
ar
X

iv
:2

30
5.

12
97

5v
1

 [
cs

.L
O

]
 2

2
M

ay
 2

02
3

Graphical Proof Theory I:

Multiplicative Linear Logic
Beyond Cographs

Matteo Acclavio

Abstract
Cographs are a class of (undirected) graphs, characterized by the absence of

induced subgraphs isomorphic to the four-vertices path, showing an intuitive one-

to-one correspondence with classical propositional formulas. In this paper we study

sequent calculi operating on graphs, as a generalization of sequent calculi operating

on formulas – therefore on cographs.

We mostly focus on sequent systems with multiplicative rules (in the sense of lin-

ear logic, that is, linear and context-free rules) extending multiplicative linear logic

with connectives allowing us to represent modular decomposition of graphs by for-

mulas, therefore obtaining a representation of a graph with linear size with respect to

the number of its vertices. We show that these proof systems satisfy basic proof the-

oretical properties such as initial coherence, cut-elimination and analyticity of proof

search. We prove that the system conservatively extend multiplicative linear logic

with and without mix, and that the system extending the former derives the same

graphs which are derivable in the deep inference system GS from the literature.

We provide a syntax for proof nets for our systems by extending the syntax of Re-

toré’s RB-structures to represent graphical connectives. A topological characteriza-

tion of those structures encoding correct proofs is given, as well as a sequentialization

procedure to construct a derivation from a correct structure.

We conclude the paper by discussing how to extend those linear systems with

the structural rules of weakening and contraction, providing a sequent system for an

extension of classical propositional logic beyond cographs.

1

http://arxiv.org/abs/2305.12975v1

Contents

1 Introduction 3
1.1 Main contributions . 4
1.2 Outline of the paper . 5

2 From Formulas To Graphs 6
2.1 Graphs and Modular Decomposition . 6
2.2 Classical Propositional Formulas and Cographs . 8
2.3 Modular Decomposition of Graphs . 9

3 Multiplicative and IsoMix Graphical Logic 11
3.1 Generalized Formulas . 11
3.2 Extending Multiplicative Linear Logic with Graphical Connective 14
3.3 Properties of the Logics MPL and MPL◦ . 16
3.4 Soundness of Logical Equivalence in MPL◦ . 20

4 The Graphical Logic GS is a Model for MPL◦ 22

5 RB-Proof Nets 25
5.1 From Graphs to RB-forests . 26
5.2 RB-Graphs Representing Proofs . 28

6 A Correctness Criterion for MLL◦-nets 29
6.1 Æ-Connectedness in RB-graphs . 29
6.2 A Topological Characterization of MLL and MLL◦ . 30

7 Generalizing the Correctness Criterion to MPL and MPL◦ 31
7.1 Connectedness and P-Connectness in Graphs . 31
7.2 A Correctness Criterion for MPL . 33
7.3 A Correctness Criterion for MPL◦ . 36
7.4 A Topological Characterization of GS . 39

8 Classical Logic Beyond Cographs 39

9 Conclusion and Future Works 41
9.1 Future Works . 41

A Deep Inference and the Open Deduction Formalism 47
A.1 Equivalent Definitions of GS . 47

B Soundness and Completeness of RB-nets 48

C On Rules Introducing a Connective at a Time 52

2

1 Introduction
In theoretical computer science, formulas are used to describe complex structures using elementary op-
erators such as logical connectives and modalities. In particular, the proof theory of propositional logic
typically considers formulas built from a very limited palette of binary (connectives) and unary (modali-
ties) operators. Beside the restriction on the basic operators does not generally limit the expressiveness of
the language, as soon as proof theory is used to define paradigms as “formulas-as-types”, “formulas-as-
programs”, or “formulas-as-processes”, this limitation leads to a payout in term of efficiency whenever we
aim at providing efficient implementations: in order to describe complex interaction, ad-hoc encodings need
to be put in place. As a consequence, automated tools relying on formula-based proof systems are either
sub-optimal, because of the blow-up in computational complexity due to the use of encodings, or sacrifice
the quality of information, by reducing their scope to only considering simpler configurations. This latter
possibility may lead to information loss, potentially causing, among others, security issues or imprecise
results in AI for decision systems.

For this reason, graphs are often used in computer science practice from abstract definitions to practical
implementation to describe systems with complex interactions: it is often the case that “a picture is worth
a thousand words”1. By means of example, consider a system consisting of four processes a, b, c and d
racing to access shared resources, and assume that the pairs of processes a and b, b and c, and c and d share
the access to a same resource. This configuration can be represented by the graph below on the left (called
P4) where vertices represent processes and an edge is drawn whenever two processes share the access to a
same resource.

b d

a c

b d

a c
(1)

Similarly, we could consider a dependency relation (e.g., causality) in a system with where a depends from
b, and c depends from both b and d. In this case, again, the binary relation of “non-causal dependency”
can be represented by a graph with similar shape (see the graph above on the right). It is well-known
that the graph P4 cannot be expressed by a formula containing only binary connectives with a one-to-one
correspondence between atoms and vertices of the graph [34, 55]. Beside the simplicity of the patter P4,
it occurs in a graph representing a relation as soon as we consider non series-parallel ones, which are
ubiquitous in distributed systems (see, e.g., non-transitive conflict of interest relations in control access
models such as [18], in dependency graphs, or in producer-consumer queues).

It is worthy notice that the use of graph-based syntaxes is not new in logic and proof theory for this exact
reason: a same object may admit multiple representations, but graphs allows us to provide more canonical
ones. By means of example, graphs are largely used in defining semantics (see, e.g., Kripke semantics for
modal logics [17]), in proof systems capturing semantical structures (see, e.g., nested sequents [58, 20, 70]),
in proof systems capturing proof equivalence (e.g., proof nets [42] or combinatorial proofs [52, 52]).

However, proof theory has rarely considered graphs as primitive terms to reason on: prior to [7, 8, 5] we
cannot find proof systems conceived to handle graphs as terms of an inference system defined with proof-
theoretical purposes.2 In these works, the authors move from the well-known correspondence between
classical propositional formulas and cographs (graphs containing no induced subgraph isomorphic to a
P4) [55] to generalize proof theoretical methodologies for inference systems on formulas to graphs. In
fact, we could say that inference systems operating on formulas can be seen as inference systems operating
on cographs, that is, on graphs with “less complex” structure where no induced subgraph isomorphic to P4

occurs3. In these works, the authors consider only deep inference [48, 12] formalism to design proof systems
operating on graphs. Such unconventional choice with respect to, e.g., sequent calculi or natural deduction,
pays off in [5], where a proof system operating on graphs with both symmetric and non-symmetric edges
defines a conservative extension of the non-commutative logic BV4, for which a cut-free sequent calculus
cannot exist [76].

1To be more precise, we should instead say “a picture is worth an exponential number of words”. . .
2Another line of works [23, 78, 24, 31, 32] explored the extensions of the semantics of boolean logic from cographs enconding

formulas to graphs. However, in these works graphical logic is investigated from a semantical viewpoint rather than under the lens of

proof systems.
3Note that several NP-hard optimization problems on graphs become solvable in polynomial time if restricted to cographs [57].
4The logic BV is a NP-time decidable fragment of Pomset logic [69, 68]. This logic is sound and complete with respect to series-

parallel order refinements: if φ and ψ are formulas encoding series-parallel orders, then the order encoded by φ is a refinement of the

order encoded by ψ iff ⊢BV φ⊸ ψ.

3

Logic (on formulas) Graphical logic

PLK MPL◦

MPL

LK MLL◦

MLL

GLK GML◦

GML

[[LK]]
[[

MLL◦
]]

[[MLL]]

Figure 1: The lattice of the logics on formulas studied in this paper and the lattice of graphical logics
defined by the interpretation of graphical connectives as prime graphs. The logics below the dotted line
contain formulas where only the binary connectives for conjunction and disjunction occurs; similarly, the
graphical logics below the dotted line are families of cographs.

1.1 Main contributions

This paper aims at extending methodologies from proof theory from formulas to graphs.
For this purpose, I define the notion of graphical connectives to define formulas whose purpose is to

represent graphs via the graph modular decompositions, that is, abstract syntax trees uniquely describing
graphs with a term of linear size with respect to the number of vertices of the graph. This provides foun-
dation to the methodologies used in [7, 8, 24] to design proof systems operating on graphs by handling
their modular decomposition trees. Note that in this paper I only discuss graphical connectives designed on
undirected graphs generalizing the well-known correspondence between classical propositional formulas
and cographs. However, the proposed methodology scales to more general graphs such as the mixed graphs
used in [5].

Using graphical connectives I then define multiplicative proof systems (in the sense of [29, 44]) operat-
ing on formulas which can naturally be interpreted as graphs (see Figure 1), proving basic proof theoretical
properties for these systems such as cut-elimination, initial coherence and a weaker notion of the analyticity
condition taking into account the richer structure of non-binary connectives. I prove that the logic MPL is a
conservative extensions of multiplicative linear logic and that the logic MPL◦ is a conservative extensions
of multiplicative linear logic with mix. Moreover, I prove that MPL◦ is sound with respect to the semantics
interpreting formulas as graphs, that is, if two formulas are interpreted as isomorphic graphs, then we can
prove that they are logically equivalent.

I prove that one of these sequent systems internalizes the notion of graph isomorphism as a logical
equivalence between formulas, that is, two formulas encoding isomorphic graphs are logically equivalent,
and that such a system is sound and complete with respect to the set of graphs in the graphical logic GS
from my previous works [7, 8]. This latter result indirectly provides a proof of analiticity and transitiveness
of implication for the logic GS using more standard techniques5.

Then in the second part of the paper I provide a formalism for proof nets for these substructural graphical
logics extending Retoré’s syntax of RB-proof nets [73]. In particular, this syntax is defined by generalizing
the gates for the binary connectives ` and ⊗ in order to represent the graphical connectives I introduce.
Then I provide a correctness criterion for these proof nets with respect to the logics MPL and MPL◦, together
with a sequentialization procedure. This criterion is obtained by refining Retoré’s criterion by weakening
the condition of acyclicity, therefore ruling out only specific cycles6, and including an order relation on
gates, derivable by the topological structure of the RB-structure, providing constraints on the order in which
connectives can be sequentialized, as in C-nets [33].

5Note that the full proof of the admissibility of the rule simulating the cut in deep inference systems in the system GS, as well as

the proof that GS is a conservative extension of multiplicative linear logic with mix, are quite convoluted and takes several pages in

the Appendix of [8].
6In [67] the authors theorized the possibility of the existence of logics satisfying weaker correctness criterion on RB-structures

with respect to the one from [73].

4

a

b

c

d

e

c⊥

f⊥

b⊥

d⊥

e⊥

f

g g⊥

a⊥

`n

P5 P4 P4

a b c d e c⊥ f⊥ b⊥ d⊥ e⊥ f ` a⊥

g g⊥

ax
⊢ a, a⊥

ax
⊢ b, b⊥

ax
⊢ c, c⊥

ax
⊢ d, d⊥

ax
⊢ e, e⊥

ax
⊢ f , f⊥

⊗
⊢ e, e⊥ ⊗ f , f⊥

d-κP4
⊢ κP4

Lb, c, d, eM, κP4
Lc⊥, f⊥, b⊥, d⊥M, e⊥ ⊗ f

wd⊗
⊢ κP5

La, b, c, d, eM, κP4
Lc⊥, f⊥, b⊥, d⊥M, e⊥ ⊗ f , a⊥

`

⊢ κP5
La, b, c, d, eM, κP4

Lc⊥, f⊥, b⊥, d⊥M, (e⊥ ⊗ f) ` a⊥

ax
⊢ g, g⊥

`

⊢ g ` g⊥
wd⊗

⊢ κP5
La, b, c, d, eM, κP4

Lc⊥, f⊥, b⊥, d⊥M, κP4
Le⊥ ⊗ f , g ` g⊥, a⊥M

Figure 2: A graph, its modular decomposition and a derivation in MPL◦ of the formula encoding it.

g g⊥

o`

a b c d e c⊥ f⊥ b⊥ d⊥ e⊥ f r` a⊥

oP5
oP4

oP5

rP5
rP4

rP5

o`

r`

Figure 3: The RB-proof net encoding the derivation in Figure 2.

1.2 Outline of the paper

In Section 2 we recall definitions and results in graph theory and the notion of modular decomposition. We
then use these notions to extend the correspondence between classical propositional formulas and cographs
to formulas containing graphical connectives and any graph. In Section 3 we define sequent calculi operat-
ing on formulas containing graphical connectives, proving their proof-theroretical properties, as well as the
fact that they are conservative extensions of multiplicative linear logic with and without mix. In Section 4
we recall the graphical proof system on undirected graphs from [7, 8] and we prove it recognize the same
set of graphs recognized by the extension of multiplicative linear logic with mix with graphical connectives.

In the second part of the paper we provide a way to represent proofs via RB-proof nets [71, 73]. In
Section 5 we recall the original definitions and we explain how to generalize RB-proof nets for multiplica-
tive linear logic to represent proofs in our logics, and we explain why the criterion for multiplicative linear
logic with mix does not extends to our logics. We then extend this criterion for the graphical logic GS
in Section 7, providing a sequentialization procedure for correct proof nets. To conclude, in Section 8 we
show how our multiplicative graphical logics can be extended with structural rules, and we summarize in
Section 9 some of the possible the research directions opened by this work.

5

2 From Formulas To Graphs
In this section we recall standard results from the literature on graphs, and how the notion of graphs modular
decomposition allows us to extend the connection between cographs, i.e., the class of graphs containing no
four vertices whose induced subgraph is isomoprhic to the four-vertices paths, and classical propositional
formulas to general graphs and a class of formulas built using certain new n-ary connectives we introduce
in this paper called graphical connectives.

2.1 Graphs and Modular Decomposition

In this work are interested in using graphs to model patterns of interactions, describing such patterns by
means of the binary relations (edges) between its components (vertices). For this reason we define at the
same time the graphs and the corresponding notion of identity allowing us to consider patterns differing for
their syntactic description as the same graph.

Definition 1. A L-labeled graph (or simply graph) G = 〈VG, ℓG,
G
⌢〉 is given by a finite set of

vertices VG, a partial labeling function ℓG : VG → L associating a label ℓ(v) from a given set of
labels L to each vertex v ∈ VG (we denote by ∅ the empty function), and a non-reflexive symmetric

edge relation
G
⌢ ⊂ VG × VG whose elements, called edges, may be denoted vw instead of (v,w). A

graph is empty (denoted G = ∅) if VG = ∅.

A symmetry between two graphs G and G′ is a bijection f : VG → VG′ such that x
G
⌢y iff

f (x)
G′

⌢ f (y) for any x, y ∈ VG. An isomorphism is a symmetry f such that ℓ(v) = ℓ(f (v)) for any
x, y ∈ VG.

Two graphs G and G′ are symmetric (denoted G ∼ G′) if there is an symmetry between G and
G′. They are isomorphic if there is a isomorphism between G and G′. From now on, we consider
isomorphic graphs to be the same graph (denoted G = G′).

Two vertices v and w in G are connected if there is a sequence v = u0, . . . , un = w of vertices in

G (called path) such that ui−1
G
⌢ui for all i ∈ {1, . . . , n}. A connected component of G is a maximal

set of connected vertices in G.

A graph G is a clique (resp. a stable set) iff
G

6⌢ = ∅ (resp.
G
⌢ = ∅).

Observation. The problem of graph isomorphism is a standard NP-problem. That is, verify that
a given bijection between the sets of vertices of two graphs is an isomorphism can be checked in
polynomial time, while finding a graph isomorphism is a problem admitting no polynomial time
algorithm. For this reason, whenever we say that two graphs are the same, either we assume they
share the same set of vertices, therefore implicitly assuming the isomorphism f to be defined by the
identity function over the set of vertices, or we assume an isomorphism to be given. This allows us
to verify whether two graphs are the same in polynomial time.

Notation 2. When drawing a graph or an unlabeled graph we draw v w whenever v⌢w, we draw

no edge at all whenever v 6⌢w. We may represent a vertex of a graph by using its label instead of
its name. For example, the single-vertex graph G = 〈{v}, ℓG,∅〉 may be represented either by a the
vertex name v or by the vertex label ℓ(v). Note that because of our notion of identity of graphs,
whenever there are no ambiguity because of two vertices with a same label, the representation of a
graph provides us the same information of its definition as the triple containing the set of vertices,
the label function and the set of edges.

Example 3. Consider the following graphs:

F = 〈 {u1, u2, u3, u4} , {ℓ(u1) = a, ℓ(u2) = b, ℓ(u3) = c, ℓ(u4) = d} , {u1u2, u2u3, u3u4} 〉
G = 〈 {v1, v2, v3, v4} , {ℓ(v1) = b, ℓ(v2) = a, ℓ(v3) = c, ℓ(v4) = d} , {v1v2, v1v3, v3v4} 〉
H = 〈 {w1,w2,w3,w4} , {ℓ(w1) = a, ℓ(w2) = b, ℓ(w3) = c, ℓ(w4) = d} , {w1w2,w1w3,w3w4} 〉

They are all symmetric, that is F ∼ G ∼ H, but F = G , H as can easily be verified using their

6

representations:
F = a b c d = G and H = b a c d

In order to use proof theoretical methodologies on graphs, we need a suitable notion of subgraphs to be
used in the same way sub-formulas are used in proof systems, that is, to state properties of the calculus or to
define the behavior of rules. For this purpose, we use for a notion of module to identify subgraph allowing
us to decompose a graph using abstract syntax trees similar to the ones underlying formulas. Intuitively, a
module is a subset of vertices of a graph having the same edge-relation with any vertex outside the subset.
This generalize what we observe in formulas, where any propositional atom of a subformula has the same
relation (the one given by the least common ancestor node in the formula tree) with a given propositional
atom not in the subformula with a propositional atom .

Definition 4. Let G = 〈VG, ℓG, EG〉 be a graph and W ⊆ VG. The graph induced by W is the graph

G|W ≔ 〈W, ℓG |W ,
G
⌢ ∩ (W ×W)〉 where ℓG |W(v) ≔ ℓG(v) for all v ∈ W.

A module of a graph G is a subset M of VG such that x⌢z iff y⌢z for any x, y ∈ M, z ∈ VG \ M.
A module M is trivial if M = ∅, M = VG, or M = {x} for some x ∈ VG. From now on, we identify a
module M of a graph G with the induced subgraph G|M .

Remark 5. A connected component of a graph G is a module of G.

Using modules we can optimize the way we represent graphs reducing the number of edges drawn
without losing information, relying on the fact that all vertices of a module has the same edge-relation with
any vertex outside the module.

Notation 6. In order to improve reading, we may border vertices of a same module by a closed
line and draw edges connecting those closed lines to denote the existence of an edge between each
vertex inside it. By means of example, consider the following graph and its more compact modular
representation.

a c
e

b d
= a b c d e (2)

The notion of module is related to a notion of context, which can be intuitively formulated as a graph
with a special vertex playing the role of a hole in which we can plug in a module.

Definition 7. A context C[�] is a (non-empty) graph containing a single occurrence of a special
vertex �. It is trivial if C[�] = �. If C[�] is a context and G a graph, we define C[G] as the graph
obtained by replacing � by G. Formally,

C[G] ≔ 〈
(
VC[�] \ {�}

)
⊎VG ,

{

vw | v,w ∈ VC[�] \ {�}, v
C[�]
⌢ w

}

∪

{

vw | v ∈ VC[�] \ {�},w ∈ VG, v
C[�]
⌢ �

}

〉

Remark 8. A set of vertices M is a module of a graph G iff there is a context C[�] such that
G = C[M].

This idea of plugging a graph inside another graph can be generalized, providing the definition of a
composition-via a graph, allowing to compose multiple graphs in a “modular way” using a graph itself as
an operation.

Definition 9. Let G be a graph with VG = {v1, . . . , vn} and let H1, . . . ,Hn be n graphs. We define the
composition of H1, . . . , Hn via G as the graph GLH1, . . . ,HnM obtained by replacing each vertex vi of

7

G with the graph Hi for all i ∈ {1, . . . , n}. Formally,

GLH1, . . . ,HnM = 〈
n⊎

i=1

VHi
,





n⋃

i=1

Hi
⌢



 ∪
{

(x, y) x ∈ VHi
, y ∈ VH j

, vi
G
⌢v j

}

〉 (3)

The subgraphs H1, . . . ,Hn are called factors of GLH1, . . . ,HnM and are (possibly not maximal) mod-
ules of GLH1, . . . ,HnM.

Observation. By definition, H1, . . . ,Hn are (possibly not maximal) modules of GLH1, . . . ,HnM.

Remark 10. The information about the labels of the graph G used to define the composition-via
operation is lost. In particular, if G is a graph with VG = {v1, . . . , vn} and σ a permutation over the
set {1, . . . , n} such that the map fσ : VG → VG mapping vi in fσ(vi) = vσ(i) for all i ∈ {1, . . . , n} is an
isomorphism from G to G, then GLH1, . . . ,HnM = G′LH1, . . . ,HnM.

In order to establish a connection between graphs and formulas, from now on we only consider graphs
whose set of labels belong to the set L =

{

a, a⊥ | a ∈ A
}

where A is a fixed set of propositional variables.
We then define the dual of a graphs.

Definition 11. Let G = 〈VG, ℓG, EG〉 be a graph. We define the edge relation
G

6⌢ ≔
{

(v,w) | v , w and vw <
G
⌢

}

and we define the dual graph of G as the graph G⊥ ≔ 〈VG,
G

6⌢, ℓG⊥〉
with ℓG⊥ (v) = (ℓG(v))⊥.

Remark 12. By definition, each module of a graph corresponds to a module of its dual graph. It
follows that a connected component of G⊥ is a module of G.

Notation 13. If G is the representation of a graph G, then we may represent the graph G⊥ by bor-
dering the representation of G with a closed line and with the symbol for negation on the upper-right

corner, that is, G
⊥

.

2.2 Classical Propositional Formulas and Cographs

The set of classical (propositional) formulas is generated from a set of propositional variableA using the
negation (·)⊥, the disjunction ∨ and the conjunction ∧ using the following grammar:

φ, ψ ≔ a | φ ∨ ψ | φ ∧ ψ | φ⊥ with a ∈ A. (4)

We consider the following equivalence laws over classical formulas:

φ ∨ ψ ≡ ψ ∨ φ φ ∨ (ψ ∨ χ) ≡ (φ ∨ ψ) ∨ χ
φ ∧ ψ ≡ ψ ∧ φ φ ∧ (ψ ∧ χ) ≡ (φ ∧ ψ) ∧ χ

(5)

and with the following De-Morgan laws:

(φ⊥)⊥ ≡ φ (φ ∧ ψ)⊥ ≡ φ⊥ ∨ ψ⊥ (6)

We denote by ≡ the equivalence relation generated by equivalence and De-Morgan laws.
We define a map from literals to single-vertex graphs, which extends to formulas via the composition-

via a two-vertices stable set with S2 (for formulas which are disjunctions) and a two-vertices clique K2 (for
formulas which are conjunctions).

8

Definition 14. Let φ be a classical formula, then
[[

φ
]]

is the graph inductively defined as follows:

[[a]] = a
[[

φ⊥
]]

=
[[

φ
]]⊥ [[

φ ∨ ψ
]]

= S2L
[[

φ
]]

,
[[

ψ
]]

M
[[

φ ∧ ψ
]]

= K2L
[[

φ
]]

,
[[

ψ
]]

M

where K2 is a given clique with 2 vertices and where we denote by a the single-vertex graph, whose
vertex is labeled by a.

We can easily observe that the map [[·]] well-behaves with respect to the equivalence over formulas ≡,
that is, equivalent formulas are mapped to the symmetric graphs.

Proposition 15. Let φ and ψ be classical formulas. Then φ ≡ ψ iff
[[

φ
]]

=
[[

ψ
]]

.

We finally recall the definition of cographs, and the theorem establishing the relation between cographs
and classical formulas, i.e., providing an alternative definition of cographs as graphs generated by single-
vertex graphs using the composition-via a two-vertices no-edge graph and a two-vertices one-edge graph.

Definition 16. A cograph is a graph G such that for any four distinct vertices v1, v2, v3, v4 ∈ VG

the induced subgraph G|{v1,v2,v3,v4} is not symmetric to the graph 〈{a, b, c, d},∅, {ab, bc, cd}〉 (i.e.,
a b c d).

Theorem 17 ([39]). A graph is a cograph iff there is a formula φ such that G ∼
[[

φ
]]

.

2.3 Modular Decomposition of Graphs

We can now introduce the notion of prime graph which plays a special role in graphs modular decomposi-
tion, that is, in the possibility of inductively define graphs from single-vertices graphs using the operation
of composition-via a graph restrained specific graphs (see e.g., [39, 55, 51, 60, 63, 35]).

Definition 18. A graph G is prime if |VG | > 1 and all its modules are trivial. A graph G is quasi-prime
if it is prime, a clique or a stable set.

We recall the following standard result from the literature.

Theorem 19 ([55]). Let G be a graph with at least two vertices. Then there are non-empty modules
M1, . . . , Mn of G and a prime graph P such that G = PLM1, . . . , MnM.

This result enforces the existence of the possibility of inductively describe graphs using single-vertex
graphs and the operation of composition-via prime graphs. More precisely, we can define the notion of
modular decomposition of a graph composition-via quasi-prime graphs to provide a more canonical repre-
sentation.

Definition 20. Let G be a non-empty graph. A modular decomposition of G is a way to write G
using single-vertex graphs and the operation of composition-via quasi-prime graphs:

• if G is a graph with a single vertex x labeled by a, then G = a (i.e. G = 〈{x}, ℓ(x) = a,∅〉);

• if G is disconnected with connected components H1, . . . ,Hn, then G = S LH1, . . . ,HnM for a
stable set S with |VS | = n;

• if G⊥ is disconnected with connected components H1, . . . ,Hn, then G = CLH1, . . . ,HnM for a
clique C with |VC | = n;

• if both G and G⊥ are connected and H1, . . . ,Hn are maximal modules of G, then there is a
unique prime graph P (with |VP| > 2) such that G = PLH1, . . . ,HnM.

A spurious modular decomposition of G is a modular decomposition of G in which we allow
occurrences of the empty graph ∅ occur as leaves of the abstract syntactic tree.

9

Observation. Modular decomposition does not provide a unique way to write graphs.
In fact, whenever we have two isomorphic graphs (not even symmetric), this provide multi-

ple ways to define a graph using the composition-via. By means of example, if we consider the
non-isomorphic but symmetric graphs P = a b c d and P′ = a c b d, then we have that

PLa′, b′, c′, d′M = a
′

b
′

c
′

d
′
= P′La′, c′, b′, d′M.

Even considering isomorphic graphs, we may have permutations allowing us to write a graph
using the same composition-via a graph G changing the order of its factors, that is, GLH1, . . . ,HnM
may be the same graph of GLHσ(1),...,Hσ(n)

M for some permutations σ over the set {1, . . . , n}. Note that
if G is a clique or a stable set, then σ can be any permutation.

Moreover, the associativity of cliques and stable sets creates additional ambiguity. By means of
example, consider two cliques K3 and K2 with respectively three and two vertices, then K2La, b, cM =
K2La,K2Lb, cMM = K2LK2La, bM, cM.

In order to limit the proliferation of operation of composition-via graphs, we introduce the notion of
base of graphical connectives, allowing us to provide more canonical modular decomposition of graphs.

Definition 21. A graphical connective CLv1, . . . , vnM = 〈VC,
C
⌢〉 is given by a finite list of vertices

VC = 〈v1, . . . , vn〉 and a non-reflexive symmetric edge relation
C
⌢ over the set of vertices occurring in

VC. We define the composition-via a graphical connective similarly to the composition-via a graph

GC = 〈
⋃

v∈VC
{v},∅,

C
⌢〉 for a labeling function ℓ (see Definition 9).

A graphical connective is prime (resp. a clique and a stable set) if CLa1, . . . , anM is a prime graph
(resp. a clique and a stable set) for any a1, . . . , an single-vertex graphs.

The group of symmetries and the set of dualizing symmetries of a graphical connective C are
respectively defined the following subset of the set Sn of permutations over the set {1, . . . , n}: a

S(C) ≔
{

σ ∈ S|VG | | CLa1, . . . , a|VG|M = CLaσ(1), . . . , aσ(|VG |)M
}

S⊥(C) ≔

{

σ ∈ S|VG | | (CLa1, . . . , a|VG|M)
⊥ = CLa⊥

σ(1)
, . . . , a⊥

σ(|VG |)
M
} (7)

for any set of single-vertex graphs {a1, . . . , a|VG|}.
A set of graphical connectives Q is a base (resp. prime base) if for each quasi-prime graph

(resp. for each prime graph) Q with VQ = {w1, . . . ,wn} there is a unique C ∈ Q such that
Q = CLwσ(1), . . . ,wσ(n)M for some permutations σ ∈ Sn.

Notation 22. We define the following graphical connectives (with n > 1):

`nLv1, . . . , vnM ≔ 〈〈v1, . . . , vn〉,∅〉 ⊗nLv1, . . . , vnM ≔ 〈〈v1, . . . , vn〉, {viv j | i , j}〉

BullLv1, . . . , v5M ≔ 〈〈v1, . . . , v5〉, {(v1v2, v2v3, v3v4, v5v2, v5v3)}〉
PnLv1, . . . , vnM ≔ 〈〈v1, . . . , vn〉, {vivi+1 | i ∈ {1, . . . , n − 1}}〉

(8)

and we denote by ` ≔ `2 and by ⊗ ≔ ⊗2 = P2. That is,

`3La1, a2, a3M= a
1

a
2

a
3

⊗nLb1, b2, b3M= b
1

b
2

b
3

BullLc1, . . . , c5M=
c

1
c

2
c

3
c

4
c

5

PnLd1, . . . , dnM= d
1

d
2
· · · d

n−1
d

n

We use the following notation for the composition-via the graphical connectives ` and ⊗:

H1 ` H2 = `LH1,H2M H1 ⊗H2 = ⊗LH1,H2M

From now on, we assume only bases containing the graphical connectives in Equation (8).

aMore precisely, Sn provided with the operation of composition is a group whose neutral element the identity permutation (denoted

id).

10

Example 23. Consider the following graph

G =

c
d

e
f

a b g h i

=
a b c d e f g h i

We can write G as P4

(∣
∣
∣a ` b, c⊗ d, e⊗ f ,⊗3Lg, h, iM

∣
∣
∣

)

or P4

(∣
∣
∣⊗3Lg, i, hM, e⊗ f , d⊗ c, a ` b

∣
∣
∣

)

(or

P4

(∣
∣
∣a ` b, c⊗ d, e⊗ f , g⊗(h⊗ i)

∣
∣
∣

)

if we only use prime connectives). The dual graph of G is defined

as the graph

G⊥ =

d⊥
c⊥

e⊥
f⊥

a⊥

b⊥

i⊥

h⊥

g⊥

= e⊥ f⊥ a⊥ b⊥ g⊥ h⊥ i⊥ c⊥ d⊥

and can be written as G⊥ = P⊥
4

(∣
∣
∣a⊥ ⊗ b⊥, c⊥ ` d⊥, e⊥ ` f⊥,`3Lg

⊥, h⊥, i⊥M
∣
∣
∣

)

.

We can reformulate the standard result on modular decomposition as follows.

Theorem 24. Let G be a non-empty graph. Then then there is a unique way (up to symmetries of
graphical connectives) to write G using single-vertex graphs and the graphical connectives in a given
base Q.

Proof. The proof follows by Definition 20 and the unique way, up to connective symmetries, to write
a quasi-prime graph using the operation of composition-via a graphical connective of a base. �

Corollary 25. Two graphs are symmetric iff they admit a same modular decomposition.

3 Multiplicative and IsoMix Graphical Logic
In this section we define connectives with a one-to-one correspondence with a graphical connectives, and
a set of formulas constructed using these connectives which we can interpret (semantically) as graphs.
We then provide two sequent calculi using linear and context-free sequent rules and we prove their proof-
theoretical properties.

3.1 Generalized Formulas

In order to represent graphs as formulas using graph modular decomposition, we need to define new con-
nectives beyond conjunction and disjunction in order to have a correspondence between the graphs of our
base and the connectives of our logic. For this purpose, we define a set of formulas whose connectives are
in one-to-one correspondence with the graphical connectives in a prime base P.

Definition 26. Assume a prime base P to be fixed. The set of formulas is generated by the set of
propositional atoms A, a unit ◦, and the set of (graphical) connectives C = {κQ | Q ∈ Q} using the
following syntax:

φ1, . . . , φn ≔ ◦ | a | a
⊥ | κPLφ1, . . . , φ|P|M with a ∈ A and κ ∈ C (9)

The arity of the connective κQ is defined as |κQ | ≔ |VQ|. We may denote by ` (resp. ⊗) the binary
connective κ` (resp. κ⊗) and we may write φ` ψ (resp. φ⊗ψ) instead of κ`Lφ, ψM (resp. κ⊗Lφ, ψM).

A literal is a formula of the form a or a⊥ for an atom a ∈ A. The set of literals is denoted L.
A formula is unit-free if it contains no occurrences of ◦. A formula containing no literal is said
vacuous. A MLL-formula is a formula containing only occurrences of ` and ⊗ connectives.

A formula κLφ1, . . . , φnM is called a κ-formula and we say that κ is
its main connective. A formula is compact if it contains no subformu-

11

las of the form `nLφ1, . . . , φk,`mLφk+1, . . . , φk+mM, φk+m+1, . . . , . . . , φn−m+1M or
⊗nLφ1, . . . , φk,⊗mLφk+1, . . . , φk+mM, φk+m+1, . . . , . . . , φn−m+1M for any n,m ∈ N.

The size (resp. energy) of a formula φ is the number |φ| of (resp. the multiset of) literals, units,
and connectives occurring in it.

We consider the following equivalence laws:

κQLφ1, . . . , φ|Q|M ≡ κQLφσ(1), . . . , φσ(|VQ|)M for each σ ∈ S(Q)
φ⊗(ψ⊗χ) ≡ (φ⊗ψ)⊗ χ

φ` (ψ` χ) ≡ (φ` ψ) ` χ
(10)

and the following De-Morgan laws:

◦⊥ ≡ ◦ φ⊥⊥ ≡ φ

only if S⊥(Q) = ∅ :
(

κQLφ1, . . . φ|Q|M
)⊥
≡ κQ⊥Lφ

⊥
σ(1)

, . . . , φ⊥
σ(|VQ |)

M

only if S⊥(Q) , ∅ :
(

κQLφ1, . . . φ|Q|M
)⊥
≡ κQLφ⊥

ρ(1)
, . . . , φ⊥

ρ(|VQ|)
M for each ρ ∈ S⊥(Q)

(11)

We denote by ≡ the equivalence relation generated by equivalence and De-Morgan laws.
A context formula (or simply context) ζ[�] is a formula containing an hole � taking the place of

an atom. Given a context ζ[�], the formula ζ[φ] is defined by simply replacing the atom � with the
formula φ. For example, if ζ[�] = ψ` (�⊗χ), then ζ[φ] = ψ` (φ⊗χ).

Each formula φ with set of occurrences of literals x1, . . . , xn can be considered as a synthetic
connective, that is, given ψ1, . . . , ψn formulas we denote by φLψ1, . . . , ψnM the formula obtained by
replacing xi with ψi for all i ∈ {1, . . . , n}. Therefore we define the set of symmetries of φ as the set
S(φ) of permutationsσ over {1, . . . , n} such that φLψ1, . . . , ψnM ≡ φLψσ(1), . . . , ψσ(n)M for any formulas
ψ1, . . . , ψn.

The linear implication φ ⊸ ψ is defined as φ⊥ ` ψ. We write φ� ψ as a shortcut for “φ ⊸ ψ

and ψ⊸ φ”.

Observation. In multiplicative linear logic a De Morgan law linking the connectives ` and ⊗ are
considered commutative because the following implications are provable

φ` ψ⊸ ψ` φ and φ⊗ψ⊸ ψ⊗φ for all φ and ψ.

For this reason, the laws φ ` ψ ≡ ψ ` φ and φ⊗ψ ≡ ψ⊗ φ are in some way subsumed and the De-
Morgan law establishing a relation between ` and ⊗ is usually written in the form (φ⊗ψ)⊥ = φ⊥`ψ⊥

establishing a relation between the connectives ⊗ and `, similar to the one in the second line of
Equation (11) with σ being the identity.

However, in [1, 2], where authors consider non-commutative versions of linear logic where se-
quents are considered as lists of formulas and the exchange rule is removed or restricted. In this logic
both ⊗ and ` connectives are non-commutative and the De-Morgan law establishing the duality be-
tween ` and ⊗ written as (φ⊗ψ)⊥ = ψ⊥ ` φ⊥, that is, is of the form (κLφ1, φ2M)

⊥ ≡ κ⊥Lφ⊥
σ(1)

, φ⊥
σ(2)

M
as in the second line of Equation (11) with σ the permutation exchanging 1 an 2.

These two cases covers all the possible way to define De-Morgan laws between pairs of binary
connectives. However, we can consider cases of connectives such that only one connective occurs
in the laws. The non-commutative connective logic logic Pomset [71] provides an example of this
case, where the non-commutative binary connective ⊳ is self-dual, that is, it satisfy the De-Morgan
law (φ ⊳ ψ)⊥ = φ⊥ ⊳ ψ⊥, as in the third line of Equation (11) with σ being the identity.

A fourth and last way to define a De-Morgan law for binary connectives would be law of the form
(κLφ, ψM)⊥ ≡ κ⊥Lψ⊥, φ⊥M. Note that this writing is closer to the law defining the inverse of the product
of two elements in a group.

For graphical connectives we observe new behaviors similar to this latter (but more complex),
which cannot be properly called self-duality, as in the case of ⊳ but rather a duality “up to isomor-
phism”. Consider the connective κP4

whose the dual connective is κP4
itself; the De-Morgan law

establishing this duality (κP4
La, b, c, dM)⊥ ≡ κP4

Lb⊥, d⊥, a⊥, c⊥M is not simply expressed by negating
the subformulas of a κP4

-formula, as in the case of ⊳, but also changing their order in a more complex

12

ax
⊢ a, a⊥

⊢ Γ, φ, ψ
`

⊢ Γ, φ` ψ

⊢ Γ, φ ⊢ ψ,∆
⊗
⊢ Γ, φ⊗ψ,∆

⊢ Γ1, φσ(1), ψτ(1) · · · ⊢ Γn, φσ(n), ψτ(n)
d-κ






σ ∈ S(κ)

τ ∈ S(κ⊥)⊢ Γ1, . . . , Γn, κLφ1, . . . , φnM, κ
⊥Lψ1, . . . ψnM

◦
⊢ ◦

ax
⊢ a, a⊥

⊢ Γ1 ⊢ Γ2
mix
⊢ Γ1, Γ2

⊢ Γ1, φσ(1), ψτ(1) · · · ⊢ Γn, φσ(n), ψτ(n)
d-κ






σ ∈ S(κ)

τ ∈ S(κ⊥)⊢ Γ1, . . . , Γn, κLφ1, . . . , φnM, κ
⊥Lψ1, . . . ψnM

⊢ Γ, φ1, . . . φn
`n n > 1
⊢ Γ,`nLφ1, . . . φnM

⊢ Γ1, φ1 · · · ⊢ Γn, φn
⊗n n > 1
⊢ Γ1, . . . , Γn,⊗nLφ1, . . . φnM

⊢ Γ, ψ ⊢ ∆, χLφσ(1), . . . , φσ(n)M
wd⊗






n > 1
[[

κLφ1 , . . . , φk , ◦, φk+1 , . . . , φnM
]]

=
[[

χLφσ(1), . . . , φσ(n)M
]]

σ ∈ S(χ)⊢ Γ,∆, κLφ1, . . . , φk, ψ, φk+1, . . . , φnM

AX
⊢ φ, φ⊥

⊢ Γ1, φ ⊢ Γ2, φ
⊥

cut
⊢ Γ1, Γ2

⊢ Γ1, φ ⊢ Γ2, ζ[◦]
cxt-⊗

⊢ Γ1, Γ2, ζ[φ]

⊢ Γ, ζ′[φ]
cxt-`
⊢ Γ, ζ′[◦], φ

⊢ Γ1, φσ(1), ψτ(1) · · · ⊢ Γn, φσ(n), ψτ(n)
d-χ






|χ| > 1

σ ∈ S(χ)

τ ∈ S(χ⊥)⊢ Γ1, . . . , Γn, χLφ1, . . . , φnM, χ
⊥Lψ1, . . . ψnM

Figure 4: Linear sequent calculus rules. In the first line the rules for MPL, in the second line the rules for
MPL◦. Below the admissible rules in MPL◦.

way that just by “inverting the order of subformulas” as in the aforementioned fourth possible way to
define De-Morgan laws for a binary connective.

Remark 27. As explained in [8] (Section 9), the so-called generalized multiplicative connectives
from the literature in linear logic [29, 44, 62, 9] are different from the ones discussed here. In fact,
the unique 4-ary graphical connectives P4 is iso-dual and has symmetry group {id, (1, 4)(2, 3)}, while
the unique pair of dual generalize multiplicative connectives (which are not iso-dual) G4 and G⊥

4
have

symmetry group {id, (1, 2), (3, 4), (1, 2)(3, 4), (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 2, 3), (1, 4)(2, 3)}.

Definition 28. If φ is a formula, we define the graph
[[

φ
]]

as follows:

[[◦]] = ∅ [[a]] = a
[[

φ⊥
]]

=
[[

φ
]]⊥ [[

κQLφ1, . . . , φnM
]]

= Q
(∣
∣
∣
[[

φ1

]]

, . . . ,
[[

φn

]]∣∣
∣

)

where we denote by a the single-vertex graph, whose vertex is labeled by a.
Conversely given a (possibly spurious) modular decomposition (via graphical connectives) of a

graph G, we define [[G]]−1 as the formula whose abstract syntax trees are has a one-to-one one-to-
one correspondence (respecting the parenthood relation) between laves labeled by a literal x, leaves
labeled by units (∅ and ◦ respectively), and between nodes labeled by the graphical connective Q and
nodes labeled by connectives κQ.

For each formula φ = ψLx1, . . . , xnM (where x1, . . . , xn are literals), we define S(φ) ≔ S(
[[

φ
]]

).

Observation. Intuitively, compact and unit-free formulas are the representation of graphs modular
decomposition via graphical connectives, providing a one-to-one correspondence between graphical
connectives in the abstract syntax trees in the two syntexes.

13

We have the following immediate results.

Proposition 29. Let φ and ψ be formulas. If φ ≡ ψ, then
[[

φ
]]

=
[[

ψ
]]

. Moreover, if φ and ψ are
unit-free, then φ ≡ ψ iff

[[

φ
]]

=
[[

ψ
]]

.

However, for expected stronger statements such as connections between implication between formulas
whose interpretation is the same graph, we need the results in the next sections.

3.2 Extending Multiplicative Linear Logic with Graphical Connective

We assume the reader to be familiar with the definition of sequent calculus derivations as trees of sequents
(see, e.g., [77]) but we recall here some definitions.

Definition 30. We define a sequent is a set of occurrences of formulas.
A sequent system S is a set of sequent rules as the ones in Figure 4. In a sequent rule ρ, we

say that a formula is active if it occurs in one of its premises (the sequents above the horizontal
line) but not in its conclusion (the sequent below the horizontal line), and principal if it occurs in its
conclusion but in none of its premises.

A proof of a sequent Γ is a derivation with no open premises, denoted
π S

Γ
. We denote by

Γ′

π′ S

Γ

an

(open) derivation of Γ from Γ′, that is, is a proof tree having exactly one open premise Γ′.
A rule is admissible if given provable premises, then its conclusion is is derivable without using

the rule itself. A rule is derivable from a set of rules S, if it is possible to define an open derivation
having the same premises and the same conclusion of the rule using only rules in S.

We then use the sequent rules in Figure 4 to define two logic over formulas.

Notation 31. In this paper, as in the tradition of linear logic, we use the same notation to denote a
proof system S and the logic it identifies, that is, the set of formulas admitting a proof in S.

We generalize the multiplicative linear logic (with mix) [40] to the following logics operating on (more
general) formulas constructed using graphical connectives beyond ` and ⊗.

Definition 32. We define the following logics via their sequent systems:

Multiplicative Prime Logic : MPL =
{

ax,`,⊗, d-κ | κ ∈ C prime
}

Multiplicative Prime Logic with mix : MPL◦ = {ax, ◦,`n,mix,⊗n, d-κ,wd⊗ | κ ∈ C}
(12)

Observation (Rules Exegesis). The rules ax, `, ⊗, cut, mix and ◦ the standard rules from multi-
plicative linear logic with mix. In particular, the ax is the restriction of the general axiom rule AX to
atomic formulas. The rule ` can be read as the rule making explicit the meta-connective “comma”
we use in sequents to separate formulas. The “true” commutativity of `, that is the fact that we
consider the formulas φ` ψ and ψ` φ to be the same formula is natural consequence of on the fact
that we consider the sequents φ, ψ and ψ, φ to be the same sequent (as soon as we do not consider se-
quents as lists of formulas). Similarly, the rule ⊗ can be read as the rule making the meta-connective
“parallel branches” in derivation trees a concrete one, an then applying two occurrences of the weak-
distributivity law (i.e. φ⊗(ψ` χ)→w.d. (φ⊗ψ) ` χ) in the following way:

Γ, φ ψ,∆
⊗
Γ, φ⊗ψ,∆

!

the premises (Γ, φ) and (ψ,∆) are valid
same interpretation of

(Γ` φ)⊗(ψ` ∆)
weak distr.

Γ` (φ⊗(ψ` ∆))
weak distr.

Γ` (φ⊗ψ) ` ∆
same interpretation of

Γ, φ⊗ψ,∆

To simplify proofs, in MPL◦ we generalize the rules for ` and ⊗ to their n-ary versions, proving that

14

the n-ary versions of these two connectives are derivable using the associativity of the binary ones.
The (double) dual connectives rule d-κ introduces a pair of dual connectives at the same time.a

This rule is a reformulation in sequent calculi of the p↓ from the logic GS (see Section 4), where the
rule takes two dual graphical connectives, and creating a graph where the edges of these two con-
nectives have been merged (i.e. a clique) and where modules in the same “position” of the graphical
connectives are gathered in a same module. To have an intuition about how this rule behaves, consider
the equivalent two-sided formulation of our sequents and rules, where formulas can move across the
turnstile (⊢) modulo negation. In setting, the rule d-⊗ below introduces a ⊗ on the right-hand side,
together with a ⊗ on the left-hand side (that is, a `). As mentioned above, the premises of this rule
should be considered in a ⊗ relation, as in the regular ⊗ (see below).

Γ1, φ1 ⊢ ψ1,∆1 Γ2, φ2 ⊢ ψ2,∆2
d-⊗

Γ1, Γ2, φ1 ⊗φ2 ⊢ ψ1 ⊗ψ2,∆1,∆2

equivalent to

⊢ Γ⊥
1
, φ⊥

1
, ψ1,∆1,∆1 ⊢ Γ⊥

2
, φ⊥

2
, ψ2,∆2,∆2

⊗
⊢ Γ⊥

1
, Γ⊥

2
, φ⊥

1
, φ⊥

2
, ψ1 ⊗ψ2,∆1,∆2

`

⊢ Γ⊥
1
, Γ⊥

2
, φ⊥

1
` φ⊥

2
, ψ1 ⊗ψ2,∆1,∆2

Similarly, we should consider that the premises of a d-κQ to be in a Q-shaped relation. For example,
for Q = P4 we should have consider the first and the second premises, the second and the third
premises, and the third and fourth premises in such a ⊗ relation, as shown below.

Γ1, φ1 ⊢ ψ1,∆1 Γ2, φ2 ⊢ ψ2,∆2 Γ3, φ3 ⊢ ψ3,∆3 Γ4, φ4 ⊢ ψ4,∆4
d-κP4

Γ1, Γ2, Γ3, Γ4, κP4
Lφ1, φ2, φ3, φ4M ⊢ κP4

Lψ1, ψ2, ψ3, ψ4M,∆1,∆2,∆3,∆4

With this intuition, it appears clear that during proof construction (top-down interpretation of a deriva-
tion) the d-κ simply makes explicit the relation between the premises of the rule (which could be
thought as a meta-connective) by “keeping track” of this relation by introducing a copy of the con-
nective capturing this same pattern in each side of the sequent. At the same time, in proof search
(i.e., bottom-up interpretation of a derivation) in single-sided sequents, the rule d-κ could be thought
as a rule merging a κ-formula κLφ1, . . . , φnM with a κ⊥-formula dual κ⊥Lψ1, . . . , ψnM into the formula
(φ1 ` ψ1)⊗ · · · ⊗(φn ` ψn), followed by a ⊗n splitting the context, and some `.

Note that having a rule introducing only one of the two dual connectives inevitably leads to the
same problems of the rules for generalized multiplicative connectives introduced in the early works
on linear logic [29, 44], where initial coherence (i.e. the possibility of having only atomic axioms in a
cut-free system, [14]) is ruled out because of the so-called packaging problem. This problem, due to
the fact that some rules would require to introduce a new connective between formulas from a same
sequent and from different sequents (therefore enforcing strong constraints in proof search), does not
occur in the syntax of proof nets with generalized connectives, where the rigid structure imposed by
derivation branching is removed. An extensive discussion of such a single-connective rule and the
results on it is provided in Appendix C.

The rule wd⊗ allows us construct derivations where we can simulate the possibility of applying
certain deep inference rules to subformulas of a sequent system, in the style of deep inference systems
[47]. It is a generalization of the weak-distribution law in symmetric monoidal categories (see, e.g.,
[61, 3])

φ⊗(ψ` χ) −→ (φ⊗ψ) ` χ (13)

distributing the ⊗ over the other connectives, that is,

χ⊗ κLφ1, . . . , φk, ψ, φk+1, . . . , φnM −→ κLφ1, . . . , φk, ψ⊗χ, φk+1, . . . , φnM (14)

Note this law toghether with the “dual” weak-distributive law

κLφ1, . . . , φk, ψ` χ, φk+1, . . . , φnM −→ κLφ1, . . . , φk, ψ, φk+1, . . . , φnM ` χ (15)

distributing the connective` over the other connectives usually collapse on a single law (the standard
one in Equation (13)) whenever we consider only the two connectives ⊗ and `. This law for the `

is captured by the admissible rule context-par (cxt-`) generalizing it using the unit ◦, while the
admissible rule context-tensor (cxt-⊗) generalizes wd⊗.

The other derivable rules in the last row are the generalization of the axiom to any formulas (AX),
the generalizing of the rule d-κ to synthetic connectives (d-χ) and the standard cut-rule.

15

Notation 33. Unless needed for sake of clarity, we omit to the permutations over the indices of the
subformulas in rules.

Remark 34. If we consider only MLL-formulas, then the rule wd⊗ is admissible.

3.3 Properties of the Logics MPL and MPL◦

We start by observing that these systems are initial coherent [14, 64], that is, we can derive the implication
φ ⊸ φ for any formula φ only using atomic axioms. This allows us to prove that in IsoMix the unit ◦
is, in some sense, the unit for all connectives. We conclude by proving the admissibility of cut via cut-
elimination, together with the admissibility of certain rules which are useful to prove the results in the next
sections.

Theorem 35. The logics MPL and MPL◦ are initial coherent.

Proof. By induction on the structure of a formula φ:

• if φ = ◦, since ◦⊥ = ◦, then we have a derivation of ⊢ ◦, ◦ by applying mix to the conclusion of
two ◦-rules;

• if φ = a is a literal, then there is a derivation a, a⊥ made of a single ax occurrence;

• if φ = κLψ1, . . . , ψnM, then we can apply a d-κ to the sequent φ, φ⊥ and obtaining sequents ψi, ψ
⊥
i

for all i ∈ {1, . . . , |κ|}. We conclude by inductive hypothesis.

Note that if φ is unit-free, then we only need the rules ax and p to prove ⊢ φ, φ⊥. �

The derivability of the general axiom rule and the general d-χ immediately follows by a similar argu-
ment.

Lemma 36. Let χ be a formula such that |χ| > 1. Then rule d-χ is derivable.

Proof. By induction on the structure of φ using the rule d-κ. �

Corollary 37. The rule AX is derivable in MPL and in MPL◦.

To prove cut-elimination in MPL◦, we rely on the admissibility of the rule cxt-` in MPL◦.

Lemma 38. The rule cxt-` is admissible in MPL◦.

Proof. To prove the admissibility of cxt-` we show that ⊢MPL◦ Γ, ζ[φ], then ⊢MPL◦ Γ, ζ[◦], φ:

• If ζ[�] = � is trivial, then ζ[φ] = φ and we conclude since
◦
⊢ ◦

HP

⊢ Γ, φ
mix
⊢ Γ, φ, ◦

.

• If, w.l.o.g., ζ[�] = `nLζ
′[�], ψ2, . . . , ψnM, then there is a derivation

⊢ Γ, ζ′[φ], ψ2, . . . , ψn
`n

⊢ Γ,`nLζ
′[φ], ψ2, . . . , ψnM

, thus a derivation

IH

⊢ Γ, ζ′[◦], ψ2, . . . , ψn, φ
`n

⊢ Γ,`nLζ
′[◦], ψ2, . . . , ψnM, φ

aThe existence of rules introducing two (or more than two) operators at the same time is not a novelty in structural proof theory.

Similar rules can be observed in focused proof systems (ee, e.g.[13, 65, 64]), where a rule can handle multiple connectives of a same

formula, or in modal logic and linear logic (more precisely, variants of linear logic with functorial promotion rule), where rules for

modalities often introduces multiple modalities in a single application (see, e.g., [43, 17, 21, 59]). In recent works on display calculi

[25], the authors use rules for two sided sequent systems where rules introduce a modality (which could be of any arity) on one side

of the sequent together with their associated weak modality, internalizing the introduction of the dual connective on the other side of

the sequent.

16

• If, w.l.o.g., ζ[�] = φ⊗C′[�], then there is a derivation

⊢ Γ1, ζ
′[φ] ⊢ Γ2, ψ2 · · · ⊢ Γn, ψn

⊗n

⊢ Γ1, Γ2,⊗nLζ
′[φ], ψ2, . . . , ψnM

, thus a derivation

IH

⊢ Γ1, ζ
′[◦], φ

IH

⊢ Γ2, ψ2 · · ·
IH

⊢ Γn, ψn
⊗n

⊢ Γ1, Γ2, ψ⊗ ζ
′[◦], φ

• If, w.l.o.g., ζ[�] = κLζ′[�], ψ2, . . . , ψnM, then:

– either there is a derivation

⊢ Γ1, ζ
′[φ], χ1 ⊢ Γ2, ψ2, χ2 · · · ⊢ Γn, ψn, χn

d-κ
⊢ Γ1, . . . , Γn, κ

⊥Lχ1, . . . , χnM, κLζ
′[φ], ψ2, . . . , ψnM

thus a derivation

IH

⊢ Γ1, ζ
′[◦], φ, χ1

HP

⊢ Γ2, ψ2, χ2 · · ·
HP

⊢ Γn, ψn, χn
d-κ

⊢ Γ1, . . . , Γn, κ
⊥Lχ1, . . . , χnM, κLζ

′[◦], ψ2, . . . , ψnM, φ

– or there is a derivation

⊢ Γ1, ψ
′ ⊢ Γ2, χLζ

′[φ], ψ2, . . . , ψnM
wd⊗
⊢ Γ1, Γ2, κLζ

′[φ], ψ2, . . . , ψk, ψ
′, ψk+1, . . . , ψnM

thus a derivation

⊢ Γ1, ψ
′

IH

⊢ Γ2, χLζ
′[◦], ψ2, . . . , ψnM, φ

wd⊗
⊢ Γ, κLζ′[◦], ψ2, . . . , ψk, ψ

′, ψk+1, . . . , ψnM, φ

�

The proof of admissibility of cut is proven by providing a cut-elimination procedure.

Theorem 39 (Cut-elimination). Let X ∈ {MPL,MPL◦}. The rule cut is admissible in X.

Proof. For MPL, it suffices to define the weight of an instance of a cut-rule as the maximum length
of a branch above one of its premises and the weight of of a derivation as the sum of the weights of
the cuts. To conclude it suffices to remark that each cut-elimination step from Figure 5 reduces the
weight of a derivation.

For MPL◦, we also have to define the energy of an instance of a cut-rule as the (multiset) union of
the energies of its cut-formulas and the energy of a derivation as the multiset of the energies its cuts.
We then consider the order over multisets of units, literals and connectives defined in such a way
κ < κ′ whenever |κ| < |κ′| and ◦ < x for any x literal. According to this order, each non-commutative
cut-elimination step reduces the energy of a derivation. The only non-trivial case is the case in which
we cut a principal formula of a wd⊗ against a principal formula of another wd⊗ where the two wd⊗-
rules are applied to principal subformulas with different indices (more precisely, whose indices are
not related by a permutation in S(κ)). In this case, the cut-elimination step introduces three new
cuts, all of which with smaller energy. To conclude it suffices to remark that the lexicographic order
over the pairs give by the energy and the weight of a derivation reduce at each step because each
commutative cut-elimination step does not change the energy but reduces the weight. �

The admissibility of cut implies analyticity via the sub-formula property for MPL.

17

ax
⊢ a, a⊥ ⊢ a, Γ

cut
⊢ a, Γ

 ⊢ a⊥, Γ

⊢ ◦ ⊢ Γ
mix
⊢ ◦, Γ

◦
⊢ ◦

cut
⊢ Γ

 ⊢ Γ

⊢ Γ1, φ1 · · · ⊢ Γn, φn
⊗n

⊢ Γ1, . . . , Γn,⊗nLφ1, . . . , φnM

⊢ ∆, φ⊥
1
, . . . , φ⊥n

`n

⊢ ∆,`nLφ
⊥
1
, . . . , φ⊥n M

cut
⊢ Γ1, . . . , Γn,∆

 ⊢ Γ1, φ1

⊢ Γn, φn ⊢ ∆, φ⊥
1
, . . . , φ⊥n

cut
...

cut
⊢ Γ1, . . . , Γn,∆

⊢ Γ1, φ1, ψ1 · · · ⊢ Γn, φn, ψn
d-κ
⊢ Γ1, . . . , Γn, κLφ1, . . . , φnM, κ

⊥Lψ1, . . . , ψnM

⊢ ∆1, ψ
⊥
1
, χ1 · · · ⊢ ∆n, ψ

⊥
n , χn

d-κ
⊢ ∆1, . . . ,∆n, κLψ

⊥
1
, . . . , ψ⊥n M, κ⊥Lχ1, . . . , χnM

cut
⊢ Γ1, . . . , Γn,∆1, . . . ,∆n, κLφ1, . . . , φnM, κ

⊥Lχ1, . . . , χnM

⊢ Γ1, φ1, ψ1 ⊢ ∆1, ψ
⊥
1
, χ1

cut
⊢ Γ1,∆1, φ1, χ1 · · ·

⊢ Γn, φn, ψn ⊢ ∆n, ψ
⊥
n , χn

cut
⊢ Γn, φn, χn

d-κ
⊢ Γ1, . . . , Γn,∆1, . . . ,∆n, κ

⊥Lψ1, . . . , ψnM, κLχ1, . . . , χnM

⊢ Γ1, φ1, ψ1 · · · ⊢ Γn, φn, ψn
d-κ
⊢ Γ1, . . . , Γn, κPLφ1, . . . , φnM, κP⊥Lψ1, . . . , ψnM

⊢ ∆1, ψ
⊥
1
⊢ ∆2, χLψ

⊥
2
, . . . , ψ⊥n M

wd⊗
⊢ ∆1,∆2, κPLψ⊥

1
, . . . , ψ⊥n M

cut
⊢ Γ1, . . . , Γn,∆1,∆2, κPLφ1, . . . , φnM

⊢ Γ1, φ1, ψ1 ⊢ ∆1, ψ
⊥
1

cut
⊢ Γ1,∆1, φ1

⊢ Γ2, φ2, ψ2 · · · ⊢ Γn, φn, ψn
d-χ
⊢ Γ2, . . . , Γn, χLφ1, . . . , φnM, χ

⊥Lψ1, . . . , ψnM ⊢ ∆2, χLψ
⊥
2
, . . . , ψ⊥n M

cut
⊢ Γ2, . . . , Γn,∆2, χLφ1, . . . , φnM

wd⊗
⊢ Γ1, . . . , Γn,∆, κPLφ1, . . . , φnM

⊢ Γ1, φk ⊢ Γ2, χLφ1, . . . , φk−1, φk+1, . . . φnM
wd⊗

⊢ Γ1, Γ2, κPLφ1, . . . , φnM

⊢ ∆1, φ
⊥
k
⊢ ∆2, χ

⊥Lφ⊥
1
, . . . , φ⊥

k−1
, φ⊥

k+1
, . . . φ⊥n M

wd⊗
⊢ ∆, κP⊥Lφ

⊥
1
, . . . , φ⊥n M

cut
⊢ Γ1, Γ2,∆1,∆2

⊢ Γ1, φk ⊢ ∆1, φ
⊥
k

cut
⊢ Γ1,∆1

⊢, Γ2, χLφ1, . . . , φk−1, φk+1, . . . φnM ⊢ ∆2, χ
⊥Lφ⊥

1
, . . . , φ⊥

k−1
, φ⊥

k+1
, . . . φ⊥n M

cut
⊢ Γ2,∆2

mix
⊢ Γ1, Γ2,∆1,∆2

⊢ Γ1, φ1 ⊢ Γ2, χLφ2, . . . φnM
wd⊗

⊢ Γ1, Γ2, κPLφ1, . . . , φnM

⊢ ∆1, φ
⊥
k
⊢ ∆2, χ

′Lφ⊥
1
, . . . , φ⊥

n−1
M

wd⊗
⊢ ∆, κP⊥Lφ

⊥
1
, . . . , φ⊥n M

cut
⊢ Γ1, Γ2,∆1,∆2

where

{

PL∅, v2, . . . , vnM ∼
[[

χLa2, . . . , anM
]]

P⊥Lv1, . . . , vn−1,∅M ∼
[[

χ′La1, . . . , an−1M
]]

◦
⊢ ◦

⊢ Γ1, φ1

⊢ ∆2, χ
′Lφ⊥

1
, . . . , φ⊥

n−1
M

cxt-`
⊢ φ⊥

1
,∆2, χ

′L◦, . . . , φ⊥
n−1

M
cut

⊢ Γ1,∆2, χ
⊥L◦, φ⊥

2
. . . , φ⊥

n−1
M

wd⊗
⊢ Γ1,∆2, κ

⊥L◦, φ⊥
2
. . . , φ⊥

n−1
, ◦M

◦
⊢ ◦

⊢ Γ2, χLφ2, . . . , φnM

⊢ Γ2, χLφ2, . . . , φn−1, ◦M, φ
⊥
n ⊢ ∆1, φ

⊥
n

cut
⊢ Γ2,∆1, χLφ2, . . . , φn−1, ◦M

wd⊗
⊢ Γ2,∆1, κL◦, φ2, . . . , φn−1, ◦M

cut
⊢ Γ1, Γ2,∆1,∆2

Γ1,∆
′, φ

ρ
Γ1,∆, φ φ⊥, Γ2

cut
Γ1, Γ2,∆

Γ1,∆
′, φ φ⊥, Γ2

cut
Γ1, Γ2,∆

ρ
Γ1, Γ2,∆

′

Γ1,∆
′
1
· · · Γn,∆

′
n, φ

ρ
Γ1, . . . , Γn,∆, φ φ⊥, Γn+1

cut
Γ1, . . . , Γn+1,∆

 Γ1,∆
′
1
· · · Γn−1,∆

′
n−1

Γn,∆
′
n, φ Γn+1,∆

′
n+1
, φ⊥

cut
Γn, Γn+1,∆

′
n,∆

′
n+1

ρ
Γ1, . . . , Γn+1,∆

Figure 5: Cut-elimination steps. The two rules in the bottom are called commutative cut-elimination steps.

18

Corollary 40 (Analyticity of MPL). Let Γ be a sequent. If ⊢MPL Γ then there is a proof of Γ in MPL
only containing occurrences of sub-formulas of formulas Γ.

Proof. It suffices to remark that the rules in MPL satisfy the subformula property, that is, all formulas
occurring in a premise of a rule are subformulas of the formulas occurring in the conclusion. �

The same result cannot be immediately stated for MPL◦ because of the rule unitorκ . This because, as
already observed in the previous works on graphical logic [7, 8, 5], having more-than-binary connectives
implies the possibility of having sub-connectives, that is, graphical connectives with smaller arity corre-
sponding to the synthetic connective obtained by fixing certain of the entries of a connective to be units.

Definition 41. A graphical connective κQ is a sub-connective of κQ′ if Q is an induced (quasi-
prime) subgraph of Q′. We may denote κQ = κQ′ |i1 ,...,ik

with i1, . . . , ik ∈ {1, . . . , n} such that

ii < · · · < ik if QL◦, . . . , ◦, vi1 , ◦, . . . , ◦, vik , ◦, . . . , ◦M ∼ Q′Lv1, . . . , vnM for any single-vertex graphs
v1, . . . , vn. A quasi-subformula of a formula φ = ζ[κQ′Lψ1, . . . , ψnM] is a literal in φ or is a formula
κQ′ |i1 ,...,ik

Lψ′
i1
, . . . , ψ′

ik
M with ψ′

i j
a quasi-subformula of ψ j for all j ∈ {1, . . . , k}.

Corollary 42 (Analyticity of MPL◦). Let Γ be a sequent. If ⊢MPL◦ Γ then there is a proof of Γ in MPL◦

only containing occurrences of quasi-subformula of formulas in Γ.

Corollary 43 (Conservativity). The logic MPL is a conservative extension of MLL. The logic MPL◦

is a conservative extension of MLL◦.

Proof. For MPL it is consequence of the subformula property. For MPL◦ it suffices to remark that `
and ⊗ have no sub-connectives, therefore quasi-subformula are simply sub-formulas. �

For both MPL and MPL◦ we have the following result which takes the name of splitting in the deep
inference literature (see, e.g, [11, 49, 50]). This lemma states that is always possible, during proof search,
to apply a rule removing a connective after having applied certain rules in the context. Note that in the
linear logic literature, the term splitting is usually used as adjective for an instance of a ⊗ on which a rule
can be applied splitting the context into two premises, that is, as a specific instance of this more general
formulation.

Lemma 44 (Splitting). Let Γ, κLφ1, . . . , φnM be a sequent and let X ∈ {MPL,MPL◦}. If
⊢X Γ, κLφ1, . . . , φnM, then there are sequents ∆1, . . . ,∆n, Γ

′ such that

π1

⊢ ∆1, φ1 · · ·
πn

⊢ ∆n, φn
ρ
⊢ Γ′, κLφ1, . . . , φnM

π0

⊢ Γ, κLφ1, . . . , φnM

with ρ ∈ {`n,⊗n, d-κ} or

π1

⊢ ∆1, φ1

π2

⊢ ∆2, χLφ2, . . . , φnM
wd⊗

⊢ Γ′, κLφ1, . . . , φnM
π0

⊢ Γ, κLφ1, . . . , φnM

for some proofs π1, . . . , πn and an open derivation π0.

Proof. By case analysis of the last rule occurring in a proof π of Γ, κLφ1, . . . , φnM:

• the last rule cannot be a ax or ◦ since the formula κLφ1, . . . , φnM occurs in the conclusion.

• if the last rule is a `n, then we conclude by inductive hypothesis on its premise.

• if the last rule is a mix, then we conclude by inductive hypothesis on the premise containing
the formula κLφ1, . . . , φnM;

• if the last rule is in {⊗n, d-κ,wd⊗} then:

– either this is the desired rule ρ;

19

– or one of the (provable) premises of this rule is of the shape Γ′, κLφ1, . . . , φnM, allowing us
to conclude by inductive hypothesis.

�

We conclude this section proving the admissibility of the rule cxt-⊗ in MPL◦.

Lemma 45. The rule cxt-⊗ is admissible in MPL◦.

Proof. We proceed by induction on ζ[�]:

• If ζ[�] = [�], then cxt-⊗ is an instance of mix.

• If ζ[�] = ζ′[�] ` ψ, then cxt-⊗ can be replaced by a mix followed by a `.

• If, w.l.o.g., ζ[�] = κLζ′[�], ψ2, . . . , ψnM, for a κ , `, then we can apply Lemma 44 and con-
clude since we have a derivation

IH

⊢ Γ′
1
,∆1, ζ

′[φ]
HP

⊢ ∆2, ψ2 · · ·
HP

⊢ ∆n, ψn
ρ

⊢ Γ′
1
, Γ′

2
, κLζ′[�], ψ2, . . . , ψnM

π0 HP

⊢ Γ1, Γ2, κLζ
′[�], ψ2, . . . , ψnM

�

3.4 Soundness of Logical Equivalence in MPL◦

In order to prove that two formulas φ and ψ interpreted by a same graph
[[

φ
]]

=
[[

φ
]]

are logically equivalent
(i.e., φ � ψ), we here provide intermediate results allowing to decompose this equivalence in smaller
steps.

We first prove that connectives symmetries are derivable in MPL, therefore in MPL◦.

Lemma 46. The following rules are admissible in MPL.

⊢ Γ, κLφ1, . . . , φnM
sym-κ ... σ ∈ S(Q)
⊢ Γ, κLφσ(1), . . . , φσ(n)M

⊢ Γ, κ⊥Lφ1, . . . , φnM
dsym-κ ... ρ ∈ S⊥(Q)

⊢ Γ, κLφρ(1), . . . , φρ(n)M
(16)

Proof. By Theorem 39, it suffices to prove that the following implications are derivable.

κLφ1, . . . , φnM⊸ κLφσ(1), . . . , φσ(n)M
κLφσ(1), . . . , φσ(n)M⊸ κLφ1, . . . , φnM

︸ ︷︷ ︸

for all σ∈S(Q)

and
κLφ1, . . . , φnM⊸ κ⊥Lφρ(1), . . . , φρ(n)M
κ⊥Lφρ(1), . . . , φρ(n)M⊸ κLφ1, . . . , φnM

︸ ︷︷ ︸

for all τ∈S⊥(Q)

These are easily derivable using an instance of d-κ and AX-rules. �

Remark 47. The rule sym-` is derivable directly because sequents are sets if occurrences of for-
mulas, therefore the order of the occurrences of the formulas in a sequent is not relevant, and we can
permute this order before applying the rule `. This because the interpretation of the meta-connective
comma we use to separate formulas in a sequent is the same of `.

Similarly, the rule sym-⊗ is derivable because in our sequent system, as in standard sequent
calculus, the order of the premises of the rules is not relevant. Said differently, the space between
branches in a derivation is a commutative meta-connective which is internalized by the ⊗.

As a consequence of the analyticity MPL and MPL◦, we could consider the connectives multi-par (κ`n
)

and multi-tensor (κ⊗n
) superfluous in our syntax for formulas since they are synthetic connectives definable

via the binary ` and ⊗. In particular, this allows us restrain our reason on compact formulas only since
rules expressing the associativity of `n and ⊗n are derivable.

20

Lemma 48. The following rules are admissible.

⊢ Γ,`n−m+1Lκ`m
Lφ1, . . . , φmM, φm+1, . . . , φnM

`-asso... m < n
⊢ Γ,`nLφ1, . . . , φnM

⊢ Γ,⊗n−m+1Lκ⊗m
Lφ1, . . . , φmM, φm+1, . . . , φnM

⊗ -asso... m < n
⊢ Γ,⊗nLφ1, . . . , φnM

(17)

Therefore, the connectives ` and ⊗ are associative and any formula admits an equivalent com-
pact formula.

Proof. We only prove the associativity result for `n, since the proof for ⊗n is similar.
The result follows by Theorem 39 after proving that following implications hold for any n,m ∈ N

`nLφ1, . . . , φnM⊸ `n−m+1Lκ`m
Lφ1, . . . , φmM, φm+1, . . . , φnM

`n−m+1Lκ`m
Lφ1, . . . , φmM, φm+1, . . . , φnM⊸ `nLφ1, . . . , φnM

�

We can therefore immediately conclude that MPL is sound and complete with respect to graph isomor-
phism if we consider unit-free formulas.

Proposition 49. Let φ and ψ be unit-free formulas. If φ ≡ ψ, then φ⊸ ψ and ψ� φ.

Proof. By induction on the formulas φ and ψ using Lemmas 46 and 48. �

For a stronger result on general formulas, we need to show that for any two formulas φ and ψ are
interpreted (via [[·]]) by the same non-empty graph, both these formulas are equivalent to a unit-free formula
χ representing the modular decomposition of this graph via graphical connectives.

Lemma 50. The following rule, is derivable in MPL◦.

⊢ Γ, χLφσ(1), . . . , φσ(n)M
unitorκ ..






n > 1

χ compact formula
[[

κLφ1, . . . , φk , ◦, φk+1 , . . . , φnM
]]

=
[[

χLφσ(1), . . . , φσ(n)M
]]

σ ∈ S(χ)
⊢ Γ, κLφ1, . . . , φk, ◦, φk+1, . . . , φnM

(18)

Proof. It suffices to consider the derivation

◦
⊢ ◦ ⊢ Γ, χLφσ(1), . . . , φσ(n)M

wd⊗
⊢ Γ, κLφ1, . . . , φk, ◦, φk+1, . . . , φnM

�

Theorem 51. Let φ and ψ be formulas. If
[[

φ
]]

=
[[

ψ
]]

, ∅, then φ and ψ are equivalent in MPL◦,
that is, φ� ψ is valid in MPL◦.

Proof. Given any formula φ, we can define by induction on the number of units ◦ occurring in a
unit-free compact formula φ′ such that φ� φ′.

• if φ is a literal, then φ′ = φ;

• if φ = κLφ1, . . . , φnM and φi , ◦ for all i ∈ {1, . . . , n}, then φ′ = κLφ′
1
, . . . , φ′nM. Otherwise,

w.l.o.g., we assume φi = ◦ and we let φ′ = χLφ′
2
, . . . , φ′nM for a compact formula χ such that

[[

κL◦, φ2, . . . , φnM
]]

=
[[

χLφ2, . . . , φnM
]]

and we conclude by inductive hypothesis since we the

21

∅
ai↓

a⊥ ` a

(M1 ` N1)⊗ · · · ⊗ (Mn ` M′n)
p↓

P⊥LM1, . . . , MnM ` PLM′
1
, . . . , M′nM

PLM1, . . . , Mi−1, Mi ` N, Mi+1, . . .MnM
s`

Mi ` PLM1, . . . , Mi−1,N, Mi+1, . . . , MnM

Mi ⊗ PLM1, . . . , Mi−1,N, Mi+1, . . . , MnM
s⊗

PLM1, . . . , Mi−1, Mi ⊗N, Mi+1, . . . , MnM

Figure 6: Inference rules for the system GS, where P is a prime graph and Mi , ∅ , M′
i

for all i ∈ {1, . . . , n}.

following derivations:

IH

⊢ φ⊥
2
, φ′

2
· · ·

IH

⊢ φ⊥n , φ
′
n

d-χ
⊢ χ⊥Lφ⊥

2
, . . . , φ⊥n M, χLφ′

2
, . . . , φ′nM

unitorκ
⊢ κ⊥L◦, φ⊥

2
, . . . , φ⊥n M, χLφ′

2
, . . . , φ′nM

`

⊢ κ⊥L◦, φ⊥
2
, . . . , φ⊥n M ` χLφ′

2
, . . . , φ′nM

and

IH

⊢ φ′⊥
2
, φ2 · · ·

IH

⊢ φ′⊥n , φn
d-χ
⊢ χ⊥L◦, φ′⊥

2
, . . . , φ′⊥n M, χL◦, φ2, . . . , φnM

unitorκ
⊢ χ⊥Lφ′⊥

2
, . . . , φ′⊥n M, κL◦, φ2, . . . , φnM

`

⊢ χ⊥Lφ′
2
, . . . , φ′⊥n M ` κL◦, φ2, . . . , φnM

Therefore we can construct unit-free compact formulas φ′ and ψ′ such that φ� φ′ and ψ� ψ′.
Moreover, by definition of [[·]] and the rule unitorκ we have

[[

φ
]]′
=

[[

φ
]]

=
[[

ψ
]]

=
[[

ψ
]]′

. Because
of the unicity of the modular decomposition via graphical connectives of the graph

[[

φ′
]]

=
[[

ψ′
]]

modulo symmetries of connectives, and their correspondence with unit-free compact formulas, then
we must have φ′ ≡ ψ′. We conclude using the transitivity of� and Proposition 49, by letting χ be
the formula φ′. �

4 The Graphical Logic GS is a Model for MPL◦

In this section we prove that the logic on graphs defined by the deep inference proof system GS from [7, 8]
is the same logic identified by the graph corresponding to formulas which are provable in MPL◦.

In this paper we define deep inference system GS = {ai↓, s`, s⊗, p↓} using the rules in Figure 6. The
definition of derivations in deep inference systems operating on graphs are provided in Appendix A.

Remark 52. At the syntactical level, the system GS operates on graphs by manipulating their spuri-
ous modular decompositions via graphical connectives. Therefore, for any derivation in GS we can
assume to be given a spurious modular decomposition of each graph G occurring in a derivation,
therefore a unique formula [[G]]−1 (defined as in Definition 28) to be given.

Remark 53. We here provide a slightly different formulation of with respect to [7] and [8]. In
particular, we consider a p-rules with stronger side condition which is balanced by the presence of s⊗
in the system. However, it can be easily shown that the systems are equivalent (see Appendix A.1).

We can easily prove that each sequent provable in MPL◦ is interpreted by [[·]] as a graph which is
admitting a proof in GS.

Lemma 54. Let Γ be a sequent. If ⊢MPL◦ Γ, then ⊢GS [[Γ]].

Proof. Let π be a proof of Γ in MPL◦, we define a derivation
∅

[[π]] GS

[[Γ]]
by induction on the last rule r

in π according to Figure 7. �

To prove the converse, we use the admissibility of cxt-` to prove in a more concise way that every time
there is a rule in GS with premise H and conclusion G, then there are formulas φ and ψ such that

[[

φ
]]

and
[[

ψ
]]

, and such that ψ⊸ φ.

22

◦
⊢ ◦
 ∅ ax

⊢ a, a⊥

∅
ai↓

a ` a⊥

.........................[[

a, a⊥
]]

π1

⊢ ∆, φ1, . . . , φn
`n

⊢ ∆,`nLφ1, . . . , φnM

∅

[[π1]] IH
[[

∆, φ1, . . . , φn

]]

..[[

∆,`nLφ1, . . . , φnM
]]

π1

⊢ ∆1

π2

⊢ ∆2
mix
⊢ ∆1,∆2

∅

[[π1]] IH

[[∆1]]
`

∅

[[π1]] IH

[[∆2]]
..

[[∆1,∆2]]

π1

⊢ ∆1, φ1 · · ·
πn

⊢ ∆n, φn
⊗n

⊢ ∆1, . . . ,∆n,⊗nLφ1, . . . , φnM

[[π1]] IH
[[

∆1, φ1

]]

............................
[[∆1]] `

[[

φ1

]]
⊗ · · · ⊗

[[π1]] IH
[[

∆n, φn

]]

............................
[[∆1]] `

[[

φn

]]

s⊗

[[∆1]] ` · · ·` [[∆n]] `
(

⊗n

(∣
∣
∣
[[

φ1

]]

, . . . ,
[[

φn

]]∣∣
∣

))

...[[

∆1,∆2,⊗nLφ1, . . . , φnM
]]

π1

⊢ ∆1, φ1

π2

⊢ ∆n, χLφ2, . . . , φnM
wd⊗

⊢ ∆1,∆2, κPLφ1, . . . , φnM

Dπ1
IH

[[

∆1, φ1

]]

............................
[[∆1]] `

[[
φ1

]]
⊗

Dπ2
IH

[[

∆2, χLφ2, . . . , φnM
]]

...
[[∆1]] `

[[
χLφ2, . . . , φnM

]]

p↓

([[∆1]] ` [[∆2]]) `

[[

φ1

]]

⊗
[[

χLφ2, . . . , φnM
]]

..
[[
φ1

]]
⊗

[[
χ
]]
L
[[
φ2

]]
, . . . ,

[[
φn

]]
M

s⊗
PL

[[

φ1

]]

, . . . ,
[[

φn

]]

M

...[[

∆1,∆2, κPLφ1, . . . , φnM
]]

π1

⊢ ∆1, φ1, ψ1 . . .
πn

⊢ ∆n, φn, ψn
d-κ
⊢ ∆1, . . . ,∆n, κPLφ1, . . . , φnM, κP⊥Lψ1, . . . , ψnM

Dπ1
IH

[[

∆1, φ1, ψ1

]]

..
[[∆1]] ` (

[[

φ1

]]

`
[[

ψ1

]]

)

⊗ · · · ⊗

Dπn IH
[[

∆n, φn, ψn

]]

..
[[∆1]] ` (

[[

φn

]]

`
[[

ψn

]]

)

p↓

`nL[[∆1]] , . . . , [[∆n]]M `
⊗nL

[[

φ1

]]

`
[[

ψ1

]]

, . . . ,
[[

φn

]]

`
[[

ψn

]]

M
p↓

PL
[[

φ1

]]

, . . . ,
[[

φn

]]

M ` P⊥L
[[

ψ1

]]

, . . . ,
[[

ψn

]]

M
...[[

∆1, . . . ,∆n, κPLφ1, . . . , φnM, κP⊥Lψ1, . . . , ψnM
]]

Figure 7: Rules to translate derivations in MPL◦ into derivations in GS.

Lemma 55. Let
H

r
G
∈ GS and C[�] be a context. Then there are formulas φ and ψ such that

⊢MPL◦ ψ
⊥, φ, and

[[

φ
]]

= C[G] and
[[

ψ
]]

= C[H].

Proof. We can prove by case analysis on the rule r that H ⊸ G. If C[�] = �, then:

• if an isomorphism is applied, then G = H and we conclude by Theorem 51, letting φ = [[G]]−1

and ψ = [[H]]−1 (see Remark 52);

• if r = ai↓, then φ = a ` a⊥ and ψ = ◦ and a derivation

◦
◦

ax
⊢ a, a⊥

`

⊢ a ` a⊥
mix

⊢ ◦, a ` a⊥

23

• if r = s`, then φ = µi ` κLµ1, . . . , µi−1, ◦ ` ν, µi+1, . . . µnM and ψ = κLµ1, . . . , µi−1, µi `

ν, µi+1, . . . µnM for some formulas µ1, . . . , µn, ν such that
[[

µi

]]

= Mi for all i ∈ {1, . . . , n} and
[[ν]] = N. We conclude by Lemma 38 since we have the following derivation

AX
⊢ ψ⊥, κLµ1, . . . , µi−1, µi ` ν, µi+1, . . . , µnM

cxt-`
⊢ ψ⊥, µi, κLµ1, . . . , µi−1, ◦` ν, µi+1, . . . , µnM

`

⊢ ψ⊥, φ

• if r = s⊗ then φ = κLµ1, . . . , µi−1, µi ⊗ ν, µi+1, . . . µnM and ψ =

µi ⊗ κLµ1, . . . , µi−1, ◦⊗ ν, µi+1, . . . µnM for some formulas µ1, . . . , µn, ν such that
[[

µi

]]

= Mi for
all i ∈ {1, . . . , n} and [[ν]] = N. We conclude by Lemma 38 since we have the following
derivation

AX
⊢ κ⊥Lµ⊥

1
, . . . , µ⊥

i−1
, µ⊥

i
` ν⊥, µ⊥

i+1
, . . . µ⊥n M, φ

cxt-`
⊢ µ⊥

i
, κ⊥Lµ⊥

1
, . . . , µ⊥

i−1
, ◦` ν⊥, µ⊥

i+1
, . . . µ⊥n M, φ

`

⊢ ψ⊥, φ

• if r = p↓ then φ = κP⊥Lµ1, . . . , µnM ` κPLν1, . . . , νnM and ψ⊥ = (µ⊥
1
⊗ ν⊥

1
) ` · · · ` (µ⊥n ⊗ ν

⊥
n)

for some formulas µ1, . . . , µn, ν1, . . . , νn such that
[[

µi

]]

= Mi , ∅ and [[νi]] = Ni , ∅ for all
i ∈ {1, . . . , n}. We conclude since we have the following derivation

AX
⊢ µ1, µ

⊥
1

AX
⊢ ν1, ν

⊥
1

⊗
⊢ µ⊥

1
⊗ ν⊥

1
, µ1, ν1 · · ·

AX
⊢ µn, µ

⊥
n

AX
⊢ νn, ν

⊥
n

⊗
⊢ µ⊥n ⊗ ν

⊥
n , µn, νn

d-κ
⊢ (µ⊥

1
⊗ ν⊥

1
), . . . , (µ⊥n ⊗ ν

⊥
n), φ

`

(µ⊥
1
⊗ ν⊥

1
) ` · · ·` (µ⊥n ⊗ ν

⊥
n), φ

If C[�] , �, then by Theorem 24 that C[�] = κQLC′[�], M1, . . . , MnM for a quasi-prime graph Q
and non-empty graph M1, . . . , Mn. In this case we let ζ[�] = κPLζ′[�], µ1, . . . , µnM for some formulas
µi such that

[[

µi

]]

for all i ∈ {1, . . . , n} and a context ζ′[�] such that
[[

ζ′[�]
]]

= C′[�]. We conclude
since, w.l.o.g., there is a derivation of the following forms:

IH

⊢ (ζ′[ψ′])⊥ , ζ′[φ′]
AX
⊢ µ⊥

1
, µ1 · · ·

AX
⊢ µ⊥n , µn

d-κ

⊢ κP⊥

(∣
∣
∣(ζ′[ψ′])⊥ , µ⊥

1
, . . . , µ⊥n

∣
∣
∣

)

, κP

(∣
∣
∣ζ′[φ′], µ1, . . . , µn

∣
∣
∣

)
.

�

We are now able to prove the main result of this section, that is, establishing a correspondence between
graphs provable in GS and graphs which are interpretation via [[·]] of formulas provable in MPL◦.

Definition 56. We define the following graphical logics (i.e. sets of graphs):

Graphical Multiplicative Logic : GML =
{[[

φ
]]

| φ formula such that ⊢MPL φ
}

Graphical IsoMix Logic : GML◦ =
{[[

φ
]]

| φ formula such that ⊢MPL◦ φ
} (19)

We say that G is provable in X ∈ {GML,GML◦} (denoted ⊢X G) if there is a formula φ such that ⊢X φ
and

[[

φ
]]

= G.

Theorem 57. Let G be a graph. Then ⊢GS G iff ⊢GML G.

24

Proof. If ⊢GML G, then by there is a (compact unit-free) formula φ and such that ⊢MPL◦ φ. We conclude
by applying Lemma 54 to a given proof of φ in MPL◦.

To prove the converse, let D be a proof of G in GS. We define a proof πD and a formula
φ = [[G]]−1 (see Remark 52) by induction on the number n of rules inD.

• If n = 0, then G = ∅ and πD = ◦
⊢ ◦

.

• If n = 1, then G = a ` a⊥ and πD = ⊢ a, a⊥
`

⊢ a ` a⊥
.

• If n > 1, then by inductive hypothesis we have a proof πD′ of a formula ψ such that
[[

ψ
]]

is
the premise graph of the last rule r in πD (which may be applied deep inside a context). By
Lemma 55 we can define a proof of φ in MPL◦ ∪ {cut} as the one below

IH

ψ
Lemma 55

⊢ ψ⊥, φ
cut

⊢ φ

and conclude by Theorem 39 .

�

5 RB-Proof Nets
In this section we present a way to encode proofs in MPL and MPL◦ by means of graphs with two kind of
edges. We then provide a calculus operating on these graphs in the style of sequent calculus which is sound
and complete with respect to graphs encoding proofs.

For this purpose, we extend the syntax of RB-proof nets introduced by Retoré in his PhD thesis for
MLL-proof nets [71, 75]. 7The main difference between the syntax for proof nets commonly used in the
literature (that is, as the ones used in, e.g., [40, 29, 42] or any of their reformulation which can be found
in the literature) and RB-proof nets, is there in the former nodes are labeled by connectives and the edges
(called wires) by formulas, while in the latter each connective is represented by a small graph keeping track
of the relations between the inputs and the output of the gate (see Figure 8), while wires are represented by
a different kind of edges.

b⊥ a⊥ a b
` ⊗

b⊥ ` a⊥ a⊗ b

ax

ax

b⊥ a⊥ a b
o` o⊗

r` r⊗

Figure 8: The same proof net in the original Girard’s syntax and Retoré’s one.

However, the idea behind the correctness criterion for MLL-proof nets can be found almost unchanged
in the syntax of RB-proof nets. In fact, this correctness criterion for MLL-proof nets checks the absence of
elementary cycles in any possible graph obtained by pruning one of the two input wires of each `-gate. In
RB-proof nets this is captured by simply having no edge connecting the two inputs of a `-gate, preventing
the existence of an alternating elementary path passing from one input to another. This elegant change in
the syntax allows us to still have a criterion based on checking the absence of cycles in a graph, but avoiding
the need of checking an exponential number of graphs with respect to the `-gates (one for each possible
combination of pruning of the inptus of the `-gates).

7More precisely, in these works the author defines proof nets for Pomset logic including not only undirected edges, but also

directed edges connecting the two inputs of a gate representing the non-commutative connective ⊳ internalizing the pomset order by a

logical connective.

25

The idea for designing RB-proof nets for multiplicative prime logic (with and without mix) comes from
the remark that in RB-proof nets the graph induced by the inputs of a graph representing a `-gate (⊗-gate)
is isomorphic to the prime graph ` (respectively ⊗). We define G-gates for any graph G by mimicking this
construction: consider the vertices of a graph as inputs of a gate where an output and an outgoing wire are
attached (see Figure 9).

• •

•

•

• •

•

•

• • • •

•

•

• · · · • G

•

•

Figure 9: A `-gate, a ⊗-gate, a P4-gate and an intuitive depiction of a G-gate in RB-structures.

5.1 From Graphs to RB-forests

We start by recalling the definition of RB-graph, which are graphs with two kind of (undirected) edges we
use to represent RB-structures, and which we use to represent both the decomposition trees of a graph, and
encoding of proofs.

Definition 58. An RB-graph G = 〈VG, ℓG,
G
⌢,

G
⊥〉 is given by a set of vertices VG, a (partial) labeling

function ℓG (we denote ∅ the empty function), and two symmetric and non-reflexive edge relations
G
⌢ and

G
⊥ over VG such that

G
⊥ is a perfect matching in the graph 〈VG, ℓG,

G
⌢ ∪

G
⊥〉 (that is, every

vertex in VG belongs to exactly one edge in
G
⊥), and such that if v

G
⊥w, then ℓ(v) = (ℓ(w))⊥. The

edges in
G
⌢ are called R-edges (for red or regular) and the edges in

G
⊥ are called B-edges (for blue or

bold). We denote by ∅ the empty RB-graph 〈∅,∅,∅〉 and we extend to notion of induced subgraph
to RB-graphs.

Notation 59. When drawing a RB-graph we draw red/regular edges v w whevever v⌢w, and

blue/bold edges v w whenever v⊥w.

In order to represent tree-structure of the formula tree of a formula or the modular decomposition of a
graph, we define gates encoding graphical connectives.

Definition 60. Let GL{M}v1, . . . , vn be a connective. A G-gate (or simply gate) is a RB-graph of the

form G = 〈VG,∅,
G
⌢,

G

⊥〉 with a vertex ii
G

(its i-th input) for each vertex in vi ∈ VG plus a vertex rG
(its root) and a vertex oG (its output), and having a R-edge between the i-th and the j-th inputs iff

vi
G
⌢v j, a R-edge between each input and the output and a B-edge between the output and the root.

Formally

G = 〈
{

iiG | vi ∈ VG

}

∪ {oG, rG} ,

{

iiGi
j

G
| vi

G
⌢v j

}

∪
{

iiGoG | vi ∈ VG

}

, {oGrG} 〉
We denote In(G) the set of inputs of G and we call a R-edge connecting two inputs of a gate a
connector edge and the B-edge connecting the output to the root of a gate a wire.

We say that G has type of G (denotedG : G) or that G is a G-gate whenever |GIn(G) ∼ G.

We define the operation of gluing two graphs by identifying some of their vertices.

Definition 61. Let G and H be RB-graphs with disjoint set of vertices. An interface X is a set of
pairs (x, y) ∈ VG×VH such that if ℓ(x) and ℓ(y) are both defined, then ℓ(x) = ℓ(y) and such that x , x′

and y , y′ for any (x, y), (x′, y′) ∈ X.
The gluing of G and H via an interface X as the RB-graphs G ⊲⊳X H obtained by identifying the

26

vertices occurring in a same pair in in X. Formally G ⊲⊳X H has vertices VG ∪ (VH \ {y | (x, y) ∈ X}),
the labeling function defined by the union of the two labeling functions, and a R-edge (resp. B-edge)
an edge uv whenever either u and v are both in VG or both in VH and u⌢v (resp. u⊥v), or u ∈ VG,

v ∈ VH and there is (v′, v) ∈ X such that u
G
⌢v′ (resp. u

G
⊥v′).

The disjoint union of G and H is defined as G ⊎ H ≔ G ⊲⊳∅ H. a

We use the operation of gluing to construct tree-like RB-graph reproducing the abstract syntax tree of a
graph (i.e., its modular decomposition via graphical connectives) or of a formula (i.e., its formula tree).

Definition 62. Let G be a graph described by a (possibly spurious) modular decomposition via graph-
ical connectives of a given base Q. The RB-tree of G is the RB-graph {{G}} define as follow by
induction on the modular decomposition of G using graphical connectives of a base:

• if G = ◦, then {{G}} = ∅;

• if G = x is a single-vertex graph with label x, then {{φ}} is the RB-graph made of a single vertex
v labeled by x. We say that v is at the same time the leaf and a root of {{G}};

• if G = QLG1, . . . ,GnM, then {{G}} is the RB-graph obtained by gluing the root of {{Gi}} with the
i-th input of a fresh new Q-gate for all i ∈ {1, . . . , n}. That is,

{{φ}} = GQ ⊲⊳X





⋃

1≤i≤n

{{φi}}





where X =
{(

ii
Q
, r{{φi}}

)

| i ∈ {1, . . . , n}
}

. In this case the root of {{G}} is the vertex rQ (also denoted

rG). The set of leaves of {{G}} is given by the union of the set of leaves of {{G1}} , . . . , {{Gn}}. The
set of gates of G is the set Gates(G) = {GQ} ∪

(⋃

1≤i≤nGates(Gi)
)

.

The RB-tree {{φ}} of a formula φ is defined analogously, by considering the formula tree instead of
the spurious modular decomposition describing a graph. That is, {{φ}} is the RB-tree of a (spurious
modulate decomposition of a) graph G such that [[G]]−1 = φ.

A RB-forest is a disjoint union of RB-trees. The RB-forest a sequent Γ = φ1, . . . , φn is defined as
the RB-graph {{Γ}} = {{φ1}} ⊎ · · · ⊎ {{φn}}. The set Root({{Γ}}) of roots of {{Γ}} is the set containing all the
roots of {{φ1}} , . . . , {{φn}}. The set of gates of {{Γ}} is the set Gates({{Γ}}) =

⋃

1≤i≤nGates({{φi}}) and we
denote by R-Gates({{Γ}}) the subset of root gates of {{Γ}}, that is, gates whose roots are in Root({{Γ}}).

Notation 63. When referring to gates we may intend them as the induced subgraphs in a RB-tree,
as we do for moldules. Note that gluing identifies roots with inputs of gates, but we may still denote
such a vertex using any two of the identified vertices names in order to simplify certain definitions.

Observation. We naturally have correspondences between leaves of {{Γ}} (leaves in {{G}}) and occur-
rences of literals in Γ (vertices in VG), between gates of {{Γ}} and occurrences of quasi-prime graphs
in the modular decomposition of [[Γ]] by means of quasi-prime graphs (respectively occurrence of
connectives in Γ), and between roots of {{Γ}} and occurrences of formulas in Γ.

In the following section we need to consider RB-forest obtained by pruning certain leaves in a given
RB-forest. For this purpose we introduce the following notation.

Notation 64. Let G be a RB-tree. If W is a subset of leaves of G, then the RB-tree G♣W is defined
as the RB-forest of the graph GLx1, . . . , xnM where xi = ∅ if vi ∈ W and xi = vi otherwise.

aIn the literature of graphs and hypergraphs with interfaces, interfaces are defined as pairs of bijections from a set of n elements to

the sets of vertices of two distinct graphs. This definition is equivalent to our definition of interface, as well as our definition of gluing

is equivalent to the one of graph composition by pushout.

27

Example 65. Let G = P4

(∣
∣
∣a ` b, c⊗ d, e⊗ f ,⊗3Lg, h, iM

∣
∣
∣

)

be the graph from Example 23. Its RB-

forest is shown below on the left.

a b c d e f g h i

o` o⊗ o⊗ o⊗3

i1
P4

i2
P4

i3
P4

i4
P4

oP4

rP4

g h

o⊗

d i1
`

o`

r`

The RB-forest above on the right is the RB-forest {{G}} ♣{a, b, c, e, f , i}.

5.2 RB-Graphs Representing Proofs

Intuitively, MLL-proof nets of a formula φ are encoded as the formula tree of φ decorated with a function
pairing occurrences of literals occurring in φ satisfying certain topological properties. In RB-graphs, such
pairing function is encoded by means of B-edges (called wires).

Definition 66. Let Γ be a P-sequent. An axiom linking Link for Γ is a (total) bijection between
occurrences of literals in Γ such that if x is an occurrence of a literal a in Γ, then Link(x) is an
occurrence of a literal a⊥. We denote by ⊓Link the set two-vertices sets {va, v f a} containing leaves of
{{Γ}} paired by Link.

A RB-structure of Γ is a RB-graph G of the form

G = 〈V{{Γ}}, ℓΓ, {{Γ}}⌢,

(
{{Γ}}

⊥ ∪ ⊓Link

)

〉 ≔ {{Γ}} ⊔ Link

Gates, leaves, roots and wires of G are the ones of {{Γ}}. The (axiom) links of G are B-edges in ⊓Link .
Let X ∈ {MLL,MLL◦,MPL,MPL◦} and let π be a derivation of Γ in X. The axiom linking of π

(denoted Linkπ) is defined by the set of pairs of dual literals matched by the ax-rules in π, that is,
Link(x) is the unique occurrence of literal such that there is a ax-rule with conclusion ⊢ x, Link(x) in
π. A X-net is a RB-structure of the form {{π}} ≔ {{Γ}} ⊔ Linkπ for a proof π of Γ in X.

We define two inference systems for RB-structures in order to characterize families of RB-graph.

Definition 67. We define the following inference systems for RB-graphs using the rules in Figure 10:

RBP :
{

axRB,`RB,⊗RB, d-κRB
P
| P ∈ P \ {`,⊗}

}

RB◦
Q

:
{

◦RB, axRB,`RB,mixRB,⊗RB, d-κRB
Q
, sRB
⊗ | Q ∈ Q \ {`,⊗}

} (20)

We say that a RB-graph G is provable in X ∈ {RBP,RB◦
Q
} (denoted ⊢X G), or simply is in X, if there

is proof (i.e. a derivation with no open premises) of G in X.

Remark 68. Rules `RB, d-κRB
Q

and sRB
⊗ glue roots of RB-structures to a gate. Thus they subsume the

non-emptiness of each of their premises.

We establish a correspondence between proofs in MPL◦ of a sequent Γ and proofs of RB-structures of
the form {{Γ}} ⊔ Link in RB◦

Q
.

Theorem 69. Let Γ be a P-sequent. Then

1. ⊢MPL [[Γ]] ⇐⇒ ⊢RBP {{Γ}} ⊔ Link for an axiom link Link for Γ

2. ⊢MPL◦ [[Γ]] ⇐⇒ ⊢RB◦
Q
{{Γ}} ⊔ Link for an axiom link Link for Γ

28

axRB

⊢ a a⊥
⊢ G1

`RB
G : `n

⊢ G ⊲⊳X`
G1

⊢ G1 · · · ⊢ Gn
⊗RB

G : ⊗n
⊢ G ⊲⊳Xs

(G1 ⊎ · · · ⊎Gn)

⊢ G1 · · · ⊢ Gn
d-κRB

Q G : Q, H : Q⊥

⊢ (G ⊎ H) ⊲⊳Xd
(G1 ⊎ · · · ⊎Gn)

◦RB

⊢ ∅

⊢ G1 · · · ⊢ G2
mixRB

⊢ G1 ⊎ · · · ⊎Gn

⊢ G1 ⊢
(

G♣
{

ik
G

})

⊲⊳X− G2
sRB
⊗ G : Q

⊢ G ⊲⊳X+ (G1 ⊎G2)

⊢ G1 · · · ⊢ Gn
s-κRB

G G : G
⊢ G ⊲⊳Xs

(G1 ⊎ · · · ⊎Gn)

X` ≔

{(

ii
G
, ri

)

| i ∈ {1, . . . , n} and r1, . . . , rn distinct roots in Root(G)
}

Xs ≔

{(

ii
G
, ri

)

| i ∈ {1, . . . , n} and ri ∈ Root(Gi)
}

Xd ≔

{(

ii
G
, r1

i

)

,
(

ii
H
, r2

i

)

| i ∈ {1, . . . , n} and r1
i , r

2
i distinct roots in Root(Gi)

}

X+ ≔
{(

ii
GQ
, ri

)

| i ∈ {1, . . . , n} with rk ∈ Root(G2) and r1, . . . , rk−1, rk+1, . . . , rm distinct roots in Root(G2)
}

X− ≔
{

(xi, ri) | i ∈ {1, . . . , n} \ {k} with
(

ii
GQ
, ri

)

∈ X+ and xi the leaf of GQ♣{i
k
GQ
} corresponding to vi ∈ VQLv1 ,...,vnM

}

Figure 10: Inference rules of the system RB◦
Q

and the derivable rule s-κRB
G

, where P is a prime graph.

Sketch of proof. Both implication are proven by induction on the size of a derivation using the corre-
spondence between rules in MPL◦ and RB◦

Q
. We here highlight some relevant details of the proof:

(⇒) The (implicit) non-emptiness condition on the rules in RB◦
Q

observed in Remark 68 requires
particular care in the inductive definition in presence of units (thus only for the translation of
MPL◦). For this purpose, the rule sRB

⊗ plays a crucial role since it allows to simulate specific
instances of wd⊗.

(⇐) Each instance of sRB
⊗ corresponds to an instance of wd⊗, which is admissible in MPL◦. For the

other rules there is a one-to-one correspondence between the two systems.

Details of the proof are provided in Appendix B. �

6 A Correctness Criterion for MLL◦-nets
In this section we recall Retoré’s topological characterization RB-graphs encoding proofs in MLL and MLL◦

and we show where where this criterion fails for MPL◦-nets.

6.1 Æ-Connectedness in RB-graphs

We recall here the topological notions required to formulate the correctness criterion for RB-structures
encoding proofs in MLL and MLL◦ in terms of connectness and acyclicity of RB-structures with respect to
alternating-elementary paths.

Definition 70. Let G = 〈V, ℓ, ⌢, ⊥〉 be a RB-graph. An alternating path is a path p = v0 · · · vn in
the graph 〈V, ℓ, ⌢ ∪ ⊥〉 such that vi⌢vi+1 iff vi+1⊥vi+2 and such that vi⊥vi+1 iff vi+1⌢vi+2 for all
i ∈ {0, . . . , n}. We say that such an æ-path connects v0 with vn, and that it covers the vertices vi for all
i ∈ {1, . . . , n} and the edges vivi+1 for all i ∈ {0, . . . , n − 1}.

An æ-path is an alternating path which is also elementary, that is, such that a vertex occurs at
most once in the æ-path. If X,Y ∈ {R,B}, a XY-path is an æ-path v0 · · · vn such that v0v1 is a X-edge
and vn−1vn is a Y-edge. We say that two vertices v and w of G are æ-connected if there is an æ-path
connecting them, a RB-graph is æ-connected if any two of its vertices are æ-connected.

29

An æ-cycle is an æ-path c = v0 · · · v2n such that v0 = v2n. Note that we consider æ-cycles modulo
cyclic permutations of the indices, that is, we identify the æ-cycle v0 · · · v2n−1 · v0 with the æ-cycle
vi · · · v2n−1 · v0 · · · vi for any i ∈ {0, . . . , 2n − 1}. A chord of c is a R-edge vhvk with h, k ∈ {0, . . . , 2n}
with k > h + 1. It is a shortcut if there is a BB-path from vk to vh which is a sub-sequence of c and
such that vh · · · vk · vh is an æ-cycle. The set of æ-cycles of G is denoted Æ(G).

Notation 71. When drawing a RB-graph we draw v w if there is an æ-path between v and w.
Whenever we want to point at a specific path or an induced subgraph, we highlight the vertices and
the edges it covers as follow v w.

Remark 72. An æ-cycle of a RB-structure covering a connector edge and the output of a gate has
a shortcut. This can be observed in the example below on the left where the non-connector edge
between the rightmost input and the output of the gate is a shortcut (dotted lines represent possible
R-edges).

ii
G

i
j

G
ik
G

oG
or

ii
G

i
j

G
ih
G

ik
G

oG
(21)

Note that also the æ-cycle above on the right has a shortcut i
j

G
ih
G

.

We then formalize in this framework two intuitive notions we use in the next sections. The first is simply
a formalization of the idea that in RB-forests we represent roots are at the bottom of our forests.

Definition 73. Let G = 〈V, ℓ, ⌢, ⊥〉 be a RB-forest or a RB-structure. We say that a vertex v is above
a vertex w (w is below v) if there is a æ-path from w to a leaf of T passing through no connector edges
covering v. Similarly, a gate G is above (below) a gate G′ if its output is below the output of G′.

We then define the notion of g-path, allowing us to define a notion of connectess for RB-structures
similar to the one used in standard MLL-proof nets, that is, where paths are sequences of wires connected
by a gate.

Definition 74. We write v▽w if v , w are vertices in a same gate, that is, if there is a gate G ∈
Gates(G) such that v,w ∈ In(G) ∪ {oG}.

A g-path from v to w in G an alternating elementary path p = v0 · · · vn in the RB-graph 〈V, ℓ, ▽, ⊥〉
with n > 2 such that there are at most two i, j ∈ {1, . . . , n} with i , j such that vi▽v j. The notions
of g-connectness and of g-connected component are defined in the standard way (see Definition 1),
using g-paths instead of paths (or æ-paths).

Lemma 75. Let G be a RB-structure. Then G = G1 ⊎G2 iff there are no g-paths connecting vertices
in G1 with vertices in G2.

Proof. The non-trivial implication follows by definition: the absence of such g-paths implies the
absence of B-edge or gates containing at the same time vertices in G1 and in in G2. �

6.2 A Topological Characterization of MLL and MLL◦

We recall Retoré’s characterization of those RB-structure which are encoding of proofs in MLL◦ via {{·}}.

Theorem 76 ([75]). Let G = {{Γ}} ⊔ Link be a RB-structure of a sequent Γ of MLL-formulas. Then

1. G is a MLL-net iff G is æ-connected and Æ(G) = ∅;

2. G is a MLL◦-net iffÆ(G) = ∅.

30

The proof of this theorem can be reconstructed by the one using the Danos-Regnier switching crite-
rion [30] for standard MLL-proof nets. For the reader familiar with the terminology of Danos-Regnier
switching for MLL proof nets [30], the idea is that æ-paths in a RB-structure of a MLL-formula are exactly
the paths which may be observed in a test of the proof net. In fact, æ-paths can only pass at most once
through each `- or ⊗-gate, thus an æ-path may only pass through one input of a `-gate to its output; this
can be interpreted as if a switch has been applied a switching selecting the input occurring in the path.
Details can be found in [72, 36, 66].

Remark 77. In a RB-structure G such that any gate is a `- or a ⊗-gate, any æ-cycle is chordless
because gates have only two inputs and one output.

However, it is easy to find graphs which are provable in GML, but not satisfying this criterion: any graph
of the shape P⊸ P for a prime graph P < {`,⊗} is provable in GML (see Theorem 35) but the RB-structure
representing such a proof has æ-cycles.

Example 78. Consider the RB-proof net below corresponding to the (unique) proof of
P4La, b, c, dM⊸ P4La, b, c, dM in GML.

c⊥ a⊥ d⊥ b⊥

oP⊥
4

rP⊥
4

a b c d

oP4

rP4

(22)

It exhibits an æ-cycle a · b · b⊥ · d⊥ · d · c · c⊥ · a⊥ having two chords a⊥d⊥ and bc. a

More in general, we remark that during the construction of a MPL◦-nets using the rules in RB◦Q, æ-cycles

can be introduced only by an instance of d-κRB
Q

and those æ-cycles always cover the P4’s over the inputs of

the gates in its conclusion which are not in its premises.

7 Generalizing the Correctness Criterion to MPL and MPL◦

In this section identify a topological characterization of those RB-structures which are MPL◦-nets by means
of a correctness criterion, and we define a sequentialization procedure allowing us to reconstruct a proof
in MPL◦. For this purpose, we isolate a family of æ-cycles allowing us to retrieve all the information
witnessing the correct application of d-κ-rules. This result is possible thanks to results on the primeval
decomposition of graphs [56] allowing us to further characterize prime graphs by specific topological prop-
erties we recall in the next subsection.

We then provide a method inspired by the sequential edges introduced in C-nets [33] in order to recover
partial information about possible order in which the connectives (or more precisely, the rules introducing
them) can be sequentialized. The correctness criterion is obtained by combining this order with a refinement
of Retoré’s criterion (via the absence of specific æ-cycles, as theorized in [67] for coherent interaction
graphs).

7.1 Connectedness and P-Connectness in Graphs

The notion of modular decomposition have been refined in [15] by underlying the importance of the induced
subgraphs isomorphic to P4. Due to their importance,we introduce the following convention.

Notation 79. We say that a quadruple 〈a, b, c, d〉 of four vertices of a graph G is a P4 of G if
G|{a,b,c,d} = P4La, b, c, dM. A P4 of a RB-graph is a P4 containing only R-edges.

Definition 80. In a graph P4La, b, c, dM we call a and d its end-points, b and c its mid-points, the
edge bc is its mid-edge, and the edges ab and cd are its end-edges.

aWe here put emphasis on the presence of chords because the absence of chordless æ-cycles allows us to provide a correctness

criterion for the different encoding of MLL-nets via the RB-structures discussed in Section 9.

31

We recall that a graph G is connected if there is a path connecting any pair of vertices. This definition
is equivalent to require that for any partition of VG into disjoint two non-empty sets V1 and V2 there is a
crossing P2, that is, an induced subgraph isomorphic to P2 with vertices in both V1 and V2. In this paper
we are interested in the generalization of this alternative definition using P4 instead of P2.

Definition 81 ([56]). A graph G is p-connected if for any partition of VG into disjoint two non-empty
sets V1 and V2 there is a crossing P4, that is, there is a P4 of G with vertices in both V1 and V2. A
p-component of G is a maximal p-connected subset of V . A p-component V ′ of G is separable if
there is a partition of V ′ in two disjoint subsets V1 and V2 such that every P4 in G has middle points
in V1 and end-points in V2. Such a partition is denoted 〈V1 | V2〉 and is called a separation of V ′.

Notation 82. As for modules, we may identify a p-component with its induced subgraph. Moreover,
we may identify a separable p-component with its separation.

Proposition 83 ([56]). Let G be a graph. Then G is p-connected iff any two vertices v,w ∈ VG admit
a p-chain from v to w, that is, a path u = v1, . . . , vn = w such that 〈vi, vi+1, vi+2, vi+3〉 is a P4 of G for
all i ∈ {1, . . . , n − 3}.

The following result is a consequence of a more general result known as Structure Theorem [56] and
results on separable p-connected graphs (for a survey on the topic see [15]).

Theorem 84. Let P be a prime graph which is not a clique or a stable set. If P is not p-connected,
then P has a unique separable p-component V ′ = 〈K | S 〉 such that VP = V ′ ⊎ {wP} and such that

• if v ∈ K, then v is a mid-point of a P4 in P and v⌢wP ;

• if v ∈ S , then v is a end-point of a P4 in P and v 6⌢wP .

The vertex wP is called the weak vertex of P, and the set of vertices K and S are called the strong
component and the stable component of P respectively.

We conclude this section by providing some additional lemmas required for the proofs in the rest of this
section.

Lemma 85. Let P be a non p-connected prime graph with weak vertex wP and let G be a graph
obtained by removing from P some edges (at least one) containing wP from P. If G is connected, then
G is p-connected.

Proof. We first observe that if vw are p-connected in P, then they are in G. Moreover, if G is
connected, then there is a v ∈ S connected to wP, thus there is a P4 of the form 〈w, v, u, t〉 in P.
We conclude by Proposition 83 since for any u ∈ S either {wP, v, u} induces a P3 in G, or there is a
vu ∈ K \ {v} such that 〈wP, v, vu, u〉 is a P4 of G. �

Remark 86. If 〈a, b, c, d〉 is a P4 of a graph G, then 〈c⊥, a⊥, d⊥, b⊥〉 is a P4 of G⊥.

Lemma 87. Let P = PLv1, . . . , vnM and P′ = P′Lv⊥
1
, . . . , v⊥n M be prime graph such that 〈vi, v j, vh, vk〉 is

a P4 of P iff 〈v⊥
j
, v⊥

k
, v⊥

i
, v⊥

h
〉 is a P4 of P′. Then P′ = P⊥.

Proof. If P is p-connected, then for any u, v ∈ VP such that u
P
⌢v there is a P4 in P of the form,

w.l.o.g., 〈u, v,w, t〉 or 〈w, u, v, t〉. Then u⊥
P′

6⌢v⊥ since, by hypothesis, there is a P4 in P′ of the form
〈w⊥, u⊥, t⊥, v⊥〉 or 〈w, u, v, t〉 respectively.

Otherwise by Theorem 84 know that P is not p-connected and we repeat the same argument above
for the vertices of its p-component. Moreover, we know that the weak vertex wP of P is connected to
each vertex in the strong component of P. If the same does not hold for the vertex w⊥

P
in P⊥, then by

32

Lemma 85 P⊥ admits a P4 containing wP. This is impossible (see Remark 86) since P admits no P4

containing wP. �

7.2 A Correctness Criterion for MPL

From the results on p-connectedness of prime graphs in the previous subsection, we deduce that any prime
graph different from ` and ⊗ is “tiled” by P4’s except for at most one vertex (the weak vertex of a non
p-connected prime graph). This allows us to isolate a family of æ-cycles we can use to check whether
two gates can be sequentialized by a same d-κRB

Q
-rule (i.e. if they are gates with dual type). Moreover, we

prove that from these æ-cycles we can also extract information about whether two gates of dual type can
eventually be sequentialized at the same time.

Definition 88. Let G be a RB-structure,G ∈ Gates(G), and c ∈ Æ(G). The RB-subgraph induced by
c in G (in G) is defined as the RB-graph G|c (G|c) induced by the vertices of G (ofG) covered by c. A
vertex v of G is p-covered if there is a c ∈ Æm(G) such that v belongs to a P4 in G|c.

The æ-cycle c is minimal if it contains no shortcuts and if for any G ∈ Gates(G) the graph G|c is
isomorphic to ∅ or ⊗ or P4. The set of minimal æ-cycles of G is denoted Æm(G).

Remark 89. After Remark 72, a minimal æ-cycle covering edges of a gate G induces one of follow-
ing configurations.

ii
G

oG
or

ii
G

i
j

G

oG
or

ii
G

i
j

G
ih
G

ik
G

oG
(23)

In order to ensure that gates whose type is not ` or ⊗ can eventually be sequentialized using a d-κ-rule,
we need have a criterion ensuring us the possibility of pairing those gates in such a way paired gates not
only have dual types, and their inputs are connected in a proper way with respect of this duality.

Definition 90. Let G be a RB-structure. An entailing relation is a bijection ♥ over the set of inputs
of gates of G whose type is not ` or ⊗ such that the following hold:

1. ♥ is an involution, that is, ♥(♥(v)) = v;

2. if v ∈ G1 and ♥(v) ∈ G2, then G1 , G2;

3. for any P4 over the inputs of G1, there is an entangling c ∈ Æm(G) covering it, that is, a
minimal æ-cycle c such that G|c is of the following form

w
1

v
1

v
2

w
2

w
3

v
3

v
4

w
4

where






〈v1, v2, v3, v4〉 is a P4 in G1,

〈w3,w1,w4,w2〉 is a P4 in G2,

♥(vi) = wi for all i ∈ {1, 2, 3, 4}.

(24)

We say that two gates G1 and G2 are entangled (denotedG1♥G2) iff all their inputs are.
We denote by Æ♥(G) the set of minimal entangling cycles in Æm(G). We say that ♥ is simply

entangling iffÆm(G) = Æ♥(G) and for all c ∈ Æ♥(G) the graph G|c contains extactly two P4’s.

Remark 91. If G1 and G2 are are two entangled gates of a RB-structure G, then, as consequence of

Lemma 87, their types are dual. Said differently, for each v, v′ ∈ G1, if v⌢v′ (resp. v 6⌢v′) in G|In(G1),

then ♥(v) 6⌢♥(w′) (resp. v⌢v′) in G|In(G2).

Example 92. Consider the RB-structures in Figure 11. The P4-gate in the RB-structure on the left
is not covered and the unique æ-cycle in Æm(G) which is not in Æ♥(G). In the the right, the P4’s
containing the vertex w⊥ in the P5-gate are not p-covered.

33

a b c d c⊥ a⊥ d⊥ b⊥

oP4
o⊗ o⊗

rP4
r⊗ r⊗

w⊥

c⊥ a⊥ d⊥ b⊥
w

a b c d
oP5

oBull

rP5
rBull

Figure 11: Examples of RB-structures whose gates cannot be entangled. The highlighted P4’s are not
p-covered

d e f g b⊥ d⊥ a⊥ c⊥

oP4
oP4

a b c i4
P4

f⊥ i2
P4

g⊥ e⊥

oP4
oP4

rP4
rP4

G1 is the gate containing a
G2 is the gate containing a⊥

G3 is the gate containing g
G4 is the gate containing g⊥

G1 ≺ G3 and G4 ≺ G2

G1 ≺♥ G4 because G4♥G3 and G1 ≺ G3

G4 ≺♥ G1 because G1♥G2 and G4 ≺ G2

Figure 12: An example of a RB-structure where ≺♥ is not well-founded: G1 ≺♥ G4 and G4 ≺♥ G1.

However, this condition is not enough tu guarantee sequentializability (see Figure 13). In fact, since
the rule d-κRB

Q
sequentializes two gates at a time, we need to check whether a pair of entangled gates can

eventually both occurs as root gates during the sequentialization procedure. This condition is equivalent of
checking whether we can formulate a version of the splitting lemma (Lemma 44) for the system RBP.

For this purpose, we enrich the partial order over gates given by the below relation between vertices in
a RB-structure with the minimal set of constraints on the order in which cycles could be removed during
proof search. This order provides the same information of a minimal set of sequential edges in a C-nets
(see [33]), but without modifying the structure of our RB-graphs to accommodate additional edges. In fact,
the information of this order can be solely defined in function of the æ-paths in the RB-structure.

Definition 93. Let G be a RB-structure, ♥ is a entangling relation for G, and G1,G2 ∈ Gates(G).
We say that G1 is precede G2 (denotedG1 ≺♥ G2) wheneverG1 is below G2 or below a vertex of an
æ-cycle in Æm(G) covering a P4 of G2.

The transitive closure of the relation ≺♥ is a (strict) order over Gates(G) (see Figure 12).

Using ≺♥ wa are able to characterize “statically”, i.e., without performing an attempt of sequential-
ization, those pairs of entangled gates which can eventually be removed in such a way the premises of a
sound application of a d-κRB

Q
, that is, in such way if we remove both the two entangled gates we split the

RB-structure into a set of disjoint RB-structures.

Definition 94. A RB-structure G is MPL-correct iff G is æ-connected, there is a simply entangling
relation ♥ overGates(G) such that ≺♥ is well-founded.

Remark 95. The correctness criterion for MPL subsumes Retoré’s criterion for MLL since ♥ = ∅
and the RB-structure of a sequent of MLL-formulas contains no P4’s.

Example 96. The RB-structure in the left-hand side of Figure 13 contains a unique æ-cycle which
should entangle a P4 and a Bull. This is impossible since |VP⊥

4
| = 4 , 5 = |VBull|. Similarly in the

RB-structure on the right-hand side of Figure 11 we cannot have entangling relations.
The RB-structure in the right-hand side of Figure 13 contains a unique æ-cycle, but it induces

four P4’s , therefore it cannot be simply entangling.
The RB-structure in Figure 12 has an entangling relation which is simply entangling.

34

oP4

b⊥ i1
P4

a⊥

o`

c⊥ d⊥ w⊥

a b

w

c d

oBull

rP4
rBull

rP4
rP4

oP4
oP4

b⊥ h⊥ a⊥ c⊥ f⊥ h g⊥ e⊥

a b c d d⊥ e f g

oP4
oP4

rP4
rP4

Figure 13: Examples of non-correct RB-structures: the entangling relation defined by Link is not simply
entangling.

Theorem 97. Let Γ be a sequent. Then

⊢MPL Γ ⇐⇒ there is a Link such that G = {{Γ}} ⊔ Link is MPL-correct

Proof. If ⊢MPL Γ, then there is a derivation π of Γ and we can define a derivation of G = {{Γ}} ⊔ Linkπ
in RBP by induction on the rules in a derivation in MPL. To conclude it suffices to check that each
rule preserves correctness, that is, if all its premises are MPL-correct, then also its conclusion is.

• the conclusion of a rule axRB is MPL-correct;

• the conclusion G of a rule `RB contains no new æ-cycles with respect to its premise G1, that
is, Æm(G) = Æm(G1). We conclude since the order ≺♥ overGates(G) is well-defined iff it also
is overGates(G1);

• the conclusion G of a rule ⊗RB contains no new æ-cycles with respect to its premises G1 and
G2, that is, Æm(G) = Æm(G1) ∪Æm(G2). We conclude since the order ≺♥ over Gates(G) is
well-defined iff it also is overGates(G1) and Æm(G) = Æ♥(G) iff both Æm(G1) = Æ♥(G1) and
Æm(G2) = Æ♥(G2);

• the conclusion G of a rule d-κRB
Q

contains new æ-cycles with respect to its premises G1, . . . ,Gn

and G2, but they are all simply entangling. We conclude similarly to the previous case, since
both new gates can only be below of some gates in

⋃

i∈{1,...,n}Gates(Gi);

To prove the converse we provide a sequentialization procedure returning a derivation πG in MPL
defined by induction on number of gates in Gates(G) and links in ⊓G : we apply axRB and `RB

whenever possible, and ⊗RB whenever there is a ⊗-gate in Root(G) whose inputs are not covered
by any cycle in Æm(G), and a d-κRB

Q
-rules whenever the correctness ensures the presence of two

entangled root-gates.
More precisely, we define a proof πG from roots to leaves as follows:

1. if Gates(G) = ∅, then G = 〈{a, a⊥},∅, {aa⊥}〉 and πG is an instance axRB;

2. if R-Gates(G) contains a `n-gate, then G = G`n
⊲⊳X`

G1 and

πG =

π1 IH

⊢ G1
`RB

⊢ G`n
⊲⊳X`

G1

where π1 is defined by inductive hypothesis since |⊓G | = |⊓G1
| but |Gates(G1)| < |Gates(G)|,

and the correctness of G1 is guaranteed by the fact that Æm(G) = Æm(G1);

3. if no gate in R-Gates(G) , ∅ is a `n-gate and at there is a ⊗-gate in R-Gates(G) which is not
covered by a cycle in Æm(G), then there is a r1 ∈ Root(G1) and a r2 ∈ Root(G2) such that

πG =

π1 IH

⊢ G1

π2 IH

⊢ G2
⊗RB

⊢ G ⊲⊳{(i1
G
,r1),(i2

G
,r2)} (G1 ⊎G2)

35

ax
⊢ a, a⊥

ax
⊢ b, b⊥

ax
⊢ c, c⊥

ax
⊢ d, d⊥

d-κ
⊢ κP4

Lb⊥, d⊥, a⊥, c⊥M, κP4
La, b, c, dM

ax
⊢ f , f⊥

ax
⊢ g, g⊥

ax
⊢ h, h⊥

ax
⊢ i, i⊥

d-κ
⊢ κP4

Lg⊥, i⊥, f⊥, h⊥M, κP4
L f , g, h, iM

◦
⊢ ◦

mixRB

⊢ κP4
Lb⊥, d⊥, a⊥, c⊥M, κP4

La, b, c, dM, κP4
Lg⊥, i⊥, f⊥, h⊥M, κP4

L f , g, h, iM, ◦
2×`
⊢ κP4

Lb⊥, d⊥, a⊥, c⊥M, κP4
La, b, c, dM` ◦` κP4

L f , g, h, iM, κP4
Lg⊥, i⊥, f⊥, h⊥M

axRB

⊢ e⊥, e
s⊗

⊢ κP4
Lb⊥, d⊥, a⊥, c⊥M, κP9

La, b, c, d, e, f , g, h, iM, κP4
Lg⊥, i⊥, f⊥, h⊥M, e⊥

D RB◦
Q

⊢

oP4
rP4

rP4
oP4

b⊥ d⊥ a⊥ c⊥ g⊥ i⊥ f⊥ h⊥

a b c d f g h i

oP4
rP4

rP4
oP4

axRB

⊢ e e⊥

sRB
⊗

⊢

oP4
rP4

rP4
oP4

b⊥ d⊥ a⊥ c⊥ e⊥ g⊥ i⊥ f⊥ h⊥

a b c d e f g h i

oP9
rP9

Figure 14: A proof in MPL◦ where the connective κP9
has been introduced by a s⊗, and the corresponding

derivation in RB◦
Q

where we highlighted the two residual components of the P9-gate.

where the two proofs π1 and π2 are defined by inductive hypothesis since ⊓G = ⊓G1
⊎ ⊓G2

and
the correctness of G1 and G2 is guaranteed by the fact that Æm(G) = Æm(G1) ⊎Æm(G2);

4. Otherwise, we can assume R-Gates(G) contains no `-gates, or ⊗-gates whose inputs are not
covered by a cycle in Æ♥(G). Therefore we must have two entangled gatesG,G′ ∈ R-Gates(G)
in R-Gates(G) because ≺♥ is well-founded.

By Remark 91, the types of these gates are connectives. and G = (GP ⊎GP⊥) ⊲⊳X G′. In
order to be sure that such a RB-structure is the conclusion of a d-κRB

Q
, it suffices to prove that

G′ = G1 ⊎ · · · ⊎Gn. This is equivalent to check that there are no æ-paths from r1
Gi

to any r1
G j

or

r2
G j

whenever i , j; However, if such a path existed, then we should have a cycle shortcut for

one of the æ-cycles in Æm(G) covering a P4 in G1 or in G2.

Thus we conclude since we have

πG =

π1 IH

G1 · · ·
πn IH

Gn
d-κRB

Q
⊢ (GP ⊎GP⊥) ⊲⊳Xd

(G1 ⊎ · · · ⊎Gn)

where π1, . . . , πn are defined by inductive hypothesis since ⊓G =
⊎n

i=1 ⊓Gi
and the correctness

of G1, . . . ,Gn is guaranteed by the fact that Æm(G) ⊇
⊎n

i=1 Æm(Gi) .

�

7.3 A Correctness Criterion for MPL◦

As shown in Figure 14, in MPL◦ the rule s⊗ could introduce (top-down) an occurrence of a new connective
from a formula containing smaller ones. This prevent us to define a correctness criterion reasoning directly
on the gates of a RB-structure since some of them could be deconstructed by a sRB

⊗ , splitting a gate into
smaller ones. For this purpose, we define the residual components allowing us to spot in a RB-structure the
connectives originally introduced by d-κ.

36

g o` g⊥

a b c d e c⊥ f⊥ b⊥ d⊥ e⊥ f r` a⊥ r`

oP5
oP4

h o` h⊥ oP5

rP5
o` rP4

r` rP5

r` o`

G1 is the P5-gate containing a
G2 is the P4-gate containing c⊥

G3 is the P5-gate containing e⊥

G4 is the `-gate containing g
G5 is the `-gate containing rP4

G6 is the `-gate containing h
G7 is the bottommost `-gate

G5 ≺♥ G1 and G5 ≺♥ G2 because of ≺
G3 ≺♥ G4 because of ≺
G7 ≺♥ G3 because of ≺
G3 ≺♥ G5 because of ≺
G7 ≺♥ G3 and G7 ≺♥ G6 because of ≺
G7 ≺♥ G1 because G3 ≺ G5 and there is a cycle in Æm(G) coveringG1 and G5

G7 ≺♥ G2 because G3 ≺ G5 and there is a cycle in Æm(G) coveringG2 and G5

Figure 15: A RB-structure where the residual components are highlighted and the lattice of the ≺♥ relation
between gates.

Definition 98. Let G = {{Γ}} ⊔ Link be a RB-structure. A input v of a gate G ∈ Gates(G) is a graft if
there is no BB-path from v to any other input of the same gate.

The residual of G is the graph induced by the inputs of the gates in G which are not grafts and
the R-edges of G (we assume the labelling function to be empty). We denote by Res(G) the set of
residual components of G, that is, the set of connected component of the residual of G.

Remark 99. Intuitively, grafts witness the an application of sRB
⊗ (or ⊗RB) while the residual of G

identify the type of the gates which have been introduced by a d-κRB
Q

-rule. Therefore, removing

grafts we are able to split those gates which may have been “merged” by a sRB
⊗ .

For an example, see Figure 14 where the P9-gate in the RB-proof net in the conclusion of the
derivation in RB◦Q has been introduced by a sRB

⊗ -rule merging two P4-gates in the RB-structure (this

because Res(GP9
♣

{

i5
GP9

}

) ∼ (P4 ` ∅` P4)).

Remark 100. Since in MLL◦-nets we only have `- and ⊗-gates, then by æ-acyclicity each input of a
⊗-gate must be a graft.

We refine the notion of entanglement defining it on residual components instead of gates, in order to
ensure sequentializability of a residual component which, during sequentialization, eventually become a
gate which should have been introduced by a d-κRB

Q
(or a ⊗RB).

Definition 101. Two residual components R1 and R2 of a RB-structure G are entangled (denoted
R1♥R2) iff there is a total bijection ♥ between the vertices in R1 and R2 (we denote v♥w if v = ♥(w))
such that it satisfies conditions (1)-(3) in Definition 90 formulated on residual components instead of
on gates. An entangling relation is fully entangling iffÆ♥(G) = Æm(G).

Given R1,R2 ∈ Res(G), we write R1 ≺ R2 if there is a vertex of R2 below a vertex of R2. We write
R2 ≺♥ R2 if there are R′

1
,R′

2
∈ Res(G) such that R′

1
≺ R′

2
and such that there are æ-cycles in Æm(G)

covering R1 and R2 and covering R2 and R′
2

(see Figure 15 for an example).

Remark 102. As in Remark 91, two entangled residual components induces graphs which are dual
modulo symmetries, that is, such that G|R1

∼ ♥(G|R2
)⊥.

37

Definition 103. The RB-structure G is GS-correct iff there is a fully entangled relation ♥ overRes(G)
such that ≺♥ is well-founded.

Remark 104. Our correctness criteria subsume Retoré’s ones for MLL and MLL◦ since in a RB-
structure of a sequent of MLL-formulas there are no P4’s.

Theorem 105. Let G = {{Γ}} ⊔ Link be a RB-structure. Then ⊢MPL◦ [[Γ]] ⇐⇒ G is GS-correct

Proof. The proof is similar to the one of Theorem 97.
To construct the RB-proof net encoding a derivation in RB◦Q we have to consider the following

additional cases to handle the additiona rules in the systems RB◦
Q

which are not in RBP:

• if ρ = mixRB, then the gates in the conclusion are the same gates in the premises, Æm(G) =
⊎n

i=1 Æm(Gi), and Res(G) =
⊎n

i=1 Res(Gi). Note that the conclusion is not æ-connected nor
g-connected;

• if ρ = sRB
⊗ , then (using the same convention of Figure 10) the k-th input ik

GQ
of the active gate

GQ is a graft and no new æ-cycle has been created; that is, Æm(G) = Æm(G1) ⊎Æm(G2) and
Res(G) = Res(G1)∪Res(G2). In fact, even if GQ contains a P4 not occurring in its premises, it

must contain the vertex ik
GQ

, which is a graft, therefore not occurring in any residual component

of G.

• if ρ = d-κRB
Q

, then the only difference with the case analysis of in the proof of Theorem 97 is

that we are assuming the weaker condition that ♥ is fully entangling.

Note that an instance of a `RB could have conclusion a g-connected RB-structure but a premise which
is not g-connected.

Conversely, the sequentialization procedure is refined as follows:

1. if G = ∅ then Γ = ◦ and πG is an instance of ◦RB;

2. if G , ∅ and Gates(G) = ∅, then G = 〈{a, a⊥},∅, {aa⊥}〉 and πG is an instance axRB;

3. if G , ∅ is not g-connected, then G = G1 ⊎ · · · ⊎Gn and

πG =

π1 IH

⊢ G1 · · ·
πn IH

⊢ Gn
mixRB

⊢ G

where the proofs π1, . . . , πn are inductively defined since we have that ⊓G =
⊎

i∈{1,...,n} ⊓Gi
,

Res(G) =
⊎

i∈{1,...,n}Res(Gi) and the correctness of G1, . . . ,Gn is guaranteed by the fact that
Æm(G) =

⊎

i∈{1,...,n}Æ
m(Gi);

4. if G is g-connected and R-Gates(G) contains a `n-gate, then G = G`n
⊲⊳X`

G1 and

πG =

π1 IH

⊢ G1
`RB

⊢ G`n
⊲⊳X`

G1

where π1 is defined by inductive hypothesis since |⊓G | = |⊓G1
| but |Gates(G1)| < |Gates(G)| and

the correctness of G1 is guaranteed by the fact that Æm(G) = Æm(G1) and Res(G) = Res(G1);

5. if G , ∅ is g-connected and no gate in R-Gates(G) , ∅ is a `n-gate and at least one input of
a G ∈ R-Gates(G) is a graft, then

38

• either G is a ⊗n-gate whose inputs are all graft, therefore there are G1, . . . ,Gn and ri ∈
Root(Gi) for all i ∈ {1, . . . , n} such that

πG =

π1 IH

⊢ G1 · · ·
πn IH

⊢ Gn
⊗RB

⊢ G ⊲⊳{(ii
G
,ri)|i∈{1,...,n}}

(⊎

i∈{1,...,n}Gi

)

• or G is a Q-gate with Q quasi-prime and |VQ| = n + 1 > 2 and, w.l.o.g., there is am

interface X+ = X− ∪
{(

i1
Q
, r2

)}

where r2 ∈ Root(G2) such that

πG =

π1 IH

⊢
{{

QL∅, v2, . . . , vn+1M
}}

⊲⊳X− G1

π2 IH

⊢ G2
sRB
⊗

⊢ GQ ⊲⊳X+ (G1 ⊎G2)

In both cases, the two proofs of the premises are defined by inductive hypothesis;

6. Otherwise G , ∅ is g-connected, no gate in R-Gates(G) , ∅ is a `n-gate and no input of a
gate in R-Gates(G) is a graft.

We conclude as in Case 4 in the proof of Theorem 97.

�

7.4 A Topological Characterization of GS

An axiom linking Link for a graph G is a (total) bijection between atoms mapping each atom to one of its
dual. If D is a proof of G in GS we define a set of B-edges ⊓D by pairing the vertices matched by the
applications of the ai↓-rules in D.

Theorem 106. Let G be a graph. Then there is a proof D of G in GS iff the RB-structure

〈V{{G}}, ℓG,
{{G}}
⌢,

T
⊥ ∪ ⊓D〉 is GS-correct.

Proof. It follows Theorems 57 and 105 and the fact that the translation between GS and MPL◦ pre-
serve the pairs of atoms matched by an ax-rule and vertices matched by an ai↓-rule. �

8 Classical Logic Beyond Cographs
We conclude this paper by providing a simple extension of MPL with structural rules allowing us to gener-
alize classical logic beyond cographs.

Definition 107. We define the following logics of formulas (defined via a proof system) and graphs
respectively:

Classical Prime Logic : PLK = MPL ∪ {w, c}
Classical Graphical Logic : GLK =

{[[

φ
]]

| φ formula such that ⊢PLK φ
} (25)

We say that a graph G is provable in GLK (denoted ⊢GLK G) if G ∈ GLK.

For PLK we can prove the admissibility of the cut-rule via cut-elimination.

Theorem 108 (Cut-elimination). The rule cut is admissible in PLK.

Proof. Consider the cut-elimination steps from Figure 5 and Figure 16 and the definition of weight
from the proof of Theorem 39. We conclude by remarking that applying cut-elimination steps to any
one of the top-most cut in the derivation, then we obtain a derivation with smaller weight. �

39

⊢ Γ
w
⊢ Γ, φ

⊢ Γ, φ, φ
c
⊢ Γ, φ

ψ
w↓
ψ` φ

φ` φ
c↓

φ

a ` a
ac

a

PLφ1, . . . , φnM ` PLψ1, . . . , ψnM
m ` , P prime

PLφ1 ` ψ1, . . . , φn ` ψnM

⊢ Γ
w
⊢ Γ, φ ⊢ φ⊥,∆

cut
⊢ Γ,∆

⊢ Γ
w
⊢ Γ,∆

⊢ Γ, φ, φ
c
⊢ Γ, φ ⊢ φ⊥,∆

cut
⊢ Γ,∆

⊢ Γ, φ, φ ⊢ φ⊥,∆
cut

⊢ Γ,∆, φ ⊢ φ⊥,∆
cut

⊢ Γ,∆,∆
c
⊢ Γ,∆

Figure 16: Structural rules for sequent calculi, the corresponding rules in deep inference, the atomic con-
traction and the generalized medial rule, and cut-elimination steps to handle them.

Moreover, we can define a sequent system containing the deep inference version of the structural rules
(see Figure 16) to obtain the following decomposition result.

Theorem 109 (Decomposition). Let φ be a formula such that ⊢PLK φ. Then there is a formula φ′ such
that ⊢MPL φ

′ and φ′⊢{w,w↓,c↓} φ.

Proof. The proof is immediate by applying rule permutations. For a reference, see [10]. �

This result can be refined using a generalized medial rule proposed proposed in [24] to restrict the
instances of contraction rules to atomic ones.

Lemma 110. The (deep) contraction rule c↓ is derivable using atomic contraction (ac↓) and medial
rule (m).

Proof. By induction on the contracted formula φ. If φ = a is an atom, then an instance of c↓ can be
replaced by an instance of ac↓. Otherwise, φ = κLψ1, . . . , ψnM and we conclude since we can replace
each application of c↓ with a derivation of the following form

κLψ1, . . . , ψnM ` κLψ1, . . . , ψnM
c↓

κ
(∣
∣
∣ψ1, . . . , ψn

∣
∣
∣

)

κLψ1, . . . , ψnM ` κLψ1, . . . , ψnM
m

κ





∣
∣
∣
∣
∣
∣
∣
∣
∣

ψ1 ` ψ1

IH {m,ac↓}

ψ1

, . . . ,

ψn ` ψn

IH {m,ac↓}

ψn

∣
∣
∣
∣
∣
∣
∣
∣
∣





by applying inductive hypothesis. �

This would allow to provide a stronger result similar to the one for in deep inference systems for classical
graphical logic [19, 22] formulated as follows.

Corollary 111 (Decomposition). Let φ be a formula such that ⊢PLK φ. Then there are formulas φ′, ψ′

and ψ such that
⊢PLK φ ⇐⇒ ⊢MPL φ

′⊢m ψ
′⊢ac↓ ψ⊢w↓ φ

Proof. By Theorem 109 we find the desired φ′. Using rules permutations, we can push occurrences
of w↓ down in a derivation, finding the desired ψ. We then apply 110 and replace all instances of
c↓-rules with derivations containing only m and ac↓. We conclude by applying rule permutations to
move all ac-rules below the instances of m-rules. �

To conclude this section, we recall that classical graphical logic, beside being a conservative extension
of classical propositional logic is not the same logic of the boolean graphical logic (denoted GBL) defined
in [24] (an inference systems on graphs by extending the semantics of read-once boolean relations from
cographs to general graphs). As shown in [8] the following graph expected to be provable in GBL, but is
not provable in GS nor in GLK.

b c⊥

a b⊥

c a⊥

40

9 Conclusion and Future Works
In this paper we provide the definition of the notion of graphical connectives, and we defined a class of
formulas generated by a signature of logical connectives corresponding to the graphical ones. We have
provided three proof systems operating on these generalized formulas (MPL, MPL◦ and PLK) , proving that
these systems satisfy cut-elimination and are conservative extensions of multiplicative linear logic with and
without mix, and of classical logic respectively. We proved that the logic GS form [7, 6] provides a model
for the system extending the multiplicative linear logic with mix (MPL◦).

We then provide proof nets for the substructural logics MPL and MPL◦ by extending the syntax of RB-
proof net with additional types of gates whose design is based on the structure of prime graphs, cliques and
stable sets. We e provided a topological characterization of formulas and graphs which are provable in both
these logics by extending the syntax of RB-proof nets for multiplicative logic.

9.1 Future Works

Categorical Semantics. We are interested in defining the categorical structures for the multiplicative
prime logic (with and without mix). We conjecture that such categories are extensions of star-autonomous
and IsoMix [27, 28] categories respectively, with additional (n-ary) monoidal products. In particular, the
categorical structure for MPL◦ should be a quotient of a free multi-monoidal category whose products share
the same unit (for each of their entries) and whose unitors are defined according to the unitorκ defined in
Lemma 50.
Digraphs, Games and Event Structures. In this work we started our investigation from the corre-
spondence between classical formulas (and multiplicative linear logic formulas) and cographs. However,
a different approach could be considered by considering the correspondence between intuitionistic propo-
sitional formulas and the Hyland-Ong arenas [54] (directed graphs). We foresee interesting connections
with game semantic, concurrent games and event structures [79]. In this setting, graphs generalizing the
connectives from additive linear logic [26] could allow express non-transitive conflict relations, as well as
to handle the general setting where the conflict relation # could define patterns which cannot be expressed
via linear formulas (i.e., without repetition of events) constructed using with binary connectives only.
A new framework for GoI. In Section 5 we defined a general setting for generalized proof nets. The
current models for the geometry of interaction (or GoI) [41, 46, 67] and Girard’s transcendental syntax [45,
46, 37, 38] are constructed using the Danos-Regnier correctness criterion for multiplicative proof nets to
define tests. The atomic component used to build of these proof structures, as well as the tests used to define
the correctness criterion, are based on a paradigm which could be named connectives-as-permutations (if
we follow the approach from, e.g., [29, 37]) or connectives-as-partitions (if we follow the approach from,
e.g., [44, 9]). As explained in Section 9 of [8], connectives-as-partitions are distinct from the graphical
connectives used in this paper. Thus we foresee the possibility of exploring entire new models of GoI over
the RB-structures defined in this paper.
Relational RB-Nets. In Section 7 we provided a topological characterization of RB-structures encoding
correct derivations in RB◦

Q
, relying on the encoding of a graph (or a squent) with an RB-forest. However,

RB-cographs8 provide another possible encoding of RB-graphs proofs in MLL [72, 74, 73]. This encoding
is obtained by directly enriching a cograph (whose edges are R-edges) encoding a MLL-formula with B-
edges pairing the vertices corresponding to the atoms matched by the axiom rules. The correctness criterion
for these RB-graph crucially rely on the presence of chords in an æ-cycle. Intuitively, chords identify (non-
elementary) alternating cycles in {{Γ}} ⊔ Link covering the connector edge of a ⊗. It follows that chords are
indeed paired, inducing “bow-tie” subgraphs as the one below on the left.

a a⊥

b b⊥

a a⊥

b b⊥
(26)

The criterion for MLL fails for MPL because of the presence of P4’s as shown in the example above on the
right. We conjecture the possibility of reproducing the correctness criterion for RB-structure directly on
these RB-graph.

Moreover, a correctness criterion on RB-nets could be used to extended this syntax to include exponen-
tials by reformulating the correctness criterion provided in [4].
On Graphical Classical Logic.

8Also known as handsome proof nets, relational RB-prenets [69], RB-cographs [68], or closed coherent spaces [36].

41

In [24] the authors investigate the possibility of extending boolean logic beyond cographs. Beside this
logic have been proved to be incompatible with extensions of the multiplicative graphical logic, it is still
interesting to see the exact relation between our graphical classical logic and the boolean graphical logic
presented in the aforementioned paper.

The decomposition result for GLK suggests the possibility of defining combinatorial proofs combina-
torial proofs [53, 52] for this logic and study its proof equivalence which would present some non-trivial
derivations (see the left-most RB-structure in Figure 13 for an example)

Moreover, we foresee the possibility of extending the results in [16] to classical graphical logic.
A correctness criterion for BV. The technique of sequentialize and entail connectives could provide
insights on the correctness criterion BV [47, 69, 68] and its extensions GV and GVsl from [5].
Automated Theorem Provers for Graphical Logic. The introduction of graphical connectives provides
a representation of graphs which is linear with respect to the number of its vertices. Such a representation
could be used to implement efficient in automated tools to implement the current results in graphical logic,
as well as to provide new automated tools to address challenging problems in mathematics and computer
science where the graphical syntax improve usability and efficiency.

42

References
[1] Vito Michele Abrusci. Phase semantics and sequent calculus for pure non-commutative classical linear

logic. Journal of Symbolic Logic, 56(4):1403–1451, December 1991.

[2] Vito Michele Abrusci and Paul Ruet. Non-commutative logic I: The multiplicative fragment. Annals
of Pure and Applied Logic, 101:29–64, 2000.

[3] Matteo Acclavio. A constructive proof of coherence for symmetric monoidal categories using rewrit-
ing, 2017.

[4] Matteo Acclavio. Exponentially handsome proof nets and their normalization. Electronic Proceedings
in Theoretical Computer Science, 353:1–25, dec 2021.

[5] Matteo Acclavio, Ross Horne, Sjouke Mauw, and Lutz Straßburger. A Graphical Proof Theory of
Logical Time. In Amy P. Felty, editor, 7th International Conference on Formal Structures for Compu-
tation and Deduction (FSCD 2022), volume 228 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 22:1–22:25, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für In-
formatik.

[6] Matteo Acclavio, Ross Horne, and Lutz Straßburger. An Analytic Propositional Proof System On
Graphs. This is an extended version of a paper published at LICS 2020 [AHS20]., December 2020.

[7] Matteo Acclavio, Ross Horne, and Lutz Straßburger. Logic beyond formulas: A proof system on
graphs. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS ’20, page 38–52, New York, NY, USA, 2020. Association for Computing Machinery.

[8] Matteo Acclavio, Ross Horne, and Lutz Straßburger. An Analytic Propositional Proof System on
Graphs. Logical Methods in Computer Science, Volume 18, Issue 4, October 2022.

[9] Matteo Acclavio and Roberto Maieli. Generalized connectives for multiplicative linear logic. In
Maribel Fernández and Anca Muscholl, editors, 28th EACSL Annual Conference on Computer Sci-
ence Logic (CSL 2020), volume 152 of LIPIcs, pages 6:1–6:16, Dagstuhl, Germany, 2020. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[10] Matteo Acclavio and Lutz Straßburger. From syntactic proofs to combinatorial proofs. In Didier
Galmiche, Stephan Schulz, and Roberto Sebastiani, editors, Automated Reasoning - 9th International
Joint Conference, IJCAR 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford,
UK, July 14-17, 2018, Proceedings, volume 10900, pages 481–497. Springer, 2018.

[11] Andrea Aler Tubella and Alessio Guglielmi. Subatomic proof systems: Splittable systems. ACM
Trans. Comput. Logic, 19(1), January 2018.

[12] Andrea Aler Tubella and Lutz Straßburger. Introduction to Deep Inference. Lecture, August 2019.

[13] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Journal of Logic and
Computation, 2(3):297–347, 1992.

[14] Arnon Avron and Iddo Lev. Canonical propositional Gentzen-type systems. In Rajeev Goré, Alexan-
der Leitsch, and Tobias Nipkow, editors, Automated Reasoning, pages 529–544, Berlin, Heidelberg,
2001. Springer Berlin Heidelberg.

[15] Luitpold Babel and Stephan Olariu. On the p-connectedness of graphs–a survey. Discrete Applied
Mathematics, 95(1-3):11–33, 1999.

[16] Victoria Barrett and Alessio Guglielmi. Totally linear proofs. In 5th International Workshop on Trends
in Linear Logic and Applications (TLLA 2021), Rome (virtual), Italy, June 2021.

[17] Patrick Blackburn, Maarten De Rijke, and Yde Venema. Modal logic: graph. Darst, volume 53.
Cambridge University Press, 2001.

[18] David FC Brewer and Michael J Nash. The chinese wall security policy. In IEEE symposium on
security and privacy, volume 1989, page 206. Oakland, 1989.

[19] Kai Brünnler. Locality for classical logic. Notre Dame Journal of Formal Logic, 47(4):557–580, 2006.

[20] Kai Brünnler. Deep sequent systems for modal logic. Archive for Mathematical Logic, 48(6):551–577,
2009.

[21] Kai Brünnler and Lutz Straßburger. Modular sequent systems for modal logic. In Martin Giese
and Arild Waaler, editors, Automated Reasoning with Analytic Tableaux and Related Methods,
TABLEAUX’09, volume 5607 of Lecture Notes in Computer Science, pages 152–166. Springer, 2009.

43

[22] Paola Bruscoli and Lutz Straßburger. On the length of medial-switch-mix derivations. In Juliette
Kennedy and Ruy J. G. B. de Queiroz, editors, Logic, Language, Information, and Computation -
24th International Workshop, WoLLIC 2017, London, UK, July 18-21, 2017, Proceedings, volume
10388 of Lecture Notes in Computer Science, pages 68–79. Springer, 2017.

[23] Cameron Calk. A graph theoretical extension of boolean logic. Bachelor’s thesis, 2016.

[24] Cameron Calk, Anupam Das, and Tim Waring. Beyond formulas-as-cographs: an extension of
boolean logic to arbitrary graphs, 2020.

[25] Jinsheng Chen, Giuseppe Greco, Alessandra Palmigiano, and Apostolos Tzimoulis. Syntactic com-
pleteness of proper display calculi. ACM Trans. Comput. Logic, 23(4), oct 2022.

[26] J.R.B. Cockett and C.A. Pastro. A language for multiplicative-additive linear logic. Electronic Notes
in Theoretical Computer Science, 122:23–65, 2005. Proceedings of the 10th Conference on Category
Theory in Computer Science (CTCS 2004).

[27] J.R.B. Cockett and R.A.G. Seely. Proof theory for full intuitionistic linear logic, bilinear logic, and
mix categories. Theory and Applications of Categories, 3(5):85–131, 1997.

[28] J.R.B. Cockett and R.A.G. Seely. Weakly distributive categories. J. of Pure and Applied Algebra,
114:133–173, 1997.

[29] Vincent Danos and Laurent Regnier. The structure of multiplicatives. Archive for Mathematical logic,
28(3):181–203, 1989.

[30] Vincent Danos and Laurent Regnier. The structure of the multiplicatives. Arch. Math. Log., 28(3):181–
203, 1989.

[31] Anupam Das. Complexity of evaluation and entailment in boolean graph logic. preprint, 2019.

[32] Anupam Das and Alex A. Rice. New minimal linear inferences in boolean logic independent of switch
and medial. In Naoki Kobayashi, editor, 6th International Conference on Formal Structures for Com-
putation and Deduction, FSCD 2021, July 17-24, 2021, Buenos Aires, Argentina (Virtual Conference),
volume 195 of LIPIcs, pages 14:1–14:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[33] Paolo Di Giamberardino and Claudia Faggian. Proof nets sequentialisation in multiplicative linear
logic. Annals of Pure and Applied Logic, 155(3):173–182, 2008.

[34] R.J Duffin. Topology of series-parallel networks. Journal of Mathematical Analysis and Applications,
10(2):303 – 318, 1965.

[35] A. Ehrenfeucht, T. Harju, and G Rozenberg. The Theory of 2-Structures A Framework for Decompo-
sition and Transformation of Graphs. World Scientific, 1999.

[36] Thomas Ehrhard. A new correctness criterion for mll proof nets. In Proceedings of the Joint Meeting of
the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, New York, NY,
USA, 2014. Association for Computing Machinery.

[37] Boris Eng and Thomas Seiller. A gentle introduction to girard’s transcendental syntax. In 5th Inter-
national Workshop on Trends in Linear Logic and Applications (TLLA 2021), 2021.

[38] Boris Eng and Thomas Seiller. Multiplicative linear logic from logic programs and tilings. hal-
02895111, 2021.

[39] Tibor Gallai. Transitiv orientierbare Graphen. Acta Mathematica Academiae Scientiarum Hungarica,
18(1–2):25–66, 1967.

[40] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[41] Jean-Yves Girard. Towards a geometry of interaction. Contemporary Mathematics, 92:69–108, 1989.

[42] Jean-Yves Girard. Proof-nets : the parallel syntax for proof-theory. In Aldo Ursini and Paolo Agliano,
editors, Logic and Algebra. Marcel Dekker, New York, 1996.

[43] Jean-Yves Girard. Light linear logic. Information and Computation, 143:175–204, 1998.

[44] Jean-Yves Girard. On the meaning of logical rules II: multiplicatives and additives. NATO ASI Series
F: Computer and Systems Sciences, 175:183–212, 2000.

44

[45] Jean-Yves Girard. Three lightings of logic (Invited Talk). In Simona Ronchi Della Rocca, editor,
Computer Science Logic 2013 (CSL 2013), volume 23 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 11–23, Dagstuhl, Germany, 2013. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

[46] JEAN-YVES GIRARD. Transcendental syntax i: deterministic case. Mathematical Structures in
Computer Science, 27(5):827–849, 2017.

[47] Alessio Guglielmi. A system of interaction and structure. ACM Transactions on Computational Logic,
8(1):1–64, 2007.

[48] Alessio Guglielmi, Tom Gundersen, and Michel Parigot. A proof calculus which reduces syntac-
tic bureaucracy. In Christopher Lynch, editor, Proceedings of the 21st International Conference on
Rewriting Techniques and Applications, volume 6 of LIPIcs, pages 135–150, Dagstuhl, Germany,
2010. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[49] Alessio Guglielmi and Lutz Straßburger. Non-commutativity and MELL in the calculus of structures.
In Laurent Fribourg, editor, Computer Science Logic, pages 54–68, Berlin, Heidelberg, 2001. Springer.

[50] Alessio Guglielmi and Lutz Straßburger. A non-commutative extension of MELL. In Matthias Baaz
and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning, pages
231–246, Berlin, Heidelberg, 2002. Springer.

[51] Michel Habib and Christophe Paul. A survey of the algorithmic aspects of modular decomposition.
Computer Science Review, 4(1):41–59, 2010.

[52] Dominic Hughes. Proofs Without Syntax. Annals of Mathematics, 164(3):1065–1076, 2006.

[53] Dominic Hughes. Towards Hilbert’s 24th problem: Combinatorial proof invariants: (preliminary
version). Electr. Notes Theor. Comput. Sci., 165:37–63, 2006.

[54] J. Martin E. Hyland and Chih-Hao Luke Ong. On full abstraction for PCF: I. Models, observables
and the full abstraction problem, II. Dialogue games and innocent strategies, III. A fully abstract and
universal game model. Information and Computation, 163:285–408, 2000.

[55] Lee O James, Ralph G Stanton, and Donald D Cowan. Graph decomposition for undirected graphs. In
Proceedings of the Third Southeastern Conference on Combinatorics, Graph Theory, and Computing
(Florida Atlantic Univ., Boca Raton, Fla., 1972), pages 281–290, 1972.

[56] Beverly Jamison and Stephan Olariu. P-components and the homogeneous decomposition of graphs.
SIAM Journal on Discrete Mathematics, 8(3):448–463, 1995.

[57] David S Johnson. The np-completeness column: an ongoing guide. Journal of Algorithms, 6(3):434–
451, 1985.

[58] Ryo Kashima. Cut-free sequent calculi for some tense logics. Studia Logica, 53(1):119–136, 1994.

[59] Björn Lellmann and Elaine Pimentel. Modularisation of sequent calculi for normal and non-normal
modalities. ACM Trans. Comput. Logic, 20(2), feb 2019.

[60] László Lovász and Michael D Plummer. Matching theory, volume 367. American Mathematical Soc.,
2009.

[61] Saunders Mac Lane. Categories for the Working Mathematician. Number 5 in Graduate Texts in
Mathematics. Springer, 1971.

[62] Roberto Maieli. Non decomposable connectives of linear logic. Annals of Pure and Applied Logic,
170(11):102709, 2019.

[63] Ross M. McConnell and Jeremy P. Spinrad. Linear-time modular decomposition and efficient transi-
tive orientation of comparability graphs. In Proceedings of the Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’94, pages 536–545, USA, 1994. Society for Industrial and Applied
Mathematics.

[64] Dale Miller and Elaine Pimentel. A formal framework for specifying sequent calculus proof systems.
Theoretical Computer Science, 474:98–116, 2013.

[65] Dale Miller and Alexis Saurin. From proofs to focused proofs: a modular proof of focalization in
linear logic. In J. Duparc and T. A. Henzinger, editors, CSL 2007: Computer Science Logic, volume
4646 of LNCS, pages 405–419. Springer-Verlag, 2007.

45

[66] Lê Thành Dũng Nguyên. Unique perfect matchings, forbidden transitions and proof nets for linear
logic with Mix. Logical Methods in Computer Science, Volume 16, Issue 1, February 2020.

[67] Lê Thành Dũng Nguyên and Thomas Seiller. Coherent interaction graphs: A non-deterministic ge-
ometry of interaction for mll. 2019.

[68] Lê Thành Dũng Nguyên and Lutz Straßburger. A System of Interaction and Structure III: The Com-
plexity of BV and Pomset Logic. working paper or preprint, 2022.

[69] Lê Thành Dũng Nguyên and Lutz Straßburger. BV and Pomset Logic are not the same. In Florin
Manea and Alex Simpson, editors, 30th EACSL Annual Conference on Computer Science Logic (CSL
2022), volume 216 of Leibniz International Proceedings in Informatics (LIPIcs), pages 3:1–3:17,
Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[70] Francesca Poggiolesi. The method of tree-hypersequents for modal propositional logic. In D. Makin-
son, J. Malinowski, and H. Wansing, editors, Towards Mathematical Philosophy, volume 28 of Trends
in Logic, pages 31–51. Springer, 2009.

[71] Christian Retoré. Réseaux et Séquents Ordonnés. PhD thesis, Université Paris VII, 1993.

[72] Christian Retoré. Perfect matchings and series-parallel graphs: multiplicatives proof nets as R&B-
graphs. Electronic Notes in Theoretical Computer Science, 3, 1996.

[73] Christian Retoré. Handsome proof-nets: R&B-graphs, perfect matchings and series-parallel graphs.
Rapport de recherche 3652, INRIA, 1999. Appeared as [75].

[74] Christian Retoré. Pomset logic as a calculus of directed cographs. In V. M. Abrusci and C. Casadio,
editors, Dynamic Perspectives in Logic and Linguistics, pages 221–247. Bulzoni, Roma, 1999. Also
available as INRIA Rapport de Recherche RR-3714.

[75] Christian Retoré. Handsome proof-nets: perfect matchings and cographs. Theoretical Computer
Science, 294(3):473–488, 2003.

[76] Alwen Fernanto Tiu. A system of interaction and structure II: The need for deep inference. Logical
Methods in Computer Science, 2(2):1–24, 2006.

[77] Anne Sjerp Troelstra and Helmut Schwichtenberg. Basic Proof Theory. Cambridge University Press,
second edition, 2000.

[78] Timothy Waring. A graph theoretic extension of boolean logic. Master’s thesis, 2019.

[79] Glynn Winskel, Silvain Rideau, Pierre Clairambault, and Simon Castellan. Games and strategies as
event structures. Logical Methods in Computer Science, 13, 2017.

46

A Deep Inference and the Open Deduction Formalism
Open deduction [48] is a proof formalism based on deep inference [12]. It has originally been defined for
formulas, but it is abstract enough such that it can equally well be used for graphs, as already done in [6].

Definition 112. An inference system S is a set of inference rules (as for example shown in Figure 4).

A derivationD in S with premise G and conclusion H is denoted
G

D S

H
and is defined inductively as

follows:

• Every graph G is a (trivial) derivation with premise G and conclusion G (also denoted G).

• An instance of a rule
G

r
H

in S is a derivation with premise G and conclusion H.

• IfD1 is a derivation with premise G1 and conclusion H1, and D2 is a derivation with premise
G2 and conclusion H2, and H1 = G2, then the composition of D1 and D2 is a derivation
D2 ; D1 denoted as below.

G1

D1 S

H1
..............

G2

D2 S

H2

or

G1

D1 S

H1
..............

G2

D2 S

H2

or

G1

D1 S

H1..............

G2

D2 S

H2

or

G1

D1 S

G2

D2 S

H2

or

G1

D1 S

H1

D2 S

H2

Note that even if the symmetry between G2 and H1 is not written, we always assume it is part
of the derivation and explicitly given.

• If G is a graph with n vertices andD1, . . . ,Dn are derivations with premise Gi and conclusion
Hi for each i ∈ {1, . . . , n}, then GLD1, . . . ,DnM is a derivation with premise GLG1, . . . ,GnM and
conclusion GLH1, . . . ,HnM denoted as below on the left.

G





∣
∣
∣
∣
∣
∣
∣
∣
∣

G1

D1 S

H1

, . . . ,

Gn

Dn S

Hn

∣
∣
∣
∣
∣
∣
∣
∣
∣





G1

D1

H1

⋆

G1

D1

H1

If G = ⋆ ∈ {`,⊗} we may write the derivations as above on the right.

Therefore, C





G

D S

H





≔

C[G]
C[D] S

C[H]
is well-defined for any context C[�] and any derivation

G

D S

H
.

A proof in S is a derivation in S whose premise is ∅.
A graph G is provable in S (denoted ⊢S G) iff there is a proof in S with conclusion G.

A.1 Equivalent Definitions of GS

We here show that the formulation of the system GS provided in this paper is equivalent to one provided in
[7, 8]. In particular, in the previous these papers the rule s⊗ was not included in the system. However, as
shown in [8] this rule plays a crucial role in the proof that GS is a conservative extension of MLL◦ and in [5]
it is shown that this rule cannot be admissible in the proof systems operating on mixed graphs. Moreover,
we here give a weaker side condition on the p-rule with respect to the rules below:

47

p↓ in [8] p↓ in [7]

(M1 ` N1)⊗ · · · ⊗(Mn ` Nn)
p1↓ ⋆

P⊥LM1, . . . , MnM ` PLN1, . . . ,NnM

(M1 ` N1)⊗ · · · ⊗(Mn ` Nn)
p2↓ †

P⊥LM1, . . . , MnM ` PLN1, . . . ,NnM

⋆ ≔ P < {`,⊗} prime Mi , ∅ for all i ∈ {1, . . . , n} † ≔ P < {`,⊗} prime Mi ` Ni , ∅ for all i ∈ {1, . . . , n}

(27)

In order to prove the equivalence between our system and the ones in [7, 8] we recall the following
lemma allowing us to prove that in GS we can derive any graph of the shape G ⊸ G.

Lemma 113. Let M1, . . . , Mn,N1, . . . ,Nn and G be graphs such that |VG| = n. Then there is a
derivation

(M1 ` N1)⊗ · · · ⊗(Mn ` Nn)

{s⊗ ,p↓}

G⊥LM1, . . . , MnM ` GLN1, . . . ,NnM

Proof. By induction on the modular decomposition of G. �

Thanks to this lemma, we can therefore prove the admissibility of the weaker

Proposition 114. The following rule, which is a version of p↓ with weaker side conditions, is admis-
sible in GS

(M1 ` N1)⊗ · · · ⊗(Mn ` Nn)
p1↓

P⊥LM1, . . . , MnM ` PLN1, . . . ,NnM

where P is prime and Mi , ∅ for all i ∈ {1, . . . , n}.

Proof. Note that we may have Ni = ∅ for some i ∈ {1, . . . , n}. Thus, if Ni , ∅ for all i ∈ {1, . . . , n},
then p1↓ is an occurrence of p↓. Otherwise, w.l.o.g., N1 = ∅, thus we have a derivation

M1 ⊗

(M2 ` N2)⊗ · · · ⊗(Mn ` Nn)
Lemma 113

H⊥LM2, . . . , MnM ` HLN2, . . . ,NnM
..

M1 ⊗P⊥L∅, M2, . . . , MnM
s⊗

P⊥LM1, M2, . . . , MnM
` PL∅,N2, . . . ,NnM

�

Theorem 115. Let G be a graph. Then

⊢GS G ⇔ ⊢{ai↓,s`,s⊗,p1↓}G ⇔ ⊢{ai↓,s`,p1↓}G ⇔ ⊢{ai↓,s`,p2↓}G

Proof. The first equivalence follows from Proposition 114. The other has been proved in [8]. �

B Soundness and Completeness of RB-nets
In order to prove Theorem 69, we use the following technical lemmas.

Lemma 116. Let H be a graph. Then the following rule is admissible in RBP.

⊢ G1 · · · ⊢ Gn
d-κRB

G
⊢ (GG ⊎GG⊥) ⊲⊳Xd

(G1 ⊎ · · · ⊎G2)

48

where G is a graph with |VG | = n and

Xd =
{(

iiGG
, r1

i

)

,
(

iiGG⊥
, r2

i

)

| i ∈ {1, . . . , n} and r1
i , r

2
i ∈ Root(Gi)

}

for some r1
i
, r2

i
∈ Root(Gi) with r1

i
, r2

i
for all i ∈ {1, . . . , n}.

Proof. By induction on the modular decomposition-via quasi-prime graphs of G:

• if G = PLG1, . . . ,GmM with P < {`,⊗} prime, then

IH

⊢ G′
1

· · ·
IH

⊢ G′m
d-κRB

P

⊢ (GP ⊎GP⊥) ⊲⊳Xd

(

G′
1
⊎ · · · ⊎G′m

)

for a given Xd;

• otherwise G = QLG1, . . . ,GmM with, w.l.o.g., Q = ⊗m, then

IH

⊢ G′
1

· · ·
IH

⊢ G′m
s-κRB
⊗n

⊢ G⊗m
⊲⊳Xs

(

G′
1
⊎ · · · ⊎G′m

)

`
RB

⊢ G`m
⊲⊳X`

(

G⊗m
⊲⊳Xs

(

G′
1
⊎ · · · ⊎G′m

))

for given Xd and X`n
. Note that the conclusion can also be written as

(

G`m
⊎G⊗m

)

⊲⊳Xd(

G′
1
⊎ · · · ⊎G′m

)

with Xd = Xs ∪ X`.

�

We can now provide a proof of Theorem 69.

Theorem (Theorem 69). Let Γ be a P-sequent. Then

1. ⊢MPL [[Γ]] ⇐⇒ ⊢RBP {{Γ}} ⊔ Link for an axiom link Link for Γ

2. ⊢MPL◦ [[Γ]] ⇐⇒ ⊢RB◦Q
{{Γ}} ⊔ Link for an axiom link Link for Γ

Proof. We prove (2) since (1) immediately follows.
Given a proof π of Γ in MPL◦, we define a proof RB(π) of the RB-structure {{π}} = {{Γ}} ⊔ Link in

RB◦
Q

by induction on the last rule ρ in π:

• if ρ = ◦, then

◦
⊢ ◦
 ◦RB

⊢ ∅

• if ρ = ax, then

ax
⊢ a, a⊥

 axRB

⊢ a a⊥

• if ρ = `n, then

– if all φ1, . . . , φn and ψ are not vacuous, then

π1

⊢ ∆, φ1, . . . , φn
`

⊢ ∆,`nLφ1, . . . , φnM

IH

⊢ {{π1}}
`RB

⊢ G` ⊲⊳{(
ii
`
,r{{φi}}

)

|i∈{1,...,n}
} {{π1}}

49

– if, w.l.o.g. φk+1, . . . , φn are vacuous and

π1

⊢ ∆, φ1, . . . , φn
`

⊢ ∆,`nLφ1, . . . , φnM

IH

⊢ {{π1}}
`RB

⊢ G` ⊲⊳{(
ii
`
,r{{φi}}

)

|i∈{1,...,k}
} {{π1}}

If k = 1, then we now consider the root of {{φ1}} as if it is the root of
{{

`nLφ1, . . . , φnM
}}

.

• if ρ = ⊗n, then

– if all φ1, . . . , φn are not vacuous, then

π1

⊢ ∆1, φ1 · · ·
πn

⊢ ∆n, φn
⊗n

⊢ ∆1, . . . ,∆n,⊗nLφ1, . . . , φnM,∆

IH

⊢ {{π1}}
⊗RB

⊢ G⊗ ⊲⊳
{(

ii⊗ ,r{{φi}}

)

|i∈{1,...,n}
} {{π1}}

– if, w.l.o.g. φk+1, . . . , φn are vacuous and

π1

⊢ ∆, φ1, . . . , φn
⊗
⊢ ∆,⊗nLφ1, . . . , φnM

IH

⊢ {{π1}}
⊗RB

⊢ G⊗ ⊲⊳
{(

ii⊗,r{{φi}}

)

|i∈{1,...,k}
} {{π1}}

If k = 1, then we now consider the root of {{φ1}} as if it is the root of
{{

⊗nLφ1, . . . , φnM
}}

.

• if ρ = d-κ and if, w.l.o.g.,
[[

φ j

]]

= ∅ for all k ∈ {k + 1, . . . , l},
[[

ψi

]]

= ∅ for all i ∈ {l + 1, . . . ,m},

and
[[

φi

]]

= ∅ =
[[

ψi

]]

for all i ∈ {m + 1, . . . , n} then

π1

⊢ ∆1, φ1, ψ1 . . .
πn

⊢ ∆n, φn, ψn
d-κ
⊢ ∆1, . . . ,∆n, κPLφ1, . . . , φnM, κP⊥Lψ1, . . . , ψnM

IH

{{π1}} · · ·
IH

{{πl}}
d-κRB

G
G′′

IH

{{πl+1}}
sRB
⊗

. . .
IH

{{πm}}
sRB
⊗

G′
IH

{{πm+1}} · · ·
IH

{{πn}}
mixRB

G′ ⊎ {{πm+1}} ⊎ · · · ⊎ {{πn}}

where

– G′′ = {{H}} ⊎
{{

H⊥
}}

⊲⊳Y ({{π1}} ⊎ · · · ⊎ {{πl}})

– HLv1, . . . , vlM = PLv1, . . . , vl,∅, . . . ,∅M

– Y =
{(

ii
{{H}}

, r{{φi}}

)

,
(

ii
{{H⊥}}

, r{{ψi}}

)

| i ∈ {1, . . . , n}
}

– G′ = {{K}} ⊎
{{

K⊥
}}

⊲⊳X ({{πn+1}} ⊎ · · · ⊎ {{πm}})

– KLv1, . . . , vmM = PLv1, . . . , vm,∅, . . . ,∅M

– X = Y ∪
{(

ii
{{K}}

, r{{φi}}

)

,
(

ii
{{K⊥}}

, r{{ψi}}

)

| i ∈ {n + 1, . . . ,m}
}

In this case, we now consider the root of
{{
κPLφ1, . . . , φnM

}}
and of

{{
κP⊥Lψ1, . . . , ψnM

}}
to respec-

tively be the root of
{{

κPLφ1, . . . , φk, ◦M
}}

∈ Root({{K}}) and the root of
{{

κP⊥Lψ1, . . . , ψk, ◦M
}}

∈
Root(

{{

K⊥
}}

).

• if ρ = mix, then

50

– if, w.l.o.g., ∆2 only contains vacuous formulas, then

π1

⊢ ∆1

π2

⊢ ∆2
mix
⊢ ∆1,∆2

{{π1}}

⊢ {{∆1}}

– otherwise
π1

⊢ ∆1

π2

⊢ ∆2
mix
⊢ ∆1,∆2

IH

{{π1}}
IH

{{π2}}
mixRB

⊢ {{π1}} ⊎ {{π2}}

• if ρ = wd⊗, then
π1

⊢ ∆1, φk

π1

⊢ ∆2, χLφ1, . . . , φk−1, φk+1, . . . , φnM
wd⊗

⊢ ∆1,∆2, κLφ1, . . . , φnM

since
{{

∆, κLφ1, . . . , φk−1, ◦, φk+1, . . . , φnM
}}

=
{{

∆, χLφ1, . . . , φnM
}}

by definition of the rule wd⊗.

– if φk is vacuous, then then we let {{π}} = {{π1}} ⊎ {{π2}} and we consider the root of
{{

χLφ1, . . . , φk−1, φk+1, . . . , φnM
}}

to be the root of
{{

κLφ1, . . . , φnM
}}

;

– if χLφ1, . . . , φk−1, φk+1, . . . , φnM is vacuous, then we also let {{π}} = {{π1}} ⊎ {{π2}} but now
we consider the root of {{φk}} to be the root of

{{

κLφ1, . . . , φnM
}}

;

– otherwise, {{π2}} = GQLv1,...,vk−1,∅,vk+1,...,vnM ⊲⊳X− {{Γ2, φ1, . . . , φk−1, φk+1, . . . , φn}} ⊔

Link with X− =
{(

vi, r{{φi}}

)}

and we conclude by letting {{π}} = {{π1}} ⊎

{{Γ2, φ1, . . . , φk−1, φk+1, . . . , φn}} ⊔ Link ⊲⊳X+ GQLv1,...,vkM with x+ = x− ∪
{(

vk, r{{φk}}

)}

.

We let the root of κLφ1, . . . , φnM to be the root of χLφ1, . . . , φk−1, φk+1, . . . , φnM in {{π}}.

Conversely, given a proof π of G = {{Γ}} ⊔ Link in RB◦
Q

, we define a proof π(G) of Γ in MPL◦ by
induction on the last rule ρ in π:

• if ρ = ◦RB, then G = ∅ and π′ = ◦
⊢ ◦

• if ρ = axRB, then G = a a⊥ and π′ = ax
⊢ a, a⊥

• if ρ = `RB, then G = G ⊲⊳X`
G1 with G1 = {{Γ, φ1, . . . , φn}} ⊔ Link and G : `n. Thus

π(G) =

π(G1) IH

⊢ Γ, φ1, . . . , φn
`n

⊢ Γ,`nLφ1, . . . , φnM

• if ρ = ⊗RB, then G = G⊗n
⊲⊳Xs

(⊎n
i=1 Gi

)

with Gi = {{Γi, φi}} ⊔ Linki for all i ∈ {1, . . . , n}. Thus

π(G) is of the shape
π(G1) IH

⊢ Γ1, φ1 · · ·
π(Gn) IH

⊢ Γn, φn
⊗
⊢ Γ1, . . . , Γn, φ1 ⊗(· · · (φn−1 ⊗ φn))

• if ρ = d-κRB
Q

then G = (GP ⊎GP⊥) ⊲⊳Xd

(⊎n
i=1 Gi

)

with Gi = {{Γi, φi, ψi}} ⊔ Linki for all i ∈

{1, . . . , n}. Thus

π(G) =

π(G1) IH

⊢ Γ1, φ1, ψ1 . . .
π(Gn) IH

⊢ Γn, φn, ψn
d-κP

⊢ Γ1, . . . , Γn, κPLφ1, . . . , φnM, κP⊥Lψ1, . . . , ψnM

51

• if ρ = mixRB, then G =
⊎n

i=1 Gi with Gi = {{Γi}} ⊔ Linki for all i ∈ {1, . . . , n}. Thus

π(G) =

π(G1) IH

⊢ Γ1 · · ·
π(Gn) IH

⊢ Γn
mix

⊢ Γ1, . . . , Γn

• if ρ = sRB
⊗ , then G = GQ ⊲⊳X+ (G1 ⊎G2) with

1. G1 = {{Γ1, φk}} ⊔ Link1;

2. G2 =
{{

QLv1, . . . , vk−1,∅, vk+1, . . . , vnM
}}

⊲⊳X− {{Γ2, φ1, . . . , φk−1, φk+1, . . . , φn}} ⊔ Link2.

Thus

π(G) =

π(G1) IH

⊢ Γ1, φk

π(G2) IH

⊢ Γ2, χLφ1, . . . , φk−1, φk+1, . . . , φnM
wd⊗

⊢ Γ2, κQLφ1, . . . , φnM

with
[[

χ
]]

∼ QLv1, . . . , vk−1,∅, vk+1, . . . , vnM.

�

C On Rules Introducing a Connective at a Time
In this appendix we discuss the results about the system extending multiplicative linear logic with the rule
s-κ, that is, the system.

MLLs-κ
≔

{

ax,`,⊗,mix, s-κ | κP ∈ C with P < {`,⊗} prime
}

where we consider the following rule introducing a prime graphical connective different from `n and ⊗ at
a time instead of d-κ.

⊢ Γ1, φ1 · · · ⊢ Γn, φn
s-κ

⊢ Γ1, . . . , Γn, κLφ1, . . . , φnM

We first observe that in the system does not satisfy anymore initial coherence (it suffices to consider the
formula κP4

La, b, c, dM⊸ κP4
La, b, c, dM) even if the system still satisfies cut-elimination. In fact, for a proof

of cut-elimination it suffices to include in the proof of Theorem 39 the following cut-elimination step.

⊢ Γ1, φ1 · · · ⊢ Γn, φn
s-κ

⊢ Γ1, . . . , Γn, κPLφ1, . . . , φnM

⊢ ∆1, φ
⊥
1

· · · ⊢ ∆n, φ
⊥
n

s-κ
⊢ ∆1, . . . ,∆n, κP⊥Lφ

⊥
1
, . . . , φ⊥n M

cut
⊢ Γ1, . . . , Γn,∆1, . . . ,∆n

⊢ Γ1, φ1 ⊢ ∆1, φ
⊥
1

cut
⊢ Γ1,∆1, χ1, ψ1 · · ·

⊢ Γn, φ
⊥
n ⊢ ∆n, φ

⊥
n

cut
⊢ Γn, χn, ψn

mix
⊢ Γ1, . . . , Γn,∆1, . . . ,∆n

Note that s-κ is derivable in MPL◦ using d-κ and unitorκ .

Lemma 117. The rule s-κ is derivable in MPL◦.

Proof. It suffices to consider the following derivation

◦
⊢ ◦ ⊢ Γ1, φ1

mix
⊢ Γ1, ◦, φ1 · · ·

◦
⊢ ◦ ⊢ Γn, φn

mix
⊢ Γn, ◦, φn

d-κ
⊢ Γ1, . . . , Γn, κ

⊥L◦, . . . , ◦M, κLφ1, . . . , φnM
(n−1)×unitorκ

⊢ Γ1, . . . , Γn, ◦, κLφ1, . . . , φnM
`

⊢ Γ1, . . . , Γn, ◦` κLφ1, . . . , φnM
unitorκ

⊢ Γ1, . . . , Γn, κLφ1, . . . , φnM

�

We can directly prove the derivability of the corresponding rule in the system RB◦
Q

.

52

Lemma 118. The rule s-κRB
G

is derivable in RB◦
Q

.

Proof. We proceed by induction on the modular decomposition of G via quasi-prime graphs:

• if G = `n, then
IH

⊢ G1 · · ·
IH

⊢ Gn
mixRB

⊢ G1 ⊎ · · · ⊎Gn
`RB

⊢ G ⊲⊳Xs
(G1 ⊎ · · · ⊎Gn)

• if G = ⊗n, then s-κRB
Q
= ⊗RB.

• if G = P, for a prime graph P < {`,⊗}, then there is T = GQ♣{i
k
GQ
} such that

IH

⊢ GT ⊲⊳X′s
(G1 ⊎ · · · ⊎Gk−1 ⊎Gk+1 ⊎ · · · ⊎Gn)

IH

⊢ Gk
sRB
⊗

⊢ GQ ⊲⊳Xs
(G1 ⊎Gk)

• otherwise G = QLM1, . . . , MnM and we can apply inductive hypothesis.

�

53

	1 Introduction
	1.1 Main contributions
	1.2 Outline of the paper

	2 From Formulas To Graphs
	2.1 Graphs and Modular Decomposition
	2.2 Classical Propositional Formulas and Cographs
	2.3 Modular Decomposition of Graphs

	3 Multiplicative and IsoMix Graphical Logic
	3.1 Generalized Formulas
	3.2 Extending Multiplicative Linear Logic with Graphical Connective
	3.3 Properties of the Logics MPL and MPL
	3.4 Soundness of Logical Equivalence in MPL

	4 The Graphical Logic GS is a Model for MPL
	5 RB-Proof Nets
	5.1 From Graphs to RB-forests
	5.2 RB-Graphs Representing Proofs

	6 A Correctness Criterion for MLL-nets
	6.1 Æ-Connectedness in RB-graphs
	6.2 A Topological Characterization of MLL and MLL

	7 Generalizing the Correctness Criterion to MPL and MPL
	7.1 Connectedness and P-Connectness in Graphs
	7.2 A Correctness Criterion for MPL
	7.3 A Correctness Criterion for MPL
	7.4 A Topological Characterization of GS

	8 Classical Logic Beyond Cographs
	9 Conclusion and Future Works
	9.1 Future Works

	A Deep Inference and the Open Deduction Formalism
	A.1 Equivalent Definitions of GS

	B Soundness and Completeness of RB-nets
	C On Rules Introducing a Connective at a Time

