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Abstract Optimal power flow (OPF) is the central optimization problem in
electric power grids. Although solved routinely in the course of power grid oper-
ations, it is known to be strongly NP-hard in general, and weakly NP-hard over
tree networks. In this paper, we formulate the optimal power flow problem over
tree networks as an inference problem over a tree-structured graphical model
where the nodal variables are low-dimensional vectors. We adapt the standard
dynamic programming algorithm for inference over a tree-structured graphical
model to the OPF problem. Combining this with an interval discretization of
the nodal variables, we develop an approximation algorithm for the OPF prob-
lem. Further, we use techniques from constraint programming (CP) to perform
interval computations and adaptive bound propagation to obtain practically
efficient algorithms. Compared to previous algorithms that solve OPF with op-
timality guarantees using convex relaxations, our approach is able to work for
arbitrary distribution networks and handle mixed-integer optimization prob-
lems. Further, it can be implemented in a distributed message-passing fashion
that is scalable and is suitable for “smart grid” applications like control of dis-
tributed energy resources. We evaluate our technique numerically on several
benchmark networks and show that practical OPF problems can be solved
effectively using this approach.
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1 Introduction

In this paper, we study a novel application of well-known AI techniques (con-
straint programming and inference in graphical models) to a difficult engineer-
ing problem - the optimization of resources in a power distribution network. As
larger amounts of renewable generation sources (solar/wind) are incorporated
into the power grid, the availability of generation capacity becomes uncer-
tain (due to dependence on unpredictable weather phenomena). However, the
physics of the power grid imply the need to maintain real-time balance be-
tween demand and generation. Exploiting the flexibility of electricity demand
becomes central for solving this problem, which is the core of the “smart
grid” vision (https://www.smartgrid.gov/). Thus, future grids will require
efficient algorithms that can process data from millions of consumers and ef-
ficiently compute optimal ways of exploiting demand-side flexibility while re-
specting engineering constraints. In this paper, we develop a novel algorithm
guaranteed to compute an approximately optimal solution for this problem in
polynomial time.

More concretely, we study the Optimal Power Flow (OPF) problem [8]. At
an abstract level, one can view this as a network flow optimization:

minimize cost of generating electicity

subject to conservation of flows, flows consistent with voltages,

demands are met, engineering limits are respected

where the engineering limits typically refer to capacities of the transmission
lines in the power grid and limits on voltages.

However, as opposed to a standard network-flow problem for which there
are well-known efficient algorithms, the physics of electric power flow make the
above problem challenging. Electrical flows cannot be arbitrary, but are driven
by differences in voltages, so that the flow on a transmission line is a nonlin-
ear function of the voltage difference between the two ends of the line. Due
to this nonlinear constraint, the OPF problem becomes non-convex. In fact,
it is strongly NP-hard over arbitrary networks [5] and weakly NP-hard over
tree-structured networks [19]. The special case of tree-structured networks is
particularly important in the context of the smart grid as distribution networks
(which connect high-voltage long-distance power transmission network to in-
dividual consumers) are typically tree-structured. In order to exploit demand
side flexibility, we will need efficient OPF algorithms on tree-networks.

In recent years, several researchers have studied applications of convex re-
laxation techniques to the OPF problem [20]. In particular, for the tree OPF
problem, elegant results have been developed characterizing the conditions
under which convex relaxations of OPF are guaranteed to be exact [7,18,23,
13]. The most general results are presented in [13] and cover several practical
instances of OPF over tree networks. However, the conditions for exactness
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require assumptions that are incompatible with the above “smart grid” appli-
cations (absence of discrete variables, limits on flow reversal, ...).

In this paper, we develop a new approach to solving optimal power flow on
tree-structured networks by using techniques from Constraint Programming
(CP) and Graphical Models (GM). We first restate the tree OPF problem
as an inference problem over a tree-structured factor graph. Based on this
representation, we develop an algorithm that computes a super-optimal ap-
proximately feasible solution. The running time of the algorithm is linear in
the size of the network and polynomial in 1

ǫ
, where ǫ is the error tolerance

allowed. Relative to the existing algorithms based on convex relaxations, the
approach we develop has the following advantages:

– It can handle mixed-integer optimization problems (involving both discrete
and continuous variables) and hence is capable of addressing load-control
and distributed generation applications with discrete components such as
on/off constraints, switching transformer taps, and capacitor banks.

– Unlike [13], the approach does not require restrictive assumptions on flow
directionality or voltage limits. It also do not require costs to be convex,
allowing arbitrary (possibly discontinuous) piecewise-linear costs.

– The resulting algorithm is inherently distributed and can be implemented
using a message-passing framework, which is expected to be a significant
advantage for future distribution networks.

On the other hand, a disadvantage of our algorithm is that we only produce
approximate solutions and there may be cases where achieving acceptable
error tolerances will require intractably fine discretizations. However, we show
that, for several practical OPF problems, this problem can be alleviated by
leveraging CP techniques.

A closely related approach, developed in an abstract form and stated in the
language of linear programming, was presented in [4]. The authors present a
general framework that computes super-optimal and approximately feasible so-
lutions to graph-structured mixed-integer polynomial optimization problems.
While our approach provides similar guarantees, our main contributions rela-
tive to that work are as follows:

1 We restate the approach in the intuitive language of graphical models. This
allows us to take advantage of the inference techniques developed for graph-
ical models [26,24], and study problems beyond optimization (probabilistic
inference, for example).

2 As opposed to the point discretization approach employed in [4], we de-
velop an interval discretization approach, that allows us to use interval
CP techniques (bound-tightening, constraint propagation etc.) to achieve
practically efficient implementation of the algorithm.

We note that a related approach has been used for finding approximate Nash-
equilibria in tree-structured graphical games [15]. Finally, we note that related
ideas have been explored in detail in the graphical models and constraint
programming literature [10,26,14,24].
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The rest of this paper in organized as follows. Section 2 provides the
background on power systems and graphical models necessary for this pa-
per. Section 3 formulates the OPF problem over a tree network as a MAP-
inference problem over a tree-structured factor graph. Section 4 describes a
finite dynamic-programming algorithm based on an interval discretization of
the variables in the factor graph and presents guarantees associated with the
algorithm. Section 5 evaluates our algorithm and compares it to off-the-shelf
solvers on a number of IEEE distribution network test cases. Finally, Section
6 summarizes our findings and presents directions for future work.

2 Background

In this Section, we introduce all the necessary background on Alternating
Current (AC) power flows and graphical models required to follow the de-
velopment of the algorithm in this paper. We have attempted to make this
Section self-contained providing sufficient details for the purposes of this pa-
per. Interested readers may consult textbooks on power engineering [25,22]
and graphical models [16,10,26] for further details.

In the following, C denotes the set of complex numbers and R the set of real
numbers.j =

√
−1 to avoid confusion with currents as is traditional in power

systems. For x ∈ C, we use x to denote the complex conjugate of x, Re (x)
the real part, Im (x) the imaginary part, and ∠x the phase of x. For x, y ∈ C,
a ≤ b denotes the pair of inequalities Re (a) ≤ Re (b) , Im (a) ≤ Im (b).

2.1 AC Power Flow over a Tree Network

We will work with a power distribution network transporting Alternating-
Current power (AC power). Mimicking power engineering terminology, nodes
in the network are called buses and edges are called transmission lines (or
simply lines or branches). These networks are typically tree-structured, and
the root of the tree is known as the substation bus - physically, this is the point
at which the power distribution network is connected to the high voltage power
transmission network. We label the nodes 0, . . . , n, where 0 is the substation
bus. The network is represented as a directed graph, with all edges pointing
towards the substation bus (this directionality is simply a convention and has
no physical meaning - the physical power flow over this edge can be in either
direction). Each node k (except the substation) has a unique outgoing edge,
connecting it to its parent node, denoted P (k), and k is said to be a child of
P (k). C (i) denotes the set of children of bus i. AC power flow in steady-state
is described by complex voltages (known as voltage phasors) that represent
sinusoidal steady-state voltage profiles. Let the complex voltage at node i be Vi

and let vi = |Vi|2 denote the squared voltage magnitude. The power-flow is also
a complex number, whose real part is known as active power and imaginary
part as reactive power. In a tree network, every edge connects a bus and its
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Fig. 1: AC Power flow in a tree network

parent. Thus, we can identify every edge with the child node i incident upon
it, and denote its complex impedance by zi = ri + jxi (ri is the resistance and
xi the inductance of the line). We denote the sending-end power flow from bus
i to bus P (i) by Si = Pi+ jQi. Note that because of losses, the power received

at P (i) is not equal to Si. The power losses are given by zi
|Si|

2

vi
(see [25] or

[21] for further details). Combined with the conservation of flow at each node
in the network, this leads to the AC power flow equations, in the so-called
branch-flow model (first presented in [3]), illustrated in Figure 1. The power
flow equations in the branch flow (or Baran-Wu) form can be written as:

Pi = pi +
∑

k∈C(i)

(

Pk − rk

(

P 2
k +Q2

k

vk

))

∀i ∈ {0, . . . , n} (1a)

Qi = qi +
∑

k∈C(i)

(

Qk − xk

(

P 2
k +Q2

k

vk

))

∀i ∈ {0, . . . , n} (1b)

vi = vk +
(

r2k + x2
k

)

(

P 2
k +Q2

k

)

vk
− 2 (riPi + xiQi) ∀i ∈ {0, . . . , n}, k ∈ C (i)

(1c)

where pi and qi are the real and reaction power injections/consumptions at
bus i, as discussed in the next Section. For the rest of this paper, this is the
form of the PF equations we will use.

2.2 Optimal Power Flow (OPF) on a tree network

The optimal power flow (OPF) problem aims at finding the most efficient uti-
lization of generation and flexible demand resources in a grid subject to the
power flow constraints and engineering limits on voltages, currents and flows.
At each node, there is generation and/or consumption of power. To simplify
notation, we assume that there is only one entity (generator or consumer) at
each node in the network (but this restriction is not necessary). Both gen-
erators and flexible consumers are characterized by their injection domain
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(pi, qi) ∈ Si. The domain may be a finite set (for modeling discrete load con-
trol where a load can take on one of a set of possible values, for example) or
an infinite set (for modeling continuous constraints like minimum/maximum
generation limits). Inflexible generators or consumers are modeled by choosing
Si to be a singleton set. Additionally, each generator has a cost of production
ci (pi, qi) and similarly every flexible consumer may be compensated for ad-
justing consumption, and this compensation is also denoted ci (pi, qi).

With these assumptions, a generic OPF problem can be stated as

Minimize
p,qv,P,Q

n
∑

i=0

ci (pi, qi) (Minimize Cost) (2a)

Subject to (1a), (1b), (1c) (2b)

v
L
i ≤ vi ≤ v

U
i ∀i ∈ {1, . . . , n} (2c)

Pi
L ≤ Pi ≤ Pi

U , Qi
L ≤ Qi ≤ Qi

U ∀i ∈ {1, . . . , n} (2d)

(pi, qi) ∈ Si ∀i ∈ {1, . . . , n} (2e)

P0 = 0, Q0 = 0, v0 = v
ref (2f)

The costs and flow balance constraints are described above. The constraints
(2c) and (2d) come from engineering limits - devices connected to the grid only
work properly for a certain range of voltages, and the flow limits are related to
the capacity of transmission lines (both due to dynamic stability and thermal
limitations). The constraint (2f) enforces that there is no current or flow going
upstream from the substation bus and that the substation bus voltage is set
to a fixed reference value, vref . Note that more general OPF problems can be
handled with our approach (adding tap transformer positions, capacitor banks
etc.), but we restrict ourselves to this basic problem to simplify notation and
make the exposition clear. We make assumptions on the cost function and
problem data as stated below:

Assumption 1 The injection constraint set can be partitioned as:

Si = ∪|Si|
t=1I

s (t) , Is (t) =
{

(pi, qi) : pi
L (t) ≤ pi ≤ pi

U (t) , qi
L (t) ≤ qi ≤ qi

U (t)
}

and the cost function ci (pi, qi) is a linear function over I
s (t):

ci (pi, qi) = ai (t) pi + bi (t) qi + ci (t)

Assumption 2 ∃M > 0 such that:

1 [Pi
L, Pi

U ], [Qi
L, Qi

U ], [vi
L, vi

U ] ⊆ [−M,M ] i ∈ {1, . . . , n} (voltages/flows
are bounded uniformly across all nodes).

3 vi
L ≥ 1

M
for i = 1, . . . , n (voltage lower bounds are bounded below).

3 |zi| ≤ M, i = 1, . . . , n (impedances are bounded uniformly across all nodes).
4 |Si| ≤ M, i = 0, . . . , n (number of pieces in the cost is bounded).
5 ∀i ∈ {0, . . . , n}, t ∈ {1, . . . , |Si|}: max

(

pi
U (t)− pi

L (t) , qi
U (t)− qi

L (t)
)

≤
1
M

(the size of each piece in the piecewise linear cost is small).
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Fig. 2: Factor graph corresponding to (3)

Assumptions 1 and 2 are non-restrictive: Assumption 1 simply requires that
the cost function is piecewise-linear (or can be approximated by one) and
assumption 2 requires that all parameters are bounded.

2.3 Factor Graphs

A factor graph [17] is a formal tool to express the structure of an optimization
problem or a probability distribution. In this paper, we focus on optimization
problems and do not discuss the use of factor graphs in probabilistic inference.
A factor graph is defined by specifying:

1 A set of n variables {βi}ni=1 and their domains βi ∈ Xi.

2 A set of functions, called factors, {Hk :
∏

t∈α(k)

Xt 7→ R}mk=1, where α (k) ⊆

{1, . . . , n} is the set of variables that Hk depends on.

The factor graph is represented as a bipartite graph where the variables live
on one side of the graph and the factors on the other side. A variable is
connected to a factor if the factor depends on the variable, so that there is
an edge between βi and Hj if and only if i ∈ α (j). The optimization problem
associated with the factor graph is Minimize{βi∈Xi}n

i=1

∑m

k=1 Hk

(

βα(k)

)

. As a
concrete example, the optimization problem represented by the factor graph
shown in Figure 2 is:

min
{βi∈{0,1}}5

i=1

H1 (β1, β2, β3) +H2 (β2, β4) +H3 (β4, β5) (3)

A naive approach to solving (3) would be to simply enumerate all 25 assign-
ments to the variables β1, . . . , β5. However, one can solve this problem effi-
ciently by exploiting the factor graph structure as follows: We first note that
β5 only appears in the factor H3, so we can rewrite the optimization as

min
β1,β2,β3,β4

H1 (β1, β2, β3) +H2 (β2, β4) + min
β5

H3 (β4, β5)

Define κ3 (β4) = minβ5
H3 (β4, β5) (this function can be evaluated using 4 units

of time assuming each function evaluation takes 1 unit of time, by evaluating
H3 for all 4 assignments to its arguments). The problem then reduces to

min
β1,β2,β3

H1 (β1, β2, β3) + min
β4

H2 (β2, β4) + κ3 (β4)
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Again, define κ2 (β2) = minβ4 H2 (β2, β4)+κ3 (β4) (this can again be evaluated
in 4 units of time). Then, the problem reduces to

min
β1,β2,β3

H1 (β1, β2, β3) + κ3 (β3)

No further simplification is possible since H1 depends on all the remaining
variables. The optimal value can be computed now in 8 units of time (since
there are 23 possible assignments to the variables).

Thus the global optimum can be computed using 4+4+8 = 16 units of time
as opposed to the 32 units of time taken by the naive brute-force approach.
This algorithm generalizes to arbitrary tree-structured factor graphs (factor
graphs with no cycles). In Section 3, we formulate the ACOPF (2) as a tree-
structured factor graph and show how to exploit factor graph techniques to
solve the ACOPF with approximation guarantees.

3 OPF as a Graphical Model

This section shows how to rewrite the OPF problem (2) as a graphical model
inference problem. We first define the augmented variables βi =

(

vi Pi Qi

)

, i =

1, . . . , n, β0 =
(

v
ref 0 0

)

. Note that β0 is fixed and is only introduced for no-
tational convenience. In terms of the augmented variables βi, the constraints
(2c),(2d) are simply bound constraints on components of βi. The domain of
the variable βi is defined as Xi = [vLi , v

U
i ]×[PL

i , PU
i ]×[QL

i , Q
U
i ]. Further, using

(1a), we can define

p
(

βi, βC(i)

)

= Pi −
∑

k∈C(i)

(

Pk − rk
P 2
k +Q2

k

vk

)

(4a)

q
(

βi, βC(i)

)

= Qi −
∑

k∈C(i)

(

Qk − xk

P 2
k +Q2

k

vk

)

(4b)

vi (βk) = vk +
(

r2k + x2
k

)

(

P 2
k +Q2

k

)

vk
− 2 (Pkrk +Qkxk) (4c)

For each i = 0, . . . , n, we define

Hi

(

βi, βC(i)

)

= (5)










ci (si) if

{

(

pi
(

βi, βC(i)

)

, qi
(

βi, βC(i)

))

∈ Si

vi = vi (βk) ∀k ∈ C (i)

∞ otherwise

(6)

This is a convenient shorthand that allows to write the constrained optimiza-
tion problem (2) as an unconstrained problem, thereby simplifying notation.
The OPF problem (2) is equivalent to

Minimize
{βi∈Xi}n

i=1

n
∑

i=0

Hi

(

βi, βC(i)

)

(7)
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Fig. 3: Transformation from the power network to factor graph: Each variable
node i is connected to two factors - HP(i) and Hi

This corresponds to a graphical model in the factor graph representation [17]
where the nodal variables are βi and the factors correspond to the Hi.

Definition 1 (OPF factor graph) The problem (7) corresponds to a factor
graph: The set of variable nodes is

βi ∈ Xi (i = 1, . . . , n)

and the set of factors is

Hi (i = 0, . . . , n)

For i = 1, . . . , n, βi is connected to Hi, HP(i) (see Figure 3).

Theorem 1 The factor graph from definition 1 is a tree. Hence, the problem
(7) can be solved exactly by a two-pass dynamic programming algorithm.

Proof Every variable node βi (i = 1, . . . , n) is connected to two factors
HP(i), Hi. Thus, the total number of edges in the factor graph is 2n and the to-
tal number of nodes is 2n−1 (there are factors H0, . . . , Hn and variable nodes
β1, . . . , βn). Further, the factor graph is connected because variable nodes are
connected (Since the variable nodes that are also neighbors in the power net-
work are neighbors 2 hops apart in the factor graph). The factor graph is a
connected graph with the number of vertices equal to the number of edges
plus one. Therefore, the graph is a tree. The result on efficient inference over
a tree factor graph is a standard result [17].

The dynamic-programming (DP) approach is formalized in Algorithm 1. The
algorithm works by passing “messages” κt (βt). Let Desc (t) denote all the
nodes in the subtree rooted at t (the descendants of t, including t itself).

The message denotes the optimal value of the following subproblem of(7):

κt (βt) = min
βi∈Xi:i∈Desc(t)\{t}

∑

i∈Desc(t)

Hi

(

βi, βC(i)

)

.

The messages can be computed recursively starting at the leaves of the tree.
For the 5 bus network shown in Figure 4, Algorithm 1 proceeds as follows: At
T = 0, nodes 3, 4 send messages κ3, κ4 (which are simply equal to H3, H4) to
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Algorithm 1 DP Algorithm: (optimization implicitly subject to βi ∈ Xi)

Processed = ∅
κi (βi) = 0, ηi (βi) = ∅, i = 0, 1 . . . , n
while |Processed| <= n do

Choose i ∈ {k : k 6∈ Processed, C (i) ⊆ Processed}

κi (βi)← min
βC(i)

Hi

(

βi, βC(i)

)

+
∑

k∈C(i)

κk (βk) (8a)

ηi (βi)← argmin
βC(i)

Hi

(

βi, βC(i)

)

+
∑

k∈C(i)

κk (βk) (8b)

Processed = Processed ∪ {i}
end while
(

c∗, βC(0)
∗
)

← min
βC(0)

H0

(

β0, βC(0)

)

+
∑

k∈C(0)

κk (βk)

Processed = {0}.
while |Processed| ≤ n do

Choose i ∈ {k : k 6∈ Processed,P (k) ∈ Processed}
β∗
C(i)
← ηi

(

β∗
i

)

Processed← Processed ∪ C (i)
end while

return (c∗, β∗)

their parent nodes. For brevity, we do not write the constraint βi ∈ Xi in the
updates below explicitly. At T = 1, node 2 computes

κ2 (β2) = min
β3∈X3

H2 (β2, β3) + κ3 (β3) , η2 (β2) = argmin
β3∈X3

H2 (β2, β3) + κ3 (β3) .

At T = 2, node 1 computes

κ1 (β1) = min
β2∈X2,β4∈X4

H2 (β1, β2, β4) + κ2 (β2) + κ4 (β4)

η1 (β1) = argmin
β2∈X2,β4∈X4

H2 (β1, β2, β4) + κ2 (β2) + κ4 (β4) .

The forward pass ends here, and the backward pass proceeds similarly in the
reverse direction:

T = 3 : (OPT, β1
∗) = min

β1∈X1

κ1 (β1)

T = 4 : (β2
∗, β4

∗) = η1 (β1
∗)

T = 5 :β3
∗ = η2 (β2

∗) .

4 Finite Algorithm based on Interval Discretization

The algorithm described in the preceding section, as it stands, cannot be im-
plemented on a computer, since it requires representing the functional objects
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Fig. 4: Transformation of ACOPF to Graphical Model

κi (βi). A straightforward approach to deal with this would be to discretize
the variables βi to a finite set and allow for some error tolerance on each of
the constraints in (2). However, our experiments have indicated that, in or-
der to produce solutions of acceptable accuracy, one needs an intractably fine
discretization of βi resulting in prohibitive computation times, and that an
accurate estimation of the error tolerance parameter can be problematic.

Hence, we need an alternative procedure to approximate the infinite di-
mensional dynamic program. We take the approach of using an interval-based
discretization of the power flow variables vi, Pi, Qi (i.e., each variable can take
values in the respective interval). Given the constraints βi ∈ Xi, we partition
the set Xi into a finite union of interval regions defined by interval constraints
on the components of βi. For any practical OPF problem, Xi is a compact set
(since the bounds on voltages/flows are always finite), so such a decomposition
is always possible. Naturally, the computational complexity of the algorithm
depends on the number of interval regions. If we fix an interval resolution ǫ

(each interval region in our decomposition is made up of interval constraints
of width at most ǫ in each variable), the number of interval regions depends
on the bounds defining the region Xi. Thus, it is of interest to have as tight
bounds as possible on the variables βi. We describe a procedure to infer tight
bounds on the power flow variables using convex relaxations in Section A.3. We
use the inferred bounds to redefine Xi and perform the interval discretization
on this refined domain. Then, we perform the dynamic programming update
in the space of intervals: For every interval-value of the parent, we look at all
possible interval values of the children, and for each combination of intervals,
compute the minimum cost solution given the interval constraints. This gives
us a lower bound on the message for each interval value of the parent, thus
leading to a piecewise-constant lower bound on the message functions κi (βi).
The algorithm is described in Section 4.1.

As the interval discretization gets finer, the relaxation becomes tighter,
reducing the errors incurred in the power flow equations due to the relaxation.
The errors can be made smaller than ǫ for any ǫ > 0, with the running time
polynomial in 1

ǫ
. These results are formalized in Theorem 2 in Section 4.3.

4.1 Interval Dynamic Programming with Adaptive Refinement

We use Algorithm 1 with the DP update step replaced with a tractable lower
bound based on an interval partition of the variable domains. We develop such
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a scheme guaranteed to produce a lower bound on the optimal value and an
approximately feasible solution. The algorithm is based on a set of operators
that will replace the DP update (8):

1 Interval Partition Operator : A procedure that take a set and creates a
collection of intervals such that every point in the set is in an interval box
of size at most ǫ, for some specified tolerance ǫ.

2 Interval DP Relaxation: A procedure that takes a set of interval constraints
on children of a node i and produces a lower bound on κi (βi).

We now define these formally.

Definition 2 An interval constraint on a real variable x ∈ R is a constraint
of the type a ≤ x ≤ b, parameterized by real numbers a, b, a ≤ b.

Definition 3 An interval region Ii is a subset of Xi specified by interval con-
straints on the variables vi, Pi, Qi:

Ii =







(vi, Pi, Qi) :

vi
L ≤ vi ≤ vi

U

Pi
L ≤ Pi ≤ Pi

U

Qi
L ≤ Qi ≤ Qi

U







We use v (Ii) = [vi
L, vi

U ], P (Ii) = [Pi
L, Pi

U ], Q (Ii) = [Qi
L, Qi

U ] to denote
the interval constraints in Ii corresponding to each of the variables,

mid (Ii) =

(

vi
L + vi

U

2
,
Pi

L + Pi
U

2
,
Qi

L +Qi
U

2

)

to select the midpoint of an interval region and

Rad (Ii) = max
(

|viL − vi
U |, |Pi

L − Pi
U |, |Qi

L −Qi
U |
)

.

Definition 4 An interval partition Ii of a setX ⊆ Xi is a collection of interval
regions satisfying the following conditions:

Ii (t) =







βi :

vi
L (t) ≤ vi ≤ vi

U (t)

Pi
L (t) ≤ Pi ≤ Pi

U (t)

Qi
L (t) ≤ Qi ≤ Qi

U (t)







, t = 1, . . . , |Ii| (10a)

∪|Ii|
t=1 Ii (t) = X (10b)

The number of regions in the partition is denoted by |Ii|. A partition such
that maxt Rad (Ii (t)) ≤ ǫ is denoted as Partition (Xi; ǫ).

Definition 5 An interval relaxation of the DP update step (8) is a compu-
tational procedure that, given a bus i ∈ {0, . . . , n} with C (i) = {k1, . . . , km}
and interval regions βi ∈ Ii ⊆ Xi, βk ∈ Ik ⊆ Xk for each k ∈ C (i), with
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maxk∈{i}∪C(i) Rad (Ik) ≤ ǫ, produces as output an interval region I
′
i and val-

ues pi, qi such that

∃{βk ∈ Ik}k∈C(i), βi ∈ I
′
i

s.t











|pi − pi
(

βi, βC(i)

)

| ≤ ηǫ

|qi − qi
(

βi, βC(i)

)

| ≤ ηǫ
∣

∣

∣
vi −

(

vk +
P 2

k+Q2
k

vk

(

r2k + x2
k

)

− 2 (Pkrk +Qkxk)
)∣

∣

∣
≤ ηǫ ∀k ∈ C (i)

(11a)

ci (pi, qi) ≤ min
{βk∈Ik}k∈C(i)∪{i}

Hi

(

βi, βC(i)

)

(11b)

{βi : ∃{βk ∈ Ik}k∈C(i) s.t Hi

(

βi, βC(i)

)

< ∞} ⊆ I
′
i ⊆ Ii (11c)

where η is a constant that depends only on the number M from Assumption
2. We denote this computation as

(I′i, pi, qi) = PropBound (i, Ii, Ik1
, . . . , Ikm

) .

These conditions can be interpreted as follows:

– (11a) states that the relaxation gets tighter as the intervals get smaller. A
natural relaxation that satisfies this requirement is to take convex envelopes
of the nonlinear terms over the bound constraints defined by the intervals:
This is what we use in the concrete implementation described in Section
4.2.2.

– (11b) states that the injections produced by the relaxation step are super-
optimal, so that we are guaranteed to get a lower bound on the optimal
solution through the DP procedure.

– (11c) states that the bound propagation (which shrinks the interval Ii to
I
′
i using the constraints implicit in Hi) cannot cut off any feasible points.

Given this computational procedure, we can construct a DP-like algorithm
where the intractable DP update (8) is replaced with a tractable procedure
based on PropBound, thereby producing a lower bound on the message func-
tion κi (βi). The algorithm is described in Algorithms 2 and 3. The algorithm
starts by partitioning the space Xi using the interval partition operator. For
each element of the interval partition, we loop over the pieces in the messages
corresponding to each child, and propagate constraints from the children to
the parent βi. If the propagated interval is non-empty (that is, there exists a
feasible setting for the parents and children within the interval constraints),
the lower bound computed on ci (pi, qi) is used and a new piece is added to
the messages κi (βi) , η

i (βi). In comparison to the DP Algorithm 1, we also
maintain functions pi, qi, βi which store the optimal injections and intervals
for every variable computed in the DP procedure.
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4.2 Implementation of operators

4.2.1 Interval Discretization Operator

The ǫ-partition operator can be implemented by using a uniform discretization.
The bounds vL, vU , SL, SU are obtained from the bound tightening procedure
(16) described in Section A.3. For the variable vi with bounds vi

L, vi
U , the

partition operator will create the intervals
{

[vi
L, vi

L + ǫv], [vi
L + ǫv, vi

L + 2ǫv], . . . ,

[

vi
L +

⌈

vi
U − vi

L

ǫv

⌉

ǫv
]}

A similar interval discretization procedure is used for Pi, Qi.

4.2.2 Interval Relaxation Operator

In order to define the interval relaxation operator, it will be convenient to

introduce the square of the current magnitude ii =
P 2

i +Q2
i

vi
. This serves to

isolate the nonconvexities in the problem and simplify the derivation of convex
relaxations. Note also that using the current is natural in view of its edge-
invariance: in contrast to power flows, current conserves along any edge (power
line).

The interval relaxation operator requires solution of the following problem:

Extremize
{vk,Pk,Qk}k∈C(i)∪{i}

{vi, Pi, Qi, ci (pi, qi)} (12a)

Subject to Pi = pi +
∑

k∈C(i)

(Pk − ikrk) (12b)

Qi = qi +
∑

k∈C(i)

(Qk − ikxk) (12c)

vi = vk + ik

(

r2k + x2
k

)

− 2 (Pkrk +Qkxk) , k ∈ C (i) (12d)

vkik = P 2
k +Q2

k, k ∈ C (i) ∪ {i} (12e)

vk ∈ v (Ik) , Pk ∈ P (Ik) , Qk ∈ Q (Ik) , k ∈ {i} ∪ C (i) (12f)

(pi, qi) ∈ Si (12g)

where Extremize means that we both maximize and minimize every term in the
set of objectives subject to the constraints specified. Thus, we obtain tighter
bounds on the variables vi, Pi, Qi and a lower bound on the objective given
the interval constraints. The nonconvexity in the above problem is due to
the constraint (13c) and the possibly nonconvex cost ci and constraints Si.
To deal with the later, we explicitly enumerate over I

s
i (t) , t = 1, . . . , |Si| so

that for each t, the injection constraints and costs are linear. To deal with
nonconvexity of (13c), we use convex envelopes of the bilinear and quadratic
terms. An abstract version of the problem solved is below (we defer exact
details to Section A.2)
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Fig. 5: Convex relaxation of nonlinear constraint xy = 1 over the region x ∈
[0.3, 0.7], y ∈ [ 1

0.7 ,
1
0.3 ]: The set of points satisfying the constraint xy = 1, x ∈

[.3, .7] is plotted in the solid curve (blue). The convex region enclosed by the
dashed lines (black) is the feasible region of the convex relaxation.

∀t ∈ {1, . . . , |Si|}

Extremize
pi,qi,{vk,Pk,Qk}k∈C(i)∪{i}

{vi, Pi, Qi, ai (t) pi + bi (t) qi + ci (t)} (13a)

Subject to (12b), (12c), (12d) (13b)

0 ∈ Relax
(

vkik −
(

P 2
k +Q2

k

)

, Ik
)

, k ∈ C (i) ∪ {i}
(13c)

vk ∈ v (Ik) , Pk ∈ P (Ik) , Qk ∈ Q (Ik) , k ∈ {i} ∪ C (i)
(13d)

pi ∈ [pi
L (t) , pi

U (t)], qi ∈ [qi
L (t) , qi

U (t)] (13e)

The relaxations we use depend on the bound constraints Ik and are denoted as
Relax

(

vkik −
(

P 2
k +Q2

k

)

, Ik
)

. A simple example of this kind of relaxation is
shown pictorially in Figure 5 for the constraint xy = 1. It is easy to see that this
relaxation gets tighter as the bound constraints on x get tighter, leading to the
property that any feasible solution (x, y) of the relaxation satisfies |xy−1| ∝ ǫ,
where ǫ is the size of the interval constraint on x (this is formalized in Lemma
2 in the Appendix Section A.2).

4.3 Analysis of the interval DP algorithm

We now present formal results verifying the correctness, optimality, and fea-
sibility properties of the solutions produced by our DP algorithm.
Before we state our main theorem that provides an approximation guarantee,
we note that we can always convert an OPF problem on an arbitrary tree
network to a problem on a tree network with maximum degree 3:

Lemma 1 An OPF problem on an arbitrary tree network with n nodes and
maximum degree d can be converted to an OPF problem on a modified tree
network with maximum degree 3 and at most nd nodes.
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Algorithm 2 Interval DP update at node i with children (j, k)

(j, k)← C (i)
ni ← 0
Ii ← Partition (Xi, ǫ)
for mi = 1, . . . , |Ii| do

for mj ∈ 1, . . . , |ηj | do
for mk ∈ 1, . . . , |ηk| do

(I, p, q)← PropBound
(

Ii (mi) , β
j (mj) , β

k (mk)
)

if I 6= ∅ then
ni ← ni + 1, ηi (ni)← (mj ,mk)
βi (ni)← I, κi (ni)← ci (p, q) + κj (mj) + κk (mk)
pi (ni)← p, qi (ni)← q

end if

end for

end for

end for

return ηi, κi, pi, qi, βi

Algorithm 3 Interval DP update at leaf node
ni ← 0

for mi ∈
{

1, . . . ,
⌈

vi
U−vi

L

ǫ

⌉}

do

for t = 1, . . . , |Si| do
ni = ni + 1
if [PL, PU ] ∩ [pi (t)

L, pi (t)
U ] 6= ∅, [QL, QU ] ∩ [qi (t)

L, qi (t)
U ] 6= ∅ then

Iv ← [vi
L +(mi − 1) ǫ,min

(

vi
L +miǫ, vi

U
)

], IP ← [PL, PU ]∩ [pi (t)L, pi (t)U ]

IQ ← [QL, QU ] ∩ [qi (t)
L, qi (t)

U ], ηi (ni)← Iv × IP × IQ
(

pi (ni) , q
i (ni)

)

← argmin
pi∈IP ,q∈IQ

ci (t) + ai (t) pi + bi (t) qi

κi (ni)← min
pi∈IP ,qi∈IQ

ci (t) + ai (t) pi + bi (t) qi

end if

end for

end for

return ηi, κi

Proof See Appendix Section A.4.

Theorem 2 (Approximate optimality property) Suppose that assump-
tions 1 and 2 (see Section 2.2) hold and that the DP Algorithm 1 (with update
rule from Algorithm 2) is run on a tree network with maximum degree 3 and
with 0 < ǫ < 1. Let m∗

1,m
∗
2, . . . ,m

∗
n be the indices of the variables in the opti-

mal solution. Let (v∗i , P
∗
i , Q

∗
i ) = mid (ηi (m

∗
i )) and p∗i = pi (m∗

i ) , q
∗
i = qi (m∗

i ).
Then, the following guarantees hold:

1 Approximation guarantee: (v∗, P ∗, Q∗, p∗, q∗) satisfies each constraint of
(2) with a bounded error ζǫ where ζ is a constant that depends only on M

(the constant from Assumption 2 in Section 2.2).
2 Runtime bound: There is a constant ζ ′ (depending on M) such that the

algorithm requires at most nζ ′
(

1
ǫ

)5
calls to the PropBound routine.
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3 Optimality guarantee: The cost of the solution is bounded as:

n
∑

i=0

ci (p
∗
i , q

∗
i ) ≤ OPT

where OPT is the optimal cost of the original problem (2).

Thus, we find a super-optimal approximately feasible solution in time linear in
the size of the network and polynomial in the error tolerance.

Proof See Appendix Section A.5.

Remark 1 Theorem 2 formalizes the intuition that as we use finer intervals in
the Interval DP algorithm, we get closer to the optimal solution in terms of
cost, and we get a tighter relaxation as well. The numerical results in Section
5 show that our algorithm often finds the true optimal solutions even with a
finite error tolerance.

5 Numerical Illustrations

In this Section, we present numerical tests of our approach on some IEEE
benchmark networks - power grids with network topologies and loads that are
deemed representative of real power systems. In particular, we use a set of sub-
networks of the 56-bus distribution network [2] (based on the IEEE 123 bus
distribution feeder network [1]). We create additional subnetworks(14/30/56
bus) by aggregating nodes in the original network. We study discrete load-
curtailment problems, which are mixed integer nonconvex nonlinear optimiza-
tion problems (MINLPs). We analyze a highly overloaded distribution net-
work: a scenario that might arise just before a blackout, or after the loss of a
major generator or transmission line. The goal is to curtail (reduce the con-
sumption of) a small number of loads so that the power grid is restored to
its normal operating state (bring voltages back to acceptable range). A cost is
incurred for curtailing a load (typically proportional to the reduction of load).
The total cost is the sum of the load-shedding costs plus a generation cost at
the substation (bus 0). The formal statement of the problem is as follows:

Minimize
σ,v,S

c0 (p0, q0) +

n
∑

i=1

ci (σi)

Subject to (1b), (1a), (1c)

pi = pnomi (1− σi) + predi σi, qi = qnomi (1− σi) + qredi σi

σi ∈ {0, 1}, vLi ≤ vi ≤ v
U
i

The values pnomi , qnomi denote the nominal values of the real and reactive
demands at the bus i. predi , qredi denote the reduced (curtailed) values of the
loads. σi ∈ {0, 1} denote the curtailment decision (σ = 1 denotes curtailment).
Curtailment of loads incurs a cost ci (σi).
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Fig. 6: 14 bus network

We run the DP algorithm (Algorithm 1 with update step from Algorithms
2,3) on our three test cases (14,30, and 56 buses). Ratio of DP optimum to
true optimum/upper bound, maximum constraint violation and CPU time are
studied as functions of ǫ. To ensure that the results are not artifacts of the
particular test cases used, the results averaged over 50 instances of the problem
generated by perturbing the loads in the original problem randomly by up to
10% at each bus. We show both the mean and standard deviations of each
quantity. We summarized our observations below.

– Since our approach is based on a relaxation, it may produce infeasible so-
lutions. However, as the radius ǫ of the interval discretization reduces, the
degree of infeasibility, as measured by the maximum constraint violation,
decreases. We quantify this dependence by taking the optimal configuration
produced by the DP algorithm and solving the power flow equations (using
Newton’s method). We then examine if the power flow solution satisfies the
bound constraints on voltages. Otherwise, we compute the maximum viola-
tion, as shown in Figures 6a,7a, and 8a. The results show that near-feasible
super-optimal solutions are found by our DP algorithm consistently.

– The other parameter of interest is the degree of super-optimality, which
measures how close the optimal cost of the solution found by the DP is to
the true optimal cost of the original problem (2). For the 14 bus network, it
is feasible to find the true optimal cost using a brute-force search. However,
for larger networks, we rely on the BONMIN solver to get a feasible solution
and bound the optimality gap. The results shown in Figures 6b,7b,8b prove
that when ǫ is sufficiently small, the DP algorithm optimum is within .99 of
the true optimum. Note that the non-monotonic behavior of the optimum
is due to the fact that we use an adaptive discretization. Even though our
interval discretization gets tighter as ǫ gets smaller, it is not guaranteed to
be a strict refinement of the intervals corresponding to a larger ǫ.

– Finally, we study the dependence of the running time of the algorithm on ǫ,
in Figures 6c,7c,8c. The running time of the algorithm grows as ǫ decreases,
but the plots show that a good optimality ratio and an acceptable error
can be achieved with a fairly small running time of several seconds.

We also compared our algorithm to other available MINLP solvers: (1) BON-
MIN [6] is a solver guaranteed to find global optima of convex MINLPs. It can
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Fig. 7: 40 bus network
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Fig. 8: 56 bus network

be used as a heuristic solver for nonconvex MINLPs but with no guarantees
on global optimality. (2) COUENNE (http://www.coin-or.org/Couenne/)
is a solver guaranteed to find global optima of nonconvex MINLPs based on a
spatial branch and bound algorithm. We access both solvers through the Julia
interface available via the JuMP package [11]. For the problems we studied,
COUENNE failed to converge within an acceptable time limit (1 hr) so we
do not report results from COUENNE. The BONMIN results are summarized
in Table 1. While the BONMIN solver was faster in our experiments, it is a
heuristic solver, i.e, it is not guaranteed to find a globally optimal solution.
Indeed, BONMIN indeed fail to find optimal solutions in the 56 bus network.
In contrast, our DP approach always succeeds in finding a global optimum
(see table 2), although for the 56 bus network, it requires a very small ǫ which
drives up the running time of the algorithm to 1170s. The reason for this
behavior is that there is a super-optimal solution that violates the voltage
constraints by only 10−4%. This means that the discretization of voltages has
to be smaller than this for the solver to be able to recognize infeasibility of
this solution, and find the true global optimum.

6 Conclusions

We have presented a novel dynamic programming based algorithm for solving
optimal power flow over tree networks. Preliminary experiments have indi-
cated that the approach is promising and that it can solve difficult mixed
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Table 1: Performance of BONMIN solver on discrete load-control: Optimality
gap computed using lower bound from DP algorithm.

Test Case Optimality Gap Computation Time
14 bus 0% .1s
30 bus 0% .2s
56 bus 0.1% .5s

Table 2: Performance of DP solver on discrete load-control.

Solver Test Case Optimality Gap Computation Time
DP 14 bus 0% 1s
DP 30 bus 0% 40s
DP 56 bus 0% 1170s

integer NLP problems arising in power systems. We note that these conclu-
sions are still preliminary and further work needs to be done to carefully test
and validate the performance of this approach across a range of test problems.
Overall, we envision that graphical models will be a powerful paradigm for
analysis and control of power systems and other infrastructure networks. We
plan to explore the following concrete directions in future work:
(1) Extension to probabilistic inference problems: As solar penetration in-
creases, the notion of security analysis (making sure that all voltages, flows,
currents are within bounds) will need to be phrased in a probabilistic manner.
For example, given a joint spatial distribution of solar generation at various
points in the network, compute the probability that a given physical quantity
(voltage/current/flow) deviates beyond its acceptable bounds. This problem
can be phrased as the sum-product analog of the problem solved here.
(2) Extensions to loopy graphs: There are several possibilities for extending
the algorithms presented here to loopy graphs. The most straightforward ex-
tensions would be based on junction trees [16] (cluster nodes into supernodes
to form a tree) or on cutset conditioning [10] (fix values of variables on a cutset
of the graph, and given for each fixed value, use inference on the remaining
tree-structured graph). Another route is to use loopy belief propagation or the
corresponding Linear Programming relaxation of the inference problem [16],
and subsequent hierarchies of relaxations, in the spirit of [24][14].
(3) Parameterized messages: We represented messages with piecewise-constant
approximations. Another option is to use a parameterized representation (poly-
nomial/piecewise linear/piecewise polynomial for ex). An interesting related
development is [12], where the authors show that belief propagation with
piecewise-linear messages is guaranteed to find the global optimum of a cer-
tain special minimum cost flow problem in polynomial time. Extending this
to ACOPF is another promising direction for future work.
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A Appendix

A.1 Convex Envelopes of quadratic and bilinear terms

The nonlinearities appearing in power flow are of the form x2 or xy for some variables x, y.
We use the following convex envelopes as relaxations of these nonlinear terms:

SqRel
(

y, [yL, yU ]
)

=

{

x :
x ≥ y2

x ≤
(

yL + yU
)

y − yLyU

}

(14a)

McCormick
(

y, z, [yL, yU ], [zL, zU ]
)

=















x :

x ≥ yLz + zLy − yLzL

x ≥ yUz + zUy − yUzU

x ≤ yLz − zUy + yLzU

x ≤ zLy − yUz + zLyU















(14b)

A.2 Interval DP Relaxation

In this section, we describe a concrete implementation of the interval relaxation procedure
(13):

Extremize
si,{Sk,vk,Sq

P
k
,,SqP

k
,Prod

v,i
k

}k∈C(i)∪{i}

{vi, Pi, Qi, ai (t) pi + bi (t) qi + ci (t)} (15a)

Subject to

Pi = pi +
∑

k∈C(i)

(Pk − ikrk) (15b)

Qi = qi +
∑

k∈C(i)

(Qk − ikxk) (15c)

vi = vk + ik

(

r2k + x2
k

)

− 2 (Pkrk +Qkxk) , k ∈ C (i) (15d)
√

P 2
k
+Q2

k
≤
√

vkik k ∈ C (i) ∪ {i} (15e)

SqPk + SqQ
k

= Prodv,i
k

k ∈ C (i) ∪ {i} (15f)

SqPk ∈ SqRel (Pk, P (Ik)) k ∈ C (i) ∪ {i} (15g)

SqQ
k
∈ SqRel (Qk, Q (Ik)) k ∈ C (i) ∪ {i} (15h)

Prodv,i
k
∈ McCormick (vk, ik, v (Ik) , i (Ik)) k ∈ C (i) ∪ {i} (15i)

vk ∈ v (Ik) , ik ∈ i (Ik) , Pk ∈ P (Ik) , Qk ∈ Q (Ik) , k ∈ {i} ∪ C (i) (15j)

pi ∈ [pi
L (t) , pi

U (t)], qi ∈ [qi
L (t) , qi

U (t)] (15k)

This requires solution of a small number of SOCPs within each DP update (specifically
10 SOCPs in 6d variables where d is the maximum degree of a node in the tree - note that
we can always choose d ≤ 2 by modifying the original problem as in lemma 1). Note also
that as the intervals Ik get smaller, the relaxation gets tighter - this is formalized in the
lemma below:

Lemma 2 The relaxation defined by (15) is a valid interval relaxation and satisfies the

conditions of the definition 5.

Proof Through this proof, we use η (M) to refer to some constant that depends on the
number M from assumption 2. Properties (11b),(10b) are obvious since (15) is a valid relax-
ation of the problem (12). The property (10a) follows from the tightness of the McCormick
relaxation. If Ii, (Ik)k∈C(i) are of radius at most ǫ, we know that

vk
L
ik + ik

L
vk − vk

L
ik

L ≤ Prodv,i
k
≤ vk

U
ik + ik

L
vk − vk

U
ik

L
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so that the range of Prodv,i
k

is of size at most

(

vk
U − vk

L
)(

ik − ik
L
)

≤
(

vk
U − vk

L
)(

ik
U − ik

L
)

≤ ηǫ

since ik has upper and lower bounds depending on the problem data. Thus, we know that

Prodv,i
k

is at most η (M) ǫ away from vkik. Similarly, SqPk is at most η (M) ǫ away from

P 2
k
, SqQk is at most η (M) ǫ away from Q2

k
. Combining these results, we get the that (10a)

holds.

A.3 Bound-tightening procedure

We use a scheme similar to the one described in [9] that infers bounds on the variables
vi, Pi, Qiii given the constraints in the ACOPF problem (8) . Let Conv (Si) denote the
convex hull of the set Si. We use a convex relaxation of the constraints (2) that depends
on the variable bounds. We then iterate this procedure where we use a relaxation to infer
tighter bounds, and then tighten the relaxation using the inferred bounds. In practice, we
find that the procedure converges in a few iterations typically to a stable set of bounds.

The nonconvex constraint P 2
k

+ Q2
k

= vkik can be relaxed to a convex constraint:
√

P 2
k
+Q2

k
≤ √ikvk. This can be tightened by replacing the nonlinear terms in the equation

(Pk)
2 + (Qk)

2 = vkik with their McCormick envelopes. Plugging all this into a single
formulation, we obtain:

Extremize
v,i,S,s,SqP ,SqQ,Prodv,i

{vi, ii, Pi, Qi}ni=1 (16a)

Subject to Si −
∑

k∈C(i)

(Sk − ikzk) ∈ Conv (Si) , i ∈ {0, . . . , n} (16b)

vi = vk + ik|zk|2 − 2 (Pkrk +Qkxk) , i ∈ {0, . . . , n}, k ∈ C (i) (16c)
√

P 2
k
+Q2

k
≤
√

vkik, k ∈ {1, . . . , n} (16d)

SqPk + SqQ
k

= Prodv,i
k

k ∈ {1, . . . , n} (16e)

SqPk ∈ SqRel
(

Pk, [Pk
L, Pk

U ]
)

, k ∈ {1, . . . , n} (16f)

SqQ
k
∈ SqRel

(

Qk, [Qk
L, Qk

U ]
)

, k ∈ {1, . . . , n} (16g)

Prodv,I
k
∈ McCormick

(

vk, ik, [vk
L, vk

U ], [ik
L, ik

U ]
)

, k ∈ {1, . . . , n}
(16h)

Each minimum/maximum value involves solving a Second Order Cone Program (SOCP)
and can be done in parallel over the variables involved. This entire procedure can be viewed
as a mapping:

(

v
L

v
U SL SU

i
L

i
U
)

t
7→
(

v
L

v
U SL SU

i
L

i
U
)

t+1

We iterate this mapping until there the improvement in bounds is smaller than some
threshold. The obtained bounds are used to redefine the domains Xi for each of the variables.

A.4 Proof of Lemma 1

We describe a transformation that takes a node i with m children and adds at most r =
⌈log2 (m)⌉ additional buses to create a new network where each node has at most 2 children.
We add children in “levels” p = 1, . . . , r: At level 1, we add children c10, c11 connected to
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bus i by 0-impedance transmission lines. We have the following constraints between i and
its children C (i)′ = {c10, c11}:

Si = si +
∑

k∈C(i)′

Sk

vi = vk, k ∈ C (i)′

ikvk = |Sk|2, k ∈ C (i)′

At any level p ≤ r, all nodes are of the form ci1...ip . We add its children C
(

ci1...ip
)

=
{ci1...ip0, ci1...ip1} connected to it by 0-impedance lines with the constraints:

Sci1...ip
=

∑

k∈C
(

ci1...ip

)

Sk

vci1...ip
= vk, k ∈ C

(

ci1...ip
)

ikvk = |Sk|2, k ∈ C
(

ci1...ip
)

At the final level p = r − 1, every node is of the form ci1...ir−1 and its children are
picked from the set of original children C (i). One way of doing this is to assign children in
order: C (c10...0) = {c1, c2}, C (c10...1) = {c3, c4}, . . .. Then, we add the balance equations:

Sci1i2...ir−1
=

∑

k∈C
(

ci1i2...ir−1

)

(Sk)

vi = vk, k ∈ C (i)′

ikvk = |Sk|2, k ∈ C (i)′

Adding the power balance equations at all the intermediate buses, we recover the original
power balance condition

si =
∑

k∈C(i)

(Sk − zkik)

Further, we have that vi = vci1i2...ip
for every 1 ≤ p ≤ r − 1.

A.5 Proof of Theorem 2

Proof Through this proof, we will use ζ (M) to denote an arbitrary function of M . The
proof of the algorithm breaks down to three key statements:

1 The size of the messages |ηi| is bounded by
ζ(M)

ǫ3
.

2 For each message, Rad
(

βi (t)
)

≤ ζ (M) ǫ, t = 1 . . . , |βi|.
3 In the interval DP update Algorithm 2 makes at most

ζ(M)

ǫ5
calls to the PropBound

routine.

Proof of 1,2

For the leaf nodes, the size of the messages is bounded by |Si|
(

vi
U−vi

L

ǫ
+ 1
)

≤ ζ(M)
ǫ

(since

v
U
i ≤ M, vi

L ≥ 1
M

, |Si| ≤ M). Since 0 < ǫ < 1, this is smaller than
ζ(M)

ǫ3
. Further, since

pi
U (t)−pi (t) , qiU (t)−qi (t) ≤ 1

M
, we know that Rad

(

βi (t)
)

≤ ǫ for each t = 1, . . . , |βi|. For
non-leaf node, the size of the messages is bounded by the size of |Partition (Xi, ǫ) | ≤ ζ(M)

ǫ3
.

Further, since βi (t) ⊂ Ii ∈ Partition (Xi, ǫ), we know that Rad
(

βi (t)
)

≤ ǫ.

Thus, using (11), the error of the PF equations |pi−pi
(

βi, βC(i)

)

|, |qi−qi
(

βi, βC(i)

)

|, |vi−
vi (βk) | can be bounded by ζ (M) ǫ. This proves claim 1 of the theorem. Further, since at
each step we propagate all interval regions consistent with at least one interval value of the
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child, the optimal solution to the original problem is feasible for the interval relaxation.
Thus, for each we have that ci

(

p∗i , q
∗
i

)

≤ ci
(

pOPT
i , qOPT

i

)

. Adding this over all i gives us
claim 2 of the theorem.

Finally, we show that the DP update can be implemented with
ζ(M)

ǫ5
calls to the

PropBound routine. In the loops in algorithm 1, we are implicitly looping over possible
interval values of vi, Pi, Qi, vj , Pj , Qj , vk, Pk, Qk. However, these variables are linked by the
constraints:

Pi = pi +

(

Pk − rk
P 2
k
+Q2

k

vk

)

+

(

Pj − rj
P 2
j +Q2

j

vj

)

Qi = qi +

(

Qk − xk

P 2
k
+Q2

k

vk

)

+

(

Qj − xj

P 2
j +Q2

j

vj

)

vi = vk +
(

r2k + x2
k

)

(

P 2
k
+Q2

k

)

vk

− 2 (Pkrk +Qkxk)

vi = vj +
(

r2j + x2
j

)

(

P 2
j +Q2

j

)

vj

− 2 (Pjrj +Qjxj)

Thus, if pi, qi are fixed, the 9 variables are constrained to lie on a 5-dimensional manifold
(since there are 4 non-redundant . This suggests that we only need to do an exhaustive
search over a 5-dimensional space rather than a 9 dimensional space.

Suppose pi ∈ [pi
L (t) , pi

U (t)], qi ∈ [qi
L (t) , qi

U (t)] and we fix particular interval values
(of radius smaller than ǫ) for variables vi, Pk, Qk, Pj , Qj . Then, from the first two equations,
we know that Pi, Qi must lie in an interval of size ζ (M) ǫ (since pi, qi lie in intervals of size
ζ (M)). Thus, we need to loop over at most ζ (M) possible values of Pi, Qi. Similarly, if
vi, Pk, Qk are fixed to interval values of radius ǫ, the third equation says that vk must lie
in an interval of size ζ (M) ǫ, and similarly if vi, Pj , Qj are fixed to intervals of radius of ǫ,
vj must lie in an interval of size ζ (M) ǫ. Thus, we need to loop over at most ζ (M) possible
values of vj , vk, Pi, Qi once the values of vi, Pk, Qk, Pj , Qj are fixed to intervals of radius

ǫ. Finally, the total number of loops in algorithm 2 is at most
ζ(M)

ǫ5
. Adding this over all

nodes of the network, we get the third claim of Theorem 2.


