Graphical Representations and Cluster Algorithms

Jon Machta
University of Massachusetts Amherst

Newton Institute, March 27, 2008

Outline

- Introduction to graphical representations and cluster algorithms
- An algorithm for the FK random cluster model (q>1)
- Graphical representations and cluster algorithms for Ising systems with external fields and/or frustration

Graphical Representations

- •Tool for rigorous results on spin systems
- •Basis for very efficient Monte Carlo algorithms
- •Source of geometrical insights into phase transitions

Fortuin & Kastelyn Coniglio & Klein Swendsen & Wang Edwards & Sokal

Joint Spin-Bond Distribution

Edwards&Sokal, PRD, 38,2009 (1988)

$$\mathcal{W}(\sigma,\omega;p) = B_p(\omega)\Delta(\sigma,\omega)$$

$$B_p(\omega) = \prod_{(ij)} p^{\omega_{ij}} (1-p)^{1-\omega_{ij}}$$

Bernoulli factor

$$\sigma_i = \left\{ \begin{array}{cc} +1 & \uparrow \\ -1 & \downarrow \end{array} \right.$$

$$\omega_{ij} = \left\{ \begin{array}{cc} 1 & \overline{} \\ 0 & \overline{} \end{array} \right.$$

$$\Delta(\sigma, \omega) = \begin{cases} 1 \text{ if for every } (ij) \ \omega_{(ij)} = 1 \to \sigma_i = \sigma_j \\ 0 \text{ otherwise} \end{cases}$$

Every occupied bond is satisfied

Marginals of ES Distribution

$$\mathcal{W}(\sigma,\omega;p) = B_p(\omega)\Delta(\sigma,\omega)$$

Fortuin-Kastelyn random cluster model for q=2

Ising model

$$\mathcal{W}(\sigma; p = 1 - e^{-2\beta J}) = e^{\beta J \sum_{(ij)} \sigma_i \sigma_j}$$

Swendsen-Wang Algorithm

- •Occupy satisfied bonds with probability $p = 1 e^{-2\beta J}$
- •Identify clusters of occupied bonds
- ■Randomly flip clusters of spins with probability 1/2.

Connectivity and Correlation

$$\langle \sigma_i \sigma_j \rangle = \text{Prob}\{i \text{ and } j \text{ connected}\}\$$

Efficiency at the critical point

• Dynamic Exponent

$$au \sim L^z$$

Li-Sokal bound

$$z \ge \alpha/\nu$$

- L linear dimension
- au autocorrelation time
- z dynamic exponent
- α specific heat exponent
- $\bullet \ \nu$ correlation length exponent

Random cluster model (q>1)

$$\mathcal{W}(\omega; p) = B_p(\omega) q^{\mathcal{C}(\omega)}$$

For q not too large and d>1, there is a continuous phase transition. Above a critical q, the transition is first-order. q=1 is Bernoulli percolation, q=2 is Ising, q=positive integer is Potts.

Edward-Sokal Joint Distribution

L. Chayes & JM, Physica A **254**, 477 (1998)

$$\mathcal{W}(\sigma,\omega;p) = B_p(\omega)(q-1)^{\mathcal{C}(\sigma,\omega)}\Delta(\sigma,\omega)$$

 $\mathcal{C}(\sigma,\omega)$ number of clusters of **inactive** sites

$$B_p(\omega) = \prod_{(ij)} p^{\omega_{ij}} (1-p)^{1-\omega_{ij}}$$
 Bernoulli factor

$$\sigma_i = \left\{ \begin{array}{cc} 1 & \bullet \\ 0 & \end{array} \right.$$

$$\Delta(\sigma, \omega) = \begin{cases} 1 \text{ if for every } (ij) \ \omega_{(ij)} = 1 \to \sigma_i = \sigma_j \\ 0 \text{ otherwise} \end{cases}$$

$$\omega_{ij} = \left\{ \begin{array}{ccc} 1 & --- \\ 0 & --- \end{array} \right.$$

Every occupied bond is satisfied

Bond marginal is q RC model

Algorithm for RC model

• Given a bond configuration ω identify clusters

• Declare clusters active with prob 1/qand inactive otherwise,

$$\Delta(\sigma,\omega)(\frac{1}{q})^{\mathcal{C}(\omega)-\mathcal{C}(\sigma,\omega)}(1-\frac{1}{q})^{\mathcal{C}(\sigma,\omega)}$$

• Occupy active bonds with probability p to produce new bond configuration ω' ,

$$B_p(\omega'_{\mathrm{active}})\Delta(\sigma,\omega')$$

Dynamic Exponent for 2D RC model

Y. Deng, T. M. Garoni, JM, G. Ossola, M. Polin, and A. D. Sokal PRL 99, 055701 (2007)

TABLE I. Dynamic critical exponents $z_{\text{int},\mathcal{E}'}$ for the twodimensional random-cluster model as a function of q, with preferred fit and minimum L value used in the fit. Error bars are 1 standard deviation, statistical error only. The exact exponents α/ν and β/ν are shown for comparison [22].

q	Fit	$L_{ m min}$	$z_{\mathrm{int},\mathcal{E}'}$	α/ν	β/ν
1.00	Exact		0	-0.5000	0.1042
1.25	$A + BL^{-p}$	128	0	-0.3553	0.1112
1.50	$A + BL^{-p}$	32	0	-0.2266	0.1168
1.75	$AL^z + B$	16	0.06(1)	-0.1093	0.1213
2.00	$AL^z + B$	32	0.14(1)	0 (log)	0.1250
2.25	$AL^z + B$	32	0.24(1)	0.1036	0.1280
2.50	$AL^z + B$	32	0.31(1)	0.2036	0.1303
2.75	$AL^z + B$	16	0.40(2)	0.3017	0.1321
3.00	$AL^z + B$	32	0.49(1)	0.4000	0.1333
3.25	$AL^z + B$	64	0.57(1)	0.5013	0.1339
3.50	AL^z	16	0.69(1)	0.6101	0.1338
3.75	AL^z	32	0.78(1)	0.7376	0.1324
4.00	$AL^z + B$	32	0.93(2)	1.0000	0.1250

Dynamic Exponent for 3D RC model

TABLE II. Dynamic critical exponents $z_{\text{int},\mathcal{E}'}$ and static exponents α/ν and β/ν for the three-dimensional random-cluster model. For q=2, dynamic data are from Ref. [10] and static exponents are from Ref. [26].

q	Fit	$L_{ m min}$	$z_{\text{int},\mathcal{E}'}$	α/ν	eta/ u
1.5	AL^z	96	0.13(1)	-0.32(4)	0.500(4)
1.8	AL^z	96	0.29(1)	-0.15(5)	0.5117(6)
2	AL^z	96	0.46(3)	0.174(1)	0.5184(1)
2.2	AL^z	24	0.76(1)	0.50(4)	0.508(4)

Dynamic Exponent for Mean Field RC model

- z=0, 1<q<2,
- *z*=1, *q*=2,
- exponential slowing (first-order), q>2
- obtained from an evolution equation for the average size of the largest cluster:

$$m' = \frac{2q-2}{q}m - \frac{4t}{q^2} + \frac{8(q-1)tm}{3q^2} - \frac{2(q-1)^2m^2}{3q}$$

Conclusions (Part I)

- Swendsen-Wang scheme can be extended to real *q*>1 RC models.
- Li-Sokal bound not sharp for any q>1

Fields and Frustration

$$\mathcal{H} = -\sum_{(ij)} J_{ij}\sigma_i\sigma_j - \sum_{(ij)} h_i\sigma_i$$

- •Ising model in a staggered field
- •Spin glass
- •Random field Ising model

Ising model in a staggered field

(bipartite lattice)

$$\mathcal{H} = -\sum_{(ij)} J_{ij}\sigma_i\sigma_j - \sum_{(ij)} h_i\sigma_i$$

$$J_{ij} = 1$$
$$h_i = \text{parity}(i)H$$

For H not too large and d>1, there is a continuous phase transition in the Ising universality class to a phase with non-zero staggered magnetization

Ising spin glass

$$\mathcal{H}=-\sum_{(ij)}J_{ij}\sigma_i\sigma_j-\sum h_i\sigma_i \ [J_{ij}]=0$$
frustration%\$#@!1 $[J_{ij}^2]=1$ $h_i=0$

i.i.d. quenched disorder

For d>2, there is a continuous phase transition to a state with non-zero Edwards-Anderson order parameter.

Swendsen-Wang fails with fields or frustration

- No relation between spin correlations and connectivity.
- At T_c one cluster occupies most of the system (e.g. percolation occurs in the high temperature phase).
- External fields h_i cause small acceptance probabilities for cluster flips.

Two Replica Graphical Representation

Swendsen & Wang, PRL, 57, 2607 (1986) the other SW paper!

O. Redner, JM & L. Chayes, PRE 58, 2749 (1998), JSP 93, 17 (1998)

JM, M. Newman & L. Chayes, PRE 62, 8782 (2000)

JM, C. Newman & D. Stein, JSP **130**, 113 (2008)

$$\sigma_i = 1$$

$$\tau_i = 1$$

$$\omega_{ij} = 1$$

$$\eta_{ij} = 1$$
 —

Spin-Bond Distribution

$$\mathcal{W}(\sigma, au,\omega,\eta;eta,J)$$

$$= B_{2\beta}(\omega)B_{\beta}(\eta)\Delta(\sigma,\tau,\omega;J)\Gamma(\sigma,\tau,\eta)$$

$$B_{\beta}(\eta) = \prod_{(ij)} (1 - e^{-2\beta})^{\eta_{ij}} (e^{-2\beta})^{1 - \eta_{ij}}$$
 Bernoulli factor

$$\Delta(\sigma, \tau, \omega; J) = \begin{cases} 1 \text{ if for every } (ij) \ \omega_{ij} = 1 \to J_{ij}\sigma_i\sigma_j > 0 \text{ and } J_{ij}\tau_i\tau_j > 0 \\ 0 \text{ otherwise} \end{cases}$$

$$\Gamma(\sigma, \tau, \eta) = \begin{cases} 1 \text{ if for every } (ij) \ \eta_{ij} = 1 \to \sigma_i \sigma_j \tau_i \tau_j < 0 \\ 0 \text{ otherwise} \end{cases}$$

spin bond constraints

Spin Bond Constraints

•If bonds satisfied in *both* replicas then

$$\omega_{ij} = 1$$

with probability $p = 1 - e^{-4\beta}$

•If bonds satisfied in only *one* replica then

$$\eta_{ij} = 1$$
 ——

with probability $p = 1 - e^{-2\beta}$

Properties

•Spin marginal is two independent Ising systems

$$\mathcal{W}_{\mathrm{spin}}(\sigma, \tau; \beta, J) = \mathrm{const} imes \exp\left[\beta \sum_{(ij)} J_{ij}(\sigma_i \sigma_j + \tau_i \tau_j)\right]$$

•Correlation function of EA order parameter and connectivity

$$\langle \sigma_i \tau_i \sigma_j \tau_j \rangle =$$

Prob{ *i* and *j* are connected by a path of occupied bonds with an **even** number of red bonds}

Prob{ *i* and *j* are connected by a path of occupied bonds with an **odd** number of red bonds}

Properties II

- •For ferromagnetic Ising systems, including the staggered field and random field Ising models, percolation of blue bonds is equivalent to broken symmetry.
- •For Ising systems with AF interactions, the existence of a blue cluster with a density strictly larger than all other blue cluster is equivalent to broken symmetry.

Two Replica Cluster Algorithm

- Given a two spin configurations
- Occupy bonds
- Identify clusters

$$p = 1 - e^{-4\beta}$$

$$p = 1 - e^{-2\beta}$$

For purposes of this example, assume all bonds FM

Re-populate spins consistent with constraints

Two Replica Cluster Algorithm

- Given two spin configurations in the same environment.
- Blue (red) occupy doubly (singly) satisfied bonds.
- Identify blue and red clusters.
- Re-populate spins with equal probability consistent with constraints due to bonds (**flip clusters**).
- Erase blue and red bonds.
- Add-ons:
 - Translations and global flips of replicas relative to each other (staggered field, bipartite lattice only)
 - Metropolis sweeps
 - Parallel tempering

How well does it work?

2D Ising model in a staggered field

TABLE III: Magnetization integrated autocorrelation times and CPU times for several algorithms for L=80.

X. Li & JM, Int. J. Mod. Phys. C12, 257 (2001)

Almonithm	Integrated	Autocorrela	CPU time			
Algorithm	H = 0	H=2	H = 4	$(10^{-6} \text{ sec/sweep/spin})$		
TRC	37.3 ± 0.6	39.8 ± 0.7	40.4 ± 0.8	3.1		
TRC	40 1	54 ± 2	55 ± 1	3.0		
odd translations only	46 ± 1					
TRC	100 10	283 ± 27	435 ± 43	2.9		
even translations only	186 ± 18					
TRC & inactive flips	33.6 ± 0.9	246 ± 27	372 ± 23	4.6		
even translations only						
TRC	005 10	440 ± 24	773 ± 47	2.6		
no translations	335 ± 18					
Swendsen-Wang	4.12 ± 0.02	4682 ± 173	5707 ± 48	1.3		
Metropolis	928 ± 99	1892 ± 158	2959 ± 236	1.1		

z < 0.5

2D Spin Glass

J. S. Wang & R. H. Swendsen, Prog. Theor. Phys. Suppl, vol 157, 317 (2005)

Fig. 2. Comparison of integrated correlation time on a 128 × 128 lattice for single-spin-flip (triangles), parallel tempering (squares), and replica Monte Carlo (circles). The K = βJ value is distributed from 0.1 to 1.8 in spacing of 0.1. Typically, 10⁶ MCS are used.

Parallel Tempering

- •n replicas at temperatures $\beta_1 \dots \beta_n$
- •MC (e.g. Metropolis) on each replica
- •Exchange replicas with energies E and E' and temperatures β and β' , with probability:

$$\min\{\exp[(\beta - \beta')(E - E')], 1\}$$

Parallel Tempering+Two Replica Cluster Moves

- •*n* replicas at temperatures $\beta_1 \dots \beta_n$
- •Two replica cluster moves at each temperature
- •Exchange replicas.

Diluted 3D spin glass

T. Jorg, Phys. Rev. B 73, 224431 (2006)

FIG. 1: Qualitative comparison of the integrated autocorrelation time τ_{auto} as a function of temperature between parallel tempering (PT) and the replica cluster algorithm (Cluster) averaged on the same 20 configurations at L=10.

3D Spin Glass

- For the *d*>2 spin glasses, two giant clusters ("agree" and "disagree" spins) appear in the high temperature phase and together comprise most of the system.
- The signature of the spin glass transition is the onset of a density difference between the two giant clusters.
- The algorithm is not much more efficient that parallel tempering alone.

JM, C. Newman & D. Stein, JSP 130, 113 (2008)

Conclusions (Part II)

 The two-replica graphical representation and associated algorithms are promising approaches for spin systems with fields or frustration.

However...

 For the hardest systems, e.g. 3D Ising spin glass, the algorithm is not much more efficient than parallel tempering.