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Abstract 

We describe a real-time computer vision and machine learning sys­
tem for modeling and recognizing human actions and interactions. 
Two different domains are explored: recognition of two-handed 
motions in the martial art 'Tai Chi' , and multiple-person interac­
tions in a visual surveillance task. Our system combines top-down 
with bottom-up information using a feedback loop, and is formu­
lated with a Bayesian framework. Two different graphical models 
(HMMs and Coupled HMMs) are used for modeling both individual 
actions and multiple-agent interactions, and CHMMs are shown to 
work more efficiently and accurately for a given amount of train­
ing. Finally, to overcome the limited amounts of training data, 
we demonstrate that 'synthetic agents ' (Alife-style agents) can be 
used to develop flexible prior models of the person-to-person inter­
actions. 

1 INTRODUCTION 

We describe a real-time computer vision and machine learning system for modeling 
and recognizing human behaviors in two different scenarios: (1) complex, two­
handed action recognition in the martial art of Tai Chi and (2) detection and 
recognition of individual human behaviors and multiple-person interactions in a 
visual surveillance task. In the latter case, the system is particularly concerned 
with detecting when interactions between people occur, and classifying them. 

Graphical models, such as Hidden Markov Models (HMMs) [6] and Coupled Hid­
den Markov Models (CHMMs) [3, 2], seem appropriate for modeling and, classify­
ing human behaviors because they offer dynamic time warping, a well-understood 
training algorithm, and a clear Bayesian semantics for both individual (HMMs) 
and interacting or coupled (CHMMs) generative processes. A major problem with 
this data-driven statistical approach, especially when modeling rare or anomalous 
behaviors, is the limited number of training examples. A major emphasis of our 
work, therefore, is on efficient Bayesian integration of both prior knowledge with 
evidence from data. We will show that for situations involving multiple indepen­
dent (or partially independent) agents the Coupled HMM approach generates much 
better results than traditional HMM methods. 

In addition, we have developed a synthetic agent or Alife modeling environment for 
building and training flexible a priori models of various behaviors using software 
agents. Simulation with these software agents yields synthetic data that can be 
used to train prior models. These prior models can then be used recursively in a 
Bayesian framework to fit real behavioral data. 
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This synthetic agent approach is a straightforward and flexible method for devel­
oping prior models, one that does not require strong analytical assumptions to be 
made about the form of the priorsl . In addition, it has allowed us to develop ro­
bust models even when there are only a few examples of some target behaviors. In 
our experiments we have found that by combining such synthetic priors with lim­
ited real data we can easily achieve very high accuracies at recognition of different 
human-to-human interactions. 

The paper is structured as follows: section 2 presents an overview of the system, 
the statistical models used for behavior modeling and recognition are described in 
section 3. Section 4 contains experimental results in two different real situations. 
Finally section 5 summarizes the main conclusions and our future lines of research . 

2 VISUAL INPUT 

We have experimented using two different types of visual input. The first is a real­
time, self-calibrating 3-D stereo blob tracker (used for the Tai Chi scenario) [1], and 
the second is a real-time blob-tracking system [5] (used in the visual surveillance 
task). In both cases an Extended Kalman filter (EKF) tracks the blobs' location, 
coarse shape, color pattern, and velocity. This information is represented as a 
low-dimensional, parametric probability distribution function (PDF) composed of 
a mixture of Gaussians, whose parameters (sufficient statistics and mixing weights 
for each of the components) are estimated using Expectation Maximization (EM). 

This visual input module detects and tracks moving objects - body parts in Tai 
Chi and pedestrians in the visual surveillance task - and outputs a feature vector 
describing their motion, heading, and spatial relationship to all nearby moving 
objects. These output feature vectors constitute the temporally ordered stream 
of data input to our stochastic state-based behavior models. Both HMMs and 
CHMMs, with varying structures depending on the complexity of the behavior, are 
used for classifying the observed behaviors. 

Both top-down and bottom-up flows of information are continuously managed and 
combined for each moving object within the scene. The Bayesian graphical models 
offer a mathematical framework for combining the observations (bottom-up) with 
complex behavioral priors (top-down) to provide expectations that will be fed back 
to the input visual system. 

3 VISUAL UNDERSTANDING VIA GRAPHICAL 

MODELS: HMMs and CHMMs 

Statistical directed acyclic graphs (DAGs) or probabilistic inference networks (PINs 
hereafter) can provide a computationally efficient solution to the problem of time 
series analysis and modeling. HMMs and some of their extensions, in particular 
CHMMs, can be viewed as a particular and simple case of temporal PIN or DAG. 
Graphically Markov Models are often depicted 'rolled-out in time' as Probabilistic 
Inference Networks, such as in figure 1. PINs present important advantages that are 
relevant to our problem: they can handle incomplete data as well as uncertainty; 
they are trainable and easier to avoid overfitting; they encode causality in a natural 
way; there are algorithms for both doing prediction and probabilistic inference; 
they offer a framework for combining prior knowledge and data; and finally they 
are modular and parallelizable. 

Traditional HMMs offer a probabilistic framework for modeling processes that have 
structure in time. They offer clear Bayesian semantics, efficient algorithms for state 
and parameter estimation, and they automatically perform dynamic time warping. 
An HMM is essentially a quantization of a system's configuration space into a 
small number of discrete states, together with probabilities for transitions between 

1 Note that our priors have the same form as our posteriors, namely, they are graphical 
models. 
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Figure 1: Graphical representation of a HMM and a CHMM rolled-out in time 

states. A single finite discrete variable indexes the current state of the system. Any 
information about the history of the process needed for future inferences must be 
reflected in the current value of this state variable. 

However many interesting real-life problems are composed of multiple interacting 
processes, and thus merit a compositional representation of two or more variables. 
This is typically the case for systems that have structure both in time and space. 
With a single state variable, Markov models are ill-suited to these problems. In 
order to model these interactions a more complex architecture is needed. 

Extensions to the basic Markov model generally increase the memory of the sys­
tem (durational modeling), providing it with compositional state in time. We are 
interested in systems that have compositional state in space, e.g., more than one 
simultaneous state variable. It is well known that the exact solution of extensions 
of the basic HMM to 3 or more chains is intractable. In those cases approximation 
techniques are needed ([7, 4, 8, 9]). However, it is also known that there exists an 
exact solution for the case of 2 interacting chains, as it is our case [7, 2]. 

We therefore use two Coupled Hidden Markov Models (CHMMs) for modeling two 
interacting processes, whether they are separate body parts or individual humans. 
In this architecture state chains are coupled via matrices of conditional probabilities 
modeling causal (temporal) influences between their hidden state variables. The 
graphical representation of CHMMs is shown in figure 1. From the graph it can be 
seen that for each chain, the state at time t depends on the state at time t - 1 in 
both chains. The influence of one chain on the other is through a causal link. 

In this paper we compare performance of HMMs and CHMMs for maximum a 
posteriori (MAP) state estimation . We compute the most likely sequence of states 

S within a model given the observation sequence 0 = {01' ... , on}. This most likely 

sequence is obtained by S = argmaxsP(SIO). 

In the case of HMMs the posterior state sequence probability P(SIO) is given by 

T 

P(SIO) = P31P31(0I) IIP3t(Ot)P3tI31_1 (1) 
t=2 

where S = {a1,"" aN} is the set of discrete states, St E S corresponds to the 

state at time t. Pilj == P31 =a,1 3t_l=aJ is the state-to-state transition probability (i.e. 

probability of being in state ai at time t given that the system was in state aj at 

time t - 1). In the following we will write them as P3tI3t-l' Pi == P31 =a, = P31 are 

the prior probabilities for the initial state. Finally Pi(Ot) == P3t=a,(Ot) = P3t(od are 
the output probabilities for each state2 . 

For CHMMs we need to introduce another set of probabilities, P 3t I3 :_ 1 , which cor-

2The output probability is the probability of observing Ot given state a, at time t 
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respond to the probability of state St at time t in one chain given that the other 
chain -denoted hereafter by superscript I - was in state S~_l at time t - 1. These 

new probabilities express the causal influence (coupling) of one chain to the other. 
The posterior state probability for CHMMs is expressed as 

P p (Ol)P,P ,(d) T 
P(SIO) "'1"'1 "'1"'1 1 II P P P P ( ) (') = P(O) x "',1",-1 " :I"'~_I ,,;1",-1 ""I";_IPs, 0t p,,; °t 

t=2 

(2) 
where St, s~; Ot, o~ denote states and observations for each of the Markov chains that 
compose the CHMMs. 

In [2] a deterministic approximation for maximum a posterior (MAP) state esti­
mation is introduced. It enables fast classification and parameter estimation via 
EM, and also obtains an upper bound on the cross entropy with the full (combi­
natoric) posterior which can be minimized using a subspace that is linear in the 
number of state variables. An "N-heads" dynamic programming algorithm samples 
from the O(N) highest probability paths through a compacted state trellis, with 

complexity O(T( C N)2) for C chains of N states apiece observing T data points. 
The cartesian product equivalent HMM would involve a combinatoric number of 

states, typically requiring OCT N 2C ) computations. We are particularly interested 
in efficient, compact algorithms that can perform in real-time. 

4 EXPERIMENTAL RESULTS 

Our first experiment is with a version of Tai Chi Ch 'uan (a Chinese martial and 
meditative art) that is practiced while sitting. Using our self-calibrating, 3-D stereo 
blob tracker [1], we obtained 3D hand tracking data for three Tai Chi gestures in­
volving two, semi-independent arm motions: the left single whip, the left cobra, and 
the left brush knee. Figure 4 illustrates one of the gestures and the blob-tracking. 
A detailed description of this set of Tai Chi experimental results can be found in [3] 
and viewed at http://nuria . www.media.mit. edurnurial chmm/taichi . html. 

. ~ 
I ""-

, -
Figure 2: Selected frames from 'left brush knee.' 

We collected 52 sequences, roughly 17 of each gesture and created a feature vector 
consisting of the 3-D (x, y, z) centroid (mean position) of each of the blobs that char­
acterize the hands. The resulting six-dimensional time series was used for training 
both HMMs and CHMMs. 

We used the best trained HMMs and CHMMs - using 10-crossvalidation - to 
classify the full data set of 52 gestures. The Viterbi algorithm was used to find the 
maximum likelihood model for HMMs and CHMMs. Two-thirds ofthe testing data 
had not been seen in training, including gestures performed at varying speeds and 
from slightly different views. It can be seen from the classification accuracies, shown 
in table 1, that the CHMMs outperform the HMMs. This difference is not due to 
intrinsic modeling power, however; from earlier experiments we know that when a 
large number of training samples is available then HMMs can reach similar accu­
racies. We conclude thus that for data where there are two partially-independent 
processes (e.g., coordinated but not exactly linked), the CHMM method requires 
much less training to achieve a high classification accuracy. 

Table 1 illustrates the source of this training advantage. The numbers between 
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Table 1: Recognition accuracies for HMMs and CHMMs on Tai Chi gestures. The ex­
pressions between parenthesis correspond to the number of parameters of the largest best­
scoring model. 

Recognition Results on Tai Chi Gestures 

Single HMMs Coupled HMMs (CHMMs) 

Accuracy 69.2% (25+30+180) 100% (27+18+54) 

parenthesis correspond to the number of degrees of freedom in the largest best­
scoring model: state-to-state probabilities + output means + output covariances. 
The conventional HMM has a large number of covariance parameters because it 
has a 6-D output variable; whereas the CHMM architecture has two 3-D output 
variables. In consequence, due to their larger dimensionality HMMs need much 
more training data than equivalent CHMMs before yielding good generalization 
results. 

Our second experiment was with a pedestrian video surveillance task 3; the goal was 
first to recognize typical pedestrian behaviors in an open plaza (e.g., walk from A to 
B, run from C to D), and second to recognize interactions between the pedestrians 
(e .g., person X greets person V). The task is to reliably and robustly detect and 
track the pedestrians in the scene. We use in this case 2-D blob features for modeling 
each pedestrian. In our system one of the main cues for clustering the pixels into 
blobs is motion, because we have a static background with moving objects. To 
detect these moving objects we build an eigenspace that models the background. 
Depending on the dynamics of the background scene the system can adaptively 
relearn the eigenbackground to compensate for changes such as big shadows. 

The trajectories of each blob are computed and saved into a dynamic track memory. 
Each trajectory has associated a first order EKF that predicts the blob's position 
and velocity in the next frame As before, the appearance of each blob is modeled 
by a Gaussian PDF in RGB color space, allowing us to handle occlusions. 

Figure 3: Typical Image from pedestrian plaza. Background mean image, input image 
with blob bounding boxes and blob segmentation image 

The behaviors we examine are generated by pedestrians walking in an open out­
door environment. Our goal is to develop a generic, compositional analysis of the 
observed behaviors in terms of states and transitions between states over time in 
such a manner that (1) the states correspond to our common sense notions of hu­
man behaviors, and (2) they are immediately applicable to a wide range of sites 
and viewing situations. Figure 3 shows a typical image for our pedestrian scenario, 
the pedestrians found, and the final segmentation. Two people (each modeled as 
its own generative process) may interact without wholly determining each others' 
behavior. Instead, each of them has its own internal dynamics and is influenced 
(either weakly or strongly) by others. The probabilities PStIS~_1 and PS;ISt_l from 

equation 2 describe this kind of interactions and CHMMs are intended to model 
them in as efficient a manner as is possible. 

We would like to have a system that will accurately interpret behaviors and interac­
tions within almost any pedestrian scene with at most minimal training. As we have 

3 Further information about this system can be found at 
http:/www.vismod.www.media.mit.edu/ nuria/humanBehavior IhumanBehavior .html 
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already mentioned , une critical problem is the generation of models that capture 
our prior knowledge about human behavior. To achieve this goal we have developed 
a modeling environment that uses synthetic agents to mimic pedestrian behavior in 
a virtual environment. The agents can be assigned different behaviors and they can 
interact with each other as well. Currently they can generate 5 different interacting 
behaviors and various kinds of individual behaviors (with no interaction) . These 
behaviors are: following, meet and walk together (inter1); approach, meet and go 
on separately (inter2) or go on together (inter3) ; change direction in order to meet , 
approach , meet and continue together (inter4) or go on separately (inter5) . The pa­
rameters of this virtual environment are modeled using data drawn from a 'generic ' 
set of real scenes. 

By training the models of the synthetic agents to have good generalization and 
invariance properties, we can obtain flexible prior models for use when learning the 
human behavior models from real scenes. Thus the synthetic prior models allow us 
to learn robust behavior models from a small number of real behavior examples. 
This capability is of special importance in a visual surveillance task , where typically 
the behaviors of greatest interest are also the rarest . 

To test our behavior modeling in the pedestrian scenario, we first used the detection 
and tracking system previously described to obtain 2-D blob features for each person 
in several hours of video. More than 20 examples of following and the two first types 
of meeting behaviors were detected and processed. 

CHMMs were then used for modeling three different behaviors: following , meet 
and continue together, and meet and go on separately. Furthermore, an interaction 
versus no interaction detection test was also performed (HMMs performed so poorly 
at this task that their results are not reported). In addition to velocity, heading, 
and position, the feature vectors consisted of the derivative of the relative distance 
between two agents, their degree of alignment (dot product of their velocity vectors) 
and the magnitude of the difference in their velocity vectors. 

We tested on this video data using models trained with two types of data: (1) 'Prior­
only models', that is, models learned entirely from our synthetic-agents environment 
and then applied directly to the real data with no additional training or tuning of 
the parameters; and (2) 'Posterior models', or prior-pIus-real data behavior models 
trained by starting with the prior-only model and then 'tuning' the models with data 
from this specific site, using eight examples of each type of interaction. Recognition 
accuracies for both these 'prior' and 'posterior' CHMMs are summarized in table 
2. It is noteworthy that with only 8 training examples , the recognition accuracy 
on the remaining data could be raised to 100%. This demonstrates the ability to 
accomplish extremely rapid refinement of our behavior models from the initial a 
priori models. 

Table 2: Accuracies on real pedestrian data, (a) only a priori models, (b) posterior 
models (with site-specific training) 

Accuracy on Real Pedestrian Data 

(a)Prior CHMMs 
(b ) Posterior CHMMs 

No-inter Interl Inter2 Inter3 

90.9 
100 

93.7 

100 
100 
100 

100 
100 

In a visual surveillance system the false alarm rate is often as important as the 
classification accuracy4 To analyze this aspect of our system's performance, we 
calculated the system's ROC curve. For accuracies of 95% the false alarm rate was 
less than 0.01. 

4In an ideal automatic surveillance system, all the targeted behaviors should be detected 
with a close-to-zero false alarm rate, so that we can reasonably alert a human operator to 
examine them further. 
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5 SUMMARY, CONCLUSIONS AND FUTURE WORK 

In this paper we have described a computer vision system and a mathematical 
modeling framework for recognizing different human behaviors and interactions in 
two different real domains: human actions in the martial art of Tai Chi and human 
interactions in a visual surveillance task. Our system combines top-down with 
bottom-up information in a closed feedback loop, with both components employing 
a statistical Bayesian approach. 

Two different state-based statistical learning architectures, namely HMMs and 
CHMMs, have been proposed and compared for modeling behaviors and interac­
tions. The superiority of the CHMM formulation has been demonstrated in terms 
of both training efficiency and classification accuracy. A synthetic agent training 
system has been created in order to develop flexible prior behavior models, and we 
have demonstrated the ability to use these prior models to accurately classify real 
behaviors with no additional training on real data. This fact is specially important, 
given the limited amount of training data available. 

Future directions under current investigation include: extending our agent interac­
tions to more than two interacting processes; developing a hierarchical system where 
complex behaviors are expressed in terms of simpler behaviors; automatic discovery 
and modeling of new behaviors (both structure and parameters) ; automatic deter­
mination of priors, their evaluation and interpretation; developing an attentional 
mechanism with a foveated camera along with a more detailed representation of the 
behaviors; evaluating the adaptability of off-line learned behavior structures to dif­
ferent real situations; and exploring a sampling approach for recognizing behaviors 
by sampling the interactions generated by our synthetic agents . 
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