-
tively. Then, the average prediction variance on the surface of a hypersphere of radius » centered

about x = Q1is

X
]
s

fu, Var G)dx

[ S}

< 9

2 f e Var G(w)dw .

Q

By (3.2.4)

1 k 2 k k 2
Vi=v fu, (W + Elx,.z,- - 2l§1?\.imiz,- + Elx,.m,- )dz (4.4.1)

for z= Px= P(w+ 4. The transformation of w into z takes the surface U* into

k
U = {z IZIZ,; = 7} and the surface area ;! into ¥ = {, dz.
Before proceeding, recall that
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‘Pju zdz = 0
and

2
‘!’J‘U’z,-zdz =0, = —%—

is the second order spherical region moment as defined in section 3.2.3.

(A.4.1) yields
V= W[, dz+ }fxi‘yj 22z
N U, i=1 U

k k
-23 )\im,-‘{‘ju zdz + Zl}yimiz K{ju dz
r i= r

i=1
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Appendix A.5

Derivation of the VofV Under Case 11

Using the notation set forth in Appendix A.4, the variance of the prediction variances on the

surface of a hypersphere defined by equation (3.2.2) for case II can be expressed in the w-variables

as

VofV(r) =¥, [m [Var (p(w))/a® — V' Pdw .
Application of the results of (3.2.4) and (3.2.14) and a transformation of variables yields

k k
VofV(r) = ‘PJ’U { -+ E Azt ZIElkimizi + _zlkimiz)
= l=

- (—1- + 0, 2 A+ Z Am? }zdz : (4.5.1)
N i=1

k 2 k k 2
=Y J‘U z 7\.,2,- -2 E limizi — Oy 2 }\.i dz
rli=1 i=1 i=1
After expansion the integrand of (A.5.1) becomes

k
Py 25 +2z zx,szzj —262(2k222+ 5 ):mz, + >: Ekkzz

i=1j=1 Jj=
t<j i<j 1</

2 2
- 4(: Amiz + 22 Ay yz'z + ZZ Mhjmizizj ) : (4.5.2)
+ 4(2 Mmizt + 2}.'.2 Ay z,zj)

2 2 2
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Integration of (A.5.2) over the surface of the hypersphere and subsequent division by the

surface areca ‘¥! yields

k k k k k
VofV(r) = o, TN + 2035 T T My = 03( T &) + doy( T Aim})
i=1 i=1j=1 i=1 i=1
i<j

3r4 2 2r4 r4 2 r2 ~2 2
= — e = YA — (A + 4 — (Trim:

where 0, = k(k%g and 0 = 7(/—(—';3—5-)— are the fourth order spherical region moments defined

in section 3.2.3. The expression for the VofV on a radius 7 given by equation (3.2.15) follows easily

from this result upon recognizing that (A, = A2 + 2 ;(Zj A
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Appendix A.6

Derivation of the Spherical Variance Under Case III for k=2 Variables

A general form for the spherical variance when the model is second order is given by (3.2.16),
V= (S Xy

In the case where there are two independent variables present in the model the product of the

spherical region moment matrix S and the 6 x 6 symmetric matrix (X"X)! is

F o, oy 0 ][0 O o2 03 04 05

0 o 0 0 0|l o234 s

S0 0o 0 0 0| a2 B H s
S(XX)”" = 5, 0 s Oy 0] 3 B B M
5y 0 oy Gy 0 || 1t 2t H M S

0 0 0 0 opl||® ¢ 5 H S

The element in the i-th row and j-th column of (X"X)"! is denoted by ci where the numbering of

the rows and columns begins with zero.

Since the trace of the resulting matrix is the quantity of interest, only the diagonal elements

of S(X'X)! are presented here. The diagonal elements are given by row and column below.
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Row Column Diagonal Element

0 0 <+ 0'2(c03 + Coa)

1 1 czc“

2 2 02c22

3 3 0’2C03 + c4c33 + 022c34
4 4 c52c04 + 022c34 + 04c44

5 5 022C55

The trace of the matrix is the sum of the diagonal elements. Hence, gathering like terms, the

spherical variance for a second order model in two vanables is

2 ; 2 . .
Vr = COO + 02[i§1(2C0'1+2 + Cli)] + 0'4 t§1 Ct+2"+2 + 022((:55 + 2C34) .
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Appendix A.7

Program to Generate the VofV Under Case III for k=2 Variables

A computer macro which evaluates the VofV as given by equation (3.2.17) for a second
order model and design in two variables is presented in this section. The macro is written in the

SAS programming language using the MATRIX procedure.

K OREEEAKKRK R KR KRR KRR KRR KRR KRR KKK R KRR KRR R R K.
’

* This SAS macro computes the spherical variance and the VofV *
* for second order designs in two variables. *
* The program is formulated using the MATRIX procedure in SAS *
* The spherical variance and the VofV are computed for a range *,
* of radii, from r =0 to r =1.40 in this case. .

0 K O K KK K K O KR o K o e o R K 3K K KR K ORI ROR K KR KRR KRR KK R KR K.
’

MACRO COMPUTE
PROC MATRIX ;
FETCH X DATA =DESIGN (DROP = DESIGN);
FETCH DESIGN DATA = DESIGN (KEEP = DESIGN);
SRAD = J(1,21);
SVR = J(1,21);
SVOV = J(1,21)

N = NROW(X);
X = JN,DIX;
XPX = X*X;

C = INV(XPX);

Appendix A. 178



Ao K K KKk KKK R K KR KR KRR R R R KKK KRR KK AR KRR KRR RKKRK K,
’

* N is the number of design points. *
* X is the model-matrix for the design. *
* C is the inverse of the X'X matrix. *;
* An element of C is designated by C(i,j) *
* for rows,columns i,j=1,2,3,4,5,6. *.

Ao o ek 2 o oK ok ok o R K K I KOK R KR KR KR K R KK R KRR KR KKK R KRR KRR KRR KRk K.
’

Tl = C(6,6) + 24C(4,5);
T2 = C(2,2) + 2#C(1,4);
T3 = C(3,3) + 24C(1,5);
T4 = C(2,3) + C(1,6);
TS = C(2,5) + C(3,6);
T6 = C(4,4) + C(5,5);
PO = J(6,6,0);

PO(1,1) = C(1,1);

TT21 = (C(2,2)+C(3,3) + (2#(C(1,4) + C(1,5)))II(24C(1,2))]
(ZEC(LINUCLINIC(L, 1)1

TT22 = 0}iC(1,1)I101/0}/01}0;

TT23 = 0}[0I|C(1,1)i01/0][0;

TT24 = 0]|01/0}/010110;

TT25 = 010]|01/0}/01i0;

TT26 = 0}[0(0]0t{0I{0;

TT2 = TT21//TT22//TT23//TT24//TT25//TT26;

TT41 = ((3#T6)+ T1)||(2#((3#C(2.4)) + TSNII2#((34C(3,5)) + C(3.4) + C(2,6)))
H((B#T2) + T3)I((34T3) + T2)|I(24T4);

TT42 = OlI((34T2) + T3)I(24T4)||(6#C(1,2))]1(2#C(1,2))]1(2#C(1,3));

TT43 = 0l[0}|((3#T3) + T2)|I(24C(1, 3INN(6AC(1,3))11(2#C(1,2));

TT44 = 01|0101|(3#C(1,1))IC(1,1)I10;

TT45 = 010]0]I01I(3&C(1,1))I0;

TT46 = 0]|01|0}0101|C(1,1);

TT4 = TT41//TT42/[TT43//TT44/[TT45//TT46,
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TT61

{2#(C(4,6) + C(5.6)));

TT62 = 0il(5#C(4,4)+ C(5,5) + T1)I|{24(C(4,6) + C(5,6)))I|(24(54C(2,4) + T5))
[H(2#(C(2,4) + THNII(24(C(3.4) ~ C(3,5) + C(2,6)));

TT63 = 0]|0[}(S#C(5,5) + C(4,4) + T1)[|(2#C(3,4) + C(3,5) + C(2,6))1
(2#(54C(3,5) + C(3,4) + C(2,6)II(2#(C(2,4) + T3));

TT64 = 01{0][0]|(S#T2 + T3)||(T2 + T3)[|(24T4);

TT65 = 01/0}}0]i01|(5#T3 +T2)||(24T4);

TT66 = 04/0(|01[0[}0}|(T2 +T3);

TT6 = TT61//TT62//TT63//TT64//TT65//TT66;

TT81 = 0]{0]|0}[0}/01/0;

TT82 = 01{0]]01|010]{0;

TT83 = 0}(0}0}1010}0;

TT84 = 0]|0]|01(355C(4,4) + SHT1+ 3#C(5,5))]|(S#T6 + 34T1)||
(2#(5#C(4,6) + 3#C(5,6)));

TT85 = 001|0][0}}(35H#C(5,5) + SHT1 + 3#C(4,4))|[(2#(S#C(5,6) + 3#C(4,6)));

TT86 = 01[0/|0]101|0[|(S4T6 + 3#T1);

TT8 = TT81//TT82//TT83//TT84//TT85//TT86;

$§=100 05 05 0/
0050 0 0 0/
0 005 0 0 o
0.5 0 0 0.375 0.125 0f
0.5 0 0 0.125 0.375 0/
000 O 0 0.125;

L =20
DO R = 0 TO 1414214 BY 0.0700 ;

R2 = R##2; R4 = R2##2; R6 = R2##3; R8 = R2##4;

L=L+1;
SRAD(1,L) = R;
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B A oK e o o ok oK R o R o ok oo oo o KK R R KK R o R kR kKK K
’

* Calculation of the spherical variance -- VR. *,

* For each radius, R, the corresponding VR is put in SVR. *;

Wk K KK oK K K 2 K 3K K 3 3 3Kk K 3 3 ok oK oK o 3K K ok o Kk K oK 3K 3 K K R R OR KR Kok Kk R kR R Rk k.
’

NS = SH(S=1)*1 +(S=0.5*R2 + (S=0.125)*R4 + (S =0.375)*R4);
V = NS*C;
VR = TRACE(V),

SVR(1,L) = VR;

CO2 = R2#/2;
CO4 = R4#/8;
CO6 = R6#/16;
CO8 = R8#/128;

P2 = CO24TT2;
P4 = CO44#TT4;
P6 = CO6#TT6;
P8 = CO8#TTS;
TT = P0 + P2 + P4 + P6 + P8;

T=TT + TT
D = DIAG(TT);
T=T-D;

X OREKERRERKER KRR KRR R KRR R R R KRR KR KRR KRR R K.
’

* NS is the spherical region moment matrix evaluated at R. *.

* T is the matrix T evaluated at R. *.

K A o o o o ok R R RO KRR KRR KRR AR KK AR KRR IR R KKK X
’

* t*ti#!**t#*t‘tt**t‘*t‘t't‘*t'*t‘ltt*ﬁ"*‘#!tl‘t#‘ltttﬂ‘tt#tttt;

* Calculation of the VofV -- VOFV *,
* For each radius, R, the corresponding VOFV is put in SVOV. *;

Ao oK ok ok 3k K e K o oK e o 3 o 3K oK 330 3 o 3 o e ok 3K 3 3 3K K 3 i 3 K 3 3K o o K ko R 3K o ok ok o ok o KR K koK XK.
»

FIRST = TRACE(T*C);
SECOND = TRACE(NS*C),
THIRD = SECOND##2;
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VOFV = TRACE(T*C) - (TRACE(NS*C))##2;

CK_VOFV = TRACE(T*C) - (VR)##2;

Ak o o kKK K K 3 ok Ak o oK oK K 3 oK o R o o ok o K K R K K K K ok
’

* CK_VOFV is an alternative way to compute the VofV. *,

B 2 o KR R R S 3K A 300 3 A O A o 8 o ko o o o o R o o K i ok R Kk ok ok K ok o .
’

SVOV(l,L) = VOFV;

END;

VAR = DESIGNI|N|ISVR||SVOV;
OUTPUT VAR OUT =STAT;
PROC PRINT;

%
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A AR R R R OB KK 0 K03 30 o o o o o oo o K o o R KRR R R KRR R Rk K .
’

* The SAS data statements necessary to create the data set *;
* named DESIGN appear below. *
. *
* X1, X2 are the independent variables; X1SQ, X2SQ and X1X2 *,
* define the remaining columns of the model-matrix X. *;
* The column of ones is affixed to the model-matrix within *,
* the macro. *
* *

* The design may be identified by the value of the variable DESIGN. *,

* An example set of design points is also given. o

B AR R KR KKK K KR KR K KRR AR R R R KRR R R KRR KRRk K,
]

DATA DESIGN;
INPUT X1 X2;
X18Q = X1*X1; X28Q = X2*X2; X1X2 = X1*X2;

DESIGN = 1;
CARDS;

1 1

1 -1

-1 -1
-1.414213562 0

1.414213562 0

0 -1.414213562

0 1414213562

0 0

0 0
COMPUTE;

A AR A A R A AR KRRR KRR R KRR KRR K.
’

* The command COMPUTE calls the macro, thereby, generating the *
* spherical variances and VofVs for this design. *

* They may be found in the new data set STAT. *:

* tt‘#!#t#**t*#tt**#*t*tl#ttt*#tl**tttt#***'#t*‘*t*ttt*tl‘*‘tltﬁ;
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Appendix B

Appendices for Chapter IV

Appendix B.1

Proof of Lemma 4.1.1

The Lagrangian multiplier, y, involved in the optimization of Var(y(x))/0? under the condi-

tions of case II is related to the radius, 7, of the hypersphere by
k A L
r = [_Zl(*g-':'—u-)z}Z = f(n). (B.L.1)
i

Lemma 4.1.1 pertains to the behavior of this relationship for values of p = p,,, > A, and
B = fmin < A Foru = p.. > A, the function fis continuous and decreasing. Thus, the inverse

function exists and is continuous. By a well known theorem from calculus, (see, for example,

Swokowski (1979)).
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Clmax - 1

or cr
a“max

fOI’ H = Hmax > )"k'

Similarly, for values of p = p,, < XA,, fis continuous and increasing and, therefore, the in-

verse function of fexists. Thus, for p = p;, < A4,

OMmin — 1
ar ar
(mmin

Now, in either case, differentiation of f{) with respect to p yields

or _ | & Am o L]k (A’
£-[1eswz2)

! =iy - o’
Therefore,
k oy 1 & m)2
du - [ 3 ( "’f" )2]7[ g em) ]“ : (B.1.2)
or =1 M TR =1 - wy’

forp = ppy > Ay or p = pp, <A

Utilizing these results, the lemma may now be proved.
Proof of Lemma 4.1.1 : Recall that 0 < A, < XA, £ .. <A, Then, it is obvious from equation

(B.1.2) that,
) iR = ppn > Ay

ﬂm<0and
or ’ ’
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11) lfp' = lJ'min < }‘lt

or ’
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Appendix B.2

Proof of Lemma 4.2.1

Consider a translation of the axis system of the x-design variables to the axis system
of the z-variables as set forth in section 4.2.2. That is, z = x;, + m, for some m, and
i=1,2, .., k. To prove Lemma 4.2.1 it is necessary to establish the existence of ma-

trices L which satisfy the conditions of the lemma in the first and second order model cases.
In general notation, the model in terms of the x-variables may be written as
y=AB+eg

where X is the appropriate model-matrix. In terms of the translated z-variables the model

is
r=Zy+e
for appropriate model-matrix Z. The two models are equivalent.

First consider fitting a first order model to the response with a design in k variables.

In this case, the model-matrices and parameter vectors of the models have the forms
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- - -
L oxy X1k Bo
Loy o xyy By
X = , ﬁ =
Lo e X B
and
1 x” + ml vee xlk + mk
Z = v Y=
| XN + my e XNE + my,

The vector of parameters, y, is readily seen to be related to the vector § in the fol-

lowing manner:

-
Bo — myBy — myPy — - — myPy

B,
B,

Br

This may be written as

GB

=
i

for
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The matrix G is a p X p matrix of rank p, where p = k + 1, the number of parameters in

the model. Each row of y = G is an estimable function of § . Thus, the model in terms

of the x -variables may be reparameterized as (see Graybill (1976), p. 493)

which is equivalent to the model

Therefore,

y=AB +¢

=XG'y+¢

r=2Zyte

Z=XG'.

Thus, choose the matrix L of the lemma to be

mom
1 0
0 1
0 0

my,

It is easily verified that Z = XL for thee model-matrices X and Z of a first order model.
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Note that

1 ( 1
Xy xy +m
X2 x2 + m2
L'x*=L = = z*
Xp Xy + my,
foranypointx=(x; x; ... x)’andz=(x;,+m x,+m .. x +m).

Now consider the case of fitting a second order model to the response. In this case,

the model-matrices X and Z and their associated parameter vectors of the model are

2 2
I xyy Xig  Xp1 e Xig XpXp2 o Xpp—1Xik
1 2 2
X21 Xk X21 - X X21X22 e X2 k-1%2k
X =
1 2 2
le xNk le vee xNk leJCNz ves xNJc_lxNk

Z has the same form as X with the values x; replaced by z; = x; + m. The vectors of

parameters in this case are

B=(Bo Bi - BByt - Brx Biz2 Biz - Br-10)
and

Y= (o Y1 Ye Y = Yik Y12 V13 - Ye-10)
Here the number of parameters in the model is p = 2k + (g) +1.
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As in the first order case, the vector y is a reparameterization of § of the form

Y = GB. It can be shown that the matrix G of the reparameterization is given by

[ - m2 ]
0 I -T -M
G = (B.2.1)
Q [ (0]
Q 0] (0] I

where O and 0 are a matrix and vector with all elements equal to zero; and / represents the

identity matnix.

m = (m m .. my),
’— 2 2 2
m2 = (m m .. mp),
m3 = (mmy, mmy ... m_,m).

The matrix T is a diagonal k x k matrix with the element in the i -th row and i-th column

k
equal to 2m,. The &k x ( ) matrix M is
2

BIZ BIJ e ﬁlk BZJ e Bk—l.k

m my .. m 0 0
m 0 .. 0 m 0
0 m .. 0 m 0
0 .. 0 0 0
M=
0 0 my,
0 o0 we my 0 e My

(each column is identified by the corresponding element of f§ to which it will be multiplied

in the product GB). Gis a p x p matrix of rank p, therefore, G exists.
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Now, with X, Z, B, y described above for the second order case, and G given by
(B.2.1), the model is

_1YB_+§

<
1

XGly+¢ .

This is equivalent to the model in terms of the z-variables, thus, it must be that
Z=XG"'.
Let L = G, then L is a p X p matrix of rank p for which
Z = XL .

This result and the result that z* = L’x* are easily verified by multiplication of matrices.

For a second order model

2 2 ’
x* =Xy X X{ e X X)X XXy e X1 Xg)
for any point x = (x, x, ... Xx,)’ in the space of the x-variables. The vector z* has the
same form with x, replaced by z, = x, + m, for i = 1, 2, ..., k. The matrix L of the

lemma is given below.

[ 1 mr mzf m}r-

Q0 I T M
L=

Q0 O I 0

0-0 O I/
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Appendix B.3

Proof of Theorem 4.2.5

In this section it will be shown that under the conditions stated in Theorem 4.2.5 the
form of the RofV for a second order model and design is invariant to the number of center
points, 7, of the design. The proof for the result that the VofV is also invariant to 7, in

this case closely follows that for the RofV. It will not be presented here.

Let N = n + n; denote the number of design points in a design used to fit a second
order model to the response of a system. The design has 7, points at the center of the re-
gion of the k design varables, x,, x;, .., X,. Without loss of generality, suppose the
center of the design variables is at x = Q. Also, suppose the four conditions of Theorem

4.2.5 hold for the design.

Under the conditions of 4.2.5, the X"X matrix has the form given below.

N O g 0
Q 4 O O
XX = (B.3.1)
a O B O
0 O O ¢C
where
N N N
_ 2 2 2\,
a= ( z xul z Xuz Z Xuk)
u=1 u=1 u=1
=(a a .. a) by condition ii) .
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The matrix 4 is a k x k diagonal matrix. The diagonal elements are N - [ii], which
are all equal to a by condition ii). The off-diagonal elements of 4 are N times the second

mixed moments of the design, and, hence, equal to zero. Thus, A is of the form
A = diagonal (a, a, .., a).

The matrix B consists of N times the fourth pure moments on the diagonal and N times
the even fourth mixed moments on the off-diagonal positions. By application of conditions

ii1) and iv), the matrix B is a k x k symmetric matrix of the form

b ¢ ¢ c
c b ¢ c

B= . . . . =(b—c)I+Cll'
c ¢ ¢ b

where ] is a k x 1 vector of ones. The (1;) X (I;) matrix C is a diagonal matrix with di-
agonal elements equal to ¢ by condition iv). The elements in the off-diagonal positions of

C are odd fourth moments and, consequently, equal to zero by condition i). That is,
C= diagonal (¢, ¢, ..., ¢).

Apgain, O and { represent a matrix and vector with all elements equal to zero.

To calculate the prediction variance it is necessary to determine the inverse of X"X.
Before proceeding some matrix calculations which will be required in the formulation of

(X'X)! and the prediction variance are given.

1) The inverse of the matrix B exists and has the form
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Bl=0b*+ c*1 1
_b* c*  c* ... c‘-
¢t b o+ . c*
¢t c* ot . b*
for b* = L and c* = ___—c/(b_—c)
b - b+ (k- e

2) By an application of the Sherman-Morrison-Woodbury theorem (see section 4.3)

’ 'I ’ '1
B -29yt 2 gt _ B _qg.B] _
N N—-4aBga
3)

aB"' = (a(b* + (k — 1)c*) ... a(b* + (k = 1)c*)

= (a* a* .. a*).

with B! defined by calculation 1).

By the repeated application of the inverse of a symmetric pattern matrix, the inverse

of X’X in equation (B.3.1) is

(N — aB'ay! ¢ -WN-gBlay'gB! ¢

-1 :

xx!' = : ot 4 Oaa, 1 °
—(N—dB'ay B'a O (B - —‘—N‘-—)'

0 0 0 c!
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Now, for a second order model the prediction
X = (X X3 ... X;) with
x*=(1 x x, x2 X1Xy XX
X 1 kX1 1X2 X1 X3
= (l &’ 'E;I MI)
where
2 2 2
x2' = (x; X Xj)
and
xx' = (x1x; X1x3 Xg—1X) »

is

L Var p) = x(0x 5
g

variance at a location

Xp—1Xg)

=(N-gB'ay" +x4'x - 2N - aB'a)'a'B "2

ad

+ x2'(B - T)

Note that from calculation 3),
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-1&2 + _x_&rc'lx—-x .

196



2
X
x;
a’B']gz = (a* a* .. a*
X
k
. 2
= a"' E xi
i=1
= a'llrz

k
since }le,z = x'x = r?, where r is the radius of the sphere on which the point x lies. This

result and the result of calculation 2) yields the following expression for the prediction

variance.

L Var(p) = (V- B9 + xa’x

c
_Z(N —_ ng‘]g)'la‘rz + Q;B-]ﬁ (33.2)

- (N — ng‘]g)'l(a*r2)2 + x_x;cv-lM X

Consider the RofV in this case on the surface of a hypersphere of radius r. Let x,..,
and x,,, represent the locations of the maximum and minimum prediction variances re-

spectively on the surface of the sphere. Note that

, - fl 2 _ 2
X max Xmax - lxi,max r

and

P - f 2 _ 2
X minXmin = lxi,min r
l=
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Then, the range of the prediction variances on the surface of the sphere is

—12- Var (.J;(lmax)) - _li" Var (J;()—Cmin))
o g

RofV(r)

{E’maxA-llmax - 2N - Q’B-]Q)-l a*r2

+ xz'maxB Lmax (N - a’B a) (a*r)

+ XX’ axC xxmax}

- {&'minA-limin - 2N - Q'B-I.Q)_la*rz

+x2  B'x2  — (N = aB ay(a*r?})?
minB X2min ~ ( a'B" a)y (a*r)

1
+ l’-c'minc- ﬂmin} .

This follows from equation (B.3.2) with substitution of x,,, and x.;, for x where appro-

priate. The obvious simplification yields

RofV(r) = X' mayAd 'Xmay + x2B7'x2 + xx'C'xx

’ -1 ’ -I ’ 1
= X'mind Xmin — X2'B7x2 — xx'C xx .

Note that the elements of the matrices 4, B and C are sums of x,,, x2 and x,.x,, for
u=1, 2, .., N, ij=1, 2, .., kwhere x,is the u-th setting of the i-th variable used
in the design. As such, the elements of 4, B and C, and, hence, those of 4, B! and
C1, do not depend on the value of n,. Therefore, the RofV does not depend on 7, in this
case. That is, if the second order design satisfies the conditions of Theorem 4.2.5, the RofV

is invariant to the number of center points of the design.
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