
Graphical Modeling and Animation of Brittle Fracture

James F. O’Brien Jessica K. Hodgins

GVU Center and College of Computing

Georgia Institute of Technology

Abstract

In this paper, we augment existing techniques for simulating flex-
ible objects to include models for crack initiation and propagation
in three-dimensional volumes. By analyzing the stress tensors com-
puted over a finite element model, the simulation determines where
cracks should initiate and in what directions they should propagate.
We demonstrate our results with animations of breaking bowls,
cracking walls, and objects that fracture when they collide. By
varying the shape of the objects, the material properties, and the
initial conditions of the simulations, we can create strikingly dif-
ferent effects ranging from a wall that shatters when it is hit by a
wrecking ball to a bowl that breaks in two when it is dropped on
edge.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Physically based modeling;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation; I.6.8 [Simulation and Modeling]: Types of
Simulation—Animation

Keywords: Animation techniques, physically based modeling,
simulation, dynamics, fracture, cracking, deformation, finite ele-
ment method.

1 Introduction

With the introduction in 1998 of simulated water in Antz [5, 14]
and clothing in Geri’s Game [4, 15], passive simulation was clearly
demonstrated to be a viable technique for commercial animation.
The appeal of using simulation for objects without an internal
source of energy is not surprising, as passive objects tend to have
many degrees of freedom, making keyframing or motion capture
difficult. Furthermore, while passive objects are often essential to
the plot of an animation and to the appearance or mood of the piece,
they are not characters with their concomitant requirements for con-
trol over the subtle details of the motion. Therefore, simulations in
which the motion is controlled only by initial conditions, physical
equations, and material parameters are often sufficient to produce
appealing animations of passive objects.

College of Computing, Georgia Institute of Technology, Atlanta, GA 30332.

job@acm.org, jkh@cc.gatech.edu.

Figure 1: Slab of simulated glass that has been shattered by a heavy
weight.

Our approach to animating breaking objects is based on lin-
ear elastic fracture mechanics. We model three-dimensional vol-
umes using a finite element method that is based on techniques
presented in the computer graphics and mechanical engineering
literature [3, 6, 18]. By analyzing the stresses created as a vol-
umetric object deforms, the simulation determines where cracks
should begin and in what directions they should propagate. The
system accommodates arbitrary propagation directions by dynami-
cally retesselating the mesh. Because cracks are not limited to el-
ement boundaries, the models can form irregularly shaped shards
and edges as they shatter.

We demonstrate the power of this approach with the following
examples: a glass slab that shatters when a weight is dropped onto
it (Figure 1), an adobe wall that crumbles under the impact of a
wrecking ball (Figure 9), a series of bowls that break when they hit
the floor (Figure 11), and objects that break when they collide with
each other (Figure 14). To assess the realism of this approach, we
compare high-speed video images of a physical bowl dropping onto
concrete and a simulated version of the same event (Figure 13).

2 Background

In the computer graphics literature, two previous techniques have
been developed for modeling dynamic, deformation-induced frac-
ture. In 1988, Terzopoulos and Fleischer [18, 19] presented a
general technique for modeling viscoelastic and plastic deforma-
tions. Their method used three fundamental metric tensors to de-
fine energy functions that measured deformation over curves, sur-
faces, and volumes. These energy functions provided the basis for
a continuous deformation model that they simulated using a va-
riety of discretization methods. One of their methods made use
of a finite differencing technique defined by controlled continuity
splines [17]. This formulation allowed them to demonstrate how
certain fracture effects could be modeled by setting the elastic co-
efficients between adjacent nodes to zero whenever the distance
between the nodes exceeded a threshold. They demonstrated this
technique with sheets paper and cloth that could be torn apart.

ACM Copyright Notice
Copyright 1999 by the Association for Computing Machinery, Inc. Permissionto make digital or hard copies of part of this work for personal orclassroom use is granted without fee provided that copies are not made ordistributed for profit or commercial advantage and that copies bear thisnotice and the full citation on the first page or initial screen of thedocument. Copyrights for components of this work owned by others than ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, torepublish, to post on servers, or to redistribute to lists, requires priorspecific permission and/or a fee. Request permissions from PublicationsDept., ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Supplemental Materials
Supplemental materials for this paper can be found in the "papers/obrien" directory.

In 1991, Norton and his colleagues presented a technique for
animating 3D solid objects that broke when subjected to large
strains [12]. They simulated a teapot that shattered when dropped
onto a table. Their technique used a spring and mass system to
model the behavior of the object. When the distance between
two attached mass points exceeded a threshold, the simulation sev-
ered the spring connection between them. To avoid having flexi-
ble strings of partially connected material hanging from the object,
their simulation broke an entire cube of springs at once.

Two limitations are inherent in both of these methods. First,
when the material fails, the exact location and orientation of the
fracture are not known. Rather the failure is defined as the entire
connection between two nodes, and the orientation of the fracture
plane is left undefined. As a result, these techniques can only re-
alistically model effects that occur on a scale much larger than the
inter-node spacing.

The second limitation is that fracture surfaces are restricted to the
boundaries in the initial mesh structure. As a result, the fracture pat-
tern exhibits directional artifacts, similar to the “jaggies” that occur
when rasterizing a polygonal edge. These artifacts are particularly
noticeable when the discretization follows a regular pattern. If an ir-
regular mesh is used, then the artifacts may be partially masked, but
the fractures will still be forced onto a path that follows the element
boundaries so that the object can break apart only along predefined
facets.

Other relevant work in the computer graphics literature includes
techniques for modeling static crack patterns and fractures induced
by explosions. Hirota and colleagues described how phenomena
such as the static crack patterns created by drying mud can be mod-
eled using a mass and spring system attached to an immobile sub-
strate [8]. Mazarak et al. use a voxel-based approach to model
solid objects that break apart when they encounter a spherical blast
wave [9]. Neff and Fiume use a recursive pattern generator to di-
vide a planar region into polygonal shards that fly apart when acted
on by a spherical blast wave [10].

Fracture has been studied more extensively in the mechanics lit-
erature, and many techniques have been developed for simulating
and analyzing the behavior of materials as they fail. A number of
theories may be used to describe when and how a fracture will de-
velop or propagate, and these theories have been employed with
various numerical methods including finite element and finite dif-
ference methods, boundary integral equations, and molecular parti-
cle simulations. A comprehensive review of this work can be found
in the book by Anderson [1] and the survey article by Nishioka [11].

Although simulation is used to model fracture both in computer
graphics and in engineering, the requirements of the two fields are
very different. Engineering applications require that the simulation
predict real-world behaviors in an accurate and reliable fashion. In
computer animation, what matters is how the fracture looks, how
difficult it was to make it look that way, and how long it took. Al-
though the technique presented in this paper was developed using
traditional engineering tools, it is an animation technique and relies
on a number of simplifications that would be unacceptable in an
engineering context.

3 Deformations

Fractures arise in materials due to internal stresses created as the
material deforms. Our goal is to model these fractures. In order
to do so, however, we must first be able to model the deformations
that cause them. To provide a suitable framework for modeling
fractures, the deformation method must provide information about
the magnitude and orientation of the internal stresses, and whether
they are tensile or compressive. We would also like to avoid defor-
mation methods in which directional artifacts appear in the stress
patterns and propagate to the resulting fracture patterns.

V

U

W

Y

X

Z

u

u’

x(u)

x(u’)

u’’ x(u’’)

Figure 2: The material coordinates define a 3D parameterization of
the object. The function x(u) maps points from their location in the
material coordinate frame to their location in the world coordinates.
A fracture corresponds to a discontinuity in x(u).

We derive our deformation technique by defining a set of differ-
ential equations that describe the aggregate behavior of the material
in a continuous fashion, and then using a finite element method to
discretize these equations for computer simulation. This approach
is fairly standard, and many different deformation models can be
derived in this fashion. The one presented here was designed to be
simple, fast, and suitable for fracture modeling.

3.1 Continuous Model

Our continuous model is based on continuum mechanics, and an ex-
cellent introduction to this area can be found in the text by Fung [7].
The primary assumption in the continuum approach is that the
scale of the effects being modeled is significantly greater than the
scale of the material’s composition. Therefore, the behavior of the
molecules, grains, or particles that compose the material can be
modeled as a continuous media. Although this assumption is often
valid for modeling deformations, macroscopic fractures can be sig-
nificantly influenced by effects that occur at small scales where this
assumption may not be valid. Because we are interested in graph-
ical appearance rather than rigorous physical correctness, we will
put this issue aside and assume that a continuum model is adequate.

We begin the description of the continuous model by defining
material coordinates that parameterize the volume of space occu-
pied by the object being modeled. Let u = [u, v, w]T be a vector
in ℜ3 that denotes a location in the material coordinate frame as
shown in Figure 2. The deformation of the material is defined by
the function x(u) = [x, y, z]T that maps locations in the material
coordinate frame to locations in world coordinates. In areas where
material exists, x(u) is continuous, except across a finite number
of surfaces within the volume that correspond to fractures in the
material. In areas where there is no material, x(u) is undefined.

We make use of Green’s strain tensor, �, to measure the local
deformation of the material [6]. It can be represented as a 3 × 3
symmetric matrix defined by

ǫij =

(

∂x

∂ui

·
∂x

∂uj

)

− δij (1)

where δij is the Kronecker delta:

δij =

{

1 : i = j
0 : i 6= j .

(2)

This strain metric only measures deformation; it is invariant with re-
spect to rigid body transformations applied to x and vanishes when
the material is not deformed. It has been used extensively in the
engineering literature. Because it is a tensor, its invariants do not
depend on the orientation of the material coordinate or world sys-
tems. The Euclidean metric tensor used by Terzopoulos and Fleis-
cher [18] differs only by the δij term.

In addition to the strain tensor, we make use of the strain rate
tensor, �, which measures the rate at which the strain is changing.

It can be derived by taking the time derivative of (1) and is defined
by

νij =

(

∂x

∂ui

·
∂ẋ

∂uj

)

+

(

∂ẋ

∂ui

·
∂x

∂uj

)

(3)

where an over dot indicates a derivative with respect to time such
that ẋ is the material velocity expressed in world coordinates.

The strain and strain rate tensors provide the raw information
that is required to compute internal elastic and damping forces, but
they do not take into account the properties of the material. The
stress tensor, �, combines the basic information from the strain and
strain rate with the material properties and determines forces inter-
nal to the material. Like the strain and strain rate tensors, the stress
tensor can be represented as a 3 × 3 symmetric matrix. It has two

components: the elastic stress due to strain, �(ǫ), and the viscous

stress due to strain rate, �(ν). The total internal stress, is the sum
of these two components with

� = �
(ǫ) + �

(ν) . (4)

The elastic stress and viscous stress are respectively functions of
the strain and strain rate. In their most general linear forms, they
are defined as

σ
(ǫ)
ij =

3
∑

k=1

3
∑

l=1

Cijkl ǫkl (5)

σ
(ν)
ij =

3
∑

k=1

3
∑

l=1

Dijkl νkl (6)

where C is a set of the 81 elastic coefficients that relate the ele-
ments of � to the elements �(ǫ), and D is a set of the 81 damping
coefficients.1

Because both � and �(ǫ) are symmetric, many of the coefficients
in C are either redundant or constrained, and C can be reduced to
36 independent values that relate the six independent values of � to

the six independent values of �(ǫ). If we impose the additional con-
straint that the material is isotropic, thenC collapses further to only
two independent values, µ and λ, which are the Lamé constants of
the material. Equation (5) then reduces to

σ
(ǫ)
ij =

3
∑

k=1

λǫkkδij + 2µǫij . (7)

The material’s rigidity is determined by the value of µ, and the
resistance to changes in volume (dilation) is controlled by λ.

Similarly,D can be reduced to two independent values, φ and ψ
and (6) then reduces to

σ
(ν)
ij =

3
∑

k=1

φνkkδij + 2ψνij . (8)

The parameters µ and λ will control how quickly the material dis-

sipates internal kinetic energy. Since �(ν) is derived from the rate

at which ǫ is changing, �(ν) will not damp motions that are locally
rigid, and has the desirable property of dissipating only internal vi-
brations.

Once we have the strain, strain rate, and stress tensors, we can
compute the elastic potential density, η, and the damping potential
density, κ, at any point in the material using

η =
1

2

3
∑

i=1

3
∑

j=1

σ
(ǫ)
ij ǫij , (9)

1ActuallyC andD are themselves rank four tensors, and (5) and (6) are

normally expressed in this form so that C and D will follow the standard

rules for coordinate transforms.

@@
@@

n

t
dV

dS

Figure 3: Given a point in the material, the traction, t, that acts
on the surface element, dS, of a differential volume, dV, centered
around the point with outward unit normal, n̂, is given by t = � n̂.

κ =
1

2

3
∑

i=1

3
∑

j=1

σ
(ν)
ij νij . (10)

These quantities can be integrated over the volume of the material to
obtain the total elastic and damping potentials. The elastic potential
is the internal elastic energy of the material. The damping potential
is related to the kinetic energy of the material after subtracting any
rigid body motion and normalizing for the material’s density.

The stress can also be used to compute the forces acting internal
to the material at any location. Let n̂ be an outward unit normal
direction of a differential volume centered about a point in the ma-
terial. (See Figure 3.) The traction (force per unit area), t, acting
on a face perpendicular to the normal is then given by

t = � n̂ . (11)

The examples in this paper were generated using this isotropic
formulation. However, these techniques do not make use of the
strain or strain rate tensors directly; rather they rely only on the
stress. Switching to the anisotropic formulation, or even to a non-
linear stress to strain relation, would not require any significant
changes.

3.2 Finite Element Discretization

Before we can model a material’s behavior using this continuous
model, it must be discretized in a way that is suitable for computer
simulation. Two commonly used techniques are the finite difference
and finite element methods.

A finite difference method divides the domain of the material
into a regular lattice and then uses numerical differencing to ap-
proximate the spatial derivatives required to compute the strain and
strain rate tensors. This approach is well suited for problems with
a regular structure but becomes complicated when the structure is
irregular.

A finite element method partitions the domain of the material
into distinct sub-domains, or elements as shown in Figure 4. Within
each element, the material is described locally by a function with
some finite number of parameters. The function is decomposed into
a set of orthogonal shape, or basis, functions that are each associ-
ated with one of the nodes on the boundary of the element. Adja-
cent elements will have nodes in common, so that the mesh defines
a piecewise function over the entire material domain.

Our discretization employs tetrahedral finite elements with linear
polynomial shape functions. By using a finite element method, the
mesh can be locally aligned with the fracture surfaces, thus avoid-
ing the previously mentioned artifacts. Just as triangles can be used
to approximate any surface, tetrahedra can be used to approximate
arbitrary volumes. Additionally, when tetrahedra are split along a
fracture plane, the resulting pieces can be decomposed exactly into
more tetrahedra.

We chose to use linear elements because higher-order elements
are not cost effective for modeling fracture boundaries. Although
higher-order polynomials provide individual elements with many

!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!

!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!

(a) (b)

Figure 4: Tetrahedral mesh for a simple object. In (a), only the ex-
ternal faces of the tetrahedra are drawn; in (b) the internal structure
is shown.

(a) (b)
m [2]

m [1]

m [3]

m [4]

p [1]

p [2]
p [3]

p [4]

v [1]

v [2]

v [3]

v [4]

Figure 5: A tetrahedral element is defined by its four nodes. Each
node has (a) a location in the material coordinate system and (b) a
position and velocity in the world coordinate system.

degrees of freedom for deformation, they have few degrees of free-
dom for modeling fracture because the shape of a fracture is defined
as a boundary in material coordinates. In contrast, with linear tetra-
hedra, each degree of freedom in the world space corresponds to a
degree of freedom in the material coordinates. Furthermore, when-
ever an element is created, its basis functions must be computed.
For high-degree polynomials, this computation is relatively expen-
sive. For systems where the mesh is constant, the cost is amortized
over the course of the simulation. However, as fractures develop
and parts of the object are remeshed, the computation of basis ma-
trices can become significant.

Each tetrahedral element is defined by four nodes. A node has
a position in the material coordinates, m, a position in the world
coordinates, p, and a velocity in world coordinates, v. We will refer
to the nodes of a given element by indexing with square brackets.
For example, m[2] is the position in material coordinates of the
element’s second node. (See Figure 5.)

Barycentric coordinates provide a natural way to define the linear
shape functions within an element. Let b = [b1, b2, b3, b4]

T be
barycentric coordinates defined in terms of the element’s material
coordinates so that

[

u

1

]

=
[

m[1]

1

m[2]

1

m[3]

1

m[4]

1

]

b . (12)

These barycentric coordinates may also be used to interpolate the
node’s world position and velocity with

[

x

1

]

=
[

p[1]

1

p[2]

1

p[3]

1

p[4]

1

]

b (13)

[

ẋ

1

]

=
[

v[1]

1

v[2]

1

v[3]

1

v[4]

1

]

b . (14)

To determine the barycentric coordinates of a point within the
element specified by its material coordinates, we invert (12) and
obtain

b = �

[

u

1

]

(15)

where � is defined by

� =
[

m[1]

1

m[2]

1

m[3]

1

m[4]

1

]−1

. (16)

Combining (15) with (13) and (14) yields functions that interpolate
the world position and velocity within the element in terms of the
material coordinates:

x(u) = P �

[

u

1

]

(17)

ẋ(u) = V �

[

u

1

]

(18)

where P and V are defined as

P =
[

p[1] p[2] p[3] p[4]

]

(19)

V =
[

v[1] v[2] v[3] v[4]

]

. (20)

Note that the rows of � are the coefficients of the shape functions,
and � needs to be computed only when an element is created or the
material coordinates of its nodes change. For non-degenerate ele-
ments, the matrix in (16) is guaranteed to be non-singular, however
elements that are nearly co-planar will cause � to be ill-conditioned
and adversely affect the numerical stability of the system.

Computing the values of � and � within the element requires the
first partials of x with respect to u:

∂x

∂ui

= P � �i (21)

∂ẋ

∂ui

= V � �i (22)

where
�i = [δi1 δi2 δi3 0]T . (23)

Because the element’s shape functions are linear, these partials are
constant within the element.

The element will exert elastic and damping forces on its nodes.

The elastic force on the ith node, f
(ǫ)

[i] , is defined as the partial of the

elastic potential density, η, with respect to p[i] integrated over the

volume of the element. Given �(ǫ), �, and the positions in world
space of the four nodes we can compute the elastic force by

f
(ǫ)

[i] =
vol

2

4
∑

j=1

p[j]

3
∑

k=1

3
∑

l=1

βjlβikσ
(ǫ)
kl (24)

where

vol =
1

6
[(m[2] −m[1])× (m[3] −m[1])] · (m[4] −m[1]) . (25)

Similarly, the damping force on the ith node, f
(ν)

[i] , is defined as

the partial of the damping potential density, κ, with respect to v[i]

integrated over the volume of the element. This quantity can be
computed with

f
(ν)

[i] =
vol

2

4
∑

j=1

p[j]

3
∑

k=1

3
∑

l=1

βjlβikσ
(ν)
kl . (26)

Summing these two forces, the total internal force that an element
exerts on a node is

f
el
[i] =

vol

2

4
∑

j=1

p[j]

3
∑

k=1

3
∑

l=1

βjlβikσkl , (27)

and the total internal force acting on the node is obtained by sum-
ming the forces exerted by all elements that are attached to the node.

As the element is compressed to less than about 30% of its ma-
terial volume, the gradient of η and κ start to vanish causing the
resisting forces to fall off. We have not found this to be a problem
as even the more squishy of the materials that we have modeled
conserve their volume to within a few percent.

Using a lumped mass formulation, the mass contributed by an
element to each one of its nodes is determined by integrating the
material density, ρ, over the element shape function associated with
that node. In the case of tetrahedral elements with linear shape
functions, this mass contribution is simply ρ vol/4.

The derivations above are sufficient for a simulation that uses an
explicit integration scheme. Additional work, including computing
the Jacobian of the internal forces, is necessary for implicit integra-
tion scheme. (See for example [2] and [3].)

3.3 Collisions

In addition to the forces internal to the material, the system com-
putes collision forces. The collision forces are computed using a
penalty method that is applied when two elements intersect or if an
element violates another constraint such as the ground. Although
penalty methods are often criticized for creating stiff equations, we
have found that for the materials we are modeling the internal forces
are at least as stiff as the penalty forces. Penalty forces have the
advantage of being very fast to compute. We have experimented
with two different penalty criteria: node penetration and overlap
volume. The examples presented in this paper were computed with
the node penetration criteria; additional examples on the conference
proceedings CD-ROM were computed with the overlap volume cri-
teria.

The node penetration criteria sets the penalty force to be pro-
portional to the distance that a node has penetrated into another
element. The penalty force acts in the direction normal to the pene-
trated surface. The reaction force is distributed over the penetrated
element’s nodes so that the net force and moment are the negation of
the penalty force and moment acting at the penetrating node. This
test will not catch all collisions, and undetected intersecting tetra-
hedra may become locked together. It is however, fast to compute,
easy to implement, and adequate for situations that do not involve
complex collision interactions.

The overlap volume criteria is more robust than the node pene-
tration method, but it is also slower to compute and more complex
to implement. The intersection of two tetrahedral elements is com-
puted by clipping the faces of each tetrahedron against the other.
The resulting polyhedron is then used to compute the volume and
center of mass of the intersecting region. The area weighted nor-
mals of the faces of the polyhedron that are contributed by one of
the tetrahedra are summed to compute the direction that the penalty
force acts in. A similar computation can be performed for the other
tetrahedra, or equivalently the direction can be negated. Provided
that neither tetrahedra is completely contained within the other, this
criteria is more robust than the node penetration criteria. Addition-
ally, the forces computed with this method do not depend on the
object tessellation.

Computing the intersections within the mesh can be very expen-
sive, and we use a bounding hierarchy scheme with cached traver-
sals to help reduce this cost.

4 Fracture Modeling

Our fracture model is based on the theory of linear elastic fracture
mechanics [1]. The primary distinction between this and other the-

!!!!!!
!!!!!!
!!!!!!
!!!!!!
!!!!!!
!!!!!!

I !!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!

IIIII!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!

Figure 6: Three loading modes that can be experienced by a crack.
Mode I: Opening, Mode II: In-Plane Shear, and Mode III: Out-of-
Plane Shear. Adapted from Anderson [1].

ories of fracture is that the region of plasticity near the crack tip2 is
neglected. Because we are not modeling the energy dissipated by
this plastic region, modeled materials will be brittle. This statement
does not mean that they are weak; rather the term “brittle” refers to
the fact that once the material has begun to fail, the fractures will
have a strong tendency to propagate across the material as they are
driven by the internally stored elastic energy.

There are three loading modes by which forces can be applied to
a crack causing it to open further. (See Figure 6.) In most circum-
stances, some combination of these modes will be active, producing
a mixed mode load at the crack tip. For all three cases, as well as
mixed mode situations, the behavior of the crack can be resolved
by analyzing the forces acting at the crack tip: tensile forces that
are opposed by other tensile forces will cause the crack to continue
in a direction that is perpendicular to the direction of largest tensile
load, and conversely, compressive loads will tend to arrest a crack
to which they are perpendicular.

The finite element model describes the surface of a fracture with
elements that are adjacent in material coordinates but that do not
share nodes across the internal surface. The curve that represents
the crack tip is then implicitly defined in a piecewise linear fashion
by the nodes that border the fracture surface, and further extension
of the crack may be determined by analyzing the internal forces
acting on these nodes.

We will also use the element nodes to determine where a crack
should be initiated. While this strategy could potentially introduce
unpleasant artifacts, we note that because the surface of an object is
defined by a polygonal boundary (the outer faces of the tetrahedra)
there will always be a node located at any concavities. Because con-
cavities are precisely the locations where cracks commonly begin,
we believe that this decision is acceptable.

Our fracture algorithm is as follows: after every time step, the
system resolves the internal forces acting on all nodes into their ten-
sile and compressive components, discarding any unbalanced por-
tions. At each node, the resulting forces are then used to form a ten-
sor that describes how the internal forces are acting to separate that
node. If the action is sufficiently large, the node is split into two dis-
tinct nodes and a fracture plane is computed. All elements attached
to the node are divided along the plane with the resulting tetrahe-
dra assigned to one or the other incarnations of the split node, thus
creating a discontinuity in the material. Any cached values, such as
the node mass or the element shape functions, are recomputed for
the affected elements and nodes. With this technique, the location
of a fracture or crack tip need not be explicitly recorded unless this
information is useful for some other purpose, such as rendering.

2The term “crack tip” implies that the fracture will have a single point

at its tip. In general, the front of the crack will not be a single point; rather

it will be a curve that defines the boundary of the surface discontinuity in

material coordinates. (See Figure 4.) Nevertheless, we will refer to this

front as the crack tip.

4.1 Force Decomposition

The forces acting on a node are decomposed by first separating
the element stress tensors into tensile and compressive components.
For a given element in the mesh, let vi(�), with i ∈ {1, 2, 3}, be the

ith eigenvalue of �, and let n̂
i(�) be the corresponding unit length

eigenvector. Positive eigenvalues correspond to tensile stresses and
negative ones to compressive stresses. Since � is real and symmet-
ric, it will have three real, not necessarily unique, eigenvalues. In
the case where an eigenvalue has multiplicity greater than one, the
eigenvectors are selected arbitrarily to orthogonally span the appro-
priate subspace [13].

Given a vector a in ℜ3, we can construct a 3× 3 symmetric ma-
trix, m(a) that has |a| as an eigenvalue with a as the corresponding
eigenvector, and with the other two eigenvalues equal to zero. This
matrix is defined by

m(a) =

{

aaT/|a| : a 6= 0

0 : a = 0 .
(28)

The tensile component, �+, and compressive component, �−,
of the stress within the element can now be computed by

�
+ =

3
∑

i=1

max(0, vi(�)) m(n̂i(�)) (29)

�
− =

3
∑

i=1

min(0, vi(�)) m(n̂i(�)) . (30)

Using this decomposition, the force that an element exerts on a
node can be separated into a tensile component, f+

[i], and a com-

pressive component, f−
[i]. This separation is done by reevaluating

the internal forces exerted on the nodes using (27) with �+ or �−

substituted for �. Thus the tensile component is

f
+
[i] =

vol

2

4
∑

j=1

p[j]

3
∑

k=1

3
∑

l=1

βjlβikσ
+
kl . (31)

The compressive component can be computed similarly, but be-
cause � = �+ + �−, it can be computed more efficiently using
f [i] = f+

[i] + f−
[i].

Each node will now have a set of tensile and a set of compressive
forces that are exerted by the elements attached to it. For a given
node, we denote these sets as {f+} and {f−} respectively. The
unbalanced tensile load, f+ is simply the sum over {f+}, and the
unbalanced compressive load, f−, is the sum over {f−}.

4.2 The Separation Tensor

We describe the forces acting at the nodes using a stress variant that
we call the separation tensor, & . The separation tensor is formed
from the balanced tensile and compressive forces acting at each
node and is computed by

& =
1

2

−m(f+)+
∑

f∈{f+}

m(f) + m(f−)−
∑

f∈{f−}

m(f)

 . (32)

It does not respond to unbalanced actions that would produce a rigid
translation, and is invariant with respect to transformations of both
the material and world coordinate systems.

The separation tensor is used directly to determine whether a
fracture should occur at a node. Let v+ be the largest positive eigen-
value of &. If v

+ is greater than the material toughness, τ , then the

(a) (c)(b)

Figure 7: Diagram showing how an element is split by the fracture
plane. (a) The initial tetrahedral element. (b) The splitting node
and fracture plane are shown in blue. (c) The element is split along
the fracture plane into two polyhedra that are then decomposed into
tetrahedra. Note that the two nodes created from the splitting node
are co-located, the geometric displacement shown in (c) only illus-
trates the location of the fracture discontinuity.

(a) (b) (c)

Figure 8: Elements that are adjacent to an element that has been
split by a fracture plane must also be split to maintain mesh consis-
tency. (a) Neighboring tetrahedra prior to split. (b) Face neighbor
after split. (c) Edge neighbor after split.

material will fail at the node. The orientation in world coordinates
of the fracture plane is perpendicular to n̂

+, the eigenvalue of &
that corresponds to v

+. In the case where multiple eigenvalues are
greater than τ , multiple fracture planes may be generated by first
generating the plane for the largest value, remeshing (see below),
and then recomputing the new value for & and proceeding as above.

4.3 Local Remeshing

Once the simulation has determined the location and orientation of
a new fracture plane, the mesh must be modified to reflect the new
discontinuity. It is important that the orientation of the fracture be
preserved, as approximating it with the existing element boundaries
would create undesirable artifacts. To avoid this potential difficulty,
the algorithm remeshes the local area surrounding the new fracture
by splitting elements that intersect the fracture plane and modifying
neighboring elements to ensure that the mesh stays self-consistent.

First, the node where the fracture originates is replicated so that
there are now two nodes, n+ and n− with the same material posi-
tion, world position, and velocity. The masses will be recalculated
later. The discontinuity passes “between” the two co-located nodes.
The positive side of the fracture plane is associated with n+ and the
negative side with n−.

Next, all elements that were attached to the original node are ex-
amined, comparing the world location of their nodes to the fracture
plane. If an element is not intersected by the fracture plane, then
it is reassigned to either n+ or n− depending on which side of the
plane it lies.

If the element is intersected by the fracture plane, it is split along
the plane. (See Figure 7.) A new node is created along each edge
that intersects the plane. Because all elements must be tetrahedra, in
general each intersected element will be split into three tetrahedra.
One of the tetrahedra will be assigned to one side of the plane and
the other two to the other side. Because the two tetrahedra that
are on the same side of the plane both share either n+ or n−, the
discontinuity does not pass between them.

In addition to the elements that were attached to the original
node, it may be necessary to split other elements so that the mesh

Figure 9: Two adobe walls that are struck by wrecking balls. Both walls are attached to the ground. The ball in the second row has 50×
the mass of the first. Images are spaced apart 133.3 ms in the first row and 66.6 ms in the second. The rightmost images show the final
configurations.

a b

dc

Figure 10: Mesh for adobe wall. (a) The facing surface of the initial
mesh used to generate the wall shown in Figure 9. (b) The mesh af-
ter being struck by the wrecking ball, reassembled. (c) Same as (b),
with the cracks emphasized. (d) Internal fractures shown as wire-
frame.

stays consistent. In particular, an element must be split if the face or
edge between it and another element that was attached to the orig-
inal node has been split. (See Figure 8.) To prevent the remeshing
from cascading across the entire mesh, these splits are done so that
the new tetrahedra use only the original nodes and the nodes cre-
ated by the intersection splits. Because no new nodes are created,
the effect of the local remeshing is limited to the elements that are
attached to the node where the fracture originated and their imme-
diate neighbors. Because the tetrahedra formed by the secondary
splits do not attach to either n+ or n−, the discontinuity does not
pass between them.

Finally, after the local remeshing has been completed, any
cached values that have become invalid must be recomputed. In
our implementation, these values include the element basis matrix,
�, and the node masses.

Two additional subtleties must also be considered. The first
subtlety occurs when an intersection split involves an edge that
is formed only by tetrahedra attached to the node where the crack
originated. When this happens, the fracture has reached a boundary
in the material, and the discontinuity should pass through the edge.
Remeshing occurs as above, except that two nodes are created on
the edge and one is assigned to each side of the discontinuity.

Second, the fracture plane may pass arbitrarily close to an exist-
ing node producing arbitrarily ill-conditioned tetrahedra. To avoid
this, we employ two thresholds, one the distance between the frac-

ture plane and an existing node, and the other on the angle between
the fracture plane and a line from the node where the split origi-
nated to the existing node. If either of these thresholds are not met,
then the intersection split is snapped to the existing node. In our
results, we have used thresholds of 5 mm and 0.1 radians.

5 Results and Discussion

To demonstrate some of the effects that can be generated with this
fracture technique, we have animated a number of scenes that in-
volve objects breaking. Figure 1 shows a plate of glass that has had
a heavy weight dropped on it. The area in the immediate vicinity
of the impact has been crushed into many small fragments. Further
away from the weight, a pattern of radial cracks has developed.

Figure 9 shows two walls being struck by wrecking balls. In
the first sequence, the wall develops a network of cracks as it ab-
sorbs most of the ball’s energy during the initial impact. In the sec-
ond sequence, the ball’s mass is 50× greater, and the wall shatters
when it is struck. The mesh used to generate the wall sequences is
shown in Figure 10. The initial mesh contains only 338 nodes and
1109 elements. By the end of the sequence, the mesh has grown
to 6892 nodes and 8275 elements. These additional nodes and el-
ements are created where fractures occur; a uniform mesh would
require many times this number of nodes and elements to achieve a
similar result.

Figure 11 shows the final frames from four animations of bowls
that were dropped onto a hard surface. Other than the toughness,
τ , of the material, the four simulations are identical. The first bowl
develops only a few cracks; the weakest breaks into many pieces.

Because this system works with solid tetrahedral volumes rather
than with the polygonal boundary representations created by most
modeling packages, boundary models must be converted before
they can be used. A number of systems are available for creating
tetrahedral meshes from polygonal boundaries. The models that
we used in these examples were generated either from a CSG de-
scription or a polygonal boundary representation using NETGEN,
a publicly available mesh generation package [16].

Although our approach avoids the “jaggy” artifacts in the frac-
ture patterns caused by the underlying mesh, there remain ways in
which the results of a simulation are influenced by the mesh struc-
ture. The most obvious is that the deformation of the material is
limited by the degrees of freedom in the mesh, which in turn limits
how the material can fracture. This limitation will occur with any
discrete system. The technique also limits where a fracture may ini-

Figure 11: Bowls with successively lower toughness values, τ . Each of the bowls were dropped from the same height. Other than τ , the
bowls have same material properties.

θopen

θturn θturn

θopen

(a) (b)

Figure 12: Back-cracking during fracture advance. The dashed line
is the axis of the existing crack. Cracks advance by splitting ele-
ments along a fracture plane, shown as a solid line, computed from
the separation tensor. (a) If the crack does not turn sharply, then
only elements in front of the tip will be split. (b) If the crack turns
at too sharp an angle, then the backwards direction may not fall
inside of the existing failure and a spurious bifurcation will occur.

tiate by examining only the existing nodes. This assumption means
that very coarse mesh sizes might behave in an unintuitive fash-
ion. However, nodes correspond to the locations where a fracture
is most likely to begin; therefore, with a reasonable grid size, this
limitation is not a serious handicap.

A more serious limitation is related to the speed at which a crack
propagates. Currently, the distance that a fracture may travel during
a time step is determined by the size of the existing mesh elements.
The crack may either split an element or not; it cannot travel only
a fraction of the distance across an element. If a crack were being
opened slowly by an applied load on a model with a coarse resolu-
tion mesh, this limitation would lead to a “button popping” effect
where the crack would travel across one element, pause until the
stress built up again, and then move across the next element. A
second type of artifact may occur if the crack’s speed should be
significantly greater than the element width divided by the simula-
tion time step. In this case, a high stress area will race ahead of
the crack tip, causing spontaneous failures to occur in the material.
Although we have not observed these phenomena in our examples,
developing an algorithm that allows a fracture to propagate arbitrary
distances is an area for future work.

Another limitation stems from the fact that while the fracture
plane’s orientation is well defined, the crack tip’s forward direction
is not. As shown in Figure 12, if the cracks turns at an angle greater
than half the angle at the crack tip, then a secondary fracture will
develop in the opposite direction to the crack’s advance. While this
effect is likely present in some of our examples, it does not appear
to have a significant impact on the quality of the results. If the arti-
facts were to be a problem, they could be suppressed by explicitly
tracking the fracture propagation directions within the mesh.

The simulation parameters used to generate the examples in this
paper are listed in Table 1 along with the computation time required
to generate one second of animation. While the material density
values, ρ, are appropriate for glass, stone, or ceramic, we used val-
ues for the Lamé constants, λ and µ, that are significantly less than
those of real materials. Larger values would make the simulated
materials appear stiffer, but would also require smaller time steps.

The values that we have selected represent a compromise between
realistic behavior and reasonable computation time.

Our current implementation can switch between either a forward
Euler integration scheme or a second order Taylor integrator. Both
of these techniques are explicit integration schemes, and subject to
stability limits that require very small time steps for stiff materi-
als. Although semi-implicit integration methods have error bounds
similar to those of explicit methods, the semi-implicit integrators
tend to drive errors towards zero rather than infinity so that they are
stable at much larger time steps. Other researchers have shown that
by taking advantage of this property, a semi-implicit integrator can
be used to realize speed ups of two or three orders of magnitude
when modeling object deformation [2]. Unfortunately, it may be
difficult to realize these same improvements when fracture prop-
agation is part of the simulation. As discussed above, the crack
speed is limited in inverse proportion to the time step size, and the
large time steps that might be afforded by a semi-implicit integrator
could cause spontaneous material failure to proceed crack advance.
We are currently investigating how our methods may be modified
to be compatible with large time step integration schemes.

Many materials and objects in the real world are not homoge-
neous, and it would be interesting to develop graphical models for
animating them as they fail. For example, a brick wall is made
up of mortar and bricks arranged in a regular fashion, and if simu-
lated in a situation like our wall example, a distinct pattern would
be created. Similarly, the connection between a handmade cup and
its handle is often weak because of the way in which the handle is
attached.

One way to assess the realism of an animation technique is by
comparing it with the real world. Figure 13 shows high-speed video
footage of a physical bowl as it falls onto its edge compared to our
imitation of the real-world scene. Although the two sets of fracture
patterns are clearly different, the simulated bowl has some qualita-
tive similarities to the real one. Both initially fail along the leading
edge where they strike the ground, and subsequently develop verti-
cal cracks before breaking into several large pieces.

Acknowledgments

The authors would like to thank Wayne L. Wooten of Pixar Ani-
mation Studios for lighting, shading, and rendering the images for
many of the figures in this paper. We would also like to thank Ari
Glezer and Bojan Vukasinovic of the School Mechanical Engineer-
ing at the Georgia Institute of Technology for their assistance and
the use of the high-speed video equipment. Finally, we would like
to thank those in the Animation Lab who lent a hand to ensure that
we made the submission deadline.

This project was supported in part by NSF NYI Grant No. IRI-
9457621, Mitsubishi Electric Research Laboratory, and a Packard
Fellowship. The first author was supported by a Fellowship from
the Intel Foundation.

Minutes of Computation

Material Parameters Time per Simulation Second

Example Figure λ (N/m2) µ (N/m2) φ (Ns/m2) ψ (Ns/m2) ρ (kg/m3) τ (N/m2) Minimum Maximum Average

Glass 1 1.04× 10
8

1.04 × 10
8

0 6760 2588 10140 75 667 273

Wall #1 9.a 6.03× 10
8

1.21 × 10
8

3015 6030 2309 6030 75 562 399

Wall #2 9.b 0 1.81 × 10
8

0 18090 2309 6030 75 2317 1098

Bowl #1 11.a 2.65× 10
6

3.97 × 10
6

264 397 1013 52.9 90 120 109

Bowl #2 11.b 2.65× 10
6

3.97 × 10
6

264 397 1013 39.6 82 135 115

Bowl #3 11.c 2.65× 10
6

3.97 × 10
6

264 397 1013 33.1 90 150 127

Bowl #4 11.d 2.65× 10
6

3.97 × 10
6

264 397 1013 13.2 82 187 156

Comp. Bowl 13 0 5.29 × 10
7

0 198 1013 106 247 390 347

The End 14 0 9.21 × 10
6

0 9.2 705 73.6 622 6667 4665

Table 1: Material parameters and simulation times for examples. The times listed reflect the total number of minutes required to compute one
second of simulated data, including graphics and file I/O. Times were measured on an SGI O2 with a 195 MHz MIPS R10K processor.

Figure 13: Comparison of a real-world event and simulation. The top row shows high-speed video images of a physical ceramic bowl dropped
from approximately one meter onto a hard surface. The bottom row is the output from a simulation where we attempted to match the initial
conditions of the physical bowl. Video images are 8 ms apart. Simulation images are 13 ms apart.

References

[1] T. L. Anderson. Fracture Mechanics: Fundamentals and Ap-
plications. CRC Press, Boca Raton, second edition, 1995.

[2] D. Baraff and A. Witkin. Large steps in cloth simulation.
In SIGGRAPH 98 Conference Proceedings, Annual Confer-

Figure 14: Several breakable objects that were dropped from a
height.

ence Series, pages 43–54. ACM SIGGRAPH, Addison Wes-
ley, July 1998.

[3] R. D. Cook, D. S. Malkus, and M. E. Plesha. Concepts and
Applications of Finite Element Analysis. John Wiley & Sons,
New York, third edition, 1989.

[4] T. DeRose, M. Kass, and T. Truong. Subdivision surfaces in
character animation. In SIGGRAPH 98 Conference Proceed-
ings, Annual Conference Series, pages 85–94. ACM SIG-
GRAPH, Addison Wesley, July 1998.

[5] N. Foster and D. Metaxas. Realistic animation of liquids. In
Graphics Interface ’96, pages 204–212, May 1996.

[6] Y. C. Fung. Foundations of Solid Mechanics. Prentice-Hall,
Englewood Cliffs, N.J., 1965.

[7] Y. C. Fung. A First Course in Continuum Mechanics.
Prentice-Hall, Englewood Cliffs, N.J., 1969.

[8] K. Hirota, Y. Tanoue, and T. Kaneko. Generation of crack
patterns with a physical model. The Visual Computer, 14:126–
137, 1998.

[9] O. Mazarak, C. Martins, and J. Amanatides. Animating ex-
ploding objects. In Graphics Interface ’99, June 1999.

[10] M. Neff and E. Fiume. A visual model for blast waves and
fracture. In Graphics Interface ’99, June 1999.

[11] T. Nishioka. Computational dynamic fracture mechanics. In-
ternational Journal of Fracture, 86:127–159, 1997.

[12] A. Norton, G. Turk, B. Bacon, J. Gerth, and P. Sweeney. An-
imation of fracture by physical modeling. The Visual Com-
puter, 7:210–217, 1991.

[13] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-
terling. Numerical Recipes in C. Cambridge University Press,
second edition, 1994.

[14] B. Robertson. Antz-piration. Computer Graphics World,
21(10), 1998.

[15] B. Robertson. Meet Geri: The new face of animation. Com-
puter Graphics World, 21(2), 1998.

[16] J. Schöberl. NETGEN – An advancing front 2D/3D–mesh
generator based on abstract rules. Computing and Visualiza-
tion in Science, 1:41–52, 1997.

[17] D. Terzopoulos. Regularization of inverse visual problems in-
volving discontinuities. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 8(4):413–424, July 1986.

[18] D. Terzopoulos and K. Fleischer. Deformable models. The
Visual Computer, 4:306–331, 1988.

[19] D. Terzopoulos and K. Fleischer. Modeling inelastic deforma-
tion: Viscoelasticity, plasticity, fracture. In Computer Graph-
ics (SIGGRAPH ’88 Proceedings), volume 22, pages 269–
278, August 1988.

