
Graphical Program Development with PECAN Program Development Systemst

Steven P. Reiss

Department of Computer Science
Brown University

Providence, RI 02912

A B S T R A C T

This paper describes the user's view of the
PECAN family of program development systems.
PECAN is a program development system genera-
tor for algebraic programming languages. The
program development systems it produces support
multiple views of the user's program, its seman-
tics, and its execution. The program views
include a syntax-directed editor, a declaration
editor, and a structured flow graph editor. The
semantic views include expression trees, data type
diagrams, flow graphs, and the symbol table.
Execution views show the program in action and
the stack contents as the program executes.
PECAN is designed to make effective use of
powerful personal machines with high-resolution
graphics displays and is currently implemented on
APOLLO workstations.

1. I n t r o d u c t i o n

The availability of powerful personal com-
puters and the desire for increased programmer
productivity have led to the recent development
of interactive programming environments for
algebraic languages. In this paper we describe the

t This research was supported in part by National Sci-
ence Foundation grants MCS-7905902, MCS-8200670, SER-
8004974 and MCS-8121806, by the Office of Naval Research
under contract nos. N00014-78-C-0396 and N00014-83-K-0146
and by DARPA order n. 4786.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1984 ACM 0..89791-131-8184/040010030500.75

user's view of the PECAN family of environments
developed at Brown University. PECAN is a gen-
erator of program development systems for alge-
braic programming languages, l, 2 It differs from
other systems by generating complete environ-
ments from simple specifications. The generated
environments differ in their use of the graphical
facilities of personal workstations and in their
support for multiple concurrent views. PECAN
environments provide views of the program, its
semantics, and its execution.

1.1. Objectives

One objective in developing PECAN is to
investigate ways of making full use of the com-
puting power and graphics available on the new
generation of personal machines for program
development. PECAN is a prototype system that
illustrates some of these ways. PECAN environ-
ments are designed for both the experienced and
the novice programmer. They are easy and fast
to use, offer immediate feedback to the user, and
allow the user to visualize his program. A simple
example of the use of PECAN for program
development is presented in section 3 of this
paper.

PECAN environments combine many of the
best features of similar program development sys-
tems. These include:

* Immediate feedback of semantic and
syntactic errors while the user is edit-
ing.

* An undo facility whereby the user can
undo (and redo) any action back to
the beginning of his session.

* Structured templates for building the
program that are available as com-
mands.

* The flexibility to type text at any
time instead of using templates.

30

The use of menus as alternatives to
typing for most commands.

A multiple window display to make
effective use of the screen.

Incremental semantics that allow the
program to be compiled as it is edited.

A framework that handles a variety of
(algebraic) programming languages
with the same commands.

Forward and backward execution,
with user control of speed and the
ability to step one s ta tement at a
time.

The ability to edit during execution.

1.2. V iews in P E C A N

P E C A N environments differ from other pro-
gram development systems in their use of multi-
ple views of shared da ta structures. The program
is represented internally as an abstract syntax
tree. The user does not see this tree directly, but
instead sees views or concrete representations of
it. One such view is a syntax-directed editor.
Another view of the program is a Nassi-
Sehneiderman structured flowchart. A third view
is a declaration editor. A fourth view would be a
module interconnection diagram showing how the
program is organized. Each of these views may
be read-only or editing. They each display the
abstract syntax tree. This display is updated
automatically as the tree changes. Editing views
support modifications to this tree using the
displayed representation. The current views are
discussed in section 4.

PECAN provides more than program views.
In addition to the data structure representing the
syntax of programs, the incremental compiler sup-
ports semantic data structures for the symbol
table, the set of data types, expression trees, and
control-flow graphs. PECAN supports incremen-
tal views of these data structures. These are
described in section 5.

P E C A N supports interpretive program exe-
cution. It provides a controlled environment that
lets the user execute his program forwards and
backwards, set breakpoints, and single step. It
uses the program and semantic views to show
where the program is executing at a given time.
It provides additional views to display the
program's data. This currently includes a stack
and data view that shows the values on the

program stack as they are allocated, freed and as
they change. The data part of this view is used
for displaying structures, arrays, and the values
pointed to by pointers. Future displays will be
obtained by merging P E C A N with the BALSA
system.3, 4 BALSA provides multiple dynamic
views of a fixed program's da ta structures while
the program is executing. The current execution
views are discussed in section 6.

PECAN supports multiple views con-
currently with automatic updating. There can be
several views of the same abstract syntax tree. If
any one of them modifies the tree, PECAN sends
messages to inform each view that it should be
updated. The incremental compiler is treated as
an invisible view and is called whenever a tree
changes. In turn, as the compiler updates the
semantic representation, views of the semantics
are notified of the change so that they can update
their displays. The same philosophy is used for
execution views. As a variable or the stack or the
location counter changes, any views that are
displaying these items are notified to update their
display.

PECAN is currently being developed at
Brown University on APOLLO workstations.
The first version is designed with experimentation
in mind and with the goal of supporting student
programming. The system design is flexible so
that ,new views may be easily tried and so that a
reasonable combination of views can be found.
The system design is highly modular. Com-
ponents such as the incremental compiler can be
changed without affecting other views or modules.

2. Related W o rk

There are several efforts aimed at building
interactive programming environments for per-
sonal machines. While PECAN borrows from
many of these systems, it is differentiated by its
use of multiple views, its retargetability, and its
reliance on graphics. In this section we briefly
relate the more well-known systems.

The Cornell Program Synthesizer s provides
a full system for P L / C including a syntax-
directed editor and an interpreter. Its editor is
template-based, but provides text editing for fixed
constructs such as expressions. It has recently
been implemented as a generator so that it is pos-
sible to create synthesizers for different languages
using attr ibute grammers to describe the output
and semantics for each production of the abstract
syntax. The COPE system 6 also developed at
Cornell provides another approach based on an

31

intelligent parser. The editor in this system is a
text editor tied to an error correcting parser. The
parser is able to insert missing keywords and
tokens to get about the same effect as templates
do in the Synthesizer. This scheme has an advan-
tage in that the user can type his program at any
time. It has the disadvantage that the user is not
shown what templates are currently valid. The
current PECAN editor is a compromise between
these two schemes. It provides templates at
every position, but allows the user to type at any
point. Moreover, the parser has some error
correcting capabilities. COPE also includes the
important concept of being able to undo and redo
both editing and execution. PECAN provides a
similar ability.

The GANDALF effort at Carnegie-Mellon
University is an incremental programming
environment generator currently working for
several algebraic languages. 7 It includes the
ALOE syntax-directed editor generator. 8 The
abstract syntax descriptions and print
specifications used by PECAN are derived from
those defined for ALOE. ALOE produces general
structure editors not geared toward programming
languages. Thus, the semantics for the language
in question have to be described procedurally.
ALOE also is a template based editor in that it
provides templates for all productions in the tree
and does not automatically allow parsing. It is
possible, however, for the user to write his own
parser and to use it for limited text editing.
Much effort in GANDALF has been aimed toward
programming in the large, an issue not addressed
by PECAN. GANDALF until recently has not
been targeted for personal machines with graphics
capabilities.

Several programming environments have
been developed at the Xerox Palo Alto Research
Center. The Smalltalk system 9 is an interpreter
for an object-oriented language based on message
passing. It makes heavy use of windows and the
capabilities of the graphical display, but is
language-dependent. The Interlisp environment 1°
provides a good example of what can be done
with an interpreted language and a high-
resolution display. The Mesa 11 environment, and
more recently CEDAR, 12 apply many of the ideas
from Smalltalk and Interlisp to an algebraic, com-
piled language. Many of the ideas proposed for
CEDAR can be found in PECAN. CEDAR is
designed as a production programming environ-
ment. PECAN differs in its emphasis on pro-
gramming in the small, interaction, the use of
graphics, and on showing the user multiple views

of his program. PECAN is designed to be
interactive and to eventually support graphical
programming.

3. An Example

In this section we examine a session with a
PECAN environment in which we create and exe-
cute a simple program. The language used here is
an extended version of Pascal.

The system starts with an initial display
that can be specified by the user. For the pur-
poses of demonstration and debugging we use the
display shown in figure 1. This consists of a large
number of the possible views all displayed at
once. This would be much tob cluttered for the
average user of the system, and a typical user
might restrict himself to an editor, the execution
monitor, and a data view. The large view in the
upper right is a syntax-directed editor for the syn-
tax tree labeled ezample. Below it are semantic
views of the flow graph and the current data
type. Below the data type window is a transcript
window where the system shows the user all of his
commands. This window can be used for control-
ling the undo and redo capabilities of the system.
The column of windows on the right contains the
control view from the interpreter and semantic
views of the current expression and the symbol
table. Finally, the two views in the lower-left
show what the four buttons on the locator device
do and the time respectively.

PECAN systems are built on top of the
Brown workstation environment. 13 This environ-
ment contains a variety of tools. Four of these
tools are used extensively by PECAN. MAPLE is
the input management package. It is used to pro-
vide the various menus within windows and to
direct inputs to particular parts of the program
depending on which window the user is currently
in. ASH is the graphics package that is used
throughout. It provides a variety of raster graph-
ics operations through the abstraction of a win-
dow and its view on the screen. ASH provides a
hierarchy of windows. It allows windows to over-
lap and to be made invisible. It takes care of
maintaining and displaying all the windows,
including those that are partially or totally
obscured. VT is a package that sits on top of
ASH and provides extensive text support in an
ASH window. It allows multiple fonts along with
editing operations like those provided by an intel-
ligent terminal. It stores a semi-infinite pad and
manages the display for any particular part of the
pad. Finally, WILLOW provides a user-

32

configurable window manager. WILLOW pro-
vides the utility buttons at the bot tom of the
screen and the icons above them that are used for
creating new views. It also provides the move
and resize buttons in the upper-left and upper-
right of each of the windows. Other willow but-
tons are those in the interpretor control view,
including the scroll bar for controlling the speed
of execution, and buttons for pushing, popping
and removing windows that are hidden under the
title banners of each of the windows. WILLOW
allows the user to configure the system to his lik-
ing. It lets him choose the initial screen layout.
It lets him choose the fonts to be used in each of
the windows. It even lets him choose the user-
interface to be used for manipulating windows.

In figure 2 we have started the editing ses-
sion. We have moved the cursor into the syntax-
directed editor window and have indicated that
we want to create a new PROGRAM. The sys-
tem filled in the name of the program from the
tree name. Then we moved to the declaration
and, using the menu on the right of the editor
view as a guide, indicated that we wanted a VAR
declaration. This could have been done by using
the locator device to pick the VAR button on the
menu. Instead, we chose to type in the word var
and have the system realize that this meant to
use the button. Finally, we entered the variable
definition by typing it all in instead of selecting
off the menu. These actions illustrate the three
means that the editor provides for program entry.
The user can either select templates using the
menu, can select templates by typing in a prefix
of the corresponding button name on the menu,
or can type in the full text for the current con-
struct.

Figure 2 also shows that PECAN compiles
as it goes. This is seen in the semantic views that
are active. The symbol table view in the lower-
left shows the symbol table as it exists up to this
point. Similarly, the da ta flow view in the lower-
right shows the complete flow graph. The hexag-
onal flow nodes indicate that the corresponding
variable should be allocated at this point. Both
of these views are concrete representations of the
intermediate representation that is generated by
the incremental compiler.

The various semantic views are more fully
illustrated in figure 3. Here we have continued to
use the editor to enter the function #cd. The sys-
tem augments our editing with automatic com-
ments such as that on the BEGIN statements and
the names of the parameters on the function call.

After entering the body of the function we used
the locator to point and move to the parameter b
in the recursive call. The semantic views are
keyed on the current editing location. Thus the
expression view contains the expression tree
corresponding to the call, with the node
corresponding to the current parameter
highlighted. The symbol table view similarly
highlights the current variable. The da ta type
view shows the data type of this variable.
Finally, the flow graph viewhighlight sthe
corresponding node of the flow graph, although
this node is not currently visible.

We next finish typing in the program that
reads two values, calls the function gcd with
them, and then prints the result. Then we are
ready to try out the program. We first rearrange
the screen, eliminating most of the semantic
views, enlarging the flow graph view so that it
shows the whole program, and creating a stack
view to show the data. We use the GO button in
the interpreter control view to start execution,
enter two values when requested, and then stop
the program during execution by clicking on the
locator. The result is shown in figure 4.

Several elements of PECAN can be seen in
figure 4. The current s ta tement being executed is
highlighted in both the flow graph view and in
the syntax-directed editor. When these views are
displayed, this highlighting is done automatically
when execution stops. The MONITOR button in
the interpreter control window causes the
highlighting to be done continuously as the pro-
glam executes. The interpreter control view
shows the user the state of execution as well as
any input and output of the executing program.
The stack display shows the current state of all
the program's variables. It shows the recursion
inherent in the program and the different variable
values at each level.

In the next sections we consider the current
and planned views. Section 4 looks at the pro-
gram views. Section 5 looks at the semantic
views. Section 6 considers the execution views.

4. P r o g r a m V i e w s

Program views are visual representations of
abstract syntax trees. They can be either read-
only views or they can be editing views. In either
case they are automatically updated as the trees
they represent are changed, whether they ini-
tiated the change or not.

33

4.1. T h e S y n t a x - D i r e c t e d E d i t o r

The syntax-directed editor view provides a
textual representation of the program. It offers a
cross between a traditional text editor and a
structure editor. It allows the user to move to
any point in the program and do whatever text
editing operations are appropriate. The editor
parses the result, puts it into its internal represen-
tation, and reformats the display. The freedom
to t reat a textual representation of the program
as text is important since many of the changes a
programmer makes are textual ones, such as
correcting typing errors. Moreover, when there
are many corrections to a program, the program-
mer is likely to want to treat the program as a
large textual object, make the corrections, and
not want to worry about its structure. Several
systems, including COPE 6 and P O E 14 use a tex-
tual approach to syntax-directed editing.

At the same t ime the syntax-directed editor
view provides a complete set of templates that
allow the programmer to make full use of the
structure of the underlying syntax tree. The
current location is not a single character, but is a
tree node, and the text for this node is placed in a
box on the display. The user has available simple
commands to climb around the syntax tree and to
pick and put nodes of the tree. Whenever the
current node is a meta variable or a leaf node, the
editor provides a special menu that lists the possi-
ble expansions or contents. For me ta nodes these
are the templates associated with such syntax-
directed editors as ALOE s or the Corneli Program
Synthesizer. ~ For leaf nodes, they are a list of the
appropriate candidate names from the symbol
table. Editing with templates is often easier for
novice programmers and can save considerable
typing on program entry.

While trying to compromise between struc-
tured editing and text editing, the syntax-directed
editor also makes heavy use of the facilities of the
graphical display and the pointing device. The
editor uses multiple fonts to distinguish between
keywords, meta symbols that have yet to be
expanded, text for identifiers, and text that con-
tains semantic errors. The user is free to choose
any of the available fonts for these purposes. The
editor uses line drawing to place a box of what-
ever shape is necessary around the text
corresponding to the current node.

The interface to the editor uses the pointing
device and the keyboard. The pointing device
can select any of the menu buttons that are seen
in the example. These provide the basic editing

commands, and, for meta nodes and appropriate
leaf nodes, the relevant templates and name alter-
natives. The pointing device is also used with the
displayed tree. The user can change the current
node by pointing at the desired location. Other
buttons on the puck allow the user to pick, put,
delete and insert into the tree. Multiple clicks at
the same location allow the user to move about
the tree structure.

The keyboard is used primarily for text
editing, but also can be used for many of the edi-
tor commands. The user is free to type text or
text-editing commands. When the user is done
text editing, he issues a command not involving
text-editing or an explicit done command, the
edited text is parsed, and the result is put into
the tree. Control and function keys on the key-
board provide most of the tree-editing commands
(delete, insert, pick, put), as well as tree move-
ment and view scrolling commands. This makes
it possible for the user to edit without continually
having to move his hands from the keyboard to
the pointing device and back again.

4.2. Nass l -Sehne iderman View

A second program view is a graphical one
based on Nassi-Schneiderman flow charts. 15 These
are a form of structured flow charts that use
different types of blocks for different program
constructs and use the nesting of blocks to
represent the nesting of the program. With this
view, the user sees the complete structured form
of his program drawn as a structured flow graph.

The view is based on a pret ty-pr int notation
that describes how each abstract syntax construct
should be represented graphically using a simple
print rule. The rule shows the nesting and the
creation of new blocks in the flow graph. These
blocks are either rectangular blocks that indicate
simple processing, decision blocks with a test on
top and the alternative paths in sub-boxes
beneath, iteration boxes tha t contain the loop
body and the tests on the outside, and a separate
box type to indicate scoping.

The view is tied into the system and is
automatically updated as the user changes his
program. We are currently working on adding
basic editing operations to this view to allow the
user to edit his program graphically.

4.3. D e c l a r a t i o n V i e w

Another editing view is provided exclusively
for declarations. The user can select a particular

34

declaration either by pointing to the declaration
or by pointing to the name of the declaration
somewhere in the program text. If no declaration
already exists for the name, then a new one is
created automatically in the current scope. Once
a declaration is chosen, the user can use this view
to add, delete or change the associated names,
and to locally edit fields of the declaration such
as the data type of a variable. He can change the
class of the declaration, such as local variable to
global variable or variable to constant. He can
move the declaration to a different scope by
pointing to the new scope and selecting the
SCOPE button.

This view serves two purposes. First, it
allows the user to create programs interactively,
declaring variables as he uses them. Second, it
supplements the Nassi-Schneiderman and future
graphical program views that do not directly sup-
port declarations.

4.4. O t h e r p r o g r a m views

There are other program views that could
be supported by PECAN and that we hope to see
implemented some time in the future. In the
short term, we are planning to do a general-
purpose structured flowgraph editing view. The
initial implementation of this will support Rothon
diagrams and Nassi-Schneide.rman diagrams.
Future program views will support programming
in the large through a procedure-level connection
diagram and through pictures of the top-level
data flow. Other possible views include one that
supports data-flow programming and a
verification view that lists the predicates known
at each point in the program and allows the user
to prove correctness while programming.

5. S e m a n t i c Views

While abstract syntax trees representing
user programs are the most logical data structure
to view, it is often useful to provide the user with
specialized views of the internal forms supported
by PECAN. During program editing, the
relevant forms are the semantic representations of
the program: the symbol table, data type
definitions, expression trees, and control flow
graphs.

5.1. The Symbol Table View

The compiler builds and incrementally
maintains a scoped symbol table of all built-in
and user-defined symbols. The corresponding
view displays the scopes and symbols that are

defined for a particular syntax tree. The boxes
display the nesting of the various scopes. Each
box contains a brief description of the scope and
a list of all the names defined by the user pro-
gram in that scope. Each name is displayed with
its class, such as variable, type, or label, and
other pertinent information such as the data type
of a variable. If the current node in a program
view is a variable, then this variable is
highlighted in the symbol display. Pointing at a
name or scope in the symbol display causes the
appropriate program view to make the definition
node for that scope or name the current location.

5.2. T h e D a t a T y p e View

The compiler maintains information on
built-in and user-defined data types. A semantic
view displays the current data type based on this
information. If the user is editing a type
definition, then the type being edited is displayed.
If the current editing node is a variable, then the
type of the variable is displayed. If the current
node is an expression, then the type of the expres-
sion is displayed. The top line of a type display
contains the class of the type such as RECORD,
POINTER, ARRAY. The following lines show
the parameter values for this class. Where these
parameters are also types, the display is recursive.
To avoid infinite displays, the recursion typically
stops after one level. However, the user is free to
choose 'an unexpanded type and ask that it be
expanded, either within the display or by making
it the only type displayed. Pointing at a type
definition causes the appropriate editor to make
that definition its current location.

5.3. The Expression View

The third component of the compiler main-
tains expression trees for each expression in the
program. The corresponding view draws these
trees, affording the user a different perspective of
the expressions. The tree that is drawn is the one
that is the current focus for editing operations.
The node being edited is highlighted on the
display. The user may pan over the expression
tree when the tree is too large to fit in the win-
dow assigned for expression display. He can also
point at the tree to make the corresponding node
be the current location for editing.

5.4. The Flow View

The final component of the incremental
compiler builds and maintains graphs that
describe the flow of control for an abstract syntax

35

tree. The corresponding view provides a
flowchart of the program that is dynamically
updated as the program changes. Nodes of the
flowchart represent expression evaluations, condi-
tional branches, contour entrys and exits, variable
allocations, gotos and labels. The user can pan
over a complex flowchart to view the currently
relevant portion. He can also point at a given
block and cause the corresponding code to
become the focus for editing operations.

6. E x e c u t i o n Views

PECAN supports views of program execu-
tion. These views are of three different types,
control, program, and data.

The execution control view is provided by
the interpreter. This view contains messages that
indicate the current execution state of the pro-
gram. It is used to display error messages
incurred during execution. It also displays the
program input and output using different fonts to
provide a full transcript of the user's debugging.
The control view provides user debugging facili-
ties. These include the ability to reverse program
execution, to step through the program one state-
ment at a time, either forward or backward, and
to insert breakpoints by pointing at the place to
stop and then hitting the BREAK button. It also
provides a speed control so that the user can slow
down the program execution.

Execution can be monitered in the program
views and in the semantic flow graph view. If
monitoring is turned on in the control view, then
each of the program views currently active will be
instructed to highlight the current statement as it
is executed. If the flow graph view is active, then
it will be used to show the step-by-step execution
of the program.

The user is provided with views of his data
as the program executes. The stack view is the
only current data view, although more views are
planned. The stack view divides its window into
two portions. The left side provides a display of
the current execution stack. It shows where each
block on that stack begins. It shows each vari-
able in the block and displays its current value.
Undefined values are labeled as such. Simple
values such as integers, enumeration constants,
reals, and characters are displayed directly. Com-
plex values such as arrays, records, and pointers
are not displayed, but have an appropriate token
in their place. The right side of the view is used
to display these complex values. The user points
at the token for an array or record or pointer and

the corresponding value will be displayed on the
right. This technique can be used recursively to
display chains of pointers or nested structures.

A future goal of PECAN is to provide a
wide variety of execution views based on experi-
ences with the BALSA system. 8 These will
include data views that render a graphical
representation of a user's data structure such as a
tree that is automatically updated as the program
executes. This work will be based on an exten-
sive library of possible graphical representations
and is the subject of current research. Other data
views would provide the user with more classical
representations of the stack or of a selected set of
variables. These will again be updated as the
program executes. Execution views will also show
the program in action. Simple program views will
highlight each statement as it is executed. Other
views will provide performance information such
as execution counts in various graphical forms.

7. Acknowledgements

The effort that has gone into PECAN has
been supported by much of the environment
activity at Brown. Marc Brown is largely respon-
sible for the MAPLE menuing package. Joe Pato
and Mark Vickers developed the virtual device
interface for the Apollos. Marc Brown and Mike
Strickman did the core of the BALSA implemen-
tation. Rob Rubin and Jeanette Hung did the
Nassi-Schneiderman view.

8. References

1. Steven P. Reiss, "PECAN: Program
development systems that support multiple
views," Proceedings of the Seventh Interna-
tional Conference on Software Engineering,
(March 1984).

2. Steven P. Reiss, "An approach to incremen-
tal compilation," Proceedings of the SIG-
PLAN '84 Symposium on Compiler Con-
struction, (June 1984}.

3. Marc H. Brown, Norman Meyrowitz, and
Andries van Dam, "Personal computer net-
works and graphical animation: rationale
and practice for education," ACM SIGCSE
Bulletin 15(1) pp. 296.-307 (February 1983).

4. Marc H. Brown and Steven P. Reiss, "To-
ward a Computer Science Environment for
Powerful Personal Machines," Proceedings
of the 17th Hawaii System Sciences Confer-
ence, (January 1984).

36

5.

.

.

.

.

10.

11.

12.

13.

14.

15.

Tim Teitelbaum and Thomas Reps, "The
Cornell program synthesizer: a syntax-
directed programming environment," Cor-
nell University Technical Report TR 80-421
(May 1980).
James Archer, Jr. and Richard Conway,
"COPE: A cooperative programming en-
vironment," Cornell TR81-459 (June 1981).
A. N. Habermann, "The Gandalf Research
Project," Computer Science Research Re-
view, Carnegie-Mellon University 1979
(1979).
Raul Medina-Mora and David S. Notkin,
"ALOE users' and implementors' guide,"
Carnegie-Mellon Computer Science Depart-
ment Research Report CS-81-145 (No-
vember 1981).
Adele Goldberg, "The influence of an
object-oriented language on the program-
ming environment," Proc. ACM Computer
Science Conference, (February 1983).
Warren Teitelman, Interlisp Reference
Manual, XEROX (1974).
James G. Mitchell, William Maybury, and
Richard Sweet, "Mesa language manual,"
Xeroz CSL-7g-8, (April 1979).
L. Peter Deutsch and Edward A. Taft, "Re-
quirements for an experimental program-
ming environment," Xerox CSL-80-10 (June
1980).
Joseph N. Pato, Steven P. Reiss, and Marc
H. Brown, "The Brown workstation en-
vironment," Brown University CS-84-03
(October 1983).
Charles N. Fischer, Greg Johnson, and Jon
Mauney, "An Introduction to Editor Allen
Poe," Univ Wisconsin-Madison TR 451 (Oc-
tober 1981).
I. Nassi and B. Schneiderman, "Flowchart
techniques for structured programming,"
SIGPLAN Notices 8(8)(August 1973 I.

37

I

z ~

i
I, L

i

@

n:s

z

%
4 ~

. °

aJ

38

A

= ~ , . ~

z ~ E

I

I

H

O - I
LI'I I '

,o

02

V
A

I . . - r~

l l ,Jnai l . l .~,
i

!

i

i

I

i

i

m

- - I

. J

: E

. IJ

-..I

:L .

. i J

. I J

> -

~ J

m

Z

~ J
- - i

. I J

_d

J . l

I E

,I. I

- - I

.¢.I

o ~
-IJ

I Z
lJl

o.
@,l

I ,

39

~ . .

I I

l|

• | 1
~ io

I!
i ~ I---

a~

_J

J

C~o

m

0 ..C~ I" 0.,
~ ¢..~, ~ II~

~LcJ
II ~ ~ II II

,c:~: ~::Z:

C.,,.- ~- I~. 0 'O...J

~ ~ I ~ I z Z ~

W J J W W W

.. °..~

u
o~

E

.~

2

o.

°.

4O

~2

, e

L

0

~ m

++ + +

• :P

• 0
0 • - 'q

C C G , I - J ' ,
0 0 O •

+~' .t*~' ,,l.~ "10 C OJ'
~ ~ m m O X

• J.4 ~ . M (.. '1"~
C K E :~

++|+.+= $
11:1 ' m n:~ C. G (/1

IL

I.I.I Ql~

I.I.I

x
L.iJ

Li.I

