
VISUALIZATION IN COMPUTING

Graphical Configuration
Programming

The structural description, construction and evolution
of software systems using graphics

Jeff Kramer, Jeff Magee, and Keng Ng

Imperial College of Science and Technology zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
oftware systems can be succinctly
described, constructed, and man-
aged in terms of their software con-

f ig~rat ion. ’ -~ This configuration consists
of the set of software components that
implement system functionality, plus their
control and communication interconnec-
tions. Program modules are defined and
constructed to provide well-defined inter-
faces, giving the information and calls
provided to or required from other mod-
ules. The program is then configured by
creating and interconnecting instances of
these software modules.

The specification of the system configu-
ration provides a conveniently abstract
form in which to define and comprehend
programs, and it can also be used to gener-
ate the executable program. Evolutionary
changes to the program are reflected as
changes to the program structure, either by
the addition of further modules or by the
use of modified versions of selected mod-
ules. “Configuration programming,” the
term we use to describe programming at
the configuration level, thus provides a
clear and flexible means for program defi-
nition, construction, modification, and
comprehension. Configuration program-

This workstation

integrates the textual

and graphical

information required for

configuration

programming. Its

editing, monitoring,

layout, and control

facilities are applied

dynamically to

operational systems.

ming is closely related to the ideas of
programming-in-the-large and the use of a
module interconnection language outlined
by DeRemer and Kron.’ Configuration

refers here to system structure, not to ver-
sion control.

Configuration programming is particu-
larly appropriate for distributed process-
ing, where the software components may
reside on different machines. The configu-
ration specification can both describe the
structure of the required system and spec-
ify the allocation of components to ma-
chines. The operational system is then
managed by monitoring the status of sys-
tem components and extending or chang-
ing the system configuration. Such
changes may involve modifying existing
functions or introducing new functions to
incorporate new technology, improve
implementation techniques, or provide
system redundancy. It is certainly advanta-
geous for configuration management to
dynamically support change to the system
without interrupting processing elsewhere
on the system.

The Conic en~ironment,~ developed by
the Distributed Systems Group at Imperial
College, supports configuration program-
ming for distributed and concurrent pro-
grams. The environment supports two
languages, one for programming individ-
ual task modules (processes) with well-

October 1989 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0018-9162/89/1000-0053$01.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1989 IEEE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA53

alarm

patient i bed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
group module zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApatient;

use monmsg: bedtype, alarmstype;
exitport a1arm:alarmstype;
entryport bedxignaltype reply bedtype;

1
- The module periodically reads sensors attached to a patient.
Readings outside preset ranges cause alarm messages to be
sent to the exitport zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAalarm.
A request message received on the entryport bed returns the
current readings and ranges.

1
end

Figure 1. The patient module.

alarm1 bed 1

&I;:; 1 nurse ~ bed2

bed3

alarm4 bed4

alarm5 bed5

group module nurse (maxbed:integer=5);
use monmsg: bedtype, alarmstype;
entry port alarm[1 ..maxbed]:alarmstype;
exitport bed[1 ..maxbed]:signaltype reply bedtype;

(
- the module displays alarms received from alarm[]
and can request the display for a particular patient from
its exitports bed[1.
1

end

Figure 2. The nurse module.

defined interfaces and one for configuring
programs from groups of task modules. In
addition, the environment supports mod-
ule reuse and was recently extended to
support dynamic configuration. The latter
facility is achieved with on-line manage-
ment tools that permit dynamic creation,
control, and modification of application

programs. The basic Conic environment
has been in use for more than five years and
has amply demonstrated the utility of
configuration-level programming.

Although configurations are most easily
described and viewed graph i~a l l y ,~ .~ they
have traditionally been provided to the
support environment in textual form,

which is more concise and easier to parse.
For example, Conic’s developers and users
have always drawn diagrams to describe
and document their configurations, while
their interactions with compilers, builders,
and managers have always been textual.
This disparity, plus the availability of
graphics-based workstations, prompted us

to develop graphical support for configu-
ration programming - essentially, a vis-
ual programming language for configura-
tion. However, in contrast to most work on
visual programming,6 our approach em-
phasizes system structure in-the-large
rather than detailed data and control struc-
ture. The combination of graphics and text
is a powerful facility; the graphics comple-
ments the text by reflecting the described
or existing configuration, thereby aiding
comprehension and validation. Of course,
the text is still essential for detailed infor-
mation and for certain complex cases not
amenable to display.

Configuration
programming in Conic

The configuration programming con-
cepts embodied in Conic are illustrated by
a simple example: a patient monitoring
system.’ The intensive care ward in a hos-
pital consists of a number of beds. Patients
in each bed are continuously monitored for
a number of factors, such as pulse, tem-
perature, and blood pressure. Current fac-
tor readings are displayed both at the bed-
side and at the nurse unit. If any of a
patient’s readings are outside preset limits,
an alarm is sent to the central nurse station.

Module types. The system is con-
structed from the two module types de-
fined both graphically and textually in
Figures 1 and 2 .

Typed exit and entry ports define the
module interface. Messages of any Pascal
data type are sent out via exit ports and
received from entry ports. The type defini-
tions are imported from definition units by
the use clause (types bedtype, alarmstype
from monmsg in Figures 1 and 2).

System configuration. Given the hard-
ware depicted in Figure 3, we can construct
an initial patient monitoring system con-
sisting of one nurse unit and one patient
unit by instantiating one instance of each
of the above module types and intercon-
necting their exit and entry ports. The links
between exit and entry ports allow mod-

54 COMPUTER

ules to communicate by message passing.
Conic permits connecting only ports of the
same type. The configuration program for
this system is shown both textually and
graphically in Figure 4.

We actually create the system by sub-
mitting the configuration description to a
configuration manager. tool that either
downloads module code into target proces-
sors or instantiates processes under Unix
as appr~p r ia te .~ The description can be
submitted directly as text or indirectly
using the graphical editor. As shown in
Figure 4, the graphical description con-
tains less information than the textual one;
the graphics tool elicits additional infor-
mation through dialog boxes. This extra
information consists of the physical mod-
ule location (the at clause) and module
parameters. For example, the nurse mod-
ule has a default parameter setting to the
value 5 (Figure 2). However, this could
have been changed when the module in-
stance was specified, that is, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

create nurse:nurse(3) at sunl.

Dynamic configuration. In addition to
programming initial configurations, the
Conic toolkit permits dynamic configura-
tion: changes to running systems. For
example, we can extend the above system
to include an additional patient unit by
submitting the following configuration
program to a configuration manager:

manage ward;
create

link

bed2:patient at targ2;

bed2.alarm to nurse .alarm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[21 ;

nurse.bed[2] to bed2.bed;
end

The ward system (Figure 4) evolves dy-
namically to the system in Figure 5.

In practice, we have found it convenient
to create initial systems from the more-
concise configuration program. Once cre-
ated, the graphics tool can display the
system as it exists: It gathers information
directly from the executing system by
communicating with a configuration man-
ager and can query textual information not
directly displayed. We can then modify the
system through either graphical com-
mands or configuration program text.
Also, a change performed graphically can
be saved in text form for later reuse.

The configuration management system
is itself a distributed system, so more than
one agent can change the system configu-

(*) (-*)

Figure 3. Hardware environment.

system ward;
create

bed1:patient at targl;
nurse: nurse at sun 1 ;

bed1 .alarm to nurse.alarm[11;
nurse.bed[l] to bedl.bed;

link

end

I bedl t-f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 bed2

bed3
nurse

alarm2

alarm3

alarm4

alarm5

bed4

bed5

I I

Figure 4. Initial patient monitoring system.

I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1

;darn a l a r u l i i bed3

bed 1 bed4
nurse

U 4 bed5 I
I 4 alarm3

alarm alarm2

bed2

alarm4

alarm5

I I

Figure 5. Extended patient monitoring system.

October 1989 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 5

alarm

I patient I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
group module zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApatient;

use monmsg: bedtype, alarmstype;
exitport a1arm:alarmstype;
entry port bed:signaltype reply bedtype;
use scanner; monitor;
create

{import message types

{import module types

scanner(100); [scan every 100ms]
monitor;

scanner.readings to monitor.readings;
monitor.alarm to alarm;
bed to monitor.data;

link

end

Figure 6. Internal structure of patient module.

ration. Used in a monitoring mode, the
graphics tool allows users an up-to-date
view of the system configuration. For
example, the diagram in Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 was cre-
ated by using the graphics tool to monitor
a system created from that figure’s con-
figuration program. The system was ex-
tended by editing the diagram directly to
create Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. These edits caused the tool

a configuration manager, which changed
the actual system accordingly.

Module hierarchies. We have de-
scribed the top-level configuration of
modules to construct a patient monitoring
system. In fact, the two module types used
are themselves module configurations.
See, for example, the internal structure of

to send the extension configuration text to the patient module in Figure 6.

Text interface Management system Actual system

Changes - -
Status

Figure 7. Relationship between ConicDraw and system.

56

The module types used to construct the
patient module can also have an internal
structure. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA Conic system is thus a hier-
archic structure of modules. The modules
at the bottom are task modules imple-
mented in a version of Pascal to which
message-passing constructs have been
added. These task modules execute con-
currently and are hierarchically structured,
using the configuration programming lan-
guage, into logical nodes. Logical nodes,
which are simply module groups that in-
clude a runtime executive, are the unit of
both distribution and dynamic configura-
tion. The structure of modules within a
logical node is determined at compile time
and does not change at system runtime.
Consequently, the graphics tool does not
need to edit internal node structure. How-
ever, we intend to provide the ability to
“explode” logical nodes to allow examina-
tion of their internal structure and aid sys-
tem comprehension. This, with the ability
to examine a module’s program text
(whether a configuration program or a task
program), will provide a powerful system-
browsing facility.

The ConicDraw
graphical workstation

As mentioned above, diagrams have
always been used with Conic’s textual
descriptions and commands, although
their use was originally informal and they
were generated manually. Now, text and
diagram facilities are integrated, and
graphics are provided by the ConicDraw
graphical workstation.

As shown in Figure 7, the management
system provides both an interactive textual
and graphic interface to the operational
system. ConicDraw maintains a graphic
representation of executing Conic systems
in terms of their module instances, inter-
connections, and execution state. Changes
are reported by configuration manage-
ment, so ConicDraw can maintain up-to-
date views of the systems. ConicDraw can
also instigate changes as a result of edits to
the graphic representation. Since it always
maintains a representation of the actual
system, one or more workstations can be
connectedtothedistributedsystem, thereby
allowing a number of users to manage and
monitor the system cooperatively.
ConicDraw contains a comprehensive set
of tools for creating and editing Conic
configurationdiagrams. As such, it can also
be used as a stand-alone diagram editor.

COMPUTER

We chose an Apple Macintosh as the
implementation hardware because of its
comprehensive support for graphic-inter-
face programming and because we had
experience with it from a previous project.
The Macintosh communicates via a serial zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
RS-232 communication link with the dis-
tributed system (running on Sun, VAX,
and VME 68000 machines connected by
Ethernet). This serial link limits response
times and may be replaced by a direct
Macintosh-to-Ethernet connection.

In the following sections, we describe
ConicDraw’s main facilities and discuss
issues raised by its implementation.

System monitoring. To support the on-
line monitoring of systems, ConicDraw
needs access to the executing distributed
system. This is achieved by running a
special version of a configuration manager
(gman) with ConicDraw (Figure 7). Gman
is a Conic program running on a host
machine and communicates with
ConicDraw on the Macintosh via a serial
link. In the same way that an interactive
manager (iman) supports the textual inter-
face, gman acts as a server to ConicDraw
and can provide information about all
Conic systems running on Unix machines
as well as stand-alone targets. Using a
simple communication protocol, gman
supplies ConicDraw, on request from the
latter, the names of currently active sys-
tems and the nodes, ports, and interconnec-
tions within each system. In addition, it can
provide detailed information about each
node, such as the type of node, which
machine it is running on, and how long it
has been running.

At the beginning of a session, the user
typically wants to find out what systems
are running in the network. Selecting “Get
systems” from the Command menu puts a
set of icons in the Systems window, as
shown in Figure 8. Each icon represents
one Conic system and acts as the interface
for accessing the system. To view a sys-
tem, the user need only double-click on the
appropriate system icon. This opens the
system to reveal its internal nodes and their
interconnections. The pictorial representa-
tion of the system is displayed in a graphi-
cal window (Figure 9).

ConicDraw allows multiple systems to
be open at the same time. The number is
limited only by the computer’s memory.
By default, ConicDraw will continuously
poll an open system for changes to either
its structure or its state. When a change is
detected, the system’s diagram is appropri-
ately updated to ensure that the graphical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Conic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Sewer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-

k w i n I =mi=

pj
kn

B nd

Figure 8. Icons in the systems window.

bed3

alarm3

bed4

alarm4

alarm5

bed5

Figure 9. An example of a graphical window.

information is consistent with the system’s
true state.

When several systems are open, the user
can monitor all of them or just the one that
is frontmost on the screen. Monitoring can
also be turned off completely, in which
case none of the system diagrams are
updated. In addition, the user can modify
polling frequency, depending on how rap-
idly the system is expected to change. All
these monitoring options are set via a dia-
log box (Figure 10).

Nodes in a diagram can be displayed in
several ways. The default is to view nodes
by their names; that is, only the instance
name is displayed in its box. Other options
are viewing by type, location, or full infor-
mation, in which case the information dis-
played includes the name, type, location,
and state of the node, as well as its environ-
ment (whether it is running on a Unix
machine or a stand-alone target). A user
can also find out how long a node has been
running by choosing the “Get info” menu

command. This opens a dialog box that
displays the node’s full information, plus
its uptime (Figure 11).

Because messages received from gman
contain no layout information, ConicDraw
is responsible for placing system compo-
nents in a diagram. We presently use a
simple layout strategy, rather than a com-

.......Monitor options

! zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 Moni tor all systems

i 0 Moni tor front-most system

I @I Moni tor o f f
: ... i

Poll every m s e c o n d s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[Cancel)

Figure 10. Options for system moni-

toring.

October 1989 57

Enuiron uniH

Status Stopped Machine 68000

Location chico Uptime 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA:20:10

Instance Name

Node Type

Parameters

Tarqet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
II

nurse1

nurse

3

sun1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(Cancel)

Creating a new node...

[OK) [Cancel]

Figure 11. Detailed information of a node instance. Figure 12. Creation of a new node instance. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
plex algorithm, to minimize the delay be-
tween a user’s request for the system and
the display of its diagram. This simple
strategy is also important in reflecting
systCm changes as they happen.

Initially, nodes are placed into arrays of
grid cells and the ports are scattered ran-
domly along the four faces of their parent
nodes. Links are then drawn as single-
segment straight lines connecting the ap-
propriate message ports. The resulting
diagram is invariably messy and often
unreadable, so we have introduced a tidy-
up facility based on some simple heuris-
tics. It is invoked after each system request
(and change) to clean up a diagram.

Dynamic configuration. Once a system
diagram is displayed, i t is subject to user
modifications. These can be either cos-
metic modifications to the layout or struc-
tural changes to system components or
their status. Users effect both types of
changes by directly manipulating graphi-
cal objects on the screen. ConicDraw treats
structural changes as commands and relays
them to gman, which makes the equivalent
changes to the running system. These
changes include creating and deleting
nodes, linking and unlinking of exit and
entry ports, and changes in node status.

To add a node, the user selects the node
tool from the tool palette and draws a
rectangle in the system window. This
brings up a dialog box that prompts the
user for the name, type, and location of the
new node instance, as well as any extra
parameters needed for its creation (Figure
12). This information is then packaged and
sent to gman as a “create” command.

To create a connection between an exit
and entry port, the user simply draws a link
between the two ports. This link can be a
single straight line or a multisegment

polyline. The result is a “link” command
sent to gman with the appropriate argu-
ments. To delete a node or a link, the user
selects the item with the selection tool and
then chooses the “Clear” item from the
Edit menu.

The creation or deletion of a node or a
link can fail for various reasons. In these
situations, the displayed system configura-
tion will be inconsistent with the system’s
true state. To overcome this problem, we
introduced the “zombie” state, an interme-
diate state acquired by an object in the
process of being created or deleted. A
zombie object will remain in this state until
gman confirms its creation or deletion.
ConicDraw represents a zombie node by a
rectangle filled with an irregular pattern
and a zombie link by a dashed line.

A user changes node status via the “Start
nodes” and “Stop nodes”menu commands.
To start a node, the user selects it with the
selection tool and then chooses “Start
nodes” from the Command menu. Since
this command works on any node selected,
multiple nodes can be started at the same
time. The “Stop nodes”command works in
a similar way. The status of a node relates
to its configuration management state as
determined by a change management
protocol.R

For an example of how ConicDraw per-
forms and controls dynamic system con-
figuration, see the accompanying sidebar.

Diagram layout support. ConicDraw
provides all the standard editing facilities
expected of a diagram editor. It lets users
move and resize nodes, drag ports to any
node face, and reshape links by adding or
deleting individual segments in the link. In
addition, it knows the syntax of Conic
configuration diagrams and can therefore
prevent construction of syntactically ill-

formed diagrams. For example, it ensures
that all of a node’s ports and links stay
connected when the node is moved and that
a port cannot be detached from its parent
node. Because ConicDraw also maintains
information on port types, it further en-
sures that only compatible entry and exit
ports are connected.

A graphical system must give the user
full control over the layout of his diagram.
It is equally important, however, that the
tool simplifies the task of editing and
maintaining the diagram. This is especially
true for ConicDraw. Since the tool auto-
matically generates a system configura-
tion diagram from information derived
directly from the operational system, the
diagram often requires considerable edit-
ing before it resembles the structure the
user had in mind. We provide various fa-
cilities to automate some frequently per-
formed editing tasks, as well as tools to
help the user manage complex diagrams.
However, rather than force these tools on
the user, we provide them as options for
more flexibility. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Automatic diagram tidy-up. This facil-
ity, invoked automatically after a system
diagram is generated, is also available
manually by choosing the “Tidy diagram”
item in the Layout menu. The algorithm
uses two criteria in improving a diagram
layout: minimize the lengths of links, and
minimize crossovers between links. These
criteria are met by performing the follow-
ing steps:

Determine on which node face a port
should be placed. This step involves going
through all the links in the diagram and
pulling together the ports at either end, as

(Continued zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon p . 62)

5 8 COMPUTER

A Demonstration of Dynamic Configuration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
To illustrate how ConicDraw dynamically reconfigures systems, we use the patient monitoring system described in the section

titled “Configuration programming in Conic.” The example outlines the steps required to display the system configuration, shows
how a new patient can be added and linked into the system, and shows how to obtain detailed information about nodes via the
graphical interface.

ConicDraw starts by displaying two blank windows: Systems
and Terminal. The Systems window displays the system icons.
The Terminal window functions as a terminal emulator, allowing
the user to start up gman on the host machine.

To manage a system, first choose “Get systems” from the
Command menu. This sends a systems command to gman. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

19-gnan
m m W Ob b I I

Gman returns the names of all running systems and displays

To display the state of the patient monitoring system named
them as icons in the Systems window.

ward, double-click on its icon in the Systems window.

This action brings up a graphical window called ward, which

The system consists of three nodes: a nurse and two patients,
displays the current state of the system.

bed1 and bed2. All three nodes are painted white, indicating
that they are in the stopped state.

Note that the system diagram shown here is generated by
ConicDraw based on the heuristics outlined in the section titled
“The ConicDraw graphical workstation.”

’
& zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfile tdit Layout Command Windows Template

ward L ! d

alarm4 bsdz
bed4 alarm2

alarm3 bed3

bed5 alarm5

October zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1989 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 9

This figure shows the system diagram after it has been manu-

To create a new patient node, select the node tool in the tool
ally tidied up.

palette and draw a rectangle in the window.

This action brings up a dialog box that prompts the user for
the information needed to create the node. Fill in the text areas
as shown and click the OK button. This is equivalent to entering
the textual command: create bed3 patient at Sunl.

The parameters field was left blank, since the patient module
does not require any extra parameters.

As shown in the Terminal window, the create command is
sent to gman. At the same time, the node created is filled with
an irregular pattern to indicate its “zombie” status.

Gman confirms the creation of this node when the system is
next polled. ConicDraw then sets the node’s status to stopped
and shows its entry and exit ports.

I & zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFile Edit Lauout Command Windows Temolate 1

zn- ward -p~--hi----. .
4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ne0 3

alarm)

tea4 +
alarm4

teas

alarm5

n

Instance Name

n

bed3

alarm3

bed4

alarm4

bad5

alarm5

bed 4

alarm4

bed5

alarm5
bed2

U alarm

rl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
60 COMPUTER

To connect bed3 to nurse, select the link tool in the tool pal-
ette and draw a link from the exit port labeled bed3 to the entry
port labeled bed. Draw another link from alarm to alarm3. This
is equivalent to issuing the commands:

link nurse.bed3 to bed3.bed
link bed3.alarm to nurse.alarm3

All the nodes in the system are still in the stopped state. To
start the nodes, select them with the selection tool and then
choose "Start node" from the Command menu.

A start command is sent to gman for each of the selected
nodes. Once started, the nodes are painted gray to indicate
their new state.

To get detailed information on the nurse, select it with th
selection tool and then choose "Get info ..." from the Command
menu. This brings up the dialog box as shown in the diagram.

& zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFile Edit Layout Command Windows Template

10- ward ___j___ EIS

a larm4 F r b e d 2 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
alarm alarm2 alarm5

Get info... %I

M F i b e d bed2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ibed5
alarm alarm2 a larm5 II

I I U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa-
n u

& File Edit Layout Command Windows Template

m- - ward P 'IF

n I I

ype nurse Enuiron unim
tatus running Machine 68000

ocation gummo Uptime 1 :06:38

October 1989 61

~ _ _ _ _ _ r=+z F+i”.q
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABefore tidy-up After tidy-up zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 13. Minimizing the length of a link.

Before tidy-up After tidy-up

Figure 14. Avoiding crossovers between links.

I I

~~

Figure 15. A dining philosophers system before and after tidy-up. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(Continued from p . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA58) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
illustrated in Figure 13. As a result, the
ports at the ends of a link will be on the
opposite faces of their nodes. Whether they
end up on the north-south or east-west
faces depends on which pair produces the
shorter link. At the end of this step, all the
ports in the diagram will have been-posi-
tioned on the adjacent faces.

Determine the relative positions of
ports on a face. This step involves finding
out, for each node, the relative positions of
other nodes to which it is connected. This
information is then used to sort the ports so
that their links do not cross. In addition, the
ports on each face are spread evenly along
the face to obtain a regular appearance.
Figure 14 shows an example of the effects
of this step.

In practice, the above algorithm may not
be sophisticated enough to produce an
aesthetically pleasing layout. But it is a
very fast, effective way of generating a
fairly clean diagram that can be enhanced
through manual editing. It produces par-
ticularly good results if the user places the
nodes in roughly the right locations before
invoking the command (see Figure 15).

Templates. The automatic tidy-up facil-
ity cleans up the links but makes no attempt
to reposition the nodes. Various placement
algorithms exist for diagram layout and
VLSI design, but the programs tend to be
large and to execute slowly, making them
unsuitable for an interactive tool such as
ConicDraw. Furthermore, the aesthetics of
diagrams is a subjective matter, so the re-
sults produced by even the best of algo-

rithms might not be acceptable to every-
one.

Templates offer an effective way of
overcoming this problem by enlisting the
user’s help. This is an idea borrowed from
desktop publishing, where the page de-
signer often describes a page layout in
terms of blocks or columns of text and
pictures. This forms a template that deter-
mines the appearance of the page. These
blocks of text and pictures act as place
holders for the contents of the page and are
independent of content. This independ-
ence means that the page layout informa-
tion can be stored separately and reused.

ConicDraw uses a template to determine
node placement. Associated with each
diagram is a template that can contain
multiple node holders. To create a holder,
the user switches to the template view by
choosing the “Switch view” menu com-
mand. This gives him a new set of tools for
creating the different types of holders.
There are three types of general node hold-
ers: ring, row, and column. The user asso-
ciates a holder with a node by giving each
holder a holder type. Any node of that type
then belongs to that holder. Figures 16 and
17 show the patient monitoring system
with all the patient nodes placed in a col-
umn holder and aring holder, respectively.

ConicDraw distributes nodes evenly in
each holder. The user can change the rela-
tive positions of the nodes by dragging
them with the selection tool. The user does
not have to do this precisely because the
nodes will, by default, snap back to their
holder and redistribute automatically.
Similarly, when a holder is moved or re-
sized, all its nodes will relocate appropri-
ately.

When combined with the tidy-up facil-
ity, templates are an effective layout aid.
We’ve found them particularly useful for
diagrams with regular layouts, such as
those depicting client-server models. On
the other hand, these template facilities are
fairly restrictive; possible extensions
would allow nodes of more than one type
in a holder, nodes of the same type in more
than one holder, groupings of holders, and
new types of holders.

Alignment grid. To help the user line up
nodes precisely, ConicDraw has an invis-
ible alignment grid that constrains node
placement. When a node is created or
subsequently moved, its top-left comer
automatically snaps to the nearest point in
the grid. This feature can, however, be
turned off by the user who wants finer
control over the layout.

62 COMPUTER

Automatic line-straightening. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWhen a
user draws or moves a link that has more
than one segment, each segment is auto-
matically checked and, if necessary, modi-
fied so that it lies in either a horizontal or
vertical direction. Thus, if the user wants
only horizontal and vertical links in his
diagram, he can draw lines approximating
the desired shape and let the tool do the
necessary modification.

Hiding port names. Screen cluttering is
a common problem for complex diagrams,
especially given the small size of the stan-
dard Macintosh screen. We therefore give
the user the option of not displaying the
names of the entry and exit ports. This
usually improves diagram readability and
is especially useful when the user is pri-
marily interested in diagram structure.

Diagram scaling. ConicDraw allows
diagram viewing and editing at any level of
magnification. The user can zoom in on a
particular portion of a diagram for detailed
editing or zoom out for a complete view of
a complex diagram. The Layout menu
provides five items for controlling the
scaling of diagrams. The first four enable
fast switching to four preset scales: size to
fit, 50 percent, 75 percent, andnormal size.
The fifth item lets the user specify the
scaling factor via a dialog box. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Browsing and
animation extensions

Based on experience using ConicDraw,
we plan to expand its capabilities in system
browsing and animation.

System browsing. The nodes displayed
graphically by ConicDraw have an internal
structure. We plan to include a facility to
“explode” nodes so that their internal
structure can also be viewed graphically. A
user will be able to trace down through the
hierarchy of modules that constitute a
system until, at the bottom level, he or she
can view task module program text. Based
on our experience with the tool at the
dynamic configuration level, we believe
system browsing will be a powerful aid to
understanding complex systems. The ap-
proach we have adopted has more in com-
mon with design-and-specification tools’
than with more-conventional browsers
such as those in Smalltalk-80. At each
level, the user will be able to view both the
configuration program text and its graphi-
cal representation (as is currently provided
at the top level). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fil zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
IIH =\\ I I

Figure 16. Patient nodes arranged in a column holder.

KN

M

Figure 17. Patient nodes arranged in a ring holder.

w

We believe strongly in the importance of
retaining a textual representation of the
configuration, since in some instances it
conveys a clearer understanding of a
module’s semantics. The examples pre-
sented earlier used a subset of the configu-
ration language’s facilities; consequently,
the graphical representation was adequate.
The following example forms part of a
parallel implementation of the fast Fourier
transform. It uses imported functions to
control the internal connection pattern.
Inputs are connected to the output that has
a bit-reversed value of their input index.

group module interleave(n:integer);
use

funcs: backwards,log2;
compv:complex;

input[O..n-l]:complex;

output[O. .n- 1]:complex;

input[k] to

output[backwards(k,log2(n))];

entry port

exitport

link family k: [O..n- 11

end

For large values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn, this module’s
graphic representation appears as if inputs
were connected to outputs at random. The

text conveys the structure’s purpose more
clearly. Similar problems occur when re-
cursion is used in the configuration pro-
gram.

Animation. One problem in using
ConicDraw is the speed at which system
changes can occur. Usually, these rapid
changes result from the configuration
manager’s execution of preprogrammed
reconfigurations in response to failures or
to user action. Configuration programs are
essentially declarative. The configuration
management system uses a nontrivial algo-
rithm to order the execution of individual
configuration actions. Viewing these
changes in real time (or as fast as
ConicDraw can display them) conveys
little to the user of the sequence of actions
effecting the change. Consequently, we
intend to provide a facility to record the
sequence of changes and replay them gra-
phically at a speed comprehensible to the
user. This facility can be thought of as
animating the execution of changes. Such
animation can be used to test configura-
tion-change programs before using them
on the actual system. Earlier work in re-
quirements analysis” has demonstrated
the value of animation.

October 1989 63

C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAonfiguration programming pro-
vides a clear and flexible means for
program definition, construction,

and management. Its advantages have
been recognized for both conventional
software development, as in the use of
interface specifications in the Inscape en-
vironment,” and in distributed systems
such as Conic and, more recently, Durra.’*
Graphical support is particularly appropri-
ate for the structural information used in
configuration specifications. Stile” also
applies graphics to configuration, but it fo-
cuses on design and development rather
than system construction and management.

Our experience shows that ConicDraw
is a powerful aid to understanding and
constructing configuration programs.
While textual programs have the advan-
tage of conciseness and clarity in express-
ing complex structures, graphics offer a
more accessible human interface. The abil-
ity to translate between the two forms of-
fers the best of both worlds. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU

Acknowledgments

We would like to acknowledge the advice
and expertise of Naranker Dulay and Kevin
Twidle for their support in implementing and

interacting with the configuration managers.
They also contributed, along with Morris Slo-
man, to useful discussions on graphical con-
figuration programming. The referees made a
substantial contribution to the clarity and pres-
entation of this article

This work was partially supported by the
SERC (Science and Research Council) ACME
(Application of Computers to Manufacturing
Engineering) Directorate under grant GEE
62394.

References

1. F. DeRemer and H.H. Kron, “Program-
ming-in-the-Large versus Programming-
in-the-Small,” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE Trans. Software Eng.,
Vol. SE-2, No. 2, June 1976, pp. 114.121.

2. J.A. Goguen, “Reusing and Interconnect-
ing Software Components,” Computer,
Vol. 9, No. 2, Feb. 1986, pp. 16-28.

3. T.J. LeBlanc and S.A. Friedberg, “HPC: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA
Model of Structure and Change in Distrib-
uted Systems,” IEEE Trans. Computers,
Vol. C-34, No. 12, Dec. 1985, pp. 1,114-
1,128.

4. J. Kramer and J. Magee, “Dynamic Con-
figuration for Distributed Systems,” IEEE
Trans. Software Eng., Vol. SE-1 1, No. 4,
Apr. 1985, pp. 424-436.

5 . J. Magee, J. Kramer, and M. Sloman,
“Constructing Distributed Systems in

Conic,” IEEE Trans. Software Eng., Vol.
SE-15, No. 6, June 1989, pp. 663-675.

6. S.K. Chang, “Visual Languages: A Tutorial
and Survey,” Visualization in Program-
ming: Lecture Notes in Computer Science
282, Springer-Verlag. pp. 1-23.

7. W.P. Myers, G.F. Myers, and L.C. Con-
stantine, “Structured Design,’’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIBM Sys. J . ,
Vol. 13, No. 2, 1974, pp. 115-139.

8. J. Kramer and J. Magee, “A Model for
Change Management,” Proc. IEEE Work-
shop Future Trends of Distributed Comput-
ing Systems in the 1990s, 1988, pp. 286-
295.

9. M. Stephens and K. Whitehead, “The Ana-
lyst - A Workstation for Analysis and
Design,” Proc. Eighth Int’l Conf. Software
Eng., CS Press, Los Alamitos, Calif., Order
No. 620 (microfiche only), 1985, pp. 364-
369.

IO. J. Kramer and K. Ng, “Animation of Re-
quirements Specifications,” Software Prac-
tice & Experience, Vol. 18, No. 8, Aug.
1988, pp. 749-774.

11. D.E. Perry, “Software Interconnection
Models,” Proc. Ninth Int’l Conf. Software
Eng., CS Press, Los Alamitos, Calif., Order
NO. 767, 1987, pp. 61-69.

12. M.R. Barbacci, C.B. Weinstock, and J.M.
Wing, “Programming at the Processor-

IJCNN-90-WASH-DC
INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS

January 15-19, 1990 Omni Shoreham Hotel, Washington,D.C.

Tutorials, Exhibits, Special Interest Group Meetings
(SIG); Technical Sessions of invited and contri-
buted papers on Applications, Neural and Cognitive
Sciences and Theory; including special sessions on
Self-organizing Neural Architectures and Evolu-
tionary Issues.

Featuring Plenary Speeches by Nobel Laureates
Leon Cooper, Gerald Edelman, David Hubel and
INNS President, Bernard Widrow.

Presentation of research perspectives from Japan,
Europe, and the U.S.

F o r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmore in f ormution please contact:
Deverman & Associates

4233 Spring Street, “99 La Mesa, California U.S.A. 92041
800 a.m.-4:30 p.m. PST FAX (619) 462-0121 (619) 462-6800

INNS T H E INSTITUTE OF

ELECTRICAL AND
ELECrRoNICs INTERNATIONAL

NEURAL NETWORK ENGINE E RS. I NC
SOC,ETY

Memory-Switch Level,” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProc. 10th Int’l Conf. Software zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEng., CS
Press, Los Alamitos, Calif,, Order No. 849, 1988, pp. 19-28.

13. M.P. Stovsky and B.W. Weide, “Stile: A Graphical Design and
Development Environment,” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADigest Cornpcon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASpring 87, CS Press,
Los Alamitos, Calif., Order No. 764, pp. 247-250 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Jeff Kramer is a senior lecturer in the Department of Computing at
Imperial College. He was a principal investigator of the various research
projects that led to the development of the Conic environment. He is
coauthor of a book on distributed systems and computer networks, and he
was the principal investigator of the TARA (Tool-Assisted Requirements
Analysis) project. His research interests include software specification
techniques, design methods, languages, and tool support environments,
especially for distributed systems.

Kramer obtained a BSc degree in electrical engineering from the
University of Natal, South Africa, in 1970. He was awarded an MSc in
1972 and a PhD in 1979, both in computing science from Imperial College,
London. He is a member of the IEE, ACM, and the IEEE Computer
Society.

Jeff Magee is a lecturer in the Department of Computing at Imperial
College. He previously was a principal investigator of the various research
projects funded by British Coal and SERC that led to the development of
the Conic environment. He also worked with the British Post Office on the
design and development of System X. His research interests include
parallel algorithm design, distributed operating systems and languages,
and tool support for distributed systems.

Magee graduated from Queens University Belfast with a degree in
electrical engineering in 1973. He was awarded an MSc and PhD in
computing science from Imperial College in 1978 and 1984, respectively.
He is a member of the IEE.

Keng Ng has been a research assistant in Imperial College’s Department
of Computing since 1985, first on the TARA project and subsequently on
a Conic-related project. He has worked mainly in the area of graphical tool
support for software development. His current research interests include
software development environments, visual programming, and user inter-
faces. Ng graduated from Imperial College in 1985 with a bachelor’s
degree in computing science.

The authors can be reached at Imperial College, Dept. of Computing,
180 Queen’s Gate, London SW7 2BZ, United Kingdom. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-he zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFuture

For over four decades, Los Alamos Na-

tional Laboratory has challenged the fron-

tiers of science, researching an exciting

range of phenomena. Pioneering men

and women of science have accomplished
breakthrough discoveries in many areas,

combining basic sciences with engineer-

ing disciplines and technological ad-

vances. As one of the largest multidisci-
plinary, multiprogram national laboratories
in the United States, we are also interna-
tionally recognized as one of the most

prestigious scientific institutions in the

world.

Computer Security
Professional
The DOE Center for Computer Security at

Los Alamos currently seeks a computer

professional to participate as a team
member supporting the Department of

Energy’s computer security program.

Tasks include a broad range zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof R&D proj-

ects related to the security of DOE com-

puter systems. Current projects include
security model development, software

verification, expert systems as applied to
the security of networks and anomaly

detection, and computer security educa-
tion.

Requires in-depth knowledge and experi-

ence in design and implementation in one
of the following areas: computer security,

modern operating systems or computer

networking. Professional-level program-
ming experience in one or more high-level
languages such as FORTRAN, Pascal or

C is required. Must be able to work on a
team solving difficult and sometimes

vaguely-defined problems using excellent
interpersonal and written communication

skills. Experience in modern software en-
gineering techniques desirable. Requires
MS, PhD in computer science, engineer-

ing, mathematics or equivalent combina-

tion of education and experience.

Superior compensation and benefits are

provided. For prompt consideration, send
resume to: Molly Birely (MS P280), Per-

sonnel Services Division 90201 -BP, Los
Alamos National Laboratory, Los Alamos,

NM 87545.

Affirmative Action/Equal Opportunity

Employer. Must be able to obtain a De-

partment of Energy Security Clearance.

University of California

October 1989

