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oftware systems can be succinctly 
described, constructed, and man- 
aged in terms of their software con- 

f ig~rat ion. ’ -~ This configuration consists 
of the set of software components that 
implement system functionality, plus their 
control and communication interconnec- 
tions. Program modules are defined and 
constructed to provide well-defined inter- 
faces, giving the information and calls 
provided to or required from other mod- 
ules. The program is then configured by 
creating and interconnecting instances of 
these software modules. 

The specification of the system configu- 
ration provides a conveniently abstract 
form in which to define and comprehend 
programs, and it can also be used to gener- 
ate the executable program. Evolutionary 
changes to the program are reflected as 
changes to the program structure, either by 
the addition of further modules or by the 
use of modified versions of selected mod- 
ules. “Configuration programming,” the 
term we use to describe programming at 
the configuration level, thus provides a 
clear and flexible means for program defi- 
nition, construction, modification, and 
comprehension. Configuration program- 

This workstation 

integrates the textual 

and graphical 

information required for 

configuration 

programming. Its 

editing, monitoring, 

layout, and control 

facilities are applied 

dynamically to 

operational systems. 

ming is closely related to the ideas of 
programming-in-the-large and the use of a 
module interconnection language outlined 
by DeRemer and Kron.’ Configuration 

refers here to system structure, not to ver- 
sion control. 

Configuration programming is particu- 
larly appropriate for distributed process- 
ing, where the software components may 
reside on different machines. The configu- 
ration specification can both describe the 
structure of the required system and spec- 
ify the allocation of components to ma- 
chines. The operational system is then 
managed by monitoring the status of sys- 
tem components and extending or chang- 
ing the system configuration. Such 
changes may involve modifying existing 
functions or introducing new functions to 
incorporate new technology, improve 
implementation techniques, or provide 
system redundancy. It is certainly advanta- 
geous for configuration management to 
dynamically support change to the system 
without interrupting processing elsewhere 
on the system. 

The Conic en~ironment,~ developed by 
the Distributed Systems Group at Imperial 
College, supports configuration program- 
ming for distributed and concurrent pro- 
grams. The environment supports two 
languages, one for programming individ- 
ual task modules (processes) with well- 
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alarm 

patient i bed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
group module zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApatient; 

use monmsg: bedtype, alarmstype; 
exitport a1arm:alarmstype; 
entryport bedxignaltype reply bedtype; 

1 
- The module periodically reads sensors attached to a patient. 
Readings outside preset ranges cause alarm messages to be 
sent to the exitport zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAalarm. 
A request message received on the entryport bed returns the 
current readings and ranges. 

1 
end 

Figure 1. The patient module. 

alarm1 bed 1 

&I;:; 1 nurse ~ bed2 

bed3 

alarm4 bed4 

alarm5 bed5 

group module nurse (maxbed:integer=5); 
use monmsg: bedtype, alarmstype; 
entry port alarm[ 1 ..maxbed]:alarmstype; 
exitport bed[ 1 ..maxbed]:signaltype reply bedtype; 

( 
- the module displays alarms received from alarm[ ] 
and can request the display for a particular patient from 
its exitports bed[ 1. 
1 

end 

Figure 2. The nurse module. 

defined interfaces and one for configuring 
programs from groups of task modules. In 
addition, the environment supports mod- 
ule reuse and was recently extended to 
support dynamic configuration. The latter 
facility is achieved with on-line manage- 
ment tools that permit dynamic creation, 
control, and modification of application 

programs. The basic Conic environment 
has been in use for more than five years and 
has amply demonstrated the utility of 
configuration-level programming. 

Although configurations are most easily 
described and viewed graph i~a l l y ,~ .~  they 
have traditionally been provided to the 
support environment in textual form, 

which is more concise and easier to parse. 
For example, Conic’s developers and users 
have always drawn diagrams to describe 
and document their configurations, while 
their interactions with compilers, builders, 
and managers have always been textual. 
This disparity, plus the availability of 
graphics-based workstations, prompted us 

to develop graphical support for configu- 
ration programming - essentially, a vis- 
ual programming language for configura- 
tion. However, in contrast to most work on 
visual programming,6 our approach em- 
phasizes system structure in-the-large 
rather than detailed data and control struc- 
ture. The combination of graphics and text 
is a powerful facility; the graphics comple- 
ments the text by reflecting the described 
or existing configuration, thereby aiding 
comprehension and validation. Of course, 
the text is still essential for detailed infor- 
mation and for certain complex cases not 
amenable to display. 

Configuration 
programming in Conic 

The configuration programming con- 
cepts embodied in Conic are illustrated by 
a simple example: a patient monitoring 
system.’ The intensive care ward in a hos- 
pital consists of a number of beds. Patients 
in each bed are continuously monitored for 
a number of factors, such as pulse, tem- 
perature, and blood pressure. Current fac- 
tor readings are displayed both at the bed- 
side and at the nurse unit. If any of a 
patient’s readings are outside preset limits, 
an alarm is sent to the central nurse station. 

Module types. The system is con- 
structed from the two module types de- 
fined both graphically and textually in 
Figures 1 and 2 .  

Typed exit and entry ports define the 
module interface. Messages of any Pascal 
data type are sent out via exit ports and 
received from entry ports. The type defini- 
tions are imported from definition units by 
the use clause (types bedtype, alarmstype 
from monmsg in Figures 1 and 2). 

System configuration. Given the hard- 
ware depicted in Figure 3, we can construct 
an initial patient monitoring system con- 
sisting of one nurse unit and one patient 
unit by instantiating one instance of each 
of the above module types and intercon- 
necting their exit and entry ports. The links 
between exit and entry ports allow mod- 
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ules to communicate by message passing. 
Conic permits connecting only ports of the 
same type. The configuration program for 
this system is shown both textually and 
graphically in Figure 4. 

We actually create the system by sub- 
mitting the configuration description to a 
configuration manager. tool that either 
downloads module code into target proces- 
sors or instantiates processes under Unix 
as appr~p r ia te .~  The description can be 
submitted directly as text or indirectly 
using the graphical editor. As shown in 
Figure 4, the graphical description con- 
tains less information than the textual one; 
the graphics tool elicits additional infor- 
mation through dialog boxes. This extra 
information consists of the physical mod- 
ule location (the at clause) and module 
parameters. For example, the nurse mod- 
ule has a default parameter setting to the 
value 5 (Figure 2). However, this could 
have been changed when the module in- 
stance was specified, that is, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

create nurse:nurse(3) at sunl. 

Dynamic configuration. In addition to 
programming initial configurations, the 
Conic toolkit permits dynamic configura- 
tion: changes to running systems. For 
example, we can extend the above system 
to include an additional patient unit by 
submitting the following configuration 
program to a configuration manager: 

manage ward; 
create 

link 

bed2:patient at targ2; 

bed2.alarm to nurse .alarm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 21 ; 

nurse.bed[2] to bed2.bed; 
end 

The ward system (Figure 4) evolves dy- 
namically to the system in Figure 5. 

In practice, we have found it convenient 
to create initial systems from the more- 
concise configuration program. Once cre- 
ated, the graphics tool can display the 
system as it exists: It gathers information 
directly from the executing system by 
communicating with a configuration man- 
ager and can query textual information not 
directly displayed. We can then modify the 
system through either graphical com- 
mands or configuration program text. 
Also, a change performed graphically can 
be saved in text form for later reuse. 

The configuration management system 
is itself a distributed system, so more than 
one agent can change the system configu- 

(*) (-*) 

Figure 3. Hardware environment. 

system ward; 
create 

bed1:patient at targl; 
nurse: nurse at sun 1 ; 

bed1 .alarm to nurse.alarm[ 11; 
nurse.bed[l] to bedl.bed; 

link 

end 

I bedl t-f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 bed2 

bed3 
nurse 

alarm2 

alarm3 

alarm4 

alarm5 

bed4 

bed5 

I I 

Figure 4. Initial patient monitoring system. 

I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

;darn a l a r u l i  i bed3 

bed 1 bed4 
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I 4 alarm3 

alarm alarm2 

bed2 

alarm4 
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I I 

Figure 5. Extended patient monitoring system. 
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alarm 

I patient I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
group module zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApatient; 

use monmsg: bedtype, alarmstype; 
exitport a1arm:alarmstype; 
entry port bed:signaltype reply bedtype; 
use scanner; monitor; 
create 

{import message types 

{import module types 

scanner(100); [scan every 100ms] 
monitor; 

scanner.readings to monitor.readings; 
monitor.alarm to alarm; 
bed to monitor.data; 

link 

end 

Figure 6. Internal structure of patient module. 

ration. Used in a monitoring mode, the 
graphics tool allows users an up-to-date 
view of the system configuration. For 
example, the diagram in Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 was cre- 
ated by using the graphics tool to monitor 
a system created from that figure’s con- 
figuration program. The system was ex- 
tended by editing the diagram directly to 
create Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.  These edits caused the tool 

a configuration manager, which changed 
the actual system accordingly. 

Module hierarchies. We have de- 
scribed the top-level configuration of 
modules to construct a patient monitoring 
system. In fact, the two module types used 
are themselves module configurations. 
See, for example, the internal structure of 

to send the extension configuration text to the patient module in Figure 6. 

Text interface Management system Actual system 

Changes - - 
Status 

Figure 7. Relationship between ConicDraw and system. 
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The module types used to construct the 
patient module can also have an internal 
structure. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA Conic system is thus a hier- 
archic structure of modules. The modules 
at the bottom are task modules imple- 
mented in a version of Pascal to which 
message-passing constructs have been 
added. These task modules execute con- 
currently and are hierarchically structured, 
using the configuration programming lan- 
guage, into logical nodes. Logical nodes, 
which are simply module groups that in- 
clude a runtime executive, are the unit of 
both distribution and dynamic configura- 
tion. The structure of modules within a 
logical node is determined at compile time 
and does not change at system runtime. 
Consequently, the graphics tool does not 
need to edit internal node structure. How- 
ever, we intend to provide the ability to 
“explode” logical nodes to allow examina- 
tion of their internal structure and aid sys- 
tem comprehension. This, with the ability 
to examine a module’s program text 
(whether a configuration program or a task 
program), will provide a powerful system- 
browsing facility. 

The ConicDraw 
graphical workstation 

As mentioned above, diagrams have 
always been used with Conic’s textual 
descriptions and commands, although 
their use was originally informal and they 
were generated manually. Now, text and 
diagram facilities are integrated, and 
graphics are provided by the ConicDraw 
graphical workstation. 

As shown in Figure 7, the management 
system provides both an interactive textual 
and graphic interface to the operational 
system. ConicDraw maintains a graphic 
representation of executing Conic systems 
in terms of their module instances, inter- 
connections, and execution state. Changes 
are reported by configuration manage- 
ment, so ConicDraw can maintain up-to- 
date views of the systems. ConicDraw can 
also instigate changes as a result of edits to 
the graphic representation. Since it always 
maintains a representation of the actual 
system, one or more workstations can be 
connectedtothedistributedsystem, thereby 
allowing a number of users to manage and 
monitor the system cooperatively. 
ConicDraw contains a comprehensive set 
of tools for creating and editing Conic 
configurationdiagrams. As such, it can also 
be used as a stand-alone diagram editor. 

COMPUTER 



We chose an Apple Macintosh as the 
implementation hardware because of its 
comprehensive support for graphic-inter- 
face programming and because we had 
experience with it from a previous project. 
The Macintosh communicates via a serial zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
RS-232 communication link with the dis- 
tributed system (running on Sun, VAX, 
and VME 68000 machines connected by 
Ethernet). This serial link limits response 
times and may be replaced by a direct 
Macintosh-to-Ethernet connection. 

In the following sections, we describe 
ConicDraw’s main facilities and discuss 
issues raised by its implementation. 

System monitoring. To support the on- 
line monitoring of systems, ConicDraw 
needs access to the executing distributed 
system. This is achieved by running a 
special version of a configuration manager 
(gman) with ConicDraw (Figure 7). Gman 
is a Conic program running on a host 
machine and communicates with 
ConicDraw on the Macintosh via a serial 
link. In the same way that an interactive 
manager (iman) supports the textual inter- 
face, gman acts as a server to ConicDraw 
and can provide information about all 
Conic systems running on Unix machines 
as well as stand-alone targets. Using a 
simple communication protocol, gman 
supplies ConicDraw, on request from the 
latter, the names of currently active sys- 
tems and the nodes, ports, and interconnec- 
tions within each system. In addition, it can 
provide detailed information about each 
node, such as the type of node, which 
machine it is running on, and how long it 
has been running. 

At the beginning of a session, the user 
typically wants to find out what systems 
are running in the network. Selecting “Get 
systems” from the Command menu puts a 
set of icons in the Systems window, as 
shown in Figure 8. Each icon represents 
one Conic system and acts as the interface 
for accessing the system. To view a sys- 
tem, the user need only double-click on the 
appropriate system icon. This opens the 
system to reveal its internal nodes and their 
interconnections. The pictorial representa- 
tion of the system is displayed in a graphi- 
cal window (Figure 9). 

ConicDraw allows multiple systems to 
be open at the same time. The number is 
limited only by the computer’s memory. 
By default, ConicDraw will continuously 
poll an open system for changes to either 
its structure or its state. When a change is 
detected, the system’s diagram is appropri- 
ately updated to ensure that the graphical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Conic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Sewer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 

k w i n  I =mi= 

pj 
kn 

B nd 

Figure 8. Icons in the systems window. 
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bed4 

alarm4 

alarm5 

bed5 

Figure 9. An example of a graphical window. 

information is consistent with the system’s 
true state. 

When several systems are open, the user 
can monitor all of them or just the one that 
is frontmost on the screen. Monitoring can 
also be turned off completely, in which 
case none of the system diagrams are 
updated. In addition, the user can modify 
polling frequency, depending on how rap- 
idly the system is expected to change. All 
these monitoring options are set via a dia- 
log box (Figure 10). 

Nodes in a diagram can be displayed in 
several ways. The default is to view nodes 
by their names; that is, only the instance 
name is displayed in its box. Other options 
are viewing by type, location, or full infor- 
mation, in which case the information dis- 
played includes the name, type, location, 
and state of the node, as well as its environ- 
ment (whether it is running on a Unix 
machine or a stand-alone target). A user 
can also find out how long a node has been 
running by choosing the “Get info” menu 

command. This opens a dialog box that 
displays the node’s full information, plus 
its uptime (Figure 11). 

Because messages received from gman 
contain no layout information, ConicDraw 
is responsible for placing system compo- 
nents in a diagram. We presently use a 
simple layout strategy, rather than a com- 

.......Monitor options .................................... 

! zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 Moni tor  all systems 

i 0 Moni tor  front-most system 

I @I Moni tor  o f f  
: ..................................................................................... i 

Poll every  m s e c o n d s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[Cancel) 

Figure 10. Options for system moni- 

toring. 
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Status Stopped Machine 68000 

Location chico Uptime 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA:20:10 

Instance Name 

Node Type 

Parameters 

Tarqet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
II 

nurse1 

nurse 

3 

sun1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(Cancel) 

Creating a new node... 

[OK) [Cancel] 

Figure 11. Detailed information of a node instance. Figure 12. Creation of a new node instance. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
plex algorithm, to minimize the delay be- 
tween a user’s request for the system and 
the display of its diagram. This simple 
strategy is also important in reflecting 
systCm changes as they happen. 

Initially, nodes are placed into arrays of 
grid cells and the ports are scattered ran- 
domly along the four faces of their parent 
nodes. Links are then drawn as single- 
segment straight lines connecting the ap- 
propriate message ports. The resulting 
diagram is invariably messy and often 
unreadable, so we have introduced a tidy- 
up facility based on some simple heuris- 
tics. It is invoked after each system request 
(and change) to clean up a diagram. 

Dynamic configuration. Once a system 
diagram is displayed, i t  is subject to user 
modifications. These can be either cos- 
metic modifications to the layout or struc- 
tural changes to system components or 
their status. Users effect both types of 
changes by directly manipulating graphi- 
cal objects on the screen. ConicDraw treats 
structural changes as commands and relays 
them to gman, which makes the equivalent 
changes to the running system. These 
changes include creating and deleting 
nodes, linking and unlinking of exit and 
entry ports, and changes in node status. 

To add a node, the user selects the node 
tool from the tool palette and draws a 
rectangle in the system window. This 
brings up a dialog box that prompts the 
user for the name, type, and location of the 
new node instance, as well as any extra 
parameters needed for its creation (Figure 
12). This information is then packaged and 
sent to gman as a “create” command. 

To create a connection between an exit 
and entry port, the user simply draws a link 
between the two ports. This link can be a 
single straight line or a multisegment 

polyline. The result is a “link” command 
sent to gman with the appropriate argu- 
ments. To delete a node or a link, the user 
selects the item with the selection tool and 
then chooses the “Clear” item from the 
Edit menu. 

The creation or deletion of a node or a 
link can fail for various reasons. In these 
situations, the displayed system configura- 
tion will be inconsistent with the system’s 
true state. To overcome this problem, we 
introduced the “zombie” state, an interme- 
diate state acquired by an object in the 
process of being created or deleted. A 
zombie object will remain in this state until 
gman confirms its creation or deletion. 
ConicDraw represents a zombie node by a 
rectangle filled with an irregular pattern 
and a zombie link by a dashed line. 

A user changes node status via the “Start 
nodes” and “Stop nodes”menu commands. 
To start a node, the user selects it with the 
selection tool and then chooses “Start 
nodes” from the Command menu. Since 
this command works on any node selected, 
multiple nodes can be started at the same 
time. The “Stop nodes”command works in 
a similar way. The status of a node relates 
to its configuration management state as 
determined by a change management 
protocol.R 

For an example of how ConicDraw per- 
forms and controls dynamic system con- 
figuration, see the accompanying sidebar. 

Diagram layout support. ConicDraw 
provides all the standard editing facilities 
expected of a diagram editor. It lets users 
move and resize nodes, drag ports to any 
node face, and reshape links by adding or 
deleting individual segments in the link. In 
addition, it knows the syntax of Conic 
configuration diagrams and can therefore 
prevent construction of syntactically ill- 

formed diagrams. For example, it ensures 
that all of a node’s ports and links stay 
connected when the node is moved and that 
a port cannot be detached from its parent 
node. Because ConicDraw also maintains 
information on port types, it further en- 
sures that only compatible entry and exit 
ports are connected. 

A graphical system must give the user 
full control over the layout of his diagram. 
It is equally important, however, that the 
tool simplifies the task of editing and 
maintaining the diagram. This is especially 
true for ConicDraw. Since the tool auto- 
matically generates a system configura- 
tion diagram from information derived 
directly from the operational system, the 
diagram often requires considerable edit- 
ing before it resembles the structure the 
user had in mind. We provide various fa- 
cilities to automate some frequently per- 
formed editing tasks, as well as tools to 
help the user manage complex diagrams. 
However, rather than force these tools on 
the user, we provide them as options for 
more flexibility. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Automatic diagram tidy-up. This facil- 
ity, invoked automatically after a system 
diagram is generated, is also available 
manually by choosing the “Tidy diagram” 
item in the Layout menu. The algorithm 
uses two criteria in improving a diagram 
layout: minimize the lengths of links, and 
minimize crossovers between links. These 
criteria are met by performing the follow- 
ing steps: 

Determine on which node face a port 
should be placed. This step involves going 
through all the links in the diagram and 
pulling together the ports at either end, as 

(Continued zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon p .  62)  
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A Demonstration of Dynamic Configuration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
To illustrate how ConicDraw dynamically reconfigures systems, we use the patient monitoring system described in the section 

titled “Configuration programming in Conic.” The example outlines the steps required to display the system configuration, shows 
how a new patient can be added and linked into the system, and shows how to obtain detailed information about nodes via the 
graphical interface. 

ConicDraw starts by displaying two blank windows: Systems 
and Terminal. The Systems window displays the system icons. 
The Terminal window functions as a terminal emulator, allowing 
the user to start up gman on the host machine. 

To manage a system, first choose “Get systems” from the 
Command menu. This sends a systems command to gman. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

19-gnan 
m m  W Ob b I I  

Gman returns the names of all running systems and displays 

To display the state of the patient monitoring system named 
them as icons in the Systems window. 

ward, double-click on its icon in the Systems window. 

This action brings up a graphical window called ward, which 

The system consists of three nodes: a nurse and two patients, 
displays the current state of the system. 

bed1 and bed2. All three nodes are painted white, indicating 
that they are in the stopped state. 

Note that the system diagram shown here is generated by 
ConicDraw based on the heuristics outlined in the section titled 
“The ConicDraw graphical workstation.” 

’ 
& zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfile tdit Layout Command Windows Template 

ward L !  d 

alarm4 bsdz 
bed4 alarm2 

alarm3 bed3 

bed5 alarm5 
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This figure shows the system diagram after it has been manu- 

To create a new patient node, select the node tool in the tool 
ally tidied up. 

palette and draw a rectangle in the window. 

This action brings up a dialog box that prompts the user for 
the information needed to create the node. Fill in the text areas 
as shown and click the OK button. This is equivalent to entering 
the textual command: create bed3 patient at Sunl. 

The parameters field was left blank, since the patient module 
does not require any extra parameters. 

As shown in the Terminal window, the create command is 
sent to gman. At the same time, the node created is filled with 
an irregular pattern to indicate its “zombie” status. 

Gman confirms the creation of this node when the system is 
next polled. ConicDraw then sets the node’s status to stopped 
and shows its entry and exit ports. 

I & zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFile Edit Lauout Command Windows Temolate 1 

zn- ward -p~--hi----. . 
4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ne0 3 
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tea4 + 
alarm4 

teas 

alarm5 
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alarm4 

bed5 

alarm5 
bed2 

U alarm 
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60 COMPUTER 



To connect bed3 to nurse, select the link tool in the tool pal- 
ette and draw a link from the exit port labeled bed3 to the entry 
port labeled bed. Draw another link from alarm to alarm3. This 
is equivalent to issuing the commands: 

link nurse.bed3 to bed3.bed 
link bed3.alarm to nurse.alarm3 

All the nodes in the system are still in the stopped state. To 
start the nodes, select them with the selection tool and then 
choose "Start node" from the Command menu. 

A start command is sent to gman for each of the selected 
nodes. Once started, the nodes are painted gray to indicate 
their new state. 

To get detailed information on the nurse, select it with th 
selection tool and then choose "Get info ..." from the Command 
menu. This brings up the dialog box as shown in the diagram. 
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Figure 13. Minimizing the length of a link. 

Before tidy-up After tidy-up 

Figure 14. Avoiding crossovers between links. 
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Figure 15. A dining philosophers system before and after tidy-up. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(Continued from p .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA58) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
illustrated in Figure 13. As a result, the 
ports at the ends of a link will be on the 
opposite faces of their nodes. Whether they 
end up on the north-south or east-west 
faces depends on which pair produces the 
shorter link. At the end of this step, all the 
ports in the diagram will have been-posi- 
tioned on the adjacent faces. 

Determine the relative positions of 
ports on a face. This step involves finding 
out, for each node, the relative positions of 
other nodes to which it is connected. This 
information is then used to sort the ports so 
that their links do not cross. In addition, the 
ports on each face are spread evenly along 
the face to obtain a regular appearance. 
Figure 14 shows an example of the effects 
of this step. 

In practice, the above algorithm may not 
be sophisticated enough to produce an 
aesthetically pleasing layout. But it is a 
very fast, effective way of generating a 
fairly clean diagram that can be enhanced 
through manual editing. It produces par- 
ticularly good results if the user places the 
nodes in roughly the right locations before 
invoking the command (see Figure 15). 

Templates. The automatic tidy-up facil- 
ity cleans up the links but makes no attempt 
to reposition the nodes. Various placement 
algorithms exist for diagram layout and 
VLSI design, but the programs tend to be 
large and to execute slowly, making them 
unsuitable for an interactive tool such as 
ConicDraw. Furthermore, the aesthetics of 
diagrams is a subjective matter, so the re- 
sults produced by even the best of algo- 

rithms might not be acceptable to every- 
one. 

Templates offer an effective way of 
overcoming this problem by enlisting the 
user’s help. This is an idea borrowed from 
desktop publishing, where the page de- 
signer often describes a page layout in 
terms of blocks or columns of text and 
pictures. This forms a template that deter- 
mines the appearance of the page. These 
blocks of text and pictures act as place 
holders for the contents of the page and are 
independent of content. This independ- 
ence means that the page layout informa- 
tion can be stored separately and reused. 

ConicDraw uses a template to determine 
node placement. Associated with each 
diagram is a template that can contain 
multiple node holders. To create a holder, 
the user switches to the template view by 
choosing the “Switch view” menu com- 
mand. This gives him a new set of tools for 
creating the different types of holders. 
There are three types of general node hold- 
ers: ring, row, and column. The user asso- 
ciates a holder with a node by giving each 
holder a holder type. Any node of that type 
then belongs to that holder. Figures 16 and 
17 show the patient monitoring system 
with all the patient nodes placed in a col- 
umn holder and aring holder, respectively. 

ConicDraw distributes nodes evenly in 
each holder. The user can change the rela- 
tive positions of the nodes by dragging 
them with the selection tool. The user does 
not have to do this precisely because the 
nodes will, by default, snap back to their 
holder and redistribute automatically. 
Similarly, when a holder is moved or re- 
sized, all its nodes will relocate appropri- 
ately. 

When combined with the tidy-up facil- 
ity, templates are an effective layout aid. 
We’ve found them particularly useful for 
diagrams with regular layouts, such as 
those depicting client-server models. On 
the other hand, these template facilities are 
fairly restrictive; possible extensions 
would allow nodes of more than one type 
in a holder, nodes of the same type in more 
than one holder, groupings of holders, and 
new types of holders. 

Alignment grid.  To help the user line up 
nodes precisely, ConicDraw has an invis- 
ible alignment grid that constrains node 
placement. When a node is created or 
subsequently moved, its top-left comer 
automatically snaps to the nearest point in 
the grid. This feature can, however, be 
turned off by the user who wants finer 
control over the layout. 
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Automatic line-straightening. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWhen a 
user draws or moves a link that has more 
than one segment, each segment is auto- 
matically checked and, if necessary, modi- 
fied so that it lies in either a horizontal or 
vertical direction. Thus, if the user wants 
only horizontal and vertical links in his 
diagram, he can draw lines approximating 
the desired shape and let the tool do the 
necessary modification. 

Hiding port names. Screen cluttering is 
a common problem for complex diagrams, 
especially given the small size of the stan- 
dard Macintosh screen. We therefore give 
the user the option of not displaying the 
names of the entry and exit ports. This 
usually improves diagram readability and 
is especially useful when the user is pri- 
marily interested in diagram structure. 

Diagram scaling. ConicDraw allows 
diagram viewing and editing at any level of 
magnification. The user can zoom in on a 
particular portion of a diagram for detailed 
editing or zoom out for a complete view of 
a complex diagram. The Layout menu 
provides five items for controlling the 
scaling of diagrams. The first four enable 
fast switching to four preset scales: size to 
fit, 50 percent, 75 percent, andnormal size. 
The fifth item lets the user specify the 
scaling factor via a dialog box. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Browsing and 
animation extensions 

Based on experience using ConicDraw, 
we plan to expand its capabilities in system 
browsing and animation. 

System browsing. The nodes displayed 
graphically by ConicDraw have an internal 
structure. We plan to include a facility to 
“explode” nodes so that their internal 
structure can also be viewed graphically. A 
user will be able to trace down through the 
hierarchy of modules that constitute a 
system until, at the bottom level, he or she 
can view task module program text. Based 
on our experience with the tool at the 
dynamic configuration level, we believe 
system browsing will be a powerful aid to 
understanding complex systems. The ap- 
proach we have adopted has more in com- 
mon with design-and-specification tools’ 
than with more-conventional browsers 
such as those in Smalltalk-80. At each 
level, the user will be able to view both the 
configuration program text and its graphi- 
cal representation (as is currently provided 
at the top level). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 16. Patient nodes arranged in a column holder. 
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Figure 17. Patient nodes arranged in a ring holder. 
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We believe strongly in the importance of 
retaining a textual representation of the 
configuration, since in some instances it 
conveys a clearer understanding of a 
module’s semantics. The examples pre- 
sented earlier used a subset of the configu- 
ration language’s facilities; consequently, 
the graphical representation was adequate. 
The following example forms part of a 
parallel implementation of the fast Fourier 
transform. It uses imported functions to 
control the internal connection pattern. 
Inputs are connected to the output that has 
a bit-reversed value of their input index. 

group module interleave(n:integer); 
use 

funcs: backwards,log2; 
compv:complex; 

input[O..n-l]:complex; 

output[O. .n- 1 ]:complex; 

input[k] to 

output[backwards(k,log2(n))]; 

entry port 

exitport 

link family k: [O..n- 11 

end 

For large values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn, this module’s 
graphic representation appears as if inputs 
were connected to outputs at random. The 

text conveys the structure’s purpose more 
clearly. Similar problems occur when re- 
cursion is used in the configuration pro- 
gram. 

Animation. One problem in using 
ConicDraw is the speed at which system 
changes can occur. Usually, these rapid 
changes result from the configuration 
manager’s execution of preprogrammed 
reconfigurations in response to failures or 
to user action. Configuration programs are 
essentially declarative. The configuration 
management system uses a nontrivial algo- 
rithm to order the execution of individual 
configuration actions. Viewing these 
changes in real time (or as fast as 
ConicDraw can display them) conveys 
little to the user of the sequence of actions 
effecting the change. Consequently, we 
intend to provide a facility to record the 
sequence of changes and replay them gra- 
phically at a speed comprehensible to the 
user. This facility can be thought of as 
animating the execution of changes. Such 
animation can be used to test configura- 
tion-change programs before using them 
on the actual system. Earlier work in re- 
quirements analysis” has demonstrated 
the value of animation. 
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C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAonfiguration programming pro- 
vides a clear and flexible means for 
program definition, construction, 

and management. Its advantages have 
been recognized for both conventional 
software development, as in the use of 
interface specifications in the Inscape en- 
vironment,” and in distributed systems 
such as Conic and, more recently, Durra.’* 
Graphical support is particularly appropri- 
ate for the structural information used in 
configuration specifications. Stile” also 
applies graphics to configuration, but it fo- 
cuses on design and development rather 
than system construction and management. 

Our experience shows that ConicDraw 
is a powerful aid to understanding and 
constructing configuration programs. 
While textual programs have the advan- 
tage of conciseness and clarity in express- 
ing complex structures, graphics offer a 
more accessible human interface. The abil- 
ity to translate between the two forms of- 
fers the best of both worlds. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU 
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