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Summary. In this paper we introduce new types of graphical Gaussian models by placing sym-
metry restrictions on the concentration or correlation matrix. The models can be represented by
coloured graphs, where parameters associated with edges or vertices of same colour are restricted
to being identical. We study the properties of such models and derive the necessary algorithms for
calculating maximum likelihood estimates. We identify conditions for restrictions on the concen-
tration and correlation matrices being equivalent. This is for example the case when symmetries
are generated by permutation of variable labels. For such models a particularly simple maximiza-
tion of the likelihood function is available.
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1. Introduction

This paper introduces new types of graphical Gaussian models (Whittaker, 1990; Lauritzen,
1996), also known as covariance selection models (Dempster, 1972), by imposing symmetry
restrictions to the concentration matrix, i.e. the inverse of the covariance matrix. Following
up on Højsgaard and Lauritzen (2005) we introduce three types of restriction on graphical
Gaussian models: equality among specified elements of the concentration matrix (RCON),
equality among specific partial variances and correlations (RCOR), and restrictions gener-
ated by permutation symmetry (RCOP). Adding symmetry to the conditional independence
restrictions of a graphical model reduces the number of parameters, useful when parsimony
is needed, for example when estimating covariance matrices of large dimension with rela-
tively few observations. The symmetry restrictions are represented by colouring of edges
and vertices of the dependence graph of the model.

In the present article we introduce the model types and investigate their fundamental
properties and mutual relationships whereas details of the estimation algorithms and their
implementation in software are described in Højsgaard and Lauritzen (2007).

Symmetry restrictions in the multivariate Gaussian distribution have a long history
(Wilks, 1946; Votaw, 1948; Olkin and Press, 1969; Andersson, 1975; Andersson et al., 1983).
Such restrictions have previously been combined with conditional independence restrictions,
for example in the circular stationary Markov process (Anderson, 1942; Leipnik, 1947), in
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Table 1. Empirical concentrations ×1000 (on or above the diagonal) and
partial correlations (below the diagonal) for the examination marks in five
mathematical subjects.

Mechanics Vectors Algebra Analysis Statistics

Mechanics 5.24 −2.44 −2.74 0.01 −0.14

Vectors 0.33 10.43 −4.71 −0.79 −0.17

Algebra 0.23 0.28 26.95 −7.05 −4.70

Analysis −0.00 0.08 0.43 9.88 −2.02

Statistics 0.02 0.02 0.36 0.25 6.45
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Fig. 1. Conditional independence structure of examination marks for 88 students.

spatial models based on Markov random fields (Whittle, 1954; Besag, 1974; Besag and
Moran, 1975), and in combination with other graphical models and lattice independence
models (Hylleberg et al., 1993; Andersson and Madsen, 1998; Madsen, 2000). Symmetry
restrictions similar to those studied here are well established in the form of stationarity
assumptions for time series and longitudinal data analysis.

To illustrate the different types of model considered in this article, we shall discuss three
simple examples based on data which are all well known from the literature. Initially we
describe the examples briefly and then revisit them later.

Mathematics marks The first example is concerned with the examination marks of 88
students in 5 different mathematical subjects. The inverse of the empirical covariance
matrix is displayed in Table 1.

The data were reported in Mardia et al. (1979) and also analyzed in Whittaker (1990) as
well as in Edwards (2000). Both of the latter references demonstrate an excellent fit to the
model displayed in Figure 1, where absence of an edge between two variables indicates that
these are conditionally independent given the remaining variables, implying that marks in
Vectors and Mechanics are conditionally independent of marks in Analysis and Statistics,
given the marks in Algebra. Most off-diagonal elements of the empirical concentration
matrix which are not close to zero are almost equal. Indeed the data support a model
with symmetry restrictions as in Figure 2, where elements of the concentration matrix
corresponding to the same colours are identical, i.e. the diagonal concentrations of Vectors
and Analysis are equal as indicated in green colour (or a single asterisk), as are those of
Mechanics and Statistics, in blue with a double asterisk; the mixed concentration between
Algebra and Analysis is different from the others, all of which have the same value, indicated
with red colour and a plus sign. Here and in the following, black or white colours are
considered neutral, the corresponding parameters being allowed to vary freely. A symmetry
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Fig. 2. Coloured graph of an RCON symmetry model for the examination marks of 88 students.
Elements of the inverse concentration matrix corresponding to edges or vertices of the same colour are
identical.

Table 2. Empirical concentrations (×100) (on and above
diagonal), partial correlations (below diagonal), and standard
deviations for personality characteristics of 684 students.

SX SN TX TN

SX (State anxiety) 0.58 −0.30 −0.23 0.02

SN (State anger) 0.45 0.79 −0.02 −0.15

TX (Trait anxiety) 0.47 0.03 0.41 −0.11

TN (Trait anger) −0.04 0.33 0.31 0.27

Standard deviations 6.10 6.70 5.68 6.57

model of this type shall be called an RCON model, reflecting that the symmetry restrictions
apply to the elements of the concentration matrix.

Anxiety and anger Cox and Wermuth (1993) report data on personality characteristics on
684 students. The data are concerned with anxiety and anger in a trait and state version, the
trait version reflecting a disposition and the state version a more momentary concept. Each
characteristic is measured on the basis of questionnaires developed by Spielberger et al.
(1970, 1983), eventually leading to quantitative scores for the characteristics. Empirical
concentrations and partial correlations are displayed in Table 2. As also argued by Cox and
Wermuth (1993), data strongly support the conditional independence model displayed in
Figure 3.

In addition, the partial correlations are strikingly similar in pairs as illustrated by the
graph colouring in Figure 4.
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Fig. 3. Conditional independence structure for data on personality characteristics of 684 students.
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Fig. 4. Graph colouring for the RCOR model describing data on personality characteristics of 684
students, restricting partial correlations corresponding to edges of same colour to being identical.
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Fig. 5. Conditional independence structure for data on Frets’ heads. The length and breadth of the
head of the ith son are denoted Li and Bi.

For psychological measurements such as these, the scales for the variables may not be
compatible and the partial correlations may therefore be more meaningful than the con-
centrations. The partial correlations are invariant under changes of scale for the individual
variables. Symmetry models based on identity of partial correlations are denoted RCOR
models.

Frets’ heads This example is concerned with data reported in Mardia et al. (1979) based
on a study of heredity of head dimensions (Frets, 1921). Graphical models for these were
also considered e.g. by Whittaker (1990). Length and breadth of the heads of 25 pairs of
first and second sons are measured. Previous analyses of these data support a model with
conditional independence relations as in Figure 5.

There is an obvious symmetry between the two sons. Hence it makes sense to investigate
a model where the joint distribution is unaltered if the two sons are interchanged. A
symmetry model of this type shall be called an RCOP model, as the symmetry restrictions
are determined by permutation of the variable labels. This symmetry can be illustrated in
the graph by adding colour to the graph as illustrated in Figure 6. Since the restrictions
are generated by permutation symmetry, it does not matter whether we interpret the figure
in RCON or RCOR terms, because all aspects of the joint distribution are unaltered when
the variable labels are switched, implying that the model is both RCON and RCOR.

Another symmetry model In general, RCON models which restrict concentrations are dif-
ferent from RCOR models with the same coloured graph, but there are also other cases
where a certain pattern of restriction on concentrations implies the same pattern of restric-
tions on the partial correlations and vice versa. As we shall argue later in the article, the
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Fig. 6. Symmetry restrictions on the graphical model for Frets’ heads. The first and second sons can
be interchanged without altering the distribution, illustrated through graph colouring.
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Fig. 7. Restrictions on partial correlations and variances according to this graph colouring identify the
same pattern of restriction on elements of the concentration matrix and vice versa.

model displayed in Figure 7 is of this type although it is not generated by permutation
symmetry.

2. Preliminaries and Notation

2.1. Graph colouring

For general graph terminology we refer to Lauritzen (1996) or Bollobás (1998). Consider
an undirected graph G = (V,E). Colouring the vertices of G with R ≤ |V | different colours
induces a partitioning of V into disjoint sets V1, . . . , VR called vertex colour classes, where
all vertices in Vr have the same colour. Similarly, colouring the edges E with S ≤ |E|
different colours partitions E into disjoint sets E1, . . . , ES called edge colour classes, where
all edges in Es have the same colour. We say that V = {V1, . . . , VR} is a vertex colouring,

E = {E1, . . . , ES} is an edge colouring, and (V, E) is a coloured graph, referring implicitly
to the induced graph G = (V,E) with

V = V1 ∪ · · · ∪ VR, E = E1 ∪ · · · ∪ES .

Note that our use of colouring differs from the standard in graph theory (Bollobás,
1998), where a colouring also satisfies that adjacent vertices as well as incident edges are of
different colour, whereas we do not impose this restriction.

A colour class with a single element is called atomic and a colour class which is not
atomic is composite. When visualising a coloured graph, atomic colour classes are displayed
with neutral colours, i.e. black or white, whereas we apply other colours to elements of
composite colour classes.
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2.2. Graphical Gaussian models

Graphical Gaussian models are concerned with the distribution of a multivariate random
vector Y = (Yα)α∈V following a N|V |(µ,Σ) distribution. For simplicity of exposition we
assume throughout that µ = 0. In the following we use Greek letters to refer to single
variables and Latin letters to refer to sets of variables. We let K = Σ−1 denote the in-
verse covariance, also known as the concentration with elements (kαβ)α,β∈V . The partial
correlation between Yα and Yβ given all other variables is then

ραβ |V \{α,β} = −kαβ/
√

kααkββ . (1)

Thus kαβ = 0 if and only if Yα and Yβ are conditionally independent given all other variables.
A graphical Gaussian model is represented by an undirected graph G = (V,E) where V

is a set of vertices representing the variables and E is a set of undirected edges. The graph
represents the model with K ∈ S+(G), the set of (symmetric) positive definite matrices
which have zero elements kαβ whenever there is no edge between α and β in G, i.e. partial
correlations between non-neighbours in the graph are equal to zero.

For later use we recall that if we partition Y into Ya = (Yγ , γ ∈ a) and Yb = (Yγ , γ ∈ b),
where V = a ∪ b and a ∩ b = ∅, and partition concentration and covariance accordingly as

K =

(

Kaa Kab

Kba Kbb

)

, Σ =

(

Σaa Σab

Σba Σbb

)

,

then
Yb ∼ N|b|(0,Σbb), Ya |Yb = yb ∼ N|a|(µa|b,Σa|b),

where
µa|b = ΣabΣ

−1
bb yb, Σa|b = Σaa − ΣabΣ

−1
bb Σba. (2)

Indeed it also holds that
K−1

aa = Σaa − ΣabΣ
−1
bb Σba (3)

so that Kaa is equal to the concentration matrix Ka|b for the conditional distribution of Ya

given Yb = yb, and
K−1

aa Kab = −ΣabΣ
−1
bb , (4)

so then
µa|b = −K−1

aa Kabyb.

Consider next a sample Y 1 = y1, . . . , Y n = yn of n observations of Y and let W denote
the matrix of sums of squares and products

W =

n
∑

ν=1

Y ν(Y ν)⊤.

The log-likelihood function based on the sample is

logL =
f

2
log det(K)−

1

2
tr(KW ), (5)

where in this case f = n is the degrees of freedom in the Wishart distribution of W . Taking
into account a possible unknown mean µ and calculating W based on residuals would yield
degrees of freedom f = n− 1.

For the facts above and additional properties of graphical Gaussian models we refer to
Lauritzen (1996), Chapter 5 and Appendix C.
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3. Symmetry restrictions on concentrations

3.1. Model specification

An RCON(V, E) model with vertex colouring V and edge colouring E is obtained by re-
stricting the elements of the concentration matrix K as follows:

(a) Diagonal elements of the concentration matrix K (inverse partial variances) corre-
sponding to vertices in the same vertex colour class must be identical.

(b) Off–diagonal entries of K corresponding to edges in the same edge colour class must
be identical.

Thus, the diagonal ofK can be specified by an R-dimensional vector η while the off–diagonal
elements are given by an S-dimensional vector δ so we can write K = K(η, δ). The set of
positive definite matrices which satisfy these restrictions is denoted S+(V, E).

Note that the restrictions so defined are linear in the concentration matrix and thus
RCON models are instances of models considered by Anderson (1969, 1970, 1973).

Example 1. Consider the graph in Figure 7. The corresponding RCON model will
have concentration matrix of the form

K =













k11 k12 0 k14

k21 k22 k23 0

0 k32 k33 k34

k41 0 k43 k44













=













η1 δ1 0 δ2

δ1 η2 δ1 0

0 δ1 η1 δ2

δ2 0 δ2 η2













,

so that elements corresponding to edges or vertices in the same colour class are identical.
Note that if we calculate the regression of Y2 on its neighbours, we get from (2) and (4)

that

E(Y2 |Y1 = y1, Y3 = y3) = −(k21/k22)y1 − (k23/k22)y3 = −(δ1/η2)y1 − (δ1/η2)y3,

so that Y3 and Y1 contribute equally to the prediction of Y2 and, by symmetry, also equally
to the prediction of Y4. In addition, the regressions for Y1 and Y3 on Y2 and Y4 are parallel:

E

{(

Y1

Y3

)∣

∣

∣

∣

∣

Y2 = y2, Y4 = y4

}

=

(

−(k12/k11)y2 − (k14/k11)y4

−(k32/k33)y2 − (k34/k33)y4

)

=

(

−(δ1/η1)y2 − (δ2/η1)y4

−(δ1/η1)y2 − (δ2/η1)y4

)

.

Indeed, as we are treating the case µ = 0, the regressions are not just parallel, but identical.
However, in the more general case they will only be parallel.

Conversely it holds for an arbitrary concentration matrix that if

(i) The concentration matrix has k13 = k24 = 0;

(ii) Y3 and Y1 contribute equally to the prediction of Y2 and to the prediction of Y4;

(iii) the regressions for Y1 and Y3 on Y2 and Y4 are parallel,

then the concentration matrix satisfies the RCON model specified.
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3.2. Likelihood equations

Since the restrictions are linear in the concentration matrix, an RCON model is a linear
exponential model and the maximum likelihood estimates of the unknown parameters are
uniquely determined by equating the canonical sufficient statistics to their expectation.

More specifically, for each vertex colour class u ∈ V of an RCON model RCON(V, E)
let Tu be the |V | × |V | diagonal matrix with entries Tu

αα = 1 if α ∈ u and 0 otherwise.
Similarly, for each edge colour class u ∈ E we let Tu be the |V |× |V | symmetric matrix with
entries Tu

αβ = 1 if {α, β} ∈ u and 0 otherwise; hence Tu is the adjacency matrix of the edge
colour class u.

We can now freely refer to a generator u for RCON(V, E) without specifying whether
u refers to a vertex colour class or an edge colour class. If we rewrite (η, δ) as an R + S-
dimensional vector θ, the concentration matrix K = K(θ) can be written K =

∑

u θuT
u

and thus tr(KW ) =
∑

u θu tr(TuW ).
If we let tu = tr(TuW ), the canonical statistics are (−t1/2, . . . ,−tR+S/2). The first

two derivatives of the log-normalizing constant (−f/2) log det(K) yield expectation and
covariance of these statistics. It holds that

∂

∂θu
log det(K) = tr(TuΣ);

∂2

∂θu∂θv
log det(K) = − tr(TuΣT vΣ), (6)

which either can be derived by direct differentiation or using the moment relations in Propo-
sition C.10 of Lauritzen (1996).

Further, the maximum likelihood estimate is the unique solution to the system of equa-
tions obtained by equating the canonical statistics to their expectation, yielding

tr(TuW ) = f tr(TuΣ), u ∈ V ∪ E , (7)

provided such a solution exists. The question of existence is in general non-trivial. Without
symmetry restrictions, the existence is ensured with probability one if f is as least as large
as the size of the largest clique in a triangulated cover of the graph (Lauritzen 1996, page
148) whereas a necessary condition is not known in the general case (Buhl, 1993).

It is an important motivation for considering these models that the conditions for max-
imum likelihood estimates to exist are less restrictive than for graphical Gaussian models
without symmetries; typically fewer observations are needed to guarantee existence of the
estimate. For example, the Gaussian graphical model in Fig. 5 demands at least f = 3
observations of the four-dimensional vector for the maximum likelihood estimates to exist
with probability one. However, if we add symmetry restrictions by collecting all vertices
into a single vertex colour class and all present edges into a single edge colour class, the
maximum likelihood estimate exists with just f = 1 observation and is given explicitly as

σ̂11 = σ̂22 = σ̂33 = σ̂44 = (y2
1 + y2

2 + y2
3 + y2

4)/4,

σ̂12 = σ̂23 = σ̂34 = σ̂41 = (y1y2 + y2y3 + y3y4 + y4y1)/4,

σ̂13 = σ̂24 = (
√

1 + 8r2 − 1)/2,

where
r = (y1y2 + y2y3 + y3y4 + y4y1)/(y

2
1 + y2

2 + y2
3 + y2

4).

This particular model is simultaneously RCON, RCOR, and RCOP; hence the simplicity of
the estimate.
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It follows from (7) that for RCON models we have

tr(K̂W ) =
∑

u

θ̂u tr(TuW ) =
∑

u

θ̂uf tr(TuΣ̂) = f tr(K̂Σ̂) = f |V |,

so that the maximized log-likelihood function can be expressed as

2 logL(θ̂) = f log det(K̂)− f |V |.

As a consequence, the likelihood ratio test statistic Q for comparing nested RCON models
can be expressed through a ratio of determinants as

−2 log LR = f log
det(K̂0)

det(K̂)
= f log

det(Σ̂)

det(Σ̂0)
= f log det(Σ̂Σ̂−1

0 ),

where T̂ 0 = Σ̂−1
0 is the maximum likelihood estimate in the smaller of the two nested RCON

models.
From (6) we find the entries of the information matrix

I(θ̂)uv = f tr(TuΣ̂T vΣ̂)/2. (8)

If the asymptotic covariance matrix of the maximum likelihood estimate is desired, it can
be found by taking the inverse of this matrix.

3.3. Estimation algorithm

Clearly the likelihood equations can be solved by Newton iteration, provided appropriate
starting values can be found. However, Jensen et al. (1991) described a globally convergent
algorithm for a general linear exponential family using Newton’s method on the mth root
of the reciprocal likelihood function for one parameter at a time, see also Lauritzen (1996),
p. 269. Here m is the number of independent observations, in our case corresponding to
the degrees of freedom, m = f . This algorithm also avoids repeated inversion of the Fisher
information matrix which is potentially of higher dimension than K.

For RCON models, this algorithm can be described as follows: For each generator u
(where u can be either a vertex colour class or an edge colour class) we define the discrepancy
∆u = tr(TuΣ̂)− tr(TuW )/f where Σ̂ = K̂−1 denotes the current estimate of Σ at any time
during the iteration. The iterative step can then be written as

θu ← θu +
∆u

tr(TuΣ̂TuΣ̂) + ∆2
u/2

. (9)

The substitution (9) must theoretically be repeated until convergence for the set u before
moving on to the next set in V ∪ E . However, in most cases it is sufficient to make only a
few steps, ensuring the likelihood has increased.

Thus the algorithm consists of two nested loops: an outer loop running over the ele-
ments of V ∪ E , and an inner loop maximizing L with respect to θu while keeping all other
parameters fixed. We repeatedly loop through all sets u ∈ V ∪ E until convergence.

In practice it can be computationally more efficient to combine this algorithm with itera-
tive proportional scaling for graphical Gaussian models (Speed and Kiiveri, 1986; Lauritzen,
1996) and there are other ways of making the above algorithm more efficient, see Højsgaard
and Lauritzen (2007) for details and implementation issues.
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Table 3. Fitted concentrations ×1000 (on and above diagonal) and fit-
ted partial correlations (below diagonal) for the examination marks in five
mathematical subjects assuming the RCON model with coloured graph as
in Figure 2.

Mechanics Vectors Algebra Analysis Statistics

Mechanics 6.16 −3.29 −3.29 0 0

Vectors 0.42 10.10 −3.29 0 0

Algebra 0.27 0.21 23.63 −6.51 −3.29

Analysis 0 0 0.42 10.10 −3.29

Statistics 0 0 0.27 0.42 6.16

3.4. Model properties

It follows directly from (3) that the class of RCON models is closed under conditioning in
the sense that if the distribution of Y is specified through an RCON model with coloured
graph (V, E), then the concentration matrix of the conditional distribution of Ya given Yb

satisfies exactly the restrictions of (Va, Ea) where this is the coloured subgraph resulting by
only keeping vertices in a and edges between elements of a and preserving their colours.

If we change the scale of the variables Y to form Y ′ where Y ′
α = aαYα, α ∈ V then it

would typically not be the case that Y ′ satisfies the same restrictions of an RCON model
as Y unless aα = a for all α ∈ V . Thus, when using RCON models it is generally important
that all variables are on comparable scales to ensure interpretability of conclusions. In
contrast, models to be investigated in the next section possess properties of invariance
under rescaling.

Example 2. The marks in mathematical subjects discussed earlier have been made on
comparable scales as they all are marks out of 100. The RCON model with graph displayed
in Figure 2 yields an excellent fit with a likelihood ratio of −2 log LR = 7.2 on 6 degrees of
freedom, when compared to the butterfly model without symmetry restrictions in Figure 1.
The fitted concentrations and partial correlations are displayed in Table 3.

4. Symmetry restrictions on partial correlations

4.1. Model specification

An RCOR(V, E) model with vertex colouring V and edge colouring E is obtained by re-
stricting the elements of K as follows:

(a) All diagonal elements of K (inverse partial variances) corresponding to vertices in the
same vertex colour class must be identical.

(b) All partial correlations corresponding to edges in the same edge colour class must be
identical.

The set of positive definite matrices which satisfy the restrictions of an RCOR(V, E) model
is denoted R+(V, E).

If we let A be the diagonal matrix with entries equal to the inverse partial standard
deviations, i.e.

aα =
√

kαα = 1/
√

V(Yα |YV \α),
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and use (1), we can uniquely represent any K ∈ R+(V, E) as

K = ACA,

where C = {cαβ} has all diagonal entries equal to one and all off-diagonal entries are the
negative partial correlations

cαβ = −ραβ |V \{α,β} = kαβ/
√

kααkββ = kαβ/(aαaβ).

The vertex colour classes of the RCOR-model are then restricting the elements of A,
whereas the edge colour classes are restricting elements of C to have the same value for
entries in the same edge colour class. More precisely, if we let K(η, δ) denote the matrix
with entries kαβ = aαaβcαβ , then V defines the restrictions aα = ηu if α ∈ u ∈ V. Similarly
E represents the restrictions cαβ = cβα = δu if {α, β} ∈ u ∈ E and cαβ = 0 if {α, β} 6∈ E =
∪u∈Eu.

4.2. Likelihood equations

Although the restrictions are linear in each of A and C, they are in general not linear in K
and the models are therefore only curved exponential families. To obtain simplified expres-
sions for derivatives we let λu = log ηu = log aα = 1

2 log kαα for α ∈ u ∈ V. Differentiation
yields

∂

∂δu
tr(CAWA) = tr(TuAWA);

∂

∂λu
A = TuA = ATu (10)

and further
∂

∂λu
tr(ACAW ) = 2 tr(TuACAW ). (11)

Expanding (5) and using that tr(ACAW ) = tr(CAWA) yields the log likelihood function

logL =
f

2
log det(C) + f

∑

u∈V

λu tr(Tu)−
1

2
tr(CAWA). (12)

Differentiating (12) w.r.t. (δ, λ) using (6), (10), and (11) yields the likelihood equations

tr(TuAWA) = f tr(TuC−1), u ∈ E ; tr(TuCAWA) = f tr(Tu), u ∈ V (13)

or alternatively, since ATu = TuA because A and Tu are both diagonal matrices, the
equations can be expressed as

tr(TuAWA) = f tr(TuC−1), u ∈ E ; tr(TuACAW ) = f tr(Tu), u ∈ V. (14)

Differentiating further yields the observed information matrix

J(δ, λ)uv =























f tr(TuC−1T vC−1)/2 for u, v ∈ E

tr(TuAWAT v)/2 for u ∈ V, v ∈ E

tr(TuAWAT vC) for u, v ∈ V, u 6= v

2 tr(TuAWATuC) for u = v ∈ V

(15)
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and the Fisher information matrix is then obtained by taking expectations

I(δ, λ)uv = f























tr(TuC−1T vC−1)/2 for u, v ∈ E

tr(TuC−1T v)/2 for u ∈ V, v ∈ E

tr(TuC−1T vC) for u, v ∈ V, u 6= v

2 tr(TuC−1TuC) for u = v ∈ V.

(16)

The matrix of second derivatives (15) is not necessarily negative definite and the log-
likelihood function is therefore not in general concave in (δ, λ). It is not known to the
authors whether there could be more than one possible solution to the system of likeli-
hood equations. Below we argue that the log-likelihood function (12) is concave in λ for
fixed δ and vice versa. This does not ensure joint concavity and thus is not in itself suf-
ficient to establish general uniqueness. Indeed the likelihood funtion with vertex classes
V = {(1, 2, 3), (4, 5, 6)} and only one edge colour class with two edges E = {(1:2,5:6)} may
have multiple local maxima for the likelihood function, we omit the details of the argument.
This example is due to Søren Tolver Jensen (personal communication) and conforms with
remarks on pp. 230-231 of Jensen and Madsen (2004).

For fixed A we have an exponential model as before. Hence, provided the number of
observations is sufficiently large so that the maximum exists, the log-likelihood function is

strictly concave in δ for fixed A and it is maximized by the unique solution to the system
of equations

tr(TuAWA) = f tr(TuC−1), u ∈ E . (17)

We next consider the likelihood function for fixed C. We first observe that the submatrix
of the information matrix (15) corresponding to u, v ∈ V is also positive semidefinite. To
see this, we first note that tr(TuAWATuC) ≥ 0 and then let X =

∑

u∈V xuT
u so

∑

u

∑

v

xuxv tr(TuAWAT vC) +
∑

u

x2
u tr(TuAWATuC) =

tr(XAWAXC) +
∑

u

x2
u tr(TuAWATuC) ≥ 0

since C and XAWAX are positive (semi)definite so also tr(XAWAXC) ≥ 0. Hence, if the
number of observations is sufficiently large, the log-likelihood function is strictly concave in

λ for fixed C and its maximum is given by the unique solution to the system of equations

tr(TuCAWA) = f tr(Tu), u ∈ V. (18)

Also in the case of RCOR models, the maximized log-likelihood function can be expressed
in terms of the determinant of the estimate. Using (14) and the fact that

∑

u∈V T
u = I

yields

tr(K̂W ) = tr(ÂĈÂW ) =
∑

u∈V

tr(TuÂĈÂW ) = f
∑

u∈V

tr(Tu) = f tr(I) = f |V |

and hence the maximized log-likelihood becomes

2 logL(δ̂, η̂) = f log det(Ĉ) + 2f
∑

α

log âα − f |V | = f log det(K̂)− f |V |.
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The likelihood ratio test statistic for comparing nested RCOR models becomes

−2 log LR = f log
det(K̂0)

det(K̂)
= f log

det(Σ̂)

det(Σ̂0)
= f log det(Σ̂Σ̂−1

0 ),

where K̂0 = Σ̂−1
0 is the maximum likelihood estimate in the smaller of the two nested RCOR

models.

4.3. Estimation algorithm

The likelihood equations must be solved iteratively. Clearly one can use Newton iteration
based on the matrix of second derivatives (15) or Fisher’s more stable method of scoring,
replacing the matrix of second derivatives with the information matrix (16). The method
described below avoids repeated inversions of these matrices which are potentially of higher
dimension than C. The algorithm alternates between maximizing over C for fixed A and
maximizing over A for fixed C.

The likelihood function is maximized in C for fixed A by solving the equations in (17)
using the iteration in Section 3.3 for every edge colour class u ∈ E , i.e. by iterating

δu ← δu +
∆u

tr(TuĈ−1TuĈ−1) + ∆2
u/2

(19)

until convergence, with ∆u = tr(TuĈ−1)− tr(TuAWA)/f .
The likelihood function in ηu for a given u ∈ V, keeping δ and other components of η

fixed, can be maximized in closed form, observing that the equations (18) can be rewritten
as

η2
u

∑

α∈Vu

∑

β∈Vu

Qαβ + ηu

∑

α∈Vu

∑

β 6∈Vu

Qαβaβ = f |Vu|, u ∈ V,

where Q is the Hadamard (or Schur) product of C and W with entries Qαβ = CαβWαβ .
Since C and W are both positive definite this also holds for Q (Schur, 1911), see also Horn
and Johnson (1985) p. 455ff. This equation has a unique positive root for ηu:

ηu ←
−B +

√

B2 + 4f |Vu|D

2D
,

where
B =

∑

α∈Vu

∑

β 6∈Vu

Qαβaβ , D =
∑

α∈Vu,β∈Vu

Qαβ ,

where D > 0 for the number of observations being sufficiently large.
Cycling through all u ∈ V with this substitution and alternating between these and the

iterations (19) yields an iterative partial maximization algorithm. From the appendix of
Drton and Eichler (2006) it follows that if there are only a finite number of solutions to the
likelihood equations (13), the algorithm will indeed converge to one of those solutions.

4.4. Model properties

As was the case for RCON models, conditioning on Yb in an RCOR model generates an
RCOR model for the conditional concentration Kaa of Ya given Yb.



14

Table 4. Fitted concentrations (×100) (on and above diago-
nal), fitted partial correlations (below diagonal), and observed
concentrations using RCOR model with coloured graph as in
Figure 4 for personality characteristics of 684 students.

SX SN TX TN

SX (State anxiety) 0.59 −0.31 −0.22 0

SN (State anger) 0.46 0.78 0 -0.15

TX (Trait anxiety) 0.46 0 0.40 -0.10

TN (Trait anger) 0 0.31 0.31 0.28

Observed concentrations 0.58 0.79 0.41 0.27

In contrast to the case of RCON models, an RCOR model is invariant under rescal-

ing if variables in the same vertex colour class are changed in the same way, i.e. under
transformation of the form

y∗ ← Ψy, for Ψ =
∑

u∈V ψuT
u, (20)

with ψu > 0. Such a transformation would affect only the matrix A and not C. More
precisely, Y ∗ has parametersK∗ ∼ (A∗, C∗) = (Ψ−1A,C). The scaling obtained by choosing
Ψ = A shall be called the intrinsic scale. With this rescaling, C will be the concentration
matrix for Y ∗.

The set of transformations (20) form a group, A is equivariant and C invariant under
the action of the group. It follows that an RCOR model is a composite transformation model

in the sense of Barndorff-Nielsen et al. (1982) with C as index parameter and A as group
parameter. Following Barndorff-Nielsen et al. (1982) an alternative method of estimation
would be to use the marginal likelihood from the correlation matrix R = S−1/2WS−1/2

where S is the diagonal matrix with elements Sαα = Wαα. The correlation matrix R is
invariant under the group action and its distribution therefore only depends on C. The
intrinsic scale A could then be estimated from the conditional distribution of W given
R. Although this avoids problems of non-uniqueness of estimates, it appears technically
involved, due to the fact that the marginal density of R seems to have no simple structure
and depends on C in a rather complex manner.

Example 3. The data described in Table 2 on anxiety and anger is an example where
it is not obvious that the scalings of each of the four variables are comparable and therefore
symmetry models of RCOR type are appropriate. Fitting the RCOR model displayed
in Figure 4 yields a likelihood ratio of −2 log LR = 0.22 on 2 degrees of freedom when
comparing with the model in Figure 3 without symmetry restrictions. The fitted valued of
the parameters are displayed in Table 4.

Note that if we transform all variables to the intrinsic scale by multiplying each with the
square root of the fitted relevant diagonal element of the concentration, then the transformed
data also fits the model where all diagonal elements are identical, and hence the regression
interpretations in Example 1 are valid. Thus, when variables are measured on the intrinsic
scale, state anger and trait anxiety contribute equally to the prediction of state anxiety and
equally to the prediction of trait anger. Also, regressions of state anxiety and trait anger
on trait anxiety and state anger are parallel.
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5. Permutation symmetry

5.1. Model specification

Consider a permutation of the elements of V i.e. an element of the symmetric group S(V ),
represented by a permutation matrix G with Gαβ = 1 if and only if G maps β into α. If
Y ∼ N|V |(0,Σ) then GY ∼ N|V |(0, GΣG⊤). Let now Γ ⊆ S(V ) be a subgroup of such
permutations. The distribution of Y is invariant under the action of Γ if and only if

GΣG⊤ = Σ for all G ∈ Γ. (21)

Since a permutation matrix G satisfies G−1 = G⊤, (21) is equivalent to

GΣ = ΣG for all G ∈ Γ, (22)

i.e. that G commutes with Σ. Because Γ is a group, G ∈ Γ =⇒ G−1 ∈ Γ. Taking inverses
on both sides of (22) and substituting G⊤ for G−1 yields that the invariance condition is
equivalent to G commuting with the concentration matrix K:

GK = KG for all G ∈ Γ. (23)

To specify permutation symmetry for a graphical Gaussian model with graph G = (V,E) we
would also insist that zero elements of K are preserved, in other words that the permutation
is an automorphism of the graph, mapping edges to edges:

G(α) ∼ G(β) ⇐⇒ α ∼ β for all G ∈ Γ, (24)

i.e. Γ ⊆ Aut(G), where Aut(G) is the group of automorphisms of G. The condition (24) can
also be expressed as

GA(G) = A(G)G for all G ∈ Γ,

where A(G) is the adjacency matrix of G.
An RCOP model RCOP (G,Γ) generated by Γ ⊆ Aut(G) is given by assuming

K ∈ S+(G,Γ) = S+(G) ∩ S+(Γ)

where S+(Γ) is the set of positive definite matrices satisfying (23).
An RCOP model can also be represented by a graph colouring. More precisely, if V

denotes the vertex orbits of Γ, i.e. the equivalence classes of the relation

α ≡Γ β ⇐⇒ β = G(α) for some G ∈ Γ,

and similarly E the edge orbits, i.e. the equivalence classes of the relation

{α, γ} ≡Γ {β, δ} ⇐⇒ {β, δ} = {G(α), G(γ)} for some G ∈ Γ,

then we have
S+(G,Γ) = S+(V, E) = R+(V, E).

Hence an RCOP model can also be represented as an RCON or an RCOR model with
vertex orbits as vertex colour classes and edge orbits as edge colour classes. For later use
we note that the permutation matrices in Γ commute with all adjacency matrices of the
colour classes:

GTu = TuG for all G ∈ Γ and all u ∈ V ∪ E . (25)
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5.2. Likelihood equations

Since an RCOP model is also an RCON and an RCOR model, the likelihood equations can
be formulated in such terms and any of the algorithms previously presented can be used to
calculate the maximum likelihood estimate. However, for RCOP models there is another
alternative.

Representing an RCOP model as an RCON model yields the likelihood equations

tr(TuW ) = f tr(TuΣ), u ∈ V ∪ E ; Σ−1 ∈ S+(V, E). (26)

We shall show that these equations are equivalent to the following

tr(T lW ) = f tr(T lΣ), l ∈ V ∪ E; Σ−1 ∈ S+(G), (27)

where the matrices T l, l ∈ V ∪ E represent the graph G with neutral colours and

W =
1

|Γ|

∑

G∈Γ

GWG⊤.

In other words, the equations can be solved by first taking appropriate averages of the
elements in the Wishart matrix and then solving the equations for corresponding graphical
Gaussian model without symmetry restrictions. Estimation relations of this type are typical
in group invariance models, and (27) have been derived using general theory (Andersson,
1975; Barndorff-Nielsen et al., 1982; Andersson et al., 1983). Indeed, the relation can also
be found in Hylleberg et al. (1993).

The equations (27) can be solved using iterative proportional scaling (Speed and Kiiveri,
1986; Lauritzen, 1996), or explicitly if G is decomposable (Lauritzen 1996, p. 146). In both
cases this can lead to considerable computational savings.

To see that (26) and (27) are equivalent we first note that for u ∈ V ∪ E

Tu =
∑

l∈u

T l; and GT l = TG(l)G, l ∈ V ∪ E.

Assume first that Σ is the unique solution to (27). We then get for all l ∈ V ∪ E that

tr(T lGΣG⊤) = tr(TG−1(l)Σ) = tr(TG−1(l)W ) = tr(T lW )

and thus GΣG⊤ also solves (27). Since the solution is unique, we must have GΣG⊤ = Σ and
hence Σ ∈ S+(V, E). That Σ is indeed a solution to (26) now follows from the calculation

tr(TuΣ) = tr(TuW ) =
1

|Γ|

∑

G∈Γ

tr(TuGWG⊤) = tr(TuW )

where we have used that TuG = GTu and G⊤G = I.
Conversely, if Σ satisfies (26) we have

tr(T lW ) =
1

|u|
tr(TuW ) =

1

|u|
tr(TuW ) =

1

|u|
tr(TuΣ) = tr(T lΣ),

where u = {G(l), G ∈ Γ} is the orbit of l.
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Table 5. Observed concentrations (×100) (on and above diagonal) together
with fitted concentrations (below diagonal) using RCOP model with coloured
graph as in Figure 6 for head dimensions of first and second sons.

L1 B1 L2 B2

L1 (Length of head of first son) 3.21 −1.60 −0.78 −1.11

B1 (Breadth of head of first son) −1.76 2.21 −0.50 0.48

L2 (Length of head of second son) −1.41 0 2.67 −1.89

B2 (Breadth of head of second son) 0 −1.71 −1.76 3.37

Fitted concentrations 2.90 2.48 2.90 2.48
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Fig. 8. Coloured graph of an RCOP symmetry model for the examination marks of 88 students. The
distribution of the marks is unchanged if we simultaneously replace Vectors with Analysis and Mechanics
with Statistics.

Example 4. Table 5 shows observed and fitted concentrations for head dimensions of 25
pairs of sons. The symmetry restrictions represent the natural symmetry between first and
second son. The likelihood ratio for testing the validity of the model versus the saturated
model without symmetries is equal to −2 log LR = 5.18 on 5 degrees of freedom, thus
representing an excellent fit.

Since the model is an RCOP model, it can be fitted with any of the three algorithms
presented in the article and the symmetry restrictions will be reflected in the partial corre-
lations, as well as in the covariance or correlation matrix.

Example 5. The symmetry model in Figure 8 is also giving an excellent fit to the
data. The likelihood ratio is −2 log LR = 5.0 on 5 degrees of freedom when compared with
the butterfly model without additional symmetries. This model says that the distribution
is invariant when we simultaneously replace Vectors with Analysis and Mechanics with
Statistics. The fitted values of the concentration matrix are displayed in Table 6.

6. Relations between model types

As we have argued above, any RCOP model is automatically also RCON and RCOR whereas
the converse is false. Also the latter two model types are generally different. However, if
the coloured graph satisfies certain properties, RCON and RCOR models coincide, without
necessarily being RCOP. The restrictions on the inverse partial variances kαα are clearly
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Table 6. Fitted concentrations ×1000 (on and above diagonal) and fit-
ted partial correlations (below diagonal) for the examination marks in five
mathematical subjects assuming the RCOP model with coloured graph as
in Figure 8.

Mechanics Vectors Algebra Analysis Statistics

Mechanics 5.75 −2.28 −3.70 0 0

Vectors 0.30 9.96 −6.44 0 0

Algebra 0.29 0.39 27.4 −6.44 −3.70

Analysis 0 0 0.39 9.79 −2.28

Statistics 0 0 0.29 0.30 5.75

identical for both model types, so the question only pertains to the edge colour classes
implying the same restrictions on the concentration matrices.

To identify when this is the case, consider first two incident edges {α, β} and {α, γ}
of the same colour class. Using (1) it follows directly that the restriction kαβ = kαγ is
equivalent to the restriction ραβ |V \{α,β} = ραγ |V \{α,γ} if and only if kββ = kγγ .

Similarly, for two non-incident edges {α, β} and {γ, δ}, the restriction kαβ = kγδ is
equivalent to the restriction ραβ |V \{α,β} = ργδ |V \{γ,δ} if and only if either

kαα = kγγ and kββ = kδδ (28)

or the similar relation with α and β interchanged

kββ = kγγ and kαα = kδδ. (29)

The condition for incident edges is clearly implied by those for non-incident edges. We
summarize this in the following.

Proposition 1. The RCOR and RCON model determined by (V, E) yield identical re-

strictions

R+(V, E) = S+(V, E)

if and only if any pair of edges in the same colour class αβ, γδ ∈ u ∈ E connect the same

vertex colour classes.

The model in Figure 7 clearly satisfies this condition. It is therefore both RCOR and
RCON. However, it is not an RCOP model because the largest subgroup of Aut(G) pre-
serving the colour symmetries has only one element other than the identity which is the
permutation switching 1 and 3. However, 2 and 4 are not in the same vertex orbit of that
group, so these will have different colours in the corresponding RCOP model, corresponding
to Y2 and Y4 having different marginal variances. In fact, any non-trivial RCOR model with

atomic vertex classes cannot be RCON. Indeed RCOR models with atomic vertex colour
classes may seem more interpretable in situations where scale is not well defined.

Figure 9 shows another example of a model where edges in same colour class connect
the same vertex colour classes and it is therefore is both RCON and RCOR. However, this
model is RCOP for the group generated by simultaneously interchanging 1 with 3 and 2
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Fig. 9. Graph colouring for another model which is both RCON and RCOR. Indeed, this model is RCOP
for the group generated by simultaneously interchanging 1 with 3 and 2 with 4.

.

.

RCON RCORRCOP

Fig. 10. Relations between symmetry models. Models given by permutation symmetry (RCOP) have
similar symmetries for concentrations (RCON) and partial correlations (RCOR). RCON models are not
necessarily RCOR and vice versa but a model can be simultaneously RCON and RCOR without being
RCOP.
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When the RCOR and RCON interpretations of a coloured graph coincide, the RCOR
model clearly inherits the property of uniqueness of the maximum likelihood estimate from
its RCON manifestation. Hence in such a case both scale invariance and simple estimation
prevails. The relationship between the model classes are shown graphically in Figure 10.

7. Breast cancer genes

The examples considered so far have been chosen to be as simple as possible with the purpose
of illustrating the fundamental concepts and issues associated with symmetry restrictions.
This example serves to show that it is indeed possible to fit high dimensional models with
symmetry restrictions.

Miller et al. (2005) investigated gene expression signatures for p53 mutation status in
250 breast cancer samples. Of these, 58 samples have a mutation in the p53 sequence and
data from these are considered in the following. The data have been standardized to have
zero mean and unit variance. For simplicity we consider only 150 genes. Note that in this
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example there are more variables than observations, so only models with a large degree of
parsimony can be fitted at all. Since there is an issue of scaling of the variables, we are
looking for models of RCOR type.

As it is outside the scope of the present article to develop and discuss robust and efficient
model selection procedures for these models, we shall only give a very rough exploratory
initial analysis.

Our first step is to identify an initial dependence graph for the gene expressions and we
chose to use the lasso (Tibshirani, 1996) for this purpose, as described by Meinshausen and
Bühlmann (2006): for each vertex α ∈ V we performed a lasso regression on the remaining
vertices V \ {α}. Whenever a regressor variable β ∈ V \ {α} is actively present in this
regression, {α, β} was included as an edge in the graph. Using the l1ce function in the
R-package lasso2 (Osborne et al., 2000) with penalty 0.05 produces a sparse graph with
174 edges.

Next we initially estimated the concentration parameters kαβ by the marginal empirical
concentrations {Wc(α,β)/f}

−1, where c(α, β) = ne(α)∩ne(β)∪{α, β} includes the common
neighbours of α and β and calculated the corresponding partial correlations when α and β
were different. A rough cluster analysis of these and the diagonal elements kαα led us to
choose 7 clusters for the edges and 10 clusters for the vertices, corresponding to the RCON
model displayed in Figure 11.

The level of parsimony achieved by adding this symmetry to the model is a reduction of
the number of parameters from 324 to 17, with a drop in the likelihood from -1396 to -1992.
Although clearly significant— with a χ2-difference of 1192 on 307 degrees of freedom—
the BIC criterion corresponding to 58 observations yields a value of 1396 + 658 = 2054
for the model without restrictions whereas the model with symmetry has a BIC value of
1992 + 35 = 2027, suggesting that the simpler model yields a reasonable overall description
of the basic features of the data. We note that the computation time required to fit the
model in Figure 11 as an RCOR model was about 2 seconds on a standard laptop using the
current version of the R-package described in Højsgaard and Lauritzen (2007).

8. Discussion and perspectives

We have described three classes of symmetry restrictions imposed on graphical Gaussian
models. The simplest of these are given by symmetry under permutation of variable labels.
Software has been developed under R which implements the methods we have described
(Højsgaard and Lauritzen, 2007), excluding the specific simplifications available for the
case of RCOP models.

Alternative ways of introducing symmetry would apply restrictions to marginal covari-
ances and correlations rather than concentrations and partial correlations. This would be
natural to do in connection with graphical models for marginal independence, sometimes
known as covariance graph models (Kauermann, 1996; Cox and Wermuth, 1993, 1996), al-
though these have more complex estimation properties (Drton and Richardson, 2003, 2004).
Note that RCOP models would automatically also satisfy the relevant symmetry restrictions
for the marginal covariances and correlations.

In general, the RCOP models are simplest and most readily interpretable, partly due
to their justification through symmetries among the variables under study, partly due to
the fact that there are no paradoxes of the form that identity of partial correlations and
concentrations are very different assumptions in general. We only recommend use of RCON
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Fig. 11. RCOR model for gene expression data. There are 7 edge colour classes and 10 vertex colour
classes

models in cases where the variables clearly are measured on comparable scales. For cases
where measurement scales are not absolutely defined, RCOR models with only atomic vertex
colour classes may be of special interest. In all cases it might be worthwhile to consider
whether a minor extension/modification of an RCOR or RCON model could lead to an
RCOP version of the model, and generally be very careful with interpreting results from an
RCOR or RCON analysis.

For the models to become widely applicable in exploratory analysis of data with a large
number of variables it is mandatory to develop algorithms for model identification which
are robust, reliable, and transparent. In particular it is important that the algorithms
avoid an intermediate estimation of a model without symmetries where parameters could
be unreliably determined or even not estimable.

It would be of interest to study discrete symmetry models based on graphical log-linear
models, extending classic models of symmetry, marginal homogeneity and quasi-symmetry
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in contingency tables (Agresti, 1990).
As mentioned in the introduction, instances of the models have been considered pre-

viously in different contexts. Here we mention in addition that Wolfe (1976) considered
the hypothesis of equality of two correlation coefficients in a trivariate Gaussian distri-
butions, showing that adding additional symmetry constraints, effectively identifying an
RCOP model, would lead to a test statistic with a simple distribution.
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Meinshausen, N. and P. Bühlmann (2006). High-dimensional graphs and variable selection
with the lasso. Ann. Statist. 34, 1436–1462.

Miller, L. D., J. Smeds, J. George, V. B. Vega, L. Vergara, Y. Pawitan, P. Hall, S. Klaar,
E. T. Liu, and J. Bergh (2005). An expression signature for p53 status in human breast
cancer predicts mutation status, transcriptional effects, and patient survival. Proceedings

of the National Academy of Sciences 102 (38), 13550–13555.

Olkin, I. and S. J. Press (1969). Testing and estimation for a circular stationary model.
Ann. Math. Statist. 40, 1358–1373.

Osborne, M. R., B. Presnell, and B. A. Turlach (2000). On the LASSO and its dual.
Proceedings of the National Academy of Sciences 9, 319–337.

Schur, I. (1911). Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich
vielen Veränderlichen. Journal für die reine und angewandte Mathematik 140, 1–29.

Speed, T. P. and H. Kiiveri (1986). Gaussian Markov distributions over finite graphs. Ann.

Statist. 14, 138–150.

Spielberger, C. D., R. L. Gorsuch, and R. E. Luschene (1970). Manual for the State–Trait

Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press.

Spielberger, C. D., S. Russell, and R. Crane (1983). Assessment of anger. In J. N. Butcher
and C. D. Spielberger (Eds.), Advances in Personality Assessment, Volume 2, pp. 159–
187. Hillsdale, NJ: Erlbaum.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Statist. Soc.

B 56, 267–288.

Votaw, D. F. (1948). Testing compound symmetry in a normal multivariate distribution.
Ann. Math. Statist. 19, 447–473.

Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics. Chichester,
United Kingdom: John Wiley and Sons.

Whittle, P. (1954). On stationary processes in the plane. Biometrika 41, 439–449.

Wilks, S. S. (1946). Sample criteria for testing equality of means, equality of variances,
and equality of covariances in a normal multivariate distribution. Ann. Math. Statist. 17,
257–281.

Wolfe, D. A. (1976). On testing equality of related correlation coefficients. Biometrika 63,
214–215.


