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Abstract To adopt a practical method to calculate the action of geometrical operators on quantum states is a crucial task in

loop quantum gravity. In this paper, the graphical calculus based on the original Brink graphical method is applied to loop

quantum gravity along the line of previous work. The graphical method provides a very powerful technique for simplifying

complicated calculations. The closed formula of the volume operator and the actions of the Euclidean Hamiltonian constraint

operator and the so-called inverse volume operator on spin-network states with trivalent vertices are derived via the graphical

method. By employing suitable and non-ambiguous graphs to represent the action of operators as well as the spin-network

states, we use the simple rules of transforming graphs to obtain the resulting formula. Comparing with the complicated

algebraic derivation in some literature, our procedure is more concise, intuitive and visual. The resulting matrix elements of

the volume operator is compact and uniform, fitting for both gauge-invariant and gauge-variant spin-network states. Our results

indicate some corrections to the existing results for the Hamiltonian operator and inverse volume operator in the literature.

1 Introduction

As a non-perturbative approach to quantum gravity, loop quantum gravity (LQG) has made considerable achievements (see

[1,2] for review articles, and [3,4] for books). This theory rigorously enforces the lesson of general relativity and is built on

a strict mathematical foundation. In LQG, the quantum kinematical Hilbert space Hkin was successfully constructed with

the spin-network states as its orthonormal basis. The elementary operators are the holonomy and flux operators. By suitable

regularization schemes, quantum geometric operators, such as the length, area, and volume operators corresponding to their

classical quantities, were well defined on Hkin [5–11]. The volume operator is a cornerstone on which some physical interesting

operators, for instance, the Hamiltonian constraint operator determining the quantum dynamics of LQG, can be constructed.

It is well known that quantum dynamics is a central issue in LQG. There are two main approaches to the quantum dynamics,

based on the canonical and covariant quantization programs, respectively. In canonical quantization, the quantum dynamics

is determined by some quantum Hamiltonian constraint operator. In the covariant program the quantum dynamics is to define

a reasonable transition amplitude. One expects that the quantum dynamics from the two different approaches can make same

physical predictions. Such an expectation has been achieved at least in 3-dimensional LQG to certain sense [12]. Although

some progress has been made for 4-dimensional case in checking the consistency between the two approaches [13–15], the

issue is not yet understood up to now. To understand the relation between the canonical and covariant quantum dynamics, we

not only need a suitable definition of the Hamiltonian constraint operator, but also have to calculate its matrix elements on

given quantum states. In the light of the seminal work by Thiemann [16,17], some mathematically well-defined Hamiltonian

constraint operators have been constructed in LQG. All of these Hamiltonian operators are defined by the volume operator.

There are two versions of the volume operator in the literature. The first one, based on “external” regularization scheme,

was introduced by Rovelli and Smolin in loop representation [8] and re-obtained in the connection representation [10]. The
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second one, based on the “internal” regularization, was firstly defined by Ashtekar and Lewandowski [10]. In [11], Thiemann

presented a rather short and compact regularization procedure to re-derive the second version of the volume operator. Playing

a crucial role in LQG, the spectra of the volume operator is pursued. Certain matrix elements of the volume operator were

calculated in the framework of loop representation by using a graphical tangle-theoretic Temperley–Lieb formulation in [18].

Then they were also derived in connection representation by a rigorous but tedious algebraic method in [11,19], and their

special case was re-derived using generalized Wigner–Eckart theory [20] as well as the graphical methods in [13,21–23].

Although those components of the volume operator are rigorously defined, the computation of their actions on spin-network

states are difficult. The main reason is the following. The volume element operator at a vertex v of a graph γ reads Vv =
√

|q̂v|.
Although the matrix elements of q̂v can be calculated using recoupling theory, the matrix has no obvious symmetries and

hence is difficult to diagonalize analytically for the case that the dimension of the matrix is bigger than nine. On the one hand,

the derivation of closed formula in [19] is rigorous. But there is no universal formula with so tedious and abstract method.

Thanks to the calculation of the matrix elements of the volume operator in certain special case, some matrix elements of

Thiemann’s Hamiltonian constraint operator and its generalization were derived in [21,22]. Later on, the matrix elements

was re-derived in [13], and then the formula in [13] was corrected by sign factors in [14,23] using graphical method. Matter

coupling is also an important issue in LQG. In the case of gravity coupled to a scalar field, the whole Hamiltonian constraint

operator was constructed [17,24]. The matter part of the whole Hamiltonian constraint operator usually contains the “inverse

volume operator”, which is defined by the co-triad operators. In the symmetric model of loop quantum cosmology (LQC) [25],

the analog of the inverse volume operator is bounded above. This fact is sometimes thought of as a reason for the singularity

resolution in LQC. In particular, it is shown in [26] that in spatially curved anisotropic models inverse volume effects may

become important to bind expansion and shear scalars. However, it is shown in [27] that the inverse volume operator with

certain ordering in full LQG is unbounded on the zero volume eigenstates (at a gauge-invariant trivalent vertex). This throws

doubt on whether one can generalize the conclusions of LQC to LQG. To understand definitely the inverse volume operator in

LQG and its relation to the analogs in certain symmetric models, it is necessary to calculate in detail its action on the quantum

states in LQG. There is no doubt that a simple and practical calculation method is desirable to further understand the volume,

inverse volume and Hamiltonian constraint operators.

As a powerful tool for practical calculation, graphic calculus has been introduced in LQG in a few papers (see e.g.,

[13,14,18,21–23,28,29]). These graphical methods are based on the graphical methods developed by Yutsis in [30], Brink in

[31], Varshalovich in [32], and Kauffman in [33]. In order to represent conveniently the Clebsch–Gordan coefficients, Brink

slightly modified the Yutsis’ graphical method by introducing a line with an arrow on it to represent “metric tensor”. Comparing

to the Yutsis’ method, Brink’s graphical method is more convenient and has wider scope of application. Varshalovich’s method

gives a way to represent the Dirac’s bra and ket notation by introducing a line with an arrow outgoing from a node to represent

“ket” (state vector) and a line with double arrow coming into a node to represent the “bra” (dual state vector). The above

three methods are usually used to deal with the coupling problem of angular momentum in quantum mechanics. Moreover,

Kauffman introduced a graphical method for the Temperley–Lieb algebra. Kauffman’s graphical method was firstly used in

LQG in [18,21,22]. It is worth noting that Kauffman’s method was in fact used in [13] while the graphical notations in its

main text are similar to those in [22]. Brink’s graphical method was only recalled in the appendix of [13]. Then Varshalovich’s

method was adopted in [14,23,28]. Brink’s graphical method was also taken to study the propagator of spinfoam models in

[29], in which the graphical method was only used to calculate the action of the right-invariant vector field (the “grasping

operator”) on the intertwiners but not the action of holonomy operator. Graphical method was also introduced to quantum

reduced gravity in [34]. In this paper, the graphical calculus based on the Brink graphical method [31] and its suitable

extension1 will be employed to study the volume, inverse volume and Hamiltonian constraint operators in LQG. Our aim is

in two folds. One is to show that the graphical method is suitable to calculate the actions of different kinds of operators on

spin-network states. The other is to cross-check the results obtained in the literature, on which some important applications

are based. This method consists of two ingredients, graphical representation and graphical calculation. The algebraic formula

will be represented by corresponding graphical formula in an unique and unambiguous way. Then the graphical calculation

will be performed following the simple rules of transforming graphs, corresponding uniquely to the algebraic manipulation

of the formula. A central goal of this paper is to derivate the closed formula for the matrix element of the volume operator,

which involves only the flux operator, based on the rigorous graphical method. Comparing to the algebraic method, our

derivation is obviously more compact and simple. Our analysis shows that the formula of the matrix elements for certain

cases in [19] is also valid for other cases and hence can be regarded as a general expression. Then we will consider the actions

of the gravitational Hamiltonian constraint operator and the inverse volume operator on spin-network states in the graphical

1 A similar scheme is introduced independently at almost the same time by Alesci et al. [35].
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method. Both operators depend also on the honolomies in addition to fluxes. Note that, besides the regularization introduced

by Thiemann [16], other proposal for the regularization of the Hamiltonian constraint operator is also available [36]. On

the contrary to the conclusion in [27], our calculation shows that the inverse volume operator is bounded (zero-valued) at a

trivalent non-planar vertex of the gauge-invariant spin-network states, which is a non-trivial eigenstate with zero-eigenvalue

of the volume operator. This result opens a possible way to lift the result of singularity resolution of LQC to LQG.

This paper is organized as follows. Section 2 is devoted to a brief review of the elements of LQG. In Sect. 3, the graphical

method to LQG will be introduced systematically. In Sect. 4, we will derive the closed formula for the matrix element of the

volume operator by the graphical method. It is shown how the simple rules of transforming graphs tremendously simplify our

calculation. In Sect. 5, the construction of Thiemann’s Euclidean Hamiltonian constraint operator will be briefly reviewed,

and its action on gauge invariant trivalent spin-network states will be calculated by the graphical method. In Sect. 6, we will

compute the action of the inverse volume operator appeared in the Hamiltonian constraint for gravity coupled to matter field.

The results will be discussed in Sect. 7. In Appendix A, we will review the representation theory of SU (2) group, including

the notation of intertwiners and basic components of Brink’s graphical representation and some rules of transforming graphs.

The detailed proof of some identities and results in the main text will be presented in Appendix B and Appendix C separately.

2 Preliminaries

In this section, we briefly summarize the elements of LQG to establish our notations and conventions (see [1–4] for details).

The classical starting point of LQG is the Hamiltonian formalism of GR, formulated on a 3-dimensional manifold � of

arbitrary topology. With Ashtekar–Barbero variables [37,38], GR can be cast in the form of a dynamical theory of the

connection with SU (2) gauge group. We denote spatial indices by a, b, c, . . . and internal indices by i, j, k, . . . = 1, 2, 3.

The phase space consists of canonical pairs (Ai
a, Ẽa

i ) of fields on �, where Ai
a is a connection 1-form which takes values

in the Lie algebra su(2), and Ẽa
i is a vector density of weight 1. The densitized triad Ẽa

i is related to the co-triad ei
a by

Ẽa
i := 1

2
ǫ̃abcǫi jke

j

bek
c sgn(det(el

d)), where ǫ̃abc is the Levi-Cività tensor density of weight 1, and sgn(det(el
d)) denotes the

sign of det(el
d). The 3-metric on � is expressed in terms of co-triads through qab = ei

ae
j
bδi j . The only non-trivial Poisson

bracket reads

{Ai
a(x), Ẽb

j (y)} = κβδb
aδi

jδ
3(x, y), (2.1)

where κ = 8πG, and β is the Barbero–Immirzi parameter. The behavior of the connection under finite gauge transformations

is

A �→ Ag = −(dg)g−1 + g Ag−1. (2.2)

The fundamental variables in LQG are the holonomy of the connection along a curve and the flux of densitized triad through

a 2-surface. Given an edge e : [0, 1] → �, the holonomy he(A) of connection Ai
a along the edge e is

he(A) := Pexp

(∫

e

A

)
= I2 +

∞∑

n=1

∫ 1

0

dt1 ×
∫ 1

t1

dt2 · · ·
∫ 1

tn−1

dtn A(e(t1)) · · · A(e(tn)), (2.3)

where A(e(t)) := ėa(t)Ai
a(e(t))τi , with ėa(t) being the tangent vector of e, and τi := −iσi/2 (with σi being the Pauli

matrices), P denotes the path ordering which orders the smallest path parameter to the left. The holonomy he(A) is the unique

solution he([0,t=1])(A) of the parallel transport equation

dhe([0,t])(A)

dt
= he([0,t])(A) A(e(t)) (2.4)

with the initial value he([0,0])(A) = I2. Define a combination ◦ of two edges e1, e2 satisfying e1(1) = e2(0) as

[e1 ◦ e2](t) :=
{

e1(2t), t ∈ [0, 1
2
]

e2(2t − 1), t ∈ [ 1
2
, 1] , (2.5)

123



235 Page 4 of 52 Eur. Phys. J. C (2017) 77 :235

and the inversion of an edge as

e−1(t) := e(1 − 2t). (2.6)

The holonomy (2.3) has two key properties

he1◦e2(A) = he1(A)he2(A), he−1(A) = he(A)−1. (2.7)

The transformation behavior (2.2) of the connection A under a gauge transformation leads to the corresponding transformation

behavior of holonomy as

he(Ag) = g(b(e))he(A)g( f (e))−1, (2.8)

where b(e), f (e) denote the beginning and final points of e, respectively. The flux Ẽi (S) of densitized triad Ẽa
i through a

2-surface S is defined by

Ẽi (S) :=
∫

S

ǫ
˜

abc Ẽa
i , (2.9)

where ǫ
˜abc is the 3-dimensional Levi-Cività tensor density of weight −1.

Consider a finite piecewise analytic graph γ in �, which consists of analytic edges e incident at vertices v. We insert a

pseudo-vertex ṽ into each edge e and split e into two segments se and le such that e = se ◦ l−1
e and the orientations of se and

le are all outgoing from the two endpoints of e. We call the new graph the standard graph obtained from the original graph

by splitting edges and adding pseudo-vertices. Denote the standard graph by γ , the set of its edges by E(γ ), and the set of

vertices, containing the true vertices v and pseudo-vertices ṽ, by V (γ ). Our following discussion is based on the standard

graphs.

To construct quantum kinematics, one has to extend the configuration space A of smooth connections to the space Ā of

distributional connections. A function f on Ā is said to be cylindrical with respect to a graph γ if and only if it can be written

as f = fγ ◦ pγ , where pγ (A) = (he1(A), . . . , hen (A)) and e1, . . . , en are the edges of γ . Here he(A) is the holonomy

along e evaluated at A ∈ Ā and fγ is a complex-valued function on SU (2)n . Since a function cylindrical with respect to

a graph γ is automatically cylindrical with respect to any graph bigger than γ , a cylindrical function is actually given by

a whole equivalence class of functions fγ . We will henceforth not distinguish the functions in one equivalence class. The

set of cylindrical functions is denoted by Cyl(Ā). The space Cyl(Ā) can be completed as the kinematical Hilbert space

Hkin := L2(Ā, dμo) with dμo being the Ashtekar–Lewandowski measure.

Now let us consider the transformation behavior of the cylindrical function in order to understand the purpose of introducing

the intertwiner. The cylindrical function can be decomposed by the representations π je (he(A)) of he(A) as

fγ ({he(A)}e∈E(γ )) =
⊕

�j≡{ je}e∈E(γ )

⎛
⎝ f �j ·

⊗

e∈E(γ )

π je (he(A))

⎞
⎠ , (2.10)

where · stands for contracting operator. Under finite gauge transformations, the above equation changes to

fγ ({he(Ag)}e∈E(γ )) =
⊕

�j≡{ je}e∈E(γ )

⎡
⎣ f �j ·

⊗

e∈E(γ )

(
π je (g(v)) · π je (he(A)) · π je (g(ṽ)−1

)
⎤
⎦

=
⊕

�j≡{ je}e∈E(γ )

⎡
⎣ f �j ·

⊗

v∈V (γ )

⎛
⎝ ⊗

b(e)=v

π je (g(v))

⎞
⎠ ·

⊗

e∈E(γ )

π je (he(A)) ·
⊗

ṽ∈V (γ )

⎛
⎝ ⊗

f (e)=ṽ

π je (g(ṽ)−1)

⎞
⎠
⎤
⎦

=
⊕

�j≡{ je}e∈E(γ )

⎡
⎣ f �j ·

⊗

v∈V (γ )

(
⊕

J

(
i J
v

)−1
· πJ (g(v)) · i J

v

)
·
⊗

e∈E(γ )

π je (he(A))
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·
⊗

ṽ∈V (γ )

(
⊕

J ′

(
i J ′
ṽ

)∗
· π je (g(ṽ)−1) ·

((
i J ′
ṽ

)∗)−1
)⎤
⎦ , (2.11)

where in the last step we have employed the Clebsch–Gordan decomposition for the direct product of representations, i J
v is

called the intertwining operator (tensor) in the representation theory of groups [39] and its components is the complex conju-

gate of (generalized) Clebsch–Gordan coefficients (CGCs) in quantum mechanics. Notice that i J
v and

(
i J ′
ṽ

)∗
are independent

for different vertices v, ṽ ∈ V (γ ) and different total angular momenta J . Hence we can use them to expand the tensor f �j so

that the cylindrical function in Eq. (2.10) can be written as

fγ ({he(A)}e∈E(γ )) =
⊕

�j≡{ je}e∈E(γ )

⎧
⎨
⎩
⊕

J,J ′

⎡
⎣ f

J,J ′
�j ·

⊗

v∈V (γ )

i J
v ·

⊗

e∈E(γ )

π je (he(A)) ·
⊗

ṽ∈V (γ )

(
i J ′
ṽ

)∗
⎤
⎦
⎫
⎬
⎭ . (2.12)

The orthogonality of CGCs ensures that the cylindrical function fγ ({he(A)}e∈E(γ )) in (2.12) is gauge invariant for J = J ′ = 0.

Hence the tensor i J
v is also called the gauge-invariant (variant) intertwiner, associated to v, corresponding to J takes 0 (non-

vanishing value). The above discussion means that the basis of Hkin is2

T
γ, �j,�i (A) :=

⊗

v∈V (γ )

iv ·
⊗

e∈E(γ )

π je (he(A)) ·
⊗

ṽ∈V (γ )

i∗ṽ , (2.13)

where · stands for contracting the upper (or former) indices of representation matrices π je (he(A)) with indices of intertwines

iv at true vertices v, the lower (or later) indices of π je (he(A)) with indices of conjugate intertwiners i∗
ṽ

at pseudo-vertices ṽ,

and we denote �i ≡ {iv, i∗
ṽ
}v,ṽ∈V (γ ). The states (2.13) are called the spin-network states.

Given n edges with n spins j1, . . . , jn incident at a true v, the matrix elements of the intertwiner iv associated to v read

(see Appendix A for detailed explanation)

(
i J ; �a
v

)
m1m2···mn

M

≡
(

i
J ; �a
j1··· jn

)
m1m2···mn

M

:= (−1) j1−
∑n

i=2 ji −J 〈J M; �a | j1m1 j2m2 · · · jnmn〉
= (−1) j1−

∑n
i=2 ji −J

∑

k2,...,kn−1

〈a2k2| j1m1 j2m2〉 × 〈a3k3|a2k2 j3m3〉 · · · 〈J M |an−1kn−1 jnmn〉, (2.14)

where 〈J M; �a | j1m1 j2m2 · · · jnmn〉 is the complex conjugate of generalized CGCs describing the coupling of n angular

momenta j1, . . . , jn to a total angular momentum J in the standard coupling scheme (i.e., j1 is first coupled to j2 to give a

resultant a2, and then a2 is coupled to j3 to give a3, and so on), and �a ≡ {a2, . . . , an−1} denotes the set of the angular momenta

appeared in the intermediate coupling. Notice that the intertwiner presented in Eq. (2.14), differing the factor (−1) j1−
∑n

i=2 ji −J

from CGCs, is more convenient to be represented in graphical formula. The matrix elements of the conjugate intertwiner i∗
ṽ

associated to pseudo-vertex ṽ at which two incoming edges with the same spin j meet are given by

(
i0
ṽ

∗)n1n2 ≡
(

i0
ṽ

∗)
0

n1n2 := 〈 jn1 jn2|00〉. (2.15)

The assignment of intertwiners to the true vertices and conjugate intertwiners to the pseudo-vertices is compatible with the

transformation behavior (2.8) of holonomy. The CGCs are usually chosen to be real so that

〈 j1m1 j2m2|J M〉 = 〈J M | j1m1 j2m2〉. (2.16)

It is, therefore, not necessary to sedulously distinguish intertwiner from its conjugate when we do calculation. The gauge-

invariant spin-network states correspond to the states whose intertwiners in (2.14) associated to true vertices are specially

2 See Eq. (3.25) for the orthonormal basis of Hkin.
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chosen such that the resulting angular momenta J = 0. The normalized gauge-invariant/variant states consist of the orthonor-

mal basis of the gauge-invariant/variant Hilbert space [40].

Two elementary operators in LQG are the holonomy and the flux operators. The holonomy operator acts as multiplication:

[ĥeI
(A)]B

C · fγ (he1(A), . . . , hen (A)) :=
[
π1/2(heI

(A))
]B

C
fγ (he1(A), . . . , hen (A)). (2.17)

Given a graph γ and an oriented 2-surface S with conormal nS
a , the edges of γ can be split into two halves at an interior point

if necessary. Then one can get a graph γS adapted to S such that the edges of γS belong to the following four types: (i) e is up

with respect to S if ėa(0)nS
a (e(0)) > 0; (ii) e is down with respect to S if ėa(0)nS

a (e(0)) < 0; (iii) e is inside with respect to

S if e ∩ S = e; (iv) e is outside with respect to S if e ∩ S = ∅. Then the flux operator acts on a cylindrical function fγ with

respect to the graph γ adapted to S as a derivative operator,

ˆ̃
Ei (S) · fγ (he1(A), . . . , hen (A)) := −i h̄

{
fγ (he1(A), . . . , hen (A)), Ẽi (S)

}

=
ℓ2

pβ

2

∑

eI ∈E(γ )

̺(e, S) J i
eI

· fγ (he1(A), . . . , hen (A)), (2.18)

where ℓp ≡
√

h̄κ , ̺(e, S) takes the values of 0, +1 and −1 corresponding to whether the edge e is inside/outside, up or down

with respect to the surface S, and

J i
eI

· fγ (he1(A), . . . , heI
(A), . . . , hen (A)) := −i

d

dt

∣∣∣∣
t=0

fγ (he1(A), . . . , etτi heI
(A), . . . , hen (A)) (2.19)

is the self-adjoint operator of the right-invariant vector field on the copy of SU (2) corresponding to the I th edge.

3 Graphical method for LQG

Graphic calculus has been introduced in LQG in a few papers (see e.g., [13,14,18,21–23,28,29]). Here we focus on the

original Brink’s graphical method and its suitable extension to LQG.

3.1 Algebraic formula

In LQG, under different physical considerations, one needs to construct operators, e.g., the geometric operators and the

Hamiltonian operators, corresponding to their classical quantities based on the two elementary operators ĥe(A) and J i
e . The

action of those operators on a given spin-network state will involve the actions of the two elementary operators. The action

of ĥe(A) on the spin-network states involves essentially the decomposition of the tensor product representation of SU (2),

which is well known as the Clebsch–Gordan series

[π j1(g)]m1
n1

[π j2(g)]m2
n2

=
∑

J,M,N

(
(i J

j1 j2
)−1

)
M

m1m2 × [πJ (g)]M
N

(
i J

j1 j2

)
n1n2

N

, (3.1)

where
(

i J
j1 j2

)
n1n2

N

≡ (−1) j1− j2−J 〈J N | j1n1 j2n2〉. The fact that the operator i J
j1 j2

is unitary and its matrix elements take

real numbers results in

(
(i J

j1 j2
)−1

)
M

m1m2 =
(

i J
j1 j2

)
m1m2

M

. (3.2)

For a spin-network state T
γ, �j,�i (A) on a graph γ , we consider a true vertex v ∈ V (γ ) at which n edges e1, . . . en incident and

denote T v

γ, �j,�i (A) the terms, in T
γ, �j,�i (A), directly associated to v. Then the action of the holonomy operator [ĥeI

(A)]B
C on

T v

γ, �j,�i (A) reads
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[ĥeI
(A)]B

C · T v

γ, �j,�i (A) =
(

i J ; �a
v

)
m1···m I ···mn

M

[π j1(he1)]m1
n1

· · · [π jI
(heI

)]m I
n I

[
π1/2(heI

)
]B

C
· · · [π jn (hen )]mn

nn

=
(

i J ; �a
v

)
m1···m I ···mn

M

[π j1(he1)]m1
n1

· · ·
∑

j ′I ,m
′
I ,n

′
I

(
(i

j ′I
jI 1/2)

−1
)

m′
I

m I B

[π j ′I
(heI

)]m′
I

n′
I

(
i

j ′I
jI 1/2

)
n I C

n′
I · · · [π jn (hen )]mn

nn
.

(3.3)

where [π jI
(heI

)]m I
n I

≡ [π jI
(heI

(A))]m I
n I

. On the other hand, the action of J i
eI

defined in Eq. (2.19) on T v

γ, �j,�i (A) reads

J i
eI

· T v

γ, �j,�i (A) =
(

i J ; �a
v

)
m1···m I ···mn

M

[π j1(he1)]m1
n1

· · ·
(

−i
d

dt

∣∣∣∣
t=0

[π jI
(etτi heI

)]m I
n I

)
· · · [π jn (hen )]mn

nn

=
(

i J ; �a
v

)
m1···m I ···mn

M

[π j1(he1)]m1
n1

· · ·
(
−i [π jI (τi )]m I

m′
I
[π jI

(
heI

)
]m′

I
n I

)
· · · [π jn (hen )]mn

nn

=
[(

i J ; �a
v

)
m1···m′

I ···mn

M (
−i [π jI

(τi )]m′
I

m I

)]
[π j1(he1)]m1

n1
· · · [π jI

(heI
)]m I

n I
· · · [π jn (hen )]mn

nn
, (3.4)

which indicates that J i
eI

leaves γ and �j invariant, but does change the intertwiner associated to v by contracting matrix

elements of the i th τ with the intertwiner in the following way:

J i
eI

·
(

i J ; �a
v

)
m1···m I ···mn

M

=
(

i J ; �a
v

)
m1···m′

I ···mn

M (
−i [π jI

(τi )]m′
I

m I

)
. (3.5)

However, in practical calculation, it is not convenient to directly compute the contraction of matrix elements of τi with an

intertwiner. One usually introduces the irreducible tensor operators [41], or the spherical tensors of τi , to replace the original

τi for a reason that will become clear in a moment. The spherical tensors τμ (μ = 0,±1), corresponding to τi (i = 1, 2, 3),

are defined by

τ0 := τ3, τ±1 := ∓ 1√
2

(τ1 ± iτ2) . (3.6)

Then the contraction of matrix elements of τi with an intertwiner is transformed to that of their tensor operators with the

intertwiner. The matrix elements [π j (τμ)]m′
m

can be related to the 3 j-symbols (or CGCs) by (see Appendix B.1 for a proof)

[π j (τμ)]m′
m

= i

2

√
2 j (2 j + 1)(2 j + 2)

(
1 j j

μ m′′ m

)
Cm′′m′

( j) , (3.7)

where Cm′′m′
( j) := (−1) j+m′

δm′,−m′′ is the contravariant “metric” tensor on the irreducible representation space H j of SU (2)

with spin j (see Appendix A.1 for a detailed explaination for the Cm′′m′
( j) ) [42]. The spherical tensor τμ generates the self-adjoint

right-invariant operator J
μ
eI

defined by

Jμ
eI

· fγ (he1(A), . . . , heI
(A), . . . , hen (A)) := −i

d

dt

∣∣∣∣
t=0

fγ (he1(A), . . . , etτμheI
(A), . . . , hen (A)). (3.8)

The action of J
μ
eI

on
(
i J ; �a
v

)
m1···m I ···mn

M
reads

Jμ
eI

·
(

i J ; �a
v

)
m1···m I ···mn

M

=
(

i J ; �a
v

)
m1···m′

I ···mn

M (
−i [π jI

(τμ)]m′
I

m I

)
. (3.9)

Any gauge-invariant operator, e.g., the volume operator considered in this paper, defined by J i s can be expressed in terms

of the corresponding Jμs. Hence its action on the spin-network states is essentially equivalent to contracting 3 j-symbols (or

CGCs) with corresponding intertwiners.
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3.2 Graphical representation and graphical calculation

The basic components of the original Brink’s graphical representation and the simple rules of transforming graphs are presented

in Appendix A.1. In graphical representation, the 3 j-symbol is represented by an oriented node with three lines, each of which

represents a value of j , i.e.,

(3.10)

where − and + denote the clockwise orientation and the anti-clockwise orientation, respectively. A rotation of the diagram

does not change the cyclic order of lines, and the angles between two lines as well as their lengths at a node have no significance.

The “metric” tensor C
( j)

m′m in Eq. (A.6) which occurs in the contraction of two 3 j-symbols with the same values of j is denoted

by a line with an arrow on it, i.e.,

(3.11)

and its inverse in Eq. (A.7) can be expressed as

(3.12)

Summation over the magnetic quantum numbers m is graphically represented by joining the free ends of the corresponding

lines. The contraction of a 3 j-symbol with a “metric” is represented by a node with one arrow, which provides a way to

represent the CGC, e.g.,

(3.13)

To give a precise way of presenting the CGC as Eq. (3.13) is the main motivation for Brink to modify the original Yutsis

scheme [30,31]. Hence the intertwiner
(
i J ; �a
v

)
m1m2···mn

M
in Eq. (2.14) associated to a true vertex v, from which n edges are

outgoing, is represented in a graphical formula by Eq. (A.38) as (see Appendix A.2 for a detailed interpretation)

(3.14)

Now we will extend Brink’s representation and propose a graphical representation for the unitary irreducible representation

π j of SU (2). The matrix element [π j (g)]m
n

is denoted by a blue line with a hollow arrow (triangle) in it as

(3.15)

The orientation of the arrow is from its row index m to its column index n. For group elements such as the holonomies

he ≡ he(A) of the connection A along an edge e, their matrix elements can simply be represented by

(3.16)

The advantages of the above graphical representation are the following: (i) The edge and the irreducible representation of

the holonomy along the edge have been represented by the elements e and j labeling the line; (ii) the orientation of e with

respect to the vertices has been reflected by the orientation of the arrow on the line; (iii) the row index (the tensor index of H∗
j )

and the column index (the tensor index of H j ) have been represented by the two indices m and n, respectively, labeling the
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starting and the ending points of the line; (iv) the matrix element [π j (he)]m
n

and the “metric” tensor C
( j)

m′m in the graphical

formula are distinguished by different colors (blue v.s. black) and elements (two v.s. one) of the lines; (v) the coupling rules

of the representations of holonomies match Brink’s representations for the CGC (see Eq. (3.18)). By Eqs. (2.7) and (A.57),

the matrix elements of the inverse of a holonomy can be represented by

(3.17)

The Clebsch–Gordan series in (3.1) yield the coupling rules of representations of holonomies as3

(3.18)

and

(3.19)

The action of [ĥeI
(A)]B

C on the spin-network state T v

γ, �j,�i (A) =
(
i J ; �a
v

)
m1···m I ···mn

M [π j1(he1)]m1
n1

· · · [π jI
(heI

)]m I
n I

· · ·
[π jn (hen )]mn

nn
can be represented by

(3.20)

The spherical tensor [π j (τμ)]m′
m

in Eq. (3.7) can be represented graphically by

(3.21)

Hence the action of J
μ
eI

on
(
i J ; �a
v

)
m1m2···mn

M
in (3.9) can be represented by

(3.22)

3 Similar calculus based on the Varshalovich method were used in LQG (see e.g. [14]).
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Up to now, based on the Brink original graphical representation and its suitable extension to the irreducible representation

of holonomy, the two elementary operators in LQG, the holonomy operator and the flux operator (essentially the self-adjoint

right-invariant operator), and the spin-network states of the kinematical Hilbert space have been uniquely represented by

corresponding graphs. Hence, in the graphical method, the actions of any well-defined operators in the kinematical space, for

instances, the volume operator, the Hamiltonian operator and the inverse operator considered in this paper, on a spin-network

state can be derived by the simple rules of transforming graphs (see Appendix A.2).

The starting point of our scheme is the so-called standard graph γstd, which is obtained from its original graph γorg by

splitting edges and adding pseudo-vertices. We still need to show that the spin-network function associated to the original

graph γorg is equivalent to the one associated to its corresponding standard graph γstd acting by an operator. Recall that the

standard graph γstd is obtained from γorg by the following procedure. We insert a pseudo-vertex ṽ into each edge e of γorg

and split e into two segments se and le, such that e = se ◦ l−1
e and the orientations of se and le are all outgoing from the two

endpoints of e. The standard graph γstd consists of the new segments se and le, the new adding pseudo-vertices ṽ, and the (old)

vertices of γorg. We can transform the spin networks based on the original graph into those on its standard graph by explicit

transformation rules, and then find their relation. Consider an edge e with representation j in γorg starting from v and ending

at v′, assigning the intertwiners iv and iv′ , respectively. We assume that the edge e in the original graph γorg is regarded as the

kth edge and the k′th edge in the set of edges which incident at v and v′, respectively, i.e., b(e) = b(ek), f (e) = f (e′
k′). The

relevant ingredient of a spin-network state associated to the edge e takes the form [see (A.39) for the graphical representation of

the intertwiner associated to v at which there are coming and outgoing edges, (3.16) and (3.17) for the graphical representation

of the holonomy]

(3.23)

The transformation from γorg to γstd induces the following transformation in the spin-network state:

(3.24)

where we have used (3.17) in the second step and the rule (A.41) to remove two arrows in the last step. Repeating the above

procedure, we can transform the spin-network states associated to the origin graph into those corresponding to its standard
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graph. By this trick, we finally find out the corresponding relation of the spin-network states between the original graph γorg

and its standard graph γstd. The intertwiners associated to the vertices of the origin graph is replaced by its standard formula,

and adding the pseudo-vertex ṽ for each edge e with a divalent intertwiner is graphically represented by an arrow with an

orientation opposed to that of the original edge.4

We now show by the graphical method that the spin-network states can become orthonormal to each other. The normalized

spin-network state takes the form

T norm

γ, �j,�i (A) :=
⊗

v∈V (γ )

iv ·
⊗

e∈E(γ )

√
2 je + 1 π je (he(A)) ·

⊗

ṽ∈V (γ )

i∗ṽ . (3.25)

The scalar product of the spin-network states is defined by

(
T norm

γ ′, �j ′,�i ′ , T norm

γ, �j ,�i

)
Hkin

:=
∫

SU (2)|E(γ̃ )|

∏

e∈E(γ̃ )

dμH (he) T norm

γ ′, �j ′,�i ′(A) T norm

γ, �j,�i (A), (3.26)

where γ̃ is any graph bigger than γ and γ ′, |E(γ̃ )| denotes the number of the edges in γ̃ , and dμH (g) is the Haar measure on

SU (2). If γ differs from γ ′, e.g., there is an edge e′ with spin j ′
e′ belonging to γ ′ but not γ , then the orthogonality relation,

∫

SU (2)

dμH (g) [π j ′(g)]m′
n′ [π j (g)]m

n
= δ j, j ′

2 j + 1
δm,m′

δn,n′, (3.27)

implies that the corresponding integration in (3.26) becomes

∫

SU (2)

dμH (he′) [π j ′
e′
(he′)]m′

n′ = 0. (3.28)

Hence the non-trivial result corresponds to the case γ = γ ′. Thus (3.26) reduces to

(
T norm

γ ′, �j ′,�i ′ , T norm

γ, �j ,�i

)
Hkin

= δγ,γ ′

∫

SU (2)|E(γ̃ )|

∏

e∈E(γ̃ )

dμH (he) T norm

γ, �j ′,�i ′(A) T norm

γ, �j ,�i (A)

= δγ,γ ′

∫

SU (2)|E(γ )|

∏

e∈E(γ )

dμH (he) T norm

γ, �j ′,�i ′(A) T norm

γ, �j ,�i (A), (3.29)

where in the second step we have used the fact that the Haar measure is normalized. By integrating over all representation

functions on the edges, one can obtain the contract of the complex conjugation of intertwiners with the corresponding

intertwiners at vertices. Thus we have

4 The intertwiner, a line with an arrow, associated to the pseudo-vertex ṽ, is not normalizable since we adopt π je (he(A)) rather that its normalized

form
√

2 je + 1 π je (he(A)) in the spin-network function (see Eq. (2.13)). If the original spin network is normalized, the intertwiner associated to ṽ

will automatically be normalized. Then it will be expressed as 1√
2 j+1

times a line with a spin- j arrow in the graphical representation in Eq. (3.24).
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(3.30)

where in the second step we have used the fact that the CGs (and thus the GCGs) are real, in the fourth step we have used Eqs.

(A.45) and (A.41). Note that the result of Eq. (3.30) is based on the premise that the intertwiners at the same vertex v involve

the same coupling scheme. If different coupling schemes at the same vertex were chosen, certain additional multiplication of

6 j-symbols would appear in the result. If the spin-network functions are gauge invariant, corresponding to J = 0 and M = 0,

the two Kronecker delta functions δJ,J ′ and δM,M ′ will not appear in Eq. (3.30).

4 The volume operator

One of the important achievements in LQG is that the theory itself predicts that some geometric operators, such as area

operator and volume operator, have discretized spectra. Some volume operator was also constructed for spin-foam models

[43,44]. There are two versions of volume operator in canonical LQG. We only consider the volume operator defined in

[10,11], which passed the consistency check in the quantum kinematical framework and was used to define a Hamiltonian

constraint operator in LQG [16,45,46]. In this section, we will briefly review the construction of the volume operator. Then

the graphical method, introduced in Sect. 3, will be used to derive the matrix element of the volume operator.

4.1 A brief review of the construction of the volume operator

Classically, the volume function for a given open region R reads

V (R) :=
∫

R

d3x
√

| det(q)| =
∫

R

d3x

√∣∣∣∣
1

3!ǫ
i jkǫ
˜

abc Ẽa
i Ẽb

j Ẽc
k

∣∣∣∣, (4.1)

where det(q) denotes the determinant of the 3-metric qab. To quantize the volume function, a suitable regularization procedure

is needed which involves smearing Ẽa
i . We now introduce the regularization adopted by Ashtekar and Lewandows in [10].

For given R ∈ �, we fix a global coordinates {xa, a = 1, 2, 3} in a neighborhood of R in � and partition Pǫ of R into

a family C of closed cubes C with coordinate volume ǫ3. For each C , one arranges three 2-surface S1, S2, S3, defined by

xa = consta , intersecting in the interior of C . One smears these three densitized triads on those three 2-surfaces for each cell

C in a given partition to give a regularized version of (4.1) as [10]

V
Pǫ

AL (R) :=
∑

C∈C

√∣∣∣∣
1

3!ǫ
i jkǫ
˜

abc Ẽi (Sa)Ẽ j (Sb)Ẽk(Sc)

∣∣∣∣. (4.2)

It is easy to see that (4.2) reduces to (4.1) as ǫ → 0. The above regularization procedure is called internal because triads are

smeared over three surfaces passing the interior of the cell. It is straightforward to promote the regularized formula (4.2) to
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its quantum operator by replacing the fluxes by their operators. It is convenient to introduce the permissible partitions P
γ
ǫ

(for sufficiently small ǫ) adapted to a given standard graph γ (see [10] for details). One then obtains the regulated operator

V̂
P

γ
ǫ

AL (R) · fγ := ℓ3
p β

3
2

∑

v∈V (γ )∩R

√√√√√

∣∣∣∣∣∣
1

3! × 23

∑

eI ∩eJ ∩eK =v

̺(eI , eJ , eK )ǫi jk J i
eI

J
j

eJ
J k

eK

∣∣∣∣∣∣
· fγ , (4.3)

where ̺(eI , eJ , eK ) := ǫabc̺(eI , Sa)̺(eJ , Sb)̺(eK , Sc). Notice that the action of the regulated operator only depends on

the properties of these surfaces at v. Hence the result is unchanged as we refine the partition and shrink C to v and hence

the limit ǫ → 0 is trivial. However, the limiting volume operator carries the information of our choice of partitions through

̺(eI , eJ , eK ), which depend on the background structure—the coordinates choice defining Sa . By suitable averaging over

relevant background structures in (4.2), the well-defined, background-independent volume operator reads5

V̂γ (R) · fγ = ℓ3
p β

3
2

∑

v∈V (γ )∩R

√√√√√

∣∣∣∣∣∣
1

3! × 23

∑

eI ∩eJ ∩eK =v

ς(eI , eJ , eK )ǫi jk J i
eI

J
j

eJ
J k

eK

∣∣∣∣∣∣
· fγ , (4.4)

where ς(eI , eJ , eK ) ≡ sgn(det(ėI (0), ėJ (0), ėK (0))) takes the values of 0, +1 and −1, corresponding to whether the

determinant of the matrix formed by the tangents of the three edges at v in that sequence is zero, positive, or negative.

4.2 The matrix elements of the volume operator

The volume operator acts on a spin-network state as

V̂ · T
γ, �j,�i (A) = ℓ3

p β
3
2

∑

v∈V (γ )

√√√√√

∣∣∣∣∣∣
i

8 × 4

∑

I<J<K , eI ∩eJ ∩eK =v

ς(eI , eJ , eK ) q̂I J K

∣∣∣∣∣∣
· T

γ, �j ,�i (A), (4.5)

where

q̂I J K := −4iǫi jk J i
eI

J
j

eJ
J k

eK
= 4

[
δi j J i

eI
J

j
eJ

, δlk J l
eJ

J k
eK

]
= −1

4

(
16 δlk J l

eJ
J k

eK
δi j J i

eI
J

j
eJ

− 16 δi j J i
eI

J
j

eJ
δlk J l

eJ
J k

eK

)

=: −1

4

(
q̂

<J K ;I J>
I J K − q̂

<I J ;J K>
I J K

)
. (4.6)

Here δi j := −2tr(τiτ j ) is the Cartan–Killing metric on SU (2). The action of the volume operator is local, in the sense

that its action is a sum on independent vertices. Therefore, we can focus on its action on a single vertex. The fact that the

pseudo-vertices are divalent and the self-adjoint operators J i
eI

act only at the beginning points of eI implies that the summation

in Eq. (4.5) is only over the true vertices v of γ .

Equation (3.4) reveals the fact that the operators q̂I J K and thus V̂ only change the intertwiners �i in T
γ, �j,�i (A). The operators

q̂I J K acts on an intertwiner by contracting the corresponding matrix elements of τi with the intertwiner. Note that

δi j J i
eI

J
j

eJ
·
(

i J ; �a
v

)
m1···m I ···m J ···mn

M

=
(

i J ; �a
v

)
m1···m′

I ···m′
J ···mn

M (
−[π jI

(τi )]m′
I

m I
δi j [π jJ

(τ j )]m′
J

m J

)

=
(

i J ; �a
v

)
m1···m′

I ···m′
J ···mn

M

[π jI
(τμ)]m′

I
m I

C
νμ

(1)
[π jJ

(τν)]m′
J

m J
.

= −C (1)
μν Jμ

eI
J ν

eJ
·
(

i J ; �a
v

)
m1···m I ···m J ···mn

M

, (4.7)

where in the second step we have used the following identity (see Appendix B.1 for a proof):

− [π jI
(τi )]m′

I
m I

δi j [π jJ
(τ j )]m′

J
m J

= [π jI
(τμ)]m′

I
m I

C
νμ

(1)
[π jJ

(τν)]m′
J

m J
. (4.8)

5 An overall undetermined multiplicative constant κav was fixed as 1 by the consistency check of volume and triad operator quantizations [45,46].
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Hence the operator q̂
<J K ;I J>
I J K and q̂

<I J ;J K>
I J K in (4.6) can be represented in terms of Jμ by

q̂
<J K ;I J>
I J K ·

(
i J ; �a
v

)
m1···m I ···m J ···mK ···mn

M

= 16 C (1)
ρσ Jρ

eJ
Jσ

eK
C (1)

μν Jμ
eI

J ν
eJ

·
(

i J ; �a
v

)
m1···m I ···m J ···mK ···mn

M

= 16
(

i J ; �a
v

)
m1···m′

I ···m′
J ···m′

K ···mn

M

[π jJ
(τν)]m′′

J
m J

Cν′ν
(1) [π jK

(τν′)]m′
K

mK

× [π jI
(τμ)]m′

I
m I

C
μ′μ
(1)

[π jJ
(τμ′)]m′

J
m′′

J
, (4.9)

q̂
<I J ;J K>
I J K ·

(
i J ; �a
v

)
m1···m I ···m J ···mK ···mn

M

= 16 C (1)
μν Jμ

eI
J ν

eJ
C (1)

ρσ Jρ
eJ

Jσ
eK

·
(

i J ; �a
v

)
m1···m I ···m J ···mK ···mn

M

= 16
(

i J ; �a
v

)
m1···m′

I ···m′
J ···m′

K ···mn

M

[π jI
(τμ)]m′

I
m I

C
μ′μ
(1)

[π jJ
(τμ′)]m′′

J
m J

× [π jJ
(τν)]m′

J
m′′

J
Cν′ν

(1) [π jK
(τν′)]m′

K
mK

. (4.10)

With the above preparation, we now turn to the action of q̂I J K on the intertwiner
(
i J ; �a
v

)
m1···m I ···m J ···mK ···mn

M
associated to

a true vertex v in the graphical method. We first consider the case I > 2 and K < n, where aI−1 and aK will appear in the

final result. The other special cases will be dealt with later. According to Eq. (4.9), the first term in the parentheses of Eq.

(4.6) evaluated on the intertwiner (3.14) can be represented by the following graphical formula (we present only the parts of

the graph of the intertwiner which closely connect to the key steps in the following calculations):

−
aI aJ−1 aJ aK−1− − − − − −

aJ+1 · · · aK−2aI+1 · · · aJ−2

mI mJ−1 mJ
mJ+1 mK−1 mKmI+1

jI jI+1 jJ−1 jJ+1 jK−1 jKjJ

(4.11)

where X ( j1, j2) ≡ 2 j1(2 j1 + 1)(2 j1 + 2)2 j2(2 j2 + 1)(2 j2 + 2). Similarly, the second term in the parentheses of Eq. (4.6)

acting on the intertwiner can be expressed as

(4.12)

It is obvious that the two terms q̂
<J K ;I J>
I J K and q̂

<I J ;J K>
I J K in (4.6) are gauge invariant. Hence the operator q̂I J K and the

volume operator (4.5) are gauge invariant. Each of them leaves the intertwiner space Hv
j1,..., jn

with the intertwiners as its

orthonormal basis, determined by the given j1, . . . , jn and the resulting angular momentum J , at the vertex v invariant.

Therefore the action of q̂I J K on an intertwiner can be expanded linearly in terms of intertwiners in Hv
j1,..., jn

at the vertex v. In

graphical language, they leave the vertical lines denoted by ji and the last horizontal line denoted by J invariant, but change

the intermediate couplings ai labeling the intermediate horizontal lines. Hence, in graphical calculation, our task is to drag the

endpoints of the two curves with spin 1 down to attach the horizontal lines, and then yank them away from the horizontal lines
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following the simple and rigorous rules of transforming graphs presented in Appendix A.2. Of course, there are alternative

ways, corresponding to different choices of coupling, to remove the two curves with spin 1. The results obtained from different

ways are related by unitary transformations. In the following, we choose a way guided by the simplicity principle that the

number of changed intermediate values ai is as little as possible and the final result is as simple as possible. The calculations of

the action of q̂I J K on a given intertwiner in the graphical method consist of four steps. We first consider the case that J > I +1

and K > J + 1 (the other cases will be handled later) and focus on the action of q̂
<J K ;I J>
I J K on

(
i J ; �a
v

)
m1···m I ···m J ···mK ···mn

M
.

The four steps of our calculation are as follows (see Sect. 4 in [47] for details):

(4.13)

In the first step, we have been dragging the two endpoints of curves with spin 1 attached to lines with spins jI and jK ,

respectively, down to join with two horizontal lines denoted by spins aI and aK−1 by the following recoupling identities (see

Appendix B.2 for a proof):

(4.14)

(4.15)

In the second step, we have moved the two points labeled by (a′
I , aI , 1) and (aK−1, b′

K−1, 1), step by step, to the right-hand

side of (aJ−2, jJ−1, aJ−1) and the left-hand side of (aJ , jJ+1, aJ+1), respectively, by repeatedly applying of the following

identities (see Appendix B.2 for a proof):

(4.16)

(4.17)
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where l = I + 1, . . . , J − 1 and m = K − 1, . . . , J + 1. In the third step, the identities (4.15) and (4.14) were used again to

drag the two endpoints of two curves with spin 1 attached to the line with spin jJ down to join with two horizontal lines denoted

by spins aJ−1 and aJ , respectively. In the fourth (last) step, the two curves with spin 1 were removed from intertwiners by

the identity (see Appendix B.3 for a proof)

(4.18)

and we have summed over b′
J−1 and a′

J and relabeled the indices b′ by a′. Hence the action of the operator q̂
<J K ;I J>
I J K on the

intertwiner
(
i J ; �a
v

)
m1···mn

M
reads

(4.19)

which is a linear combination of new intertwiners. The expression (4.19) can be simplified in two aspects. One is to get more

symmetric factors in the two multi-products. The other is to simplify the exponents. Notice that the result (4.19) was obtained

in the case of J > I + 1 and K > J + 1. Under this case, the product terms of (2a′ + 1) can be reduced to

(2a′
K−1 + 1)

K−1∏

m=J+1

(2a′
m−1 + 1) = (2a′

J + 1)

K−1∏

m=J+1

(2a′
m + 1). (4.20)

This expression enables us to write the multiple product over m as the formula which is closer to the multiple product over

l in Eq. (4.19). By simplifying the exponents and properly adjusting the ordering of multi-products of
√

2a + 1, we finally

obtain the compact result

q̂
<J K ;I J>
I J K ·

(
i J ; �a
v

)
m1···m I ···m J ···mK ···mn

M

=
∑

(a′
I ,...,a

′
K−1)

(−1)aI−1+ jI +aK + jK (−1)aI −a′
I (−1)

∑J−1
l=I+1 jl (−1)−

∑K−1
m=J+1 jm X ( jI , jJ )

1
2 X ( jJ , jK )

1
2

×
√

(2a′
I + 1)(2aI + 1)

√
(2a′

J + 1)(2aJ + 1) ×
{

aI−1 jI aI

1 a′
I jI

} {
aK jK aK−1

1 a′
K−1 jK

}

×
J−1∏

l=I+1

√
(2a′

l + 1)(2al + 1)(−1)a′
l−1+al−1+1 ×

{
jl a′

l−1 a′
l

1 al al−1

}
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×
K−1∏

m=J+1

√
(2a′

m + 1)(2am + 1)(−1)a′
m−1+am−1+1

{
jm a′

m−1 a′
m

1 am am−1

}
(−1)a′

J−1+a′
J

×
{

aJ jJ aJ−1

1 a′
J−1 jJ

}{
a′

J−1 jJ aJ

1 a′
J jJ

}(
i J ; �̃a
v

)
m1···m I ···m J ···mK ···mn

M

, (4.21)

where the tuple �̃a in the new intertwiner
(

i J ; �̃a
v

)
m1···m I ···m J ···mK ···mn

M

is given by �̃a := {a2, . . . , aI−1, a′
I , . . . , a′

K−1, aK , . . . ,

an−1}. The above result is in the case of J > I + 1 and K > J + 1, which ensures that the limitations of the summations and

multi-product exist, namely, the upper limitations are always not smaller than the low limitations. Intuitively the results for the

other cases can be thought of as special cases of the above result by omitting the corresponding summations and multiplications

which do not exist. A detailed analysis in step by step confirms this intuition (see Sect. 4 in [47] for a discussion).

The second term in the parentheses of Eq. (4.6) can be calculated similarly to the former one. Here we omit the intermediate

steps and directly write down the result as (a complete calculation is also shown in Appendix C in [47])

q̂
<I J ;J K>
I J K ·

(
i J ; �a
v

)
m1···m I ···m J ···mK ···mn

M

=
∑

(a′
I ,...,a

′
K−1)

(−1)aI−1+ jI +aK + jK (−1)aI −a′
I (−1)

∑J−1
l=I+1 jl (−1)−

∑K−1
m=J+1 jm X ( jI , jJ )

1
2 X ( jJ , jK )

1
2

×
√

(2a′
I + 1)(2aI + 1)

√
(2a′

J + 1)(2aJ + 1)

{
aI−1 jI aI

1 a′
I jI

}{
aK jK aK−1

1 a′
K−1 jK

}

×
J−1∏

l=I+1

√
(2a′

l + 1)(2al + 1)(−1)a′
l−1+al−1+1

{
jl a′

l−1 a′
l

1 al al−1

}

×
K−1∏

m=J+1

√
(2a′

m + 1)(2am + 1)(−1)a′
m−1+am−1+1

{
jm a′

m−1 a′
m

1 am am−1

}
(−1)aJ−1+aJ

{
a′

J jJ aJ−1

1 a′
J−1 jJ

}{
aJ−1 jJ aJ

1 a′
J jJ

}

×
(

i J ; �̃a
v

)
m1···m I ···m J ···mK ···mn

M

. (4.22)

The final results for the special cases of J − 1 < I + 1 and K − 1 < J + 1 can be obtained from (4.22) by omitting the

corresponding multi-products
∏J−1

l=I+1 and
∏K−1

m=J+1 and summations
∑J−1

l=I+1 and
∑K−1

m=J+1. Combining the results (4.21)

with (4.22), for the case of I > 2 and K < n, the action of q̂I J K in Eq. (4.6) on the intertwiner can be explicitly written down

as

q̂I J K ·
(

i J ; �a
v

)
m1···m I ···m J ···mK ···mn

M

= −1

4

∑

(a′
I ,...,a

′
K−1)

(−1)aK + jK +aI−1+ jI (−1)aI −a′
I (−1)

∑J−1
l=I+1 jl (−1)−

∑K−1
m=J+1 jm X ( jI , jJ )

1
2 X ( jJ , jK )

1
2

×
√

(2a′
I + 1)(2aI + 1)

√
(2a′

J + 1)(2aJ + 1)

{
aI−1 jI aI

1 a′
I jI

} {
aK jK aK−1

1 a′
K−1 jK

}

×
J−1∏

l=I+1

√
(2a′

l + 1)(2al + 1)(−1)a′
l−1+al−1+1

{
jl a′

l−1 a′
l

1 al al−1

}

×
K−1∏

m=J+1

√
(2a′

m + 1)(2am + 1)(−1)a′
m−1+am−1+1

{
jm a′

m−1 a′
m

1 am am−1

}

×
[
(−1)a′

J−1+a′
J

{
aJ jJ aJ−1

1 a′
J−1 jJ

}{
a′

J−1 jJ aJ

1 a′
J jJ

}
− (−1)aJ−1+aJ

{
a′

J jJ aJ−1

1 a′
J−1 jJ

}{
aJ−1 jJ aJ

1 a′
J jJ

}]

×
(

i J ; �̃a
v

)
m1···m I ···m J ···mK ···mn

M

. (4.23)
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Again, we expect that the result (4.23) is general and also suitable for the remaining special cases of 0 < I � 2 and K = n

when aI−1 and aK do not exist. While aI−1 and aK do not exist in the intertwiner, we can “create” them via the formula (see

Appendix B.3 for a proof)

(4.24)

where a0 ≡ 0, a1 ≡ j1, and J is relabeled by an . Then the intertwiner in (3.14) can be extended as

(4.25)

We are immediately awake to the fact that (4.23) is suitable for these special cases just by taking a0 = 0, a1 = a′
1 = j1, and

an = J .

Note that the operator q̂I J K at v only changes the intermediate angular momenta aI , . . . , aK−1 between I and K of the

intertwiner iv , but leaves the angular momenta j1, . . . , jn, J and the magnetic quantum numbers m1, . . . , mn, M invariant. The

matrix elements of q̂I J K with respect to two given normalized spin-network states T norm

γ, �j,�i (A) := ∏
e∈E(γ )

√
2 je + 1T

γ, �j,�i (A)

read

(
T norm

γ ′, �j ′,�i ′ , q̂I J K · T norm

γ, �j,�i

)
Hkin

=
∫

SU (2)|E(γ̃ )|

∏

e∈E(γ̃ )

dμH (he)T
norm

γ ′, �j ′,�i ′(A) q̂I J K · T norm

γ, �j,�i (A)

= δγ,γ ′

∫

SU (2)|E(γ )|

∏

e∈E(γ )

dμH (he)T
norm

γ, �j ′,�i ′(A) q̂I J K · T norm

γ, �j,�i (A)

= δγ,γ ′
∏

e∈E(γ )

δ je, j ′e

∏

v∈V (γ )

∑

m1,...,mn

(
i

J ′; �a′
v

)
m1···mn

M ′
q̂I J K ·

(
i J ; �a
v

)
m1···mn

M

= δγ,γ ′
∏

e∈E(γ )

δ je, j ′e

∏

v∈V (γ )

〈�a′; J ′, M ′|q̂I J K |�a; J, M〉Hv
j1,..., jn

=: δγ,γ ′
∏

e∈E(γ )

δ je, j ′e

∏

v∈V (γ )

〈�a′|q̂I J K |�a〉δJ,J ′δM,M ′ . (4.26)

In the second step of Eq. (4.26), we notice that q̂I J K at v only changes the intertwiner iv , and the integration with respect

to the Haar measure gives a zero result if γ differs from γ ′. In the third step, the integration for the holonomies along the

same edges but with different spins yields delta functions and the contractions of the intertwiner with its conjugate. In the

fourth step, we have used the definition (A.23) of the inner product of the intertwiner space Hv
j1,..., jn

associated to v. Thus the

general expression (4.23) allows us to uniformly write the matrix elements of q̂I J K in the gauge-variant and gauge-invariant

intertwiner, corresponding to resulting angular momentum J �= 0 and J = 0, respectively, as

〈�a′|q̂I J K |�a〉 ≡
∑

m1,...,mn

(
i

J ; �a′
v

)
m1···mn

M

q̂I J K ·
(

i J ; �a
v

)
m1···mn

M

= −1

4

∑

(a′′
I ,...,a′′

K−1)

(−1)aK + jK +aI−1+ jI (−1)aI −a′′
I

× (−1)
∑J−1

l=I+1 jl (−1)−
∑K−1

m=J+1 jm X ( jI , jJ )
1
2 X ( jJ , jK )

1
2

√
(2a′′

I + 1)(2aI + 1)

√
(2a′′

J + 1)(2aJ + 1)

×
{

aI−1 jI aI

1 a′′
I jI

} {
aK jK aK−1

1 a′′
K−1 jK

} J−1∏

l=I+1

√
(2a′′

l + 1)(2al + 1)(−1)a′′
l−1+al−1+1

{
jl a′′

l−1 a′′
l

1 al al−1

}

×
K−1∏

m=J+1

√
(2a′′

m + 1)(2am + 1)(−1)a′′
m−1+am−1+1

{
jm a′′

m−1 a′′
m

1 am am−1

}

×
[
(−1)a′′

J−1+a′′
J

{
aJ jJ aJ−1

1 a′′
J−1 jJ

}{
a′′

J−1 jJ aJ

1 a′′
J jJ

}
− (−1)aJ−1+aJ

{
a′′

J jJ aJ−1

1 a′′
J−1 jJ

}{
aJ−1 jJ aJ

1 a′′
J jJ

}]
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×
∑

m1,...,mn

(
i

J ; �a′
v

)
m1···mn

M
(

i J ; �̃a′′

v

)M

m1···m I ···m J ···mK ···mn

= −1

4
(−1)aK + jK +aI−1+ jI (−1)aI −a′

I (−1)
∑J−1

l=I+1 jl

× (−1)−
∑K−1

m=J+1 jm X ( jI , jJ )
1
2 X ( jJ , jK )

1
2

√
(2a′

I + 1)(2aI + 1)

√
(2a′

J + 1)(2aJ + 1)

×
{

aI−1 jI aI

1 a′
I jI

} {
aK jK aK−1

1 a′
K−1 jK

} J−1∏

l=I+1

√
(2a′

l + 1)(2al + 1)(−1)a′
l−1+al−1+1

{
jl a′

l−1 a′
l

1 al al−1

}

×
K−1∏

m=J+1

√
(2a′

m + 1)(2am + 1)(−1)a′
m−1+am−1+1

{
jm a′

m−1 a′
m

1 am am−1

}

×
[
(−1)a′

J−1+a′
J

{
aJ jJ aJ−1

1 a′
J−1 jJ

}{
a′

J−1 jJ aJ

1 a′
J jJ

}
− (−1)aJ−1+aJ

{
a′

J jJ aJ−1

1 a′
J−1 jJ

}{
aJ−1 jJ aJ

1 a′
J jJ

}]

×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I−1∏
s=2

δa′
s ,as

n−1∏
t=K

δa′
t ,at

, for I > 2 and K < n

I−1∏
s=2

δa′
s ,as

, for I > 2 and K = n

n−1∏
t=K

δa′
t ,at

, for I � 2 and K < n

1, for I � 2 and K = n

, (4.27)

where the tuple �̃a′′
in
(

i J ; �̃a′′
v

)
m1···m I ···m J ···mK ···mn

M

is given by �̃a′′ := {a2, . . . , aI−1, a′′
I , . . . , a′′

K−1, aK , . . . , an−1}, and in

the third step we have used the fact that intertwiners are orthonormal. Note that the multi-products
∏J−1

l=I+1 and
∏K−1

m=J+1

and summations
∑J−1

l=I+1 and
∑K−1

m=J+1 should be omitted for the cases of J < I + 2 and K < J + 2, and we need to set

a0 = 0, a1 = a′
1 = j1, and an = J when 0 < I � 2 and K = n, respectively. Under exchanging a ↔ a′, the expression in

the square bracket of (4.27) is antisymmetric, while the other terms are left invariant because of the symmetric properties of

6 j-symbol, the symmetry of the delta function and the fact that (−1)aI −a′
I = (−1)a′

I −aI . Hence the matrix elements of q̂I J K

are antisymmetric, i.e.,

〈�a′|q̂I J K |�a〉 = −〈�a|q̂I J K |�a′〉. (4.28)

The matrix element formula (4.27) derived in graphical method is the same as the formula obtained from algebraic manipulation

for the case of I > 1 and J > I + 1 in [19], although different ways were adopted to deal with the recoupling problem.

Moreover, as shown above, the formula (4.27) is also valid for other cases and hence can be regarded as a general expression.

Finally, we consider some special cases which usually appear. With the following values of the 6 j-symbols [41]:

{
0 b c

d e f

}
= (−1)b+e+d δb,cδe, f√

(2b + 1)(2e + 1)
, (4.29)

{
a b c

1 c b

}
= (−1)s+1 2 [b(b + 1) + c(c + 1) − a(a + 1)]

X (b, c)1/2
, (4.30)

{
a b c − 1

1 c b

}
= (−1)s

[
2(s + 1)(s − 2a)(s − 2b)(s − 2c + 1)

2b(2b + 1)(2b + 2)(2c − 1)2c(2c + 1)

]1/2

, (4.31)

where s ≡ a + b + c, the general matrix element formula (4.27) can be simplified in the following special cases.

(I) I = 1, J = 2, K = 3

In this case, the general matrix element formula (4.27) reduces to

〈�a′|q̂123|�a〉 = −1

2
(−1) j1+ j2+ j3+a2+a′

2+a3 X ( j2, j3)
1
2

√
(2a′

2 + 1)(2a2 + 1)

{
j1 j2 a2

1 a′
2 j2

}{
a3 j3 a2

1 a′
2 j3

}
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× [a′
2(a

′
2 + 1) − a2(a2 + 1)] ×

⎧
⎨
⎩

n−1∏
t=3

δa′
t ,at

, for n > 3

1, for n = 3

. (4.32)

Moreover, we can further simplify the result (4.32), since the triangular conditions on the 6 j-symbols will constrain the

values of a′ in (4.32) as a′
2 ∈ {a2 − 1, a2, a2 + 1}. Denoting |a2〉 ≡ |a2, a3, . . .〉 and |a2 − 1〉 ≡ |a2 − 1, a3, . . .〉, we get

〈a2 − 1|q̂123|a2〉 = − 1

2
(−1) j1+ j2+ j3+a2+a2−1+a3 X ( j2, j3)

1
2

×
√

[2(a2 − 1) + 1](2a2 + 1)

{
j1 j2 a2

1 a2 − 1 j2

}{
a3 j3 a2

1 a2 − 1 j3

}

× [(a2 − 1)(a2 − 1 + 1) − a2(a2 + 1)]

= − 1√
(2a2 − 1)(2a2 + 1)

[( j1 + j2 + a2 + 1)(− j1 + j2 + a2)( j1 − j2 + a2)( j1 + j2 − a2 + 1)

× (a3 + j3 + a2 + 1)(−a3 + j3 + a2)(a3 − j3 + a2)(a3 + j3 − a2 + 1)]1/2 , (4.33)

where we have used the fact that (−1)2 j1+2 j2+2a2(−1)2 j3+2a3+2a2 = 1 due to the triangle condition for ( j1, j2, a2) and

(a2, j3, a3).

(II) I = 1, J = 2, K = 4

In this case, the general matrix element formula (4.27) reduces to

〈�a′|q̂124|�a〉 = 1

2
(−1) j1+ j2− j3+ j4+a4 X ( j2, j4)

1
2

√
(2a′

2 + 1)(2a2 + 1)

×
√

(2a′
3 + 1)(2a3 + 1)

{
j1 j2 a2

1 a′
2 j2

}{
j3 a′

2 a′
3

1 a3 a2

}{
a4 j4 a3

1 a′
3 j4

}

× [a′
2(a

′
2 + 1) − a2(a2 + 1)] ×

⎧
⎨
⎩

n−1∏
t=4

δa′
t ,at

, for n > 4

1, for n = 4

. (4.34)

(III) I = 1, J = 3, K = 4

In this case, the general matrix element formula (4.27) reduces to

〈�a′|q̂134|�a〉 = − 1

4
(−1) j1+ j2+ j4+a4 X ( j1, j3)

1
2 X ( j3, j4)

1
2

√
(2a′

2 + 1)(2a2 + 1)

√
(2a′

3 + 1)(2a3 + 1)

×
{

j2 j1 a′
2

1 a2 j1

}{
a4 j4 a3

1 a′
3 j4

}[
(−1)a′

2+a′
3

{
a3 j3 a2

1 a′
2 j3

}{
a′

2 j3 a3

1 a′
3 j3

}
− (−1)a2+a3

{
a′

3 j3 a2

1 a′
2 j3

}{
a2 j3 a3

1 a′
3 j3

}]

×

⎧
⎨
⎩

n−1∏
t=4

δa′
t ,at

, for n > 4

1, for n = 4

. (4.35)

(IV) I = 2, J = 3, K = 4

In this case, we have aI−1 = a1 = j1. Then the general matrix element formula (4.27) reduces to

〈�a′|q̂234|�a〉 = − 1

4
(−1) j1+ j2+ j4+a4(−1)a2−a′

2 X ( j2, j3)
1
2 X ( j3, j4)

1
2

×
√

(2a′
2 + 1)(2a2 + 1)

√
(2a′

3 + 1)(2a3 + 1)

{
j1 j2 a2

1 a′
2 j2

} {
a4 j4 a3

1 a′
3 j4

}

×
[
(−1)a′

2+a′
3

{
a3 j3 a2

1 a′
2 j3

}{
a′

2 j3 a3

1 a′
3 j3

}
− (−1)a2+a3

{
a′

3 j3 a2

1 a′
2 j3

}{
a2 j3 a3

1 a′
3 j3

}]
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×

⎧
⎨
⎩

n−1∏
t=4

δa′
t ,at

, for n > 4

1, for n = 4

= (−1)a2−a′
2

X ( j2, j3)
1
2

X ( j1, j3)
1
2

{
j1 j2 a2

1 a′
2 j2

}

{
j2 j1 a′

2

1 a2 j1

} 〈�a′|q̂134|�a〉. (4.36)

5 The Hamiltonian constraint operator

In Hamiltonian formulation of GR, the dynamical information of GR is encoded in the Hamiltonian constraint. In canonical

LQG, while the kinematical structure has been successfully established, the implementation of the Hamiltonian constraint in

the quantum theory is still in exploration. Hence the quantum dynamics of LQG is still an open problem up to now. After

the pioneering work of Rovelli and Smolin [48], Thiemann first constructed a well-defined Hamiltonian constraint operator

in Hkin [4,16]. This operator is anomaly-free in some sense [4,16]. The technique to quantize the Hamiltonian constraint in

LQG has also been applied to the coupling of gravity with matter [17], high-dimensional GR [49], the scalar–tensor theories

of gravity [50,51], and the symmetry-reduced models of LQG [25,52–55]. Moreover, to understand the relation between the

canonical and covariant quantum dynamics, one also needs to calculate the matrix elements of the Hamiltonian constraint on

given quantum states. In this section, we first recall the construction of Thiemann’s Hamiltonian constraint operator, and then

derive the action of the Euclidean Hamiltonian constraint operator on a spin-network function over trivalent vertices.

5.1 Quantization of the Hamiltonian constraint

The classical Hamiltonian constraint of pure gravity in the connection formulation of GR is given by

Hgr(N ) = 1

2κ

∫

�

d3x N
Ẽa

i Ẽb
j√

det(q)

[
ǫi jk Fk

ab − 2(1 + β2)K i
[a K

j
b]
]

=: H E (N ) − 2(1 + β2)T (N ), (5.1)

where Fk
ab is the curvature of SU (2) connection Ai

c, and K i
(aeb)i is the extrinsic curvature of a spatial hypersurface �

in a spacetime. The function H E (N ) is called the Euclidean Hamiltonian constraint. In the following, we focus on the

regularization of H E (N ). Let us triangulate � into tetrahedra � so that the above integral becomes a sum of integrals over �,

i.e.,
∫
�

= ∑
�

∫
�

. We denote the triangulation of � by T (ǫ). The small parameter ǫ indicates the “length” of the edges of �.

For each �, we single out one of its vertices and call it the base-point v(�) of � and denote its three edges outgoing from v(�)

by sI (�), I = 1, 2, 3. Taking the limit ǫ → 0 corresponds to shrinking � to v(�). Let αI J (�) := sI (�) ◦ aI J ◦ s−1
J (�) be

the loop based at v(�), where aI J is the edge of � from the endpoint of sI (�) to the endpoint of sJ (�). Then the Euclidean

Hamiltonian constraint can be written in the form [4,16]

H E (N ) = 1

2κ

∫

�

d3x Nǫi jk

Ẽa
i Ẽb

j√
det(q)

Fk
ab = − 2

κ2β

∑

�∈T (ǫ)

∫

�

d3x N̄ ǫ̃abctr(Fab{Ac, V })

= lim
ǫ→0

2

3κ2β

∑

�∈T (ǫ)

N̄ (v(�))ǫ I J K tr(hαI J (�)hsK (�){h−1
sK (�)

, V }) =: lim
ǫ→0

H E
T (ǫ)(N ), (5.2)

where N̄ := sgn(det(el
d))N , Ac := Ak

cτk , V denotes the volume function of �, and in the second step we have used the

identities

ǫi jk

Ẽa
i Ẽb

j√
det(q)

= sgn(det(el
d))ǫ̃abcek

c = sgn(det(el
d))ǫ̃abc 2

κβ
{Am

c , V }δkm, tr(τkτm) = −1

2
δkm . (5.3)

To simplify the notations, we will drop the bar over N . Replacing V by V̂ , holonomies by holonomy operators (since the

holonomy operator acts as a multiplication operator, we also omit the hat for simplification of notation), and the Poisson
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bracket by 1/(i h̄) times the commutator, the regulated Euclidean Hamiltonian constraint operator reads

Ĥ E
T (ǫ)(N ) = 2

3i h̄κ2β

∑

�∈T (ǫ)

N (v(�))ǫ I J K tr(hαI J (�)hsK (�)[h−1
sK (�)

, V̂ ])

= − 2

3i h̄κ2β

∑

�∈T (ǫ)

N (v(�))ǫ I J K tr(hαI J (�)hsK (�)V̂ h−1
sK (�)

)

=: − 2

3i h̄κ2β

∑

�∈T (ǫ)

N (v(�))Ĥ E
� . (5.4)

It is clear that the operator (5.4) depends on the triangulation T (ǫ). It turns out that the non-trivial action of Ĥ E
� on a cylindrical

function fγ corresponds to the case v(�)∩γ �= ∅. Thus one can triangulate � adapted to γ [16]. We denote the triangulation

adapted to γ by T (γ ). Then the action of the regularized Euclidean Hamiltonian constraint operator (5.4) on fγ reduces to

[16]

Ĥ E
γ (N ) · fγ := Ĥ E

T (γ )(N ) · fγ = − 2

3i h̄κ2β

∑

v∈V (γ )

N (v)
8

E(v)

∑

v(�)=v

Ĥ E
� · fγ =:

∑

v∈V (γ )

N ′
v Ĥ E

v · fγ , (5.5)

where E(v) is the number of non-planar triples of edges of γ or γ ′ at v, N ′
v := − 16

3i h̄κ2β

N (v)
E(v)

, and

Ĥ E
v :=

∑

v(�)=v

ǫ I J K tr(hαI J (�)hsK (�)V̂ h−1
sK (�)

). (5.6)

The limit ǫ → 0 can be taken in a natural operator topology [4,16]. The label T for the triangulation T (γ ) can be dropped

since the final limit operator is independent of ǫ.

5.2 The action of Ĥ E
γ (N ) on a trivalent non-planar vertex

The action of the Hamiltonian constraint (5.5) is local in the sense that it is a sum over independent vertices. Therefore, we

can concentrate on its action on a single vertex. For a spin-network state T
γ, �j,�i (A) on a graph γ , we consider a trivalent

non-planar vertex v ∈ V (γ ) at which three edges e1, e2, e3 incident. The terms in T
γ, �j,�i (A) directly associated to v can be

represented by

T v

γ, �j,�i (A) := (iv)m1m2m3
[π j1(he1)]m1

n1
[π j2(he2)]m2

n2
[π j3(he3)]m3

n3
, (5.7)

where (iv)m1m2m3
≡
(

i
J=0; �a≡{a2= j3}
j1, j2, j3

)
m1m2m3

M=0
denotes the intertwiner associated to v. For the trivalent non-planar vertex

v under consideration, the summation in the expression of Ĥ E
v in (5.6) is over only one tetrahedron � adapted to γ at v. We

will omit the notation �. Then the action of Ĥ E
v on T v

γ, �j,�i (A) can be explicitly written as

Ĥ E
v · T v

γ, �j,�i (A) = ǫ I J K tr(hαI J
hsK

V̂ h−1
sK

) · T v

γ, �j,�i (A) = ǫ I J K [hαI J
]A

B[hsK
]B

C V̂ [h−1
sK

]C
A

· T v

γ, �j,�i (A)

= [hα23 − hα32 ]A
B[hs1 ]B

C V̂ [h−1
s1

]C
A

· T v

γ, �j,�i (A) + [hα31 − hα13 ]A
B[hs2 ]B

C V̂ [h−1
s2

]C
A

· T v

γ, �j,�i (A)

+ [hα12 − hα21 ]A
B[hs3]B

C V̂ [h−1
s3

]C
A

· T v

γ, �j,�i (A) ≡
(

Ĥ E
v,s2s3s1

+ Ĥ E
v,s3s1s2

+ Ĥ E
v,s1s2s3

)
· T v

γ, �j,�i (A), (5.8)

where [h]A
B ≡ [π1/2(h)]A

B
. Note that applying Ĥ E

v to T v

γ, �j,�i (A) involves the actions of the holonomy and the volume

operators.

The intertwiner associated to v in (5.7) is represented in graphical formula as

(5.9)
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where d j3 ≡ 2 j3 + 1, and in the last two steps we have used Eqs. (A.47) and (A.42). The part of γ associated at v and the

spin-network state T v

γ, �j,�i (A) in Eq. (5.7) can be represented, respectively, by

(5.10)

where we have omitted the remaining notations n1, n2, n3 in the algebraic form (5.7). By introducing three pseudo-vertices

ṽI , I = 1, 2, 3, we subdivide eI into two parts sI and lI such that eI = sI ◦ lI and sI = sI (�) matching the triangulation

T (γ ). Then T v

γ, �j,�i (A) in Eq. (5.7) becomes

T v

γ, �j,�i (A) = (iv)m1m2m3
[π j1(hs1)]m1

l1
δ

l1
k1

[π j1(hl1)]k1
n1

[π j2(hs2)]m2
l2
δ

l2
k2

[π j2(hl2)]k2
n2

[π j3(hs3)]m3
l3
δ

l3
k3

[π j3(hl3)]k3
n3

= (iv)m1m2m3
[π j1(hs1)]m1

l1
[π j2(hs2)]m2

l2
[π j3(hs3)]m3

l3
(iṽ1

)k1

l1

× (iṽ2
)k2

l2(iṽ3
)k3

l3[π j1(hl1)]k1
n1

[π j2(hl2)]k2
n2

[π j3(hl3)]k3
n3

, (5.11)

where (iṽI
)kI

lI = δ
lI

kI
are the intertwiners associated to ṽI . Hence the original graph and the corresponding spin-network state

in (5.10) become

(5.12)

We can also single out the part of T v

γ, �j,�i (A) which only involves the holonomies hsI
and denote it by T

v,s

γ, �j,�i (A) (the notation

s denotes the segments sI ), i.e.,

(5.13)
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Now let us to calculate the action of the first term in (5.8) on T
v,s

γ, �j ,�i (A)via the graphical method. The action of [hs1 ]B
C V̂ [h−1

s1
]C

A

on T
v,s

γ, �j,�i (A) can be represented by

(5.14)

where j ′1 = j1 ± 1
2

, and we have adjusted the coefficients such that the intertwiner i ′v at v is normalized as

(5.15)

Recall that the volume operator (4.5) vanishes at coplanar vertices. Hence it has non-trivial action only at v, not ṽI . Its action

in (5.14) reads

(5.16)

where the operator q̂ j ′1 j2 j3
corresponds to the edges s1, s2, s3 with spins j ′1, j2, j3, respectively. Notice that q̂I J K changes only

the intermediate momenta aI , . . . , aK−1 between jI and jK of the intertwiner. In our case, the operator q̂ j ′1 j2 j3
and hence V̂

change a2 = j1, a3 = j3 into

a′
2 = j ′1 ± 1

2
=
{

j1 − 1, j1; for j ′1 = j1 − 1
2

j1, j + 1; for j ′1 = j1 + 1
2

, a′
3 = j3. (5.17)

For given values of the four spins 1
2
, j ′1, j2, j3, there are two allowed combinations of intermediate momenta (5.17). Hence the

corresponding intertwiner space associated to v is of dimension 2. Furthermore, the volume operator is automatically diagonal

on the 2-dimensional intertwiner space. This fact was pointed out in [5,21], which will also be presented in Appendix C.

Hence we have
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(5.18)

where

V ( j ′1, j2, j3) ≡ V (1/2, j ′1, j2, j3; a2 = j ′1 + 1/2, a3 = j3) ≡
ℓ3

p β3/2

4
√

2

[(
j ′1 + j2 + j3 + 3

2

)(
j ′1 + j2 − j3 + 1

2

)

×
(

j ′1 − j2 + j3 + 1

2

)(
− j ′1 + j2 + j3 + 1

2

)] 1
4

. (5.19)

In the fourth step we have changed the orientation of two arrows with spin j ′1 by the rule (A.43), and then used the rule (A.44)

to remove three arrows with the same orientation joint with a 3 j-symbol, and we also used the rule (A.45) to remove a loop.

Thus the action of Ĥ E
v,s2s3s1

= [hα23 − hα32 ]A
B[hs1]B

C V̂ [h−1
s1

]C
A

on T
v,s

γ, �j,�i (A) is given by
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(5.20)
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where in the second step we have used (A.57), and in the last step we have used the two identities (see Appendix B.4 for a

proof)

(5.21)

(5.22)

Here Eq. (A.43) was used to flip the orientation of the arrow on the line labeled by 1/2, and the identity (−1)2 j3+1 = (−1)2 j ′3

was used. Notice that those three intertwiners associated to v, ṽ2 and ṽ3 in the last line of Eq. (5.20) take the standard formulas

(A.38) and (A.39), i.e.,

(5.23)

(5.24)

(5.25)

Equation (5.20) enables us to directly write down the results for (I, J, K ) ∈ {(2, 3, 1), (3, 1, 2), (1, 2, 3)} as

(5.26)

where

H( j ′I , j ′J , jK ) =
∑

j ′K

V ( j ′K , jI , jJ )d j ′K
d j ′I

d j ′J

[
(−1) jK + j ′K + 1

2 (−1) jJ + j ′J + 1
2

{
jK

1
2

j ′K
j ′I jJ jI

}{
jK

1
2

j ′K
jJ j ′I j ′J

}

+(−1) jK − j ′K + 1
2 (−1) jI + j ′I + 1

2

{
jK

1
2

j ′K
jI j ′J j ′I

}{
jK

1
2

j ′K
j ′J jI jJ

}]
. (5.27)
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Taking account of the identity (−1)2 j3+1 = (−1)2 j ′3 , the action of Ĥ E
v on T

v,s

γ, �j,�i (A) can be explicitly written down,

(5.28)

6 The inverse volume operator

In this section, we will first review the construction of the inverse volume operator (see [27] for details). Then the action of

the inverse volume operator on a gauge-invariant spin-network state T v

γ, �j,�i (A) is calculated at a trivalent non-planar vertex v

in the graphical method. Comparing to the algebraic derivation in [27], our graphical calculation is again rather concise.

6.1 The construction of the inverse volume operator

The Hamiltonian of a massless scalar field coupling to gravity is given by

H(N ) = Hgr(N ) + Hφ (6.1)

where Hgr(N ) is the Hamiltonian constraint (5.1) of pure gravity, and Hφ(N ) is the Hamiltonian of a massless scalar field φ,

which reads

Hφ(N ) = 1

2

∫

�

d3x N (x)

[
π2

√
det(q)

+
√

det(q) qab(∂aφ)∂bφ

]
(x) ≡ 1

2

[
Hkin,φ(N ) + Hder,φ(N )

]
, (6.2)

where π is the momentum conjugate to φ. The Hamiltonian H(N ) can be quantized as a well-defined operator on the Hilbert

space Hgr ⊗ Hφ with Hgr ≡ Hkin and Hφ being the kinematical Hilbert space for the scalar field theory [17,56]. Notice that

in the isotropic cosmological models the inverse of volume function (or scale factor) appears also in the term Hkin,φ(N ). In

order to compare the results between LQC and LQG, we will focus on this term. To do the quantization, the term Hkin,φ(N )

123



Eur. Phys. J. C (2017) 77 :235 Page 29 of 52 235

can be regularized as [17]

Hkin,φ(N ) =
∫

�

d3x N (x)
π2(x)√

det(q)(x)
= lim

ǫ→0

∫

�

d3x N (x) π(x)

∫

�

d3 y π(y)

∫

�

d3u
det(ei

a)
[
ǫ3

√
det(q)

]3/2
(u)

×
∫

�

d3w
det(ei

a)
[
ǫ3

√
det(q)

]3/2
(w) χǫ(x, y)χǫ(x, u)χǫ(x, w)

= 26 · 26

3! · 3! · κ6 · β6
lim
ǫ→0

∫

�

d3x N (x) π(x)

∫

�

d3 y π(y)

×
∫

�

d3u ǫ̃abcǫi jk{Ai
a(u), V (u, ǫ)

1
2 }{A

j
b(u), V (u, ǫ)

1
2 }{Ak

c(u), V (u, ǫ)
1
2 }

×
∫

�

d3w ǫ̃de f ǫlmn{Al
d(w), V (w, ǫ)

1
2 }{Am

e (w), V (w, ǫ)
1
2 }{An

f (w), V (w, ǫ)
1
2 } × χǫ(x, y)χǫ(x, u)χǫ(x, w),

(6.3)

where we have inserted 1 = [det(ei
a)]2/

[√
det(q)

]2
in the second step, used ei

a(x) = 2
κβ

{Ai
a(x), V (x, ǫ)}, and absorbed

V (x, ǫ) := ǫ3
√

det(q)(x) in the denominator into the Poisson bracket in the last step. Again we introduce a triangulation

T (γ ) of � adapted to a graph γ . For a given tetrahedron � and its edge sI (�) =: sI , by the identity

∫

sI (�)

d3x {Ai
a(x), V (x, ǫ)

1
2 } = 2tr

(
τi h I {h−1

I , V (v, ǫ)
1
2 }
)

+ O(ǫ2), h I ≡ hsI (�), (6.4)

Eq. (6.3) can be reduced to

Hkin,φ(N ) = 222

32 · κ6 · β6
lim
ǫ→0

∫

�

d3x N (x) π(x)

∫

�

d3 y π(y)
∑

v,v′∈V (γ )

1

E(v)E(v′)

∑

sI ∩sJ ∩sK =v
sL∩sM ∩sN =v′

ǫ I J K ǫL M N ǫi jkǫlmn

× tr
(
τi h I {h−1

I , V (v, ǫ)
1
2 }
)

tr
(
τlhL{h−1

L , V (v′, ǫ)
1
2 }
)

tr
(
τ j h J {h−1

J , V (v, ǫ)
1
2 }
)

tr
(
τmhM {h−1

M , V (v′, ǫ)
1
2 }
)

× tr
(
τkhK {h−1

K , V (v, ǫ)
1
2 }
)

tr
(
τnhN {h−1

N , V (v′, ǫ)
1
2 }
)

χǫ(x, y)χǫ(x, v)χǫ(x, v′). (6.5)

Replacing π by −i h̄κδ/δφ, Poisson brackets by commutators times 1/(i h̄), and substituting V → V̂ , Hkin,φ(N ) can be

quantized as

Ĥkin,φ(N )γ = (−i)2222

i632h̄4κ4β6
lim
ǫ→0

∑

v,v′,v′′,v′′′∈V (γ )

N (v′′)X (v′′)X (v′′′) χǫ(v
′′, v′′′)χǫ(v

′′, v)χǫ(v
′′, v′)

× 1

E(v)E(v′)

∑

sI ∩sJ ∩sK =v
sL∩sM ∩sN =v′

ǫ I J K ǫL M N ǫi jkǫlmn
( 1

2 )êi
I (v)(

1
2 )êl

L(v′)(
1
2 )ê

j

J (v)(
1
2 )êm

M (v′)(
1
2 )êk

K (v)(
1
2 )ên

N (v′), (6.6)

where X (v) := 1
2

[X R(v) + X L(v)] is the sum of left- and right-invariant vector fields acting on the point holomomies U (v)

defined in [56], and

( 1
2 )êi

I (v) := tr
(
τi h I [h−1

I , V̂
1
2 ]
)

= −tr
(
τi h I V̂

1
2 h−1

I

)
(6.7)

is ǫ-independent for sufficiently small ǫ. For sufficiently small ǫ, the three characteristic functions in (6.6) vanish unless

v = v′ = v′′ = v′′′. Taking the limit ǫ → 0, we obtain

Ĥkin,φ(N )γ = 223

3h̄4κ4β6

∑

v∈V (γ )

N (v)

E(v)2
X (v)X (v)

∑

sI ∩sJ ∩sK =v
sL∩sM ∩sN =v

ǫ I J K ǫL M N δil
( 1

2 )êi
I (v)(

1
2 )êl

L(v)δ jm
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× ( 1
2 )ê

j
J (v)(

1
2 )êm

M (v)δkn
( 1

2 )êk
K (v)(

1
2 )ên

N (v) =: 223

3h̄4κ4β6

∑

v∈V (γ )

N (v)

E(v)2
X (v)X (v)V̂ −1

alt,v, (6.8)

where we have used ǫi jkǫlmn = 3!δi
[lδ

j
mδk

n]. The operator V̂ −1
alt,v is the quantum version of 1

ǫ3
√

det(q)(x)
= 1

V (x,ǫ)
up to a

constant, and thus it is called the inverse volume operator. By introducing the manifestly gauge invariant operators [27]

q̂I J (v) := δi j
( 1

2 )êi
I (v)(

1
2 )ê

j
J (v), (6.9)

the inverse volume operator V̂ −1
alt,v can be represented in terms of q̂I J (v) as

V̂ −1
alt,v · fγ =

∑

sI ∩sJ ∩sK =v
sL∩sM ∩sN =v

ǫ I J K ǫL M N q̂I L(v)q̂J M (v)q̂K N (v) · fγ . (6.10)

Note that the operator q̂I J (v) can be represented in terms of τμ as

q̂I J (v) = δi j tr
(
τi h I V̂

1
2 h−1

I

)
tr
(
τ j h J V̂

1
2 h−1

J

)
= −tr

(
τμ′h I V̂

1
2 h−1

I

)
C

μ′μ
(1)

tr
(
τμh J V̂

1
2 h−1

J

)

= −
[
tr
(
τμh I V̂

1
2 h−1

I

)]†
tr
(
τμh J V̂

1
2 h−1

J

)
=: −

[
( 1

2 )ê
μ
I (v)

]†
( 1

2 )ê
μ
J (v), (6.11)

where we have used the identity (4.8) and C
μ′μ
(1)

= C
μμ′
(1)

≡ (−1)1+μδμ,−μ′ in the second step and the following identities in

the third step:

(h I )A
B = (h−1

I )B
A
, (τi )A

B = −(τi )
B

A, (τμ)A
B = (τμ′)B

A
C

μ′μ
(1)

. (6.12)

Here the overline denotes complex conjugation.

6.2 The action of V̂ −1
alt,v on a trivalent non-planar vertex

We consider the action of V̂ −1
alt,v on T

v,s

γ, �j,�i (A) at a trivalent non-planar vertex v. Notice that the intertwiner space associated

to v, which will be acted by V̂ −1
alt,v , is of one dimension. Hence the gauge-invariant operators q̂I J (v) and V̂ −1

alt,v take

eigenvalues on the orthonormal spin-network states

T
v,s,norm

γ, �j,�i (A) :=
√

d j1 d j2 d j3 T
v,s

γ, �j,�i (A). (6.13)

Therefore we have

q̂I J (v) · T
v,s,norm

γ, �j,�i (A) = Q I J T
v,s,norm

γ, �j,�i (A), (6.14)

V̂ −1
alt,v · T

v,s,norm

γ, �j,�i (A) = ǫ I J K ǫL M N Q I L Q J M QK N T
v,s,norm

γ, �j,�i (A), (6.15)

where

Q I J =
(

T
v,s,norm

γ, �j,�i , q̂I J (v) · T
v,s,norm

γ, �j,�i

)
Hkin

= −
(

( 1
2 )ê

μ
I (v) · T

v,s,norm

γ, �j,�i , ( 1
2 )ê

μ
J (v) · T

v,s,norm

γ, �j,�i

)
Hkin

. (6.16)

In order to obtain the eigenvalues Q I J , we need to calculate the action of ( 1
2 )ê

μ
I (v) on T

v,s,norm

γ, �j,�i (A) or T
v,s

γ, �j,�i (A). In the

following, we will only display the derivation of the two components Q11 and Q12, and the remaining components of Q I J

can be written down similarly.
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Now let us consider the action of ( 1
2 )ê

μ
1 (v) on T

v,s

γ, �j,�i (A). Notice that the spherical tensors τμ can be represented as Eq.

(3.21). Hence we have

(6.17)

where in the second step we have used the result of Eq. (5.18), and in the fourth step used the identity (see B.5 for a proof)

(6.18)

Taking account of

d j ′1
(−1) j1+ j ′1− 1

2

{
j ′1

1
2

j1

1 j1
1
2

}
= 2√

6

√
j1( j1 + 1)

2 j1 + 1

{
1, j ′1 = j1 − 1

2

−1, j ′1 = j1 + 1
2

,

Eq. (6.17) can be reduced to

(6.19)

where

V
1
2

1A :=
[
V ( j ′1 = j1 − 1/2, j2, j3)

] 1
2 , V

1
2

1B :=
[
V ( j ′1 = j1 + 1/2, j2, j3)

] 1
2 . (6.20)
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The intertwiner in Eq. (6.19) is normalized because of

(6.21)

Equation (6.19) implies that ê
μ
1 (v) changes neither the graph nor the spins of T

v,s

γ, �j ,�i (A) (5.13). But it does change the intertwiner

iv ≡ i
J=0; �a≡{a2= j3}
j1, j2, j3

in Eq. (5.9) into i ′v ≡ i
J=0; �a′≡{a2= j1,a3= j3}
j1,1, j2, j3

in Eq. (6.21) associated to v. Hence we obtain

Q11 = −
(

( 1
2 )ê

μ
1 (v)T

v,s,norm

γ, �j,�i , ( 1
2 )ê

μ
1 (v)T

v,s,norm

γ, �j,�i

)
Hkin

= −
(

i

√
j1( j1 + 1)

2 j1 + 1

(
V

1
2

1A − V
1
2

1B

)
T

v,s,norm

γ, �j,�i ′ , i

√
j1( j1 + 1)

2 j1 + 1

(
V

1
2

1A − V
1
2

1B

)
T

v,s,norm

γ, �j,�i ′

)

Hkin

= − j1( j1 + 1)

(2 j1 + 1)2

(
V

1
2

1A − V
1
2

1B

)2 ∫

SU (2)3

∏

I=1,2,3

dμH (hsI
)T

v,s,norm

γ, �j,�i ′ (A) T
v,s,norm

γ, �j,�i ′ (A)

= − j1( j1 + 1)

(2 j1 + 1)2

(
V

1
2

1A − V
1
2

1B

)2

tr

(
i

J=0; �a′≡{a2= j1,a3= j3}
j1,1, j2, j3

· i
J=0; �a′≡{a2= j1,a3= j3}
j1,1, j2, j3

)

= − j1( j1 + 1)

(2 j1 + 1)2

(
V

1
2

1A − V
1
2

1B

)2

tr
(

i
J=0; �a′≡{a2= j1,a3= j3}
j1,1, j2, j3

· i
J=0; �a′≡{a2= j1,a3= j3}
j1,1, j2, j3

)

= − j1( j1 + 1)

(2 j1 + 1)2

(
V

1
2

1A − V
1
2

1B

)2

, (6.22)

where tr( ) denotes contracting magnetic quantum numbers, we have integrated holonomies to give the contraction of the

intertwiner with its complex conjugate in the fourth step and used the fact that the intertwiner is real in the fifth step, and the

intertwiner is normalized in the last step.

Similarly, the action of ê
μ
2 (v) on T

v,s

γ, �j,�i (A) yields

(6.23)

where

V
1
2

2A :=
[
V ( j ′2 = j2 − 1/2, j3, j1)

] 1
2 , V

1
2

2B :=
[
V ( j ′2 = j2 + 1/2, j3, j1)

] 1
2 , (6.24)
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and in the second step we have used the following identity (see Appendix B.5 for a proof):

(6.25)

The intertwiner in Eq. (6.23) is also normalized because of

(6.26)

Hence ( 1
2 )ê

μ
2 (v) changes iv ≡ i

J=0; �a≡{a2= j3}
j1, j2, j3

in Eq. (5.9) into composition of i ′′v ≡ i
J=0; �a′′≡{a2=a,a3= j3}
j1,1, j2, j3

in Eq. (6.26)

associated to v. Finally, we have

Q12 = −
(

( 1
2 )ê

μ
1 (v) · T

v,s,norm

γ, �j,�i , ( 1
2 )ê

μ
2 (v) · T

v,s,norm

γ, �j,�i

)
Hkin

= −
√

j1( j1 + 1)

2 j1 + 1

(
V

1
2

1A − V
1
2

1B

)

×
√

j2( j2 + 1)

2 j2 + 1

(
V

1
2

2A − V
1
2

2B

)
(−1) j1+ j2+ j3

∑

a

√
(2a + 1)(2 j2 + 1)

×
{

j3 j2 a

1 j1 j2

}
tr
(

i
J=0; �a′≡{a2= j1,a3= j3}
j1,1, j2, j3

· i
J=0; �a′′≡{a2=a,a3= j3}
j1,1, j2, j3

)

= −
√

j1( j1 + 1) j2( j2 + 1)

(2 j1 + 1)(2 j2 + 1)

(
V

1
2

1A − V
1
2

1B

)(
V

1
2

2A − V
1
2

2B

)
(−1) j1+ j2+ j3

∑

a

√
(2a + 1)(2 j2 + 1)

{
j3 j2 a

1 j1 j2

}
δa, j1

= −
√

j1( j1 + 1) j2( j2 + 1)

(2 j1 + 1)(2 j2 + 1)

(
V

1
2

1A − V
1
2

1B

)(
V

1
2

2A − V
1
2

2B

)
(−1) j1+ j2+ j3

√
(2 j1 + 1)(2 j2 + 1)

{
j3 j2 j1
1 j1 j2

}

= −
√

j1( j1 + 1) j2( j2 + 1)

(2 j1 + 1)(2 j2 + 1)

(
V

1
2

1A − V
1
2

1B

)(
V

1
2

2A − V
1
2

2B

)
s(−1) j1+ j2+ j3

√
(2 j1 + 1)(2 j2 + 1)(−1) j1+ j2+ j3+1

× 2[ j1( j1 + 1) + j2( j2 + 1) − j3( j3 + 1)]√
2 j1(2 j1 + 1)(2 j1 + 2)2 j2(2 j2 + 1)(2 j2 + 2)

= j1( j1 + 1) + j2( j2 + 1) − j3( j3 + 1)

2(2 j1 + 1)(2 j2 + 1)

(
V

1
2

1A − V
1
2

1B

)(
V

1
2

2A − V
1
2

2B

)
. (6.27)

Similarly we can write down the remaining components of Q I J and thus the eigenvalue of V̂ −1
alt,v in (6.15).

7 Summary and discussion

In the previous sections, the graphical method developed by Yutsis and Brink and their extensions, which suit the requirement of

representing the holonomies and the intertwiners, are applied to LQG. The algebraic formula is represented by its corresponding

graphical formula in an unique and unambiguous way. Then the matrix elements of the operator q̂I J K , which is the basic

building block of the volume operator, are calculated via the simple rules of transforming graphs. Note that the calculations

that we did by the graphical method can also be performed by conventional algebraic techniques. Also, corresponding to

every graphical reduction, there is an algebraic reduction because of the correspondence between the graphical and algebraic

formulas. However, it is obvious that the graphical method is more concise, intuitive and visual.

Note that in our graphical representation, a gauge-invariant intertwiner associated to a vertex v of a standard graph at which

n edges with spin j1, . . . , jn incident is represented by

(7.1)
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Taking account of Eqs. (A.47) and (A.42), Eq. (7.1) is equal to (−1)2 jn times of the formula

(7.2)

Since the only difference between (7.2) and (7.1) is a factor (−1)2 jn , Eq. (7.2) is also used to represent the gauge-invariant

intertwiner in the literature.

Let us compare our calculation with those existing in the literature. The operator q̂I J K can be represented by the following

three forms [11]:

q̂I J K := −4iǫi jk J i
eI

J
j

eJ
J k

eK
= 4

[
J i

eI
J i

eJ
, J

j
eJ

J
j

eK

]
=
[
(J i

eI
+ J i

eJ
)2, (J

j
eJ

+ J
j

eK
)2
]
. (7.3)

The first and the third forms (equalities) of the expression (7.3) were adopted as the starting points, respectively, in [18]

and in [11,19], and their matrix elements are calculated by graphical and algebraic methods, respectively. In this paper, we

considered the second expression (equality) of q̂I J K and derived its matrix elements by the graphical method introduced in

Sect. 3. In [18], to compute the closed formula, Pietri and Rovelli adopted the Kauffman’s graphical method to deal with

recoupling problems. Note that the idea in [18] to employ the first equality of (7.3) to calculate the volume operator can also

be carried out by the unique and unambiguous rule of graphical calculation. From (3.5), we have

q̂I J K ·
(

i J ; �a
v

)
m1···m I ···m J ···mK ···mn

M

= −4iǫi jk J i
eI

J
j

eJ
J k

eK
·
(

i J ; �a
v

)
m1···m I ···m J ···mK ···mn

M

=
(

i J ; �a
v

)
m1···m′

I ···m′
J ···m′

K ···mn

M

4ǫi jk[π jI
(τi )]m′

I
m I

[π jJ
(τ j )]m′

J
m J

[π jK
(τk)]m′

K
mK

=
(

i J ; �a
v

)
m1···m′

I ···m′
J ···m′

K ···mn

M

(−4i)ǫμνρ[π jI
(τμ)]m′

I
m I

[π jJ
(τν)]m′

J
m J

[π jK
(τρ)]m′

K
mK

,

(7.4)

where, in the last step, we have used the following identity (see Appendix B.6 for a proof):

ǫi jk[π jI
(τi )]m′

I
m I

[π jJ
(τ j )]m′

J
m J

[π jK
(τk)]m′

K
mK

= −iǫμνρ[π jI
(τμ)]m′

I
m I

[π jJ
(τν)]m′

J
m J

[π jK
(τρ)]m′

K
mK

, (7.5)

with

ǫμνρ =
√

6

(
1 1 1

μ ν ρ

)
. (7.6)

Note that here one has ǫ−1 0 +1 = 1 (see also Appendix B.6 for a proof). Notice that both [π j (τμ)]m′
m

and ǫμνρ (given by a

special 3 j-symbol) in Eq. (7.4) have corresponding graphical representations. The action of q̂I J K , corresponding to (7.4), on

an intertwiner is given by

(7.7)

where X ( jI , jJ , jK ) ≡ 2 jI (2 jI + 1)(2 jI + 2)2 jJ (2 jJ + 1)(2 jJ + 2)2 jK (2 jK + 1)(2 jK + 2). The derivation of the action

of q̂I J K on the intertwiner in the graphical method is to remove the three curves with spin 1 in (7.7) by using the previous
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rules of transforming graphs. The identities in Eqs. (4.14), (4.15), (4.16) and (4.17) enable us to reduce the graphical formula

(7.7) as

(7.8)

where the factor F(a, a′, a′′, a′′′) involves the intermediate momenta a, a′, a′′ and a′′′ in the intertwiner. By the graphical

identity

(7.9)

we can remove the three curves with spin 1 and obtain the final result, which coincides with (4.23). The closed formula of the

volume operator was also derived by Brunnemann and Thiemann in [11,19] using the algebraic techniques. The derivation

process in [11,19] is rigorous but rather abstract and awkward. Our graphical method is convenient and visual, and our result

(4.27) coincides with the formula derived by the algebraic calculation for the case of I > 1 and J > I + 1 in [19]. Moreover,

our analysis shows that Eq. (4.27) is also valid for other cases and hence can be regarded as a general expression.

In principle, in the light of the matrix elements of q̂I J K in Eq. (4.27) we can finally write down the action of the volume

operator on the spin-network states. We denote

q̂v ≡
iℓ6

p β3

8 × 4

∑

I<J<K , eI ∩eJ ∩eK =v

ς(eI , eJ , eK ) q̂I J K . (7.10)

With the matrix elements of q̂I J K , we can get the eigenvalues and corresponding eigenstates of q̂v as

q̂v|λq̂v
〉 = λq̂v

|λq̂v
〉. (7.11)

Then we can write down the action of V̂v on the intertwiner |iv〉 associated to v as

V̂v |iv〉 =
√

|q̂v| |iv〉 =
∑

λq̂v

√
|q̂v| |λq̂v

〉〈λq̂v
|iv〉 =

∑

λq̂v

[√
|λq̂v

| 〈λq̂v
|iv〉

]
|λq̂v

〉. (7.12)

However, when the dimension of the intertwiner space associated to v is bigger than nine, one cannot diagonalize q̂v analyti-

cally. This prevents us from explicitly writing down the whole formula for the action of V̂v .

Since the volume operator is defined only by the flux operator (essentially the self-adjoint right-invariant operator). Hence

the derivation of the closed formula for the matrix element of volume operator just involves the action of the self-adjoint

right-invariant operator on spin-network states. The action involves the recoupling problem and can be dealt smoothly by

simple rules of transforming graphs in the Brink original graphical method. Comparing to volume operator, the gravitational

Hamiltonian constraint operator and the inverse volume operator depend also on holonomies in addition to fluxes. In order

to calculate their actions on spin-network states in graphical method, we have to extend Brink’s representation and propose

a graphical representation and calculation for the holonomy. The corresponding graphical representation and calculation

including holonomy is thus proposed in this paper, which enables us to do the graphical calculus uniformly in Brink’s original

graphical framework. The action of the Euclidean Hamiltonian Ĥ E
v on the spin network states T

v,s

γ, �j,�i (A) with trivalent vertex

v was shown in (5.28). The difference between our result (5.26) and (II.14) in [14] is the factor 1/2. Since the factor is overall,

the qualitative conclusion made in [14] is not affected by the missing factor 1/2.

In the general case of matter fields coupled to gravity, the 3-metric qab enters the Hamiltonian of matters. For instance,

the information of gravity is encoded in the inverse of volume function in (6.2). In classical cosmological models, the

123



235 Page 36 of 52 Eur. Phys. J. C (2017) 77 :235

Hamiltonian of matters will diverse at the big bang singularity (with zero volume). However, in LQC the inverse volume

operator corresponding to the inverse of the scale factor is bounded above [25]. To see whether the boundedness of the inverse

scale factor operator in LQC is maintained by the inverse volume operator in LQG, the expectation values of the inverse

volume operator V̂ −1
alt,v with respect to gauge-invariant states at a trivalent vertex, which is a non-trivial eigenstate with

zero-eigenvalue, was calculated in LQG [27,57]. The conclusion drawn in [27,57] is that V̂ −1
alt,v is unbounded. To cross-

check the algebraic calculation in [27], the same action of V̂ −1
alt,v has been calculated by graphical method in this paper.

Based on the gauge invariant operators q̂I J (v), the inverse volume operator V̂ −1
alt,v defined in (6.10) takes eigenvalues on

the orthonormal spin network state T
v,s,norm

γ, �j,�i (A). The eigenvalues of V̂ −1
alt,v , presented in (6.15), consist of the eigenvalues

Q I J of q̂I J (v). The different conclusions between Ref. [27] and ours come from the different eigenvalues Q I J on the same

state T
v,s,norm

γ, �j,�i . More concretely, there are two differences on Q I J : (i) a global sign and (ii) the coefficients of Q I J . It turns

out that there are two mistakes made in [27], which lead to the incorrect value of Q I J . First, a minus sign was missed in

the second step of Eq. (4.5) in [27], namely, the right formula should be
[
êi

I (v)
]† = −êi

I (v) rather than
[
êi

I (v)
]† = êi

I (v),

which is the reason of (i). Second, the values of coefficients C
J jK

J̃ j̃K
(A, M, gN−1) defined in Eq. (3.4) in [27] were incorrect,

namely, the factor (−1)2 jK there should be replaced by 1. Hence the values of Q I J in Eq. (4.17) of [27] should be corrected.

By taking the above two corrections and taking account of the different definitions of τi (differing for each other by the factor

2), the algebraic calculation would give the same results of Q I J as in this paper. There are similar corrections for other values

of Q I J . These corrections lead to a significant change of the conclusion, namely, the eigenvalue ǫ I J K ǫL M N Q I L Q J M QK N

of V̂ −1
alt,v on T

v,s

γ, �j,�i (A) is indeed zero. In other words, on the contrary to the conclusion in [27], our calculation shows

that the inverse volume operator V̂ −1
alt,v is bounded (zero-valued) at a trivalent non-planar vertex of the gauge-invariant

spin-network states. This conclusion coincides with the one made in [58], although different quantum versions of volume

function are adopted.

In principle, the graphical calculation method can be applied to the general cases, where the spin-network states are defined

on arbitrarily valent vertices and the holonomies appearing in the two operators are expressed in an arbitrary representation

of the gauge group. However, for those general cases, the volume operator lacks the explicit matrix elements formula. This

prevents us from doing further calculations. For the same reason, the matrix elements of the Lorentzian part of the full

gravitational Hamiltonian constraint operator have not been explicitly written down even on the trivalent vertices except for

certain special cases [23].
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Appendix A: Elements of graphical representation and calculation

A.1 Representations of SU(2), Clebsch–Gordan decomposition, and the intertwiner

To every non-negative integer or half-integer j (i.e., for j = 0, 1
2
, 1, 3

2
, . . .), there exists an irreducible representation π j of

SU (2), specified by j , on a Hilbert space H j with dimension 2 j + 1. The orthonormal basis of H j may be denoted by {e( j)
m },

or {| jm〉} in Dirac’s notation, where m = − j,− j + 1, . . . , j . Given two irreducible representations π j1 and π j2 of SU (2)

on H j1 and H j2 , the tensor product representation π j1 ⊗ π j2 on H j1 ⊗ H j2 is (2 j1 + 1)(2 j2 + 1)-dimensional reducible

representation of SU (2). The Clebsch–Gordan theorem tells us that the representation π j1 ⊗ π j2 can be decomposed into a

direct sum of irreducible representations πJ on HJ , where J ∈ {| j1 − j2|, . . . , j1 + j2}, formally,

I j1 j2

(
π j1(g) ⊗ π j2(g)

)
(I j1 j2)

−1 =
j1+ j2⊕

J=| j1− j2|
πJ (g), ∀g ∈ SU (2), (A.1)
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where I j1 j2 is called the intertwining operator in the representation theory of groups [39]. Given bases e
( j1)
m1

⊗e
( j2)
m2

∈ H j1 ⊗H j2

(or | j1m1 j2m2〉 ≡ | j1m1〉 ⊗ | j2m2〉 ∈ H j1 ⊗ H j2 ) and e
(J )
M ∈ HJ (or |J M〉 ∈ HJ ), the components of I j1 j2 , as matrix

elements, are given by

(
I j1 j2

)
m1m2

J M = (e
(J )
M , e

( j1)
m1

⊗ e
( j2)
m2

)H j1
⊗H j2

= eM
(J )

(
e
( j1)
m1

⊗ e
( j2)
m2

)
,

or
(
I j1 j2

)
m1m2

J M = 〈J M | j1m1 j2m2〉, (A.2)

where eM
(J )

is the dual basis or the basis of H∗
J .
(
I j1 j2

)
m1m2

J M
are called the complex conjugates of the Clebsch–Gordan

coefficients (CGCs) or the intertwiners. In matrix form, the row and column indices of I j1 j2 are denoted by the latter (upper)

and former (down) indices J M and m1m2, respectively. Our convention enables us to regard
(
I j1 j2

)
m1m2

J M
as components

of the intertwiner tensor whose indices can be lowered and raised by a “metric” which will be introduced by (A.6). For given

j1, j2 and J , we denote
(

I J
j1 j2

)
m1m2

M

≡
(
I j1 j2

)
m1m2

J M
which projects the bases e

( j1)
m1

⊗ e
( j2)
m2

of H j1 ⊗ H j2 onto e
(J )
M of

HJ ⊂ H j1 ⊗ H j2 . The corresponding matrix elements of representations π j1 ⊗ π j2 and πJ in the two bases, respectively, are

related to each other by the so-called Clebsch–Gordan series

∑

m1,m2,n1,n2

(
I J

j1 j2

)
m1m2

M

[π j1(g)]m1
n1

[π j2(g)]m2
n2

(
(I J

j1 j2
)−1

)
N

n1n2 = [πJ (g)]M
N . (A.3)

The representation π j of SU (2) on H j induces a conjugate representation π∗
j of SU (2) on H∗

j via

[
π j (g)∗em

( j)

] (
e
( j)
n

)
:= em

( j)

(
π j (g

−1)e
( j)
n

)
, (A.4)

where {em
( j)} is the orthogonal basis of H∗

j . Furthermore, the irreducible and unitary properties of π j are preserved to its

conjugate representation π∗
j . If the representation π j is unitary, there exists an unitary operator C ( j) : H j → H∗

j , such that

[42]

C ( j) π j (g) = π j (g)∗ C ( j) ⇔ C ( j) π(g) C ( j)−1 = π j (g)∗. (A.5)

The operator C ( j) in fact defines an isomorphism between H j and H∗
j by e

( j)
m = C

( j)

mm′ em′
( j) and em

( j) = Cmm′
( j) e

( j)

m′ , where

Cmn
( j) ≡ (C ( j)−1

)mn . The operator C ( j) and its inverse C ( j)−1
play an important role also in quantum field theories, whose

components in the bases of H j and H∗
j are given by [42]

C
( j)
mn := (−1) j−nδn,−m = (−1) j+mδm,−n, (A.6)

Cmn
( j) ≡ (C ( j)−1

)mn := (−1) j−mδm,−n = (−1) j+nδn,−m, (A.7)

satisfying

C
( j)
mn Cnm′

( j) = Cm′n
( j) C

( j)
nm = δm′

m , (A.8)

C
( j)
nm Cnm′

( j) = Cm′n
( j) C

( j)
mn = (−1)2 jδm′

m . (A.9)

Obviously, C
( j)
mn and Cmn

( j) satisfy

C
( j)

m′m = (−1)2 j C
( j)

mm′ , Cmm′
( j) = (−1)2 j Cm′m

( j) , (A.10)
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which implies that C
( j)
mn and Cmn

( j) are symmetric for integer j , and anti-symmetric for half-odd integer j . The operator C ( j)

and its inverse C ( j)−1
can be used to lower and raise indices of the tensors on H j . Hence C

( j)
mn behaves like a metric tensor.

Equation (A.5) can be written in the form of its components as

C
( j)

mm′ [π j (g)]m′
n′C

n′n
( j) = [π j (g)∗]m

n
. (A.11)

The fact that the representation π j is unitary implies

[π j (g
−1)]n

m
= [π j (g)−1]n

m
= [π j (g)†]n

m
= [π j (g)]m

n
= [π j (g)∗]m

n = C
( j)

mm′ [π j (g)]m′
n′C

n′n
( j) , (A.12)

where the overline denotes complex conjugation, and we have used (A.4) and (A.11) in the last two steps. By the map C ( j)

we can define a natural inner product on H∗
j as (C ( j) f, C ( j)g)H∗

j
:= (g, f )H j

,∀ f, g ∈ H j . Then the base transformation

I J
j1, j2

in H j1 ⊗ H j2 induces the base transformation I ∗
j1, j2

in H∗
j1

⊗ H∗
j2

by

(
I ∗

j1, j2

)
J M

m1m2 =
(
I j1 j2

)
m1m2

J M =
∑

m′
1,m

′
2

C
m1m′

1

( j1)
C

m2m′
2

( j2)

(
I j1 j2

)
m′

1m′
2

J M ′
C

(J )

M ′ M , (A.13)

Now let us consider the decomposition of the tensor product π j1 ⊗ · · · ⊗ π jn of irreducible representations of SU (2)

for n > 2. The composition involves n − 1 decompositions of the tensor products of two representations as (A.1) and the

choice of the decomposition schemes. Denote ai (i = 2, . . . , n − 1) the irreducible representations that appeared in the i th

decomposition for a given scheme. In the following, we consider the standard scheme where we firstly decompose π j1 ⊗ π j2

into
⊕

πa2 , and then decompose πa2 ⊗ π j3 into
⊕

πa3 , and so on. We also denote �a ≡ {a2, . . . an−1}. For given j1 . . . , jn ,

allowable J , and compatible vector �a ≡ {a2, . . . an−1}, the corresponding Clebsch–Gordan series reads

∑

m1,...,mn ,n1,...,nn

(
I

J ; �a
j1··· jn

)
m1···mn

M

[π j1(g)]m1
n1

· · · [π jn (g)]mn
nn

(
(I

J ; �a
j1··· jn

)−1
)

N

n1···nn = [πJ (g)]M
N , (A.14)

where
(

I
J ; �a

j1··· jn

)
m1···mn

M

≡
(

I �a
j1··· jn

)
m1···mn

J M

≡ ∑
k2,...,kn−1

(
I j1 j2

)
m1m2

a2k2 · · ·
(
Ian−1 jn

)
kn−1mn

J M
are the general CGCs,

the intertwiners, and often rewritten in quantum mechanics in the form 〈J M; �a| j1m1 j2m2 · · · jnmn〉 = ∑
k2,...,kn−1

〈a2k2| j1m1 j2m2〉 · · · 〈J M |an−1kn−1 jnmn〉. For the convenience of a graphical representation, we introduce

(
i

J ; �a
j1··· jn

)
m1···mn

M

:= (−1) j1−
∑n

i=2 ji −J
(

I
J ; �a

j1··· jn

)
m1···mn

M

= (−1) j1−
∑n

i=2 ji −J 〈J M; �a| j1m1 j2m2 · · · jnmn〉. (A.15)

Notice that the factor (−1) j1−
∑n

i=2 ji −J in Eq. (A.15) involves only the spins j1, . . . , jn and J , not the intermediate momenta

a2, . . . , an−1. From now on, the intertwiners refer in particular to i
J ; �a
j1··· jn

. The Clebsch–Gordan series (A.14) can be written

in terms of i
J ; �a
j1··· jn

as

∑

m1,...,mn ,n1,...,nn

(
i

J ; �a
j1··· jn

)
m1···mn

M

[π j1(g)]m1
n1

· · · [π jn (g)]mn
nn

(
(i

J ; �a
j1··· jn

)−1
)

N

n1···nn = [πJ (g)]M
N , (A.16)

and its inverse reads

[π j1(g)]m1
n1

· · · [π jn (g)]mn
nn

=
∑

J,M,N

(
(i

J ; �a
j1··· jn

)−1
)

M

m1···mn [πJ (g)]M
N

(
i

J ; �a
j1··· jn

)
n1···nn

N

. (A.17)

It is easy to generalize the above results to the decomposition of the tensor product π j1 ⊗ · · · ⊗ π jk (g) ⊗ π jk+1
(g)−1 ⊗ · · · ⊗

π jn (g)−1 of k representations and n − k inverse representations into a direct sum of irreducible representations πJ on HJ .

The corresponding Clebsch–Gordan series read
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∑

m1,...,mn ,n1,...,nn

(
i

J ; �a
j1··· jn

)
m1···mk

mk+1···mn M

[π j1(g)]m1
n1

· · · [π jk (g)]mk
nk

[π jk+1
(g)−1]nk+1

mk+1

· · · [π jn (g)−1]nn
mn

(
(i

J ; �a
j1··· jn

)−1
)

Nnk+1···nn

n1···nk = [πJ (g)]M
N , (A.18)

where

(
i

J ; �a
j1··· jn

)
m1···mk

mk+1···mn M

≡
(

i
J ; �a
j1··· jn

)
m1···mk nk+1···nn

M

C
nk+1mk+1

( jk+1)
· · · C

nnmn

( jn)
. (A.19)

Equation (A.18) can be written as

∑

m1,...,mn

[π jk+1
(g)−1]nk+1

mk+1
· · · [π jn (g)−1]nn

mn

(
i

J ; �a
j1··· jn

)
m1···mk

mk+1···mn M

[π j1(g)]m1
n1

· · · [π jk (g)]mk
nk

=
∑

N

[πJ (g)]M
N

(
i

J ; �a
j1··· jn

)
n1···nk

nk+1···nn N

, (A.20)

which, in the case of J = 0, reduces to

∑

m1,...,mn

[π jk+1
(g)−1]nk+1

mk+1
· · · [π jn (g)−1]nn

mn

(
I

0; �a
j1··· jn

)
m1···mk

mk+1···mn0
[π j1(g)]m1

n1
· · · [π jk (g)]mk

nk

=
(

I
0; �a
j1··· jn

)
n1···nk

nk+1···nn0
. (A.21)

Hence the tensor
(

i
0; �a
j1··· jn

)
m1···mk

mk+1···mn0
is also called the invariant tensor. In the special case of n = 2, the Clebsch–Gordan

series reads

[π j1(g)]m1
n1

[π j2(g)]m2
n2

=
∑

J,M,N

(
(i J

j1 j2
)−1

)
M

m1m2 [πJ (g)]M
N

(
i J

j1 j2

)
n1n2

N

. (A.22)

The fact that the operator i
J ; �a
j1··· jn

is unitary and its matrix elements take real numbers results in
(
(i

J ; �a
j1··· jn

)−1
)

M

m1···mn =
(
(i

J ; �a
j1··· jn

)†
)

M

m1···mn =
(

i
J ; �a
j1··· jn

)
m1···mn

M

.

Given n angular momenta j1, . . . , jn , the intertwiner space H j1,..., jn consists of the intertwiners
(

i
J ; �a
j1··· jn

)
m1···mn

M

with the

following inner product:

〈�a′; J ′, M ′|�a; J, M〉H j1,..., jn
≡

∑

m1,...,mn

((
i

J ′; �a′
j1··· jn

)
m1···mn

M ′
,
(

i
J ; �a
j1··· jn

)
m1···mn

M
)

H j1,..., jn

:=
∑

m1,...,mn

(
(i

J ′; �a′
j1··· jn

)†
)

M ′

m1···mn
(

i
J ; �a
j1··· jn

)
m1···mn

M

=
∑

m1,...,mn

(i
J ′; �a′
j1··· jn

)m1···mn

M ′(
i

J ; �a
j1··· jn

)
m1···mn

M

= δJ,J ′δM,M ′δ�a,�a′ , (A.23)

where the last step can be arrived by using the fact that the matrix
(

i
J ; �a
j1··· jn

)
m1···mn

M

is unitary.
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A.2 The basic components of the graphical representation and simple rules of transforming graphs

In this subsection, we introduce the basic components of the graphical representation and simple rules of transforming graphs

[31]. A graphical representation for the matrix elements of irreducible representations of SU (2) is also proposed. A graphical

representation is a correspondence between graphical and algebraic formulas. Each term in an algebraic formula is represented

by a component of an appropriate graph in a unique and unambiguous way.

The Wigner 3 j-symbol is associated with the coupling of three angular momenta to give a zero resultant. The 3 j-symbol

has simple symmetric properties and hence is easier to handle than the CGC. The 3 j-symbol is defined in terms of the CGC

by [41,42]

(
j1 j2 j3

m1 m2 m3

)
= (−1) j1− j2−m3

√
2 j3 + 1

〈 j3 − m3| j1m1 j2m2〉 = (−1) j1− j2− j3

√
2 j3 + 1

∑

m′
3

〈 j3m′
3| j1m1 j2m2〉C ( j3)

m3m′
3
, (A.24)

or

〈 j3m3| j1m1 j2m2〉 = (−1) j1− j2− j3
√

2 j3 + 1
∑

m′
3

(
j1 j2 j3

m1 m2 m′
3

)
C

m′
3m3

( j3)
. (A.25)

The 3 j-symbol takes non-vanishing value when the parameters of the upper row ( j1, j2, j3) satisfy the triangular condition

(i.e., | j1 − j2| � j3 � j1 + j2) and when the sum of the parameters of the lower row (m1, m2, m3) is zero. The parameters

ji and mi are simultaneously integers or half-integers, such that each of the numbers

ji + mi , ji − mi , j1 + j2 + j3,− j1 + j2 + j3, j1 − j2 + j3, j1 + j2 − j3, (A.26)

takes some integer. The 3 j-symbol has the following properties. An even permutation of the columns leaves the numerical

value unchanged, while an odd permutation is equivalent to a multiplication by (−1) j1+ j2+ j3 , i.e.,

(
j1 j2 j3

m1 m2 m3

)
= (−1) j1+ j2+ j3

(
j1 j3 j2

m1 m3 m2

)
. (A.27)

Moreover, the 3 j-symbol has the symmetric property

(
j1 j2 j3

m1 m2 m3

)
= (−1) j1+ j2+ j3

(
j1 j2 j3

−m1 −m2 −m3

)
, (A.28)

which reflects the fact that the 3 j-symbol takes real numbers (dues to the real CGCs), i.e.,

(
j1 j2 j3

m1 m2 m3

)
=

∑

m′
1,m

′
2,m

′
3

C
( j1)

m1m′
1
C

( j2)

m2m′
2
C

( j3)

m3m′
3

(
j1 j2 j3

m′
1 m′

2 m′
3

)∗
=

∑

m′
1,m

′
2,m

′
3

C
( j1)

m1m′
1
C

( j2)

m2m′
2
C

( j3)

m3m′
3

(
j1 j2 j3

m′
1 m′

2 m′
3

)
,

×
(

j1 j2 j3
m1 m2 m3

)
=
(

j1 j2 j3
m1 m2 m3

)∗
=

∑

m′
1,m

′
2,m′

3

C
m1m′

1

( j1)
C

m2m′
2

( j2)
C

m3m′
3

( j3)

(
j1 j2 j3

m′
1 m′

2 m′
3

)
. (A.29)

The orthogonality relation for the 3 j-symbol is expressed as

∑

m1,m2

(
j1 j2 j3

m1 m2 m3

)(
j1 j2 j ′3

m1 m2 m′
3

)
=

δ j3, j ′3
2 j3 + 1

δm3,m
′
3
. (A.30)

Furthermore, the 3 j-symbol is normalized as

∑

m1,m2,m3

(
j1 j2 j3

m1 m2 m3

)(
j1 j2 j3

m1 m2 m3

)
= 1. (A.31)
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The graphical representation of the 3 j-symbol was collected by Yutsis in [30] and slightly modified by Brink in [31] for

convenience. The 3 j-symbol is represented by an oriented node with three lines, which stand for three coupling angular

momenta j1, j2, j3 incident at the node [31]. The orientation of the node is meant for the cyclic order of the lines. A clockwise

orientation is denoted by a − sign and an anti-clockwise orientation by a + sign. Rotation of the diagram does not change the

cyclic order of lines, and the angles between two lines as well as their lengths at a node have no significance. Consequently,

any geometrical deformation of the diagram which preserves the orientation of the node does not change the 3 j-symbol

represented by the diagram. The 3 j-symbol can be written in the graphical form

(A.32)

The property (A.27) of the 3 j-symbol implies

(A.33)

The “metric” tensor C
( j)

m′m in Eq. (A.6), which occurs in the contraction of two 3 j-symbols with the same j values, is denoted

by a line with an arrow on it as

(A.34)

and its inverse in Eq. (A.7) can be expressed as

(A.35)

A line with no arrow represents the expression

(A.36)

In a graphical representation, two lines representing the same angular momentum can be joined. Summation over a magnetic

quantum number m is graphically represented by joining the free ends of the corresponding lines. Equation (A.25) implies

that the CGC can be represented graphically by

(A.37)

Therefore, the graphical representation of the intertwiner defined in Eq. (A.15) is

(A.38)

and the generalized intertwiner in Eq. (A.19) can be repressed by

(A.39)
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As an ingredient of the flux operator, the spherical tensor [π j (τμ)]m′
m

in Eq. (3.7) can be represented graphically by

(A.40)

Now we outline some useful rules of transforming graphs, which can simplify our calculation of the action of operators

on the quantum states in LQG. The frequently used rules for adding or removing arrows in a graph read

(A.41)

(A.42)

(A.43)

(A.44)

which correspond to the algebraic formulas in Eqs. (A.8), (A.9), (A.10) and (A.29). The rule to remove a closed loop in a

graph reads

(A.45)

which is related to the orthogonality relation for the 3 j-symbol in Eq. (A.30). Equation (A.31) implies

(A.46)

The special 3 j-symbol with one zero-valued angular momentum is related to the “metric” tensor by

(A.47)

Coupling four angular momenta to a zero resultant will involve the jm-coefficients. The jm-coefficients corresponding to

different coupling schemes are related by the 6 j-symbol. The 6 j-symbol is defined by ([41] p. 94)

{
j1 j2 j3
j4 j5 j6

}
:=

∑

all m,m′

(
j1 j2 j3

m1 m2 m3

)(
j1 j5 j6

m′
1 m5 m′

6

)(
j4 j2 j6

m′
4 m′

2 m6

)(
j4 j5 j3

m4 m′
5 m′

3

)

× C
m′

1m1

( j1)
C

m′
2m2

( j2)
C

m′
3m3

( j3)
C

m′
4m4

( j4)
C

m′
5m5

( j5)
C

m′
6m6

( j6)
. (A.48)

Graphically, we can express the 6 j-symbol in Eq. (A.48) as

(A.49)
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where in the last step we have used Eq. (A.44) to remove three arrows. Taking account of the definition of 6 j-symbol in Eq.

(A.48) and the fact that the 3 j-symbol is normalized in Eq. (A.31), we can easily show the following identity (see [41], p.

95):

∑

m4,m5,m6,m
′
4,m

′
5,m

′
6

(
j1 j5 j6

m1 m5 m′
6

)(
j4 j2 j6

m′
4 m2 m6

)(
j4 j5 j3

m4 m′
5 m3

)
C

m′
4m4

( j4)
C

m′
5m5

( j5)
C

m′
6m6

( j6)
=
(

j1 j2 j3
m1 m2 m3

){
j1 j2 j3
j4 j5 j6

}
. (A.50)

Hence we have the following graphical identity:

(A.51)

The following algebraic relation between two different coupling schemes:

∑

m5,m
′
5

(
j1 j3 j5

m1 m3 m5

)
C

m5m′
5

( j5)

(
j5 j2 j4

m′
5 m2 m4

)
=

∑

j6,m6,m
′
6

(2 j6 + 1)(−1) j2+ j3+ j5+ j6

{
j1 j2 j6
j4 j3 j5

}(
j1 j2 j6

m1 m2 m6

)
C

m6m′
6

( j6)

(
j6 j3 j4

m′
6 m3 m4

)

(A.52)

corresponds to the following rule of transforming graphs:

(A.53)

Using Eq. (A.33) and the symmetric properties of 6 j-symbol, from Eq. (A.53), we can get

(A.54)

Similarly, using Eqs. (A.33) and (A.54), we have

(A.55)

Note that Brink’s graphical representation in [31] does not involve how to represent graphically the matrix element of the

representation of SU (2). Here, we will extend the Brink representation and propose a graphical representation for the unitary

irreducible representation π j of SU (2). The matrix element [π j (g)]m
n

is denoted by a blue line with a hollow arrow (triangle)

in it,

(A.56)

The orientation of the arrow is from its row index m to its column index n. The matrix element [π j (g
−1)]n

m
in Eq. (A.12)

can be presented by

(A.57)
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Up to now, we have expressed the quantum states [the spin-network states in (2.13)], and the two elementary operators (the

holonomy and flux operators in (2.17) and (2.19)) of LQG in the graphical form. The Clebsch–Gordan series in (A.22) can

be represented by

(A.58)

where, in the second step, we used (A.43) to flip the orientations of two arrows. Using Eqs. (A.57) and (A.58), we have

(A.59)

Appendix B Proofs for some identities

B.1 Proofs of algebraic identities in Eqs. (3.7) and (4.8)

By the definition of the matrix element

[π j (τi )]m′
m

:= d

dt

∣∣∣∣
t=0

[π j (e
tτi )]m′

m
, (B.1)

we get

[π j (τ1)]m′
m

= − i

2

√
j ( j + 1) − m′(m′ + 1) δm′,m−1 − i

2

√
j ( j + 1) − m′(m′ − 1) δm′,m+1, (B.2)

[π j (τ2)]m′
m

= 1

2

√
j ( j + 1) − m′(m′ + 1) δm′,m−1 − 1

2

√
j ( j + 1) − m′(m′ − 1) δm′,m+1, (B.3)

[π j (τ3)]m′
m

= −i m′ δm′,m . (B.4)

Hence the matrix elements of τμ (μ = 0,±1) defined in Eq. (3.6) read

[π j (τ0)]m′
m

= [π j (τ3)]m′
m

= −i m′ δm′,m, (B.5)

[π j (τ+1)]m′
m

= − 1√
2

(
[π j (τ1)]m′

m
+ i [π j (τ2)]m′

m

)
= +i

√
2

2

√
j ( j + 1) − m′(m′ − 1) δm′,m+1, (B.6)

[π j (τ−1)]m′
m

= + 1√
2

(
[π j (τ1)]m′

m
− i [π j (τ2)]m′

m

)
= −i

√
2

2

√
j ( j + 1) − m′(m′ + 1) δm′,m−1. (B.7)

Taking account of the specialized formulas for the CGCs,

〈 jm10| jm′〉 = m′
√

j ( j + 1)
δm′,m = −

√
2 j + 1

(
j 1 j

m 0 m′′

)
Cm′′m′

( j) , (B.8)

123



Eur. Phys. J. C (2017) 77 :235 Page 45 of 52 235

〈 jm11| jm′〉 = −
√

j ( j + 1) − m′(m′ − 1)

2 j ( j + 1)
δm′,m+1 = −

√
2 j + 1

(
j 1 j

m 1 m′′

)
Cm′′m′

( j) , (B.9)

〈 jm1 − 1| jm′〉 = +
√

j ( j + 1) − m′(m′ + 1)

2 j ( j + 1)
δm′,m−1 = −

√
2 j + 1

(
j 1 j

m −1 m′′

)
Cm′′m′

( j) , (B.10)

we get

[π j (τμ)]m′
m

= i

2

√
2 j (2 j + 1)(2 j + 2)

(
j 1 j

m μ m′′

)
Cm′′m′

( j) = i

2

√
2 j (2 j + 1)(2 j + 2)

(
1 j j

μ m′′ m

)
Cm′′m′

( j) . (B.11)

By definition (3.6), we have

τ1 = − 1√
2
(τ+1 − τ−1), τ2 = i√

2
(τ+1 + τ−1), τ3 = τ0. (B.12)

Then

[π jI
(τi )]m′

I
m I

[π jJ
(τi )]m′

J
m J

= − [π jI
(τ+1)]m′

I
m I

[π jJ
(τ−1)]m′

J
m J

− [π jI
(τ−1)]m′

I
m I

[π jJ
(τ+1)]m′

J
m J

+ [π jI
(τ0)]m′

I
m I

[π jJ
(τ0)]m′

J
m J

= − [π jI
(τμ)]m′

I
m I

C
μ′μ
(1)

[π jJ
(τμ′)]m′

J
m J

. (B.13)

B.2 Proofs of graphical identities in Eqs. (4.14), (4.15), (4.16) and (4.17)

Equation (4.14) can be proved by

(B.14)

where Eq. (A.33) was used in the first and third steps, (A.53) was used in the second step, and we used the fact (−1)−4a′
1 = 1

and the symmetric properties of the 6 j-symbol in the last step.

Equation (4.15) can be shown by

(B.15)

where Eq. (A.53) was used in the second step, and in the last step we used Eq. (A.43), the fact (−1)−4b′
K−1 = 1, and the

symmetric properties of the 6 j-symbol.
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Equation (4.16) can be proved by

(B.16)

where Eq. (A.33) was used in the second and fourth steps, (A.53) was used in the third step, and in the last step we used the

symmetric properties of the 6 j-symbol and the exponents were simplified.

Equation (4.17) can be proved by

(B.17)

where Eq. (A.33) was used in the second and fourth steps, (A.53) was used in the third step, and in the last step we used the

symmetric properties of the 6 j-symbol and the exponents were simplified.

B.3 Proofs of graphical identities in Eqs. (4.18) and (4.24)

Equation (4.18) can be proved by

(B.18)

where the identities in Eqs. (A.33), (A.44), (A.41), (A.42) and (A.45) were used from the first to last steps.
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Equation (4.24) can be proved by

(B.19)

where the rules (A.41), (A.47), (A.44), (A.41) and (A.43) were used from the first to fifth steps, and in last step we denoted

a0 ≡ 0, a1 ≡ j1.

B.4 Proofs of graphical identities in Eqs. (5.21) and (5.22)

The graph on the left-hand side of (A.51) can be transformed to

(B.20)

The first graph on the right-hand side of (A.51) represents the 6 j-symbol, which can be transformed as

(B.21)

where we have used the rules (A.41)–(A.44) of transforming graphs. Hence Eq. (A.51) is equal to the following graphical

identity:

(B.22)

which implies

(B.23)
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Graphically, Eq. (5.21) can be proved by

(B.24)

where we have used the rules (A.41)–(A.44), and (B.23) in the third and fifth steps, respectively. Similarly, Eq. (5.22) can be

shown by

(B.25)

where we have used (B.23) in the second and fourth steps, and used the fact that the allowed triple ( j ′2, j ′3, j1) satisfy the

triangular condition in the fifth step.

B.5 Proofs of graphical identities in Eqs. (6.18) and (6.25)

The identity (6.18) can be proved by

(B.26)

where we have used (A.51) in fourth step, and used the fact that (−1)2 j ′1+2 j1+1 = 1 in the last step, since the allowed triple

( j ′1, j1,
1
2
) satisfy the triangular condition.
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Equation (6.25) can be obtained from

(B.27)

where in the second step we have used the identity (A.53).

B.6 Proofs of algebraic identities in Eqs. (7.5) and (7.6)

To prove Eq. (7.5), we denote [π jI
(τi )]n I

m I
[π jJ

(τ j )]n J
m J

[π jK
(τk)]nK

mK
by [τiτ jτk]n I m I n J m J nK mK

. Taking account of (B.12),

we have

τ1τ2 − τ2τ1 = − 1√
2

i√
2

[
(τ+1 − τ−1)(τ+1 + τ−1) − (τ+1 + τ−1)(τ+1 − τ−1)

]
= −i(τ+1τ−1 − τ−1τ+1). (B.28)

Then we have

ǫi jk[π jI
(τi )]n I

m I
[π jJ

(τ j )]n J
m J

[π jK
(τk)]nK

mK
= +ǫ123[τ1τ2τ3]n I m I n J m J nK mK

+ ǫ132[τ1τ3τ2]n I m I n J m J nK mK

+ ǫ213[τ2τ1τ3]n I m I n J m J nK mK
+ ǫ312[τ3τ1τ2]n I m I n J m J nK mK

+ ǫ231[τ2τ3τ1]n I m I n J m J nK mK
+ ǫ321[τ3τ2τ1]n I m I n J m J nK mK

= [τ1τ2 − τ2τ1]n I m I n J m J
[τ3]nK mK

+ [τ3]n I m I
[τ1τ2 − τ2τ1]n J m J nK mK

− [τ1τ3τ2 − τ2τ3τ1]n I m I n J m J nK mK

= −i[τ+1τ−1 − τ−1τ+1]n I m I n J m J
[τ0]nK mK

− i[τ0]n I m I
[τ+1τ−1

− τ−1τ+1]n J m J nK mK
− (−i)[τ+1τ0τ−1 − τ−1τ0τ+1]n I m I n J m J nK mK

= −i[ǫ+1−1 0τ+1τ−1τ0 + ǫ−1+1 0τ−1τ+1τ0 + ǫ0 +1−1τ0τ+1τ−1

+ ǫ0 −1+1τ0τ−1τ+1 + ǫ−1 0 +1τ−1τ0τ+1 + ǫ+1 0 −1τ+1τ0τ−1]n I m I n J m J nK mK

= −iǫμνρ[τμτντρ]n I m I n J m J nK mK

= −iǫμνρ[π jI
(τμ)]n I

m I
[π jJ

(τν)]n J
m J

[π jK
(τρ)]nK

mK
, (B.29)

where ǫμνρ is the Levi-Cività symbol defined by ǫ−1 0 +1 = 1.

To show Eq. (7.6), notice that

(
1 1 1

−1 0 1

)
= 1√

6
= 1√

6
ǫ−1 0 +1. (B.30)

Recalling the symmetric property of the 3 j-symbol in Appendix A.2, an even permutation of the columns leaves the numerical

value unchanged, while an odd permutation will lead to a factor (−1)1+1+1 = −1 for the 3 j-symbol in Eq. (A.33). These

symmetries of the 3 j-symbol are the same as those of ǫμνρ . Hence we have ǫμνρ =
√

6

(
1 1 1

μ ν ρ

)
.
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Appendix C The diagonalization of the volume operator in 2-d intertwiner space

We denote

(C.1)

(C.2)

The matrix of the operator i q̂ j ′1 j2 j3
in the above two states reads

(i q̂ j ′1 j2 j3
) =

(
〈α1|i q̂ j ′1 j2 j3

|α1〉 〈α1|i q̂ j ′1 j2 j3
|α2〉

〈α2|i q̂ j ′1 j2 j3
|α1〉 〈α2|i q̂ j ′1 j2 j3

|α2〉

)
=
(

0 〈α1|i q̂ j ′1 j2 j3
|α2〉

〈α2|i q̂ j ′1 j2 j3
|α1〉 0

)
=:

(
0 −ib

ib 0

)
. (C.3)

The eigenvalues and corresponding (normalized) eigenvectors of i q̂ j ′1 j2 j3
are given by

λ1 = −b → |e1〉 = 1√
2

(
i

1

)
, λ2 = b → |e2〉 = 1√

2

(−i

1

)
. (C.4)

Hence we obtain

√
|i q̂ j ′1 j2 j3

| |αi 〉 =
2∑

k=1

|ek〉〈ek |
√

|i q̂ j ′1 j2 j3
| |αi 〉 =

2∑

k=1

√
|λk | |ek〉〈ek |αi 〉 =

√
|b| |αi 〉, i = 1, 2. (C.5)

Now we derive the value of |b|. Using the matrix elements of 〈�a′|q̂234|�a〉 in Eq. (4.36), we have

〈α1|q̂ j ′1 j2 j3
|α2〉 ≡

〈
a2 − 1 = j ′1 − 1

2

∣∣∣∣ q̂ j ′1 j2 j3

∣∣∣∣a2 = j ′1 + 1

2

〉

= − 1

4
(−1)

1
2 + j ′1+ j3(−1) j ′1+ 1

2 −( j ′1− 1
2 ) X ( j ′1, j2)

1
2 X ( j2, j3)

1
2

×
√

2 j ′1(2 j ′1 + 2)(2 j3 + 1)

{
1
2

j ′1 j ′1 + 1
2

1 j ′1 − 1
2

j ′1

} {
0 j3 j3
1 j3 j3

}

×
[
(−1) j ′1− 1

2 + j3

{
j3 j2 j ′1 + 1

2

1 j ′1 − 1
2

j2

}{
j ′1 − 1

2
j2 j3

1 j3 j2

}

× −(−1) j ′1+ 1
2 + j3

{
j3 j2 j ′1 + 1

2

1 j ′1 − 1
2

j2

}{
j ′1 + 1

2
j2 j3

1 j3 j2

}]

=
[(

j ′1 + j2 + j3 + 3

2

)(
j ′1 + j2 − j3 + 1

2

)(
j ′1 − j2 + j3 + 1

2

)(
− j ′1 + j2 + j3 + 1

2

)] 1
2

. (C.6)

Therefore, we have

V̂ |αi 〉 =
ℓ3

p β3/2

4
√

2

√
|i q̂ j ′1 j2 j3

| |αi 〉 =
ℓ3

p β3/2

4
√

2

√
|b| |αi 〉 =

ℓ3
p β3/2

4
√

2

[(
j ′1 + j2 + j3 + 3

2

)(
j ′1 + j2 − j3 + 1

2

)

×
(

j ′1 − j2 + j3 + 1

2

)(
− j ′1 + j2 + j3 + 1

2

)] 1
4

|αi 〉

≡ V (1/2, j ′1, j2, j3; a2 = j ′1 + 1/2, a3 = j3) |αi 〉, i = 1, 2, (C.7)

which reveals that the volume operator is diagonal in the 2-dimensional intertwiner space.
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