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Outline

• Introduction to graphical representations and cluster algorithms

• An algorithm for the FK random cluster model (q>1)

• Graphical representations and cluster algorithms for Ising

systems with external fields and/or frustration



Graphical Representations

•Tool for rigorous results on spin systems

•Basis for very efficient Monte Carlo algorithms

•Source of geometrical insights into phase transitions

Fortuin & Kastelyn
Coniglio & Klein
Swendsen & Wang
Edwards & Sokal



Joint Spin-Bond Distribution

Every occupied bond is satisfied

Edwards&Sokal, PRD, 38,2009 (1988)

Bernoulli factor



Marginals of ES Distribution

Fortuin-Kastelyn random cluster model for q=2

Ising model

=number of clusters



Swendsen-Wang Algorithm

Occupy satisfied bonds with probability

Identify clusters of occupied bonds

Randomly flip clusters of spins with probability 1/2.! 

p =1" e"2#J



Connectivity and Correlation

• Broken Symmetry         Giant cluster



Efficiency at the critical point

• Dynamic Exponent

• Li-Sokal bound

•      linear dimension

•        autocorrelation time

•        dynamic exponent

•        specific heat exponent

•        correlation length exponent



Random cluster model (q>1)

For q not too large and d>1, there is a continuous phase
transition.  Above a critical q, the transition is first-order.  q=1
is Bernoulli percolation, q=2 is Ising, q=positive integer is
Potts.



Edward-Sokal Joint Distribution

Every occupied bond is satisfied

Bernoulli factor

number of clusters of inactive sites

Bond marginal is q RC model

L. Chayes & JM, Physica A 254, 477 (1998)



Algorithm for RC model

• Given a bond configuration      identify
clusters

• Declare clusters active with prob 1/q
and inactive otherwise,

• Erase active occupied bonds
• Occupy active bonds with probability p

to produce new bond configuration      ,



Dynamic Exponent for 2D RC model
Y. Deng, T. M. Garoni, JM, G. Ossola, M. Polin,and A. D. Sokal PRL 99, 055701 (2007)



Dynamic Exponent for 3D RC model



• z=0, 1<q<2,
• z=1, q=2,
• exponential slowing (first-order), q>2
• obtained from an evolution equation for the

average size of the largest cluster:

Dynamic Exponent for Mean Field RC model



Conclusions (Part I)

• Swendsen-Wang scheme can be extended to
real q>1 RC models.

• Li-Sokal bound not sharp for any q>1



Fields and Frustration

•Ising model in a staggered field
•Spin glass
•Random field Ising model



For H not too large and d>1, there is a continuous phase
transition in the Ising universality class to a phase with non-
zero staggered magnetization

Ising model in a staggered field
(bipartite lattice)

square lattice



For d>2, there is a continuous phase transition to a state with
non-zero Edwards-Anderson order parameter.

i.i.d. quenched disorder

Ising spin glass

frustration%$#@!1



Swendsen-Wang fails with fields or frustration

• No relation between spin correlations and
connectivity.

• At Tc one cluster occupies most of the
system (e.g. percolation occurs in the high
temperature phase).

• External fields hi cause small acceptance
probabilities for cluster flips.



Two Replica Graphical Representation
Swendsen & Wang, PRL, 57, 2607 (1986) the other SW paper!
O. Redner, JM & L. Chayes, PRE 58, 2749 (1998), JSP 93, 17 (1998)
JM, M. Newman & L. Chayes, PRE 62, 8782 (2000)
JM, C. Newman & D. Stein, JSP 130, 113 (2008)



Spin-Bond Distribution

Bernoulli factor

spin bond constraints



Spin Bond Constraints
•If bonds satisfied in both
replicas then

with probability

•If bonds satisfied in only one
replica then

with probability



PropertiesProperties

Prob{ i and j are connected by a path of occupied bonds
with an even number of red bonds}

−
Prob{ i and j are connected by a path of occupied bonds
with an odd number of red bonds}

•Spin marginal is two independent Ising systems

•Correlation function of EA order parameter and connectivity



Properties II

•For ferromagnetic Ising systems, including the staggered
field and random field Ising models, percolation of blue
bonds is equivalent to broken symmetry.

•For Ising systems with AF interactions, the existence of a
blue cluster with a density strictly larger than all other blue
cluster is equivalent to broken symmetry.



For purposes of this example, assume all bonds FM

Two Replica Cluster Algorithm

•Given a two spin
configurations
•Occupy bonds
•Identify clusters



Re-populate spins consistent with constraints

If a field is present, the acceptance probability
of this flip involves the Boltzmann factor of the
field energy change

Even with a field, these cluster spin
configurations are equally probable



Two Replica Cluster Algorithm
• Given two spin configurations in the same environment.
• Blue (red) occupy doubly (singly) satisfied bonds.
• Identify blue and red clusters.
• Re-populate spins with equal probability consistent with

constraints due to bonds (flip clusters).
• Erase blue and red bonds.
• Add-ons:

– Translations and global flips of replicas relative to each other
(staggered field, bipartite lattice only)

– Metropolis sweeps
– Parallel tempering



How well does it work?



2D Ising model in a staggered  field

X. Li & JM, Int. J. Mod. Phys. C12, 257 (2001)

z<0.5



2D Spin Glass
J. S. Wang & R. H. Swendsen, Prog. Theor. Phys. Suppl, vol 157, 317 (2005)



Parallel Tempering

•n replicas at temperatures β1 … βn
•MC (e.g. Metropolis) on each replica
•Exchange replicas with energies E and E’ and
temperatures β and β’,with probability:

! 

min{exp[(" #" ')(E # E ')],1}

β5β4β3β2β1

easy to equilibrate hard to equilibrate



Parallel Tempering+Two Replica ClusterParallel Tempering+Two Replica Cluster
MovesMoves

•n replicas at temperatures β1 … βn
•Two replica cluster moves at each temperature
•Exchange replicas.

β5β4β3β2β1

easy to equilibrate hard to equilibrate



Diluted 3D spin glass
T. Jorg, Phys. Rev. B 73, 224431 (2006)



• For the d>2 spin glasses, two giant clusters
(“agree” and “disagree” spins) appear in the high
temperature phase and together comprise most of
the system.

• The signature of the spin glass transition is the
onset of a density difference between the two
giant clusters.

• The algorithm is not much more efficient that
parallel tempering alone.

JM, C. Newman & D. Stein, JSP 130, 113 (2008)

3D Spin Glass



Conclusions (Part II)

• The two-replica graphical representation and
associated algorithms are promising
approaches for spin systems with fields or
frustration.

However…
• For the hardest systems, e.g. 3D Ising spin

glass,the algorithm is not much more efficient
than parallel tempering.


