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Abstract— In this paper we describe an approach to simul-
taneous localization and mapping, SLAM. This approach has
the highly desirable property of robustness to data association
errors. Another important advantage of our algorithm is that
non-linearities are computed exactly, so that global constraints
can be imposed even if they result in large shifts to the map.
We represent the map as a graph and use the graph to find an
efficient map update algorithm. We also show how topological
consistency can be imposed on the map, such as, closing a loop.
The algorithm has been implemented on an outdoor robot and
we have experimental validation of our ideas. We also explain
how the graph can be simplified leading to linear approximations
of sections of the map. This reduction gives us a natural way to
connect local map patches into a much larger global map.

I. INTRODUCTION

If robots are to move in the real world they need to be able to
keep track of their position. For this they need maps. We want
robots to be able to learn these maps as they move about the
environment. This problem is known as simultaneous mapping
and localization, (SLAM). The SLAM problem is central to
autonoumous mobile robotics, [1].

This paper presents a new way to look at the problem
focusing on the issues that have caused the most trouble for
other methods. We have tried to combine the best features of
existing approaches in a way that allows a robust solution to
the problem.

Our guiding principle is to retain all the important informa-
tion and use it in the exact way with no approximations as
long as possible. We can then introduce approximations later
when we have a better idea of the true state.

We represent this exact information as a graph with the
edges representing the measurements from our sensors. The
updates and approximations can then be formulated as opera-
tions on the graph. Large sections of the graph can be approx-
imated linearly in a local frame leading to a simplification that
does not suffer from non-linear effects as the global map is
distorted to impose topological constraints.

By using this very general representation we are able
to apply any method to find a good solution and just as
importantly, we have a measure, the energy as explained later,
to test how good that solution is.

II. BACKGROUND ON THE SLAM PROBLEM

A number of methods been proposed to do SLAM. The
methods can be characterized as being batch or recursive,
feature based or raw data based and topological or metric.
Most methods have some probabilistic interpretation.

In many environments the sensors will give some readings
that are not useful for localization. These could be range scans
of a bush or hedge, people, cars, sloping surfaces and so on.
By trying to extract good features from the raw data much of
the noise can be ignored. Also maps with abstract features are
sometimes more useful that maps that consist of raw data.

Both feature based and scan based methods suffer from
data association errors. Incorrectly matching sensor readings
leads to errors in the resulting maps. Once such an error
has occurred, many of the existing methods have no way to
correct or detect these errors. Others can do limited correction.
Matching errors are handled best by expectation maximization,
EM, methods, [2]. When applied in the pure form EM will
find the best set of matches. In real-time implementations of
EM this desirable property must be partially sacrificed as the
number of combinations of matches is very large [3].

One reason that data association is such a problem is that
the really hard problems are ones that look reasonable locally
but lead to global failure. With real data, matching errors often
do not lead to inconsistency until a loop is closed which can
take thousands of iterations. Up to that point the match seems
quite OK. This type of problem is very hard for any method
to deal with. All of the methods can produce good locally
consistent maps. Some can even correct locally inconsistent
coorespondance errors.

Global consistency, the problem of closing large loops, is
much harder. Many methods can not use the information that
the robot has closed a loop to fix the map. Some methods are
designed to use this type of information explicitly [4], [5], [6].
The idea of combining topological and metric information in
a unified approach was shown in [7] to be a powerful one.
Our method is similar to those methods and can also use the
global consistency constraints to improve the map.

Another major difficulty inherent in the SLAM problem is
the inconsistent linearizations that arise from observing the
same features from different locations. The extended Kalman
filter SLAM methods make a linearization of the observation
about the current state. As the state evolves, the linearizations
of the measurements will be about different points. This leads
to inconsistancies in the resulting map after many iterations.
Julier and Uhlmann have first explained the problem [8].

The method we propose does not suffer from this problem
as we work with the full non-linear problem. The approach
does suffer from local minimum. It is possible for our map to
become trapped in a local minimum. Any method that doesn’t
explore the entire space of possible maps will make similar



mistakes. This is a fundamental limitation of all methods.

III. THE REAL PROBLEM OF SLAM - OUR GOAL

What is it that causes SLAM maps to fail? Well a good
answer is that there are just too many possible maps. The
space of all possible interpretations of the measurements is of
a very high dimension.

At the start there is one most likely solution and the less
but significantly likely solutions are all ’close’ to the best one.
Thus, one can safely use the maximum likelihood solution as
the solution. This is what the EKF method does.

Now as the robot moves to new areas, some solutions
will begin to appear that are significantly likely but not very
’close’ to the maximum likelihood solution. This is bound to
happen unless the robot explores very tediously with lots of
exploration of the areas already mapped and only occasionally
expanding the map size.

The number of distinct regions of the state space with
significant likelihood will grow as the robot explores the
environment. When the robot comes back to areas already
mapped the number of regions will decrease as a result of
inconsistancies. If the maximum likelihood solution is in one
of the regions that become inconsistent, it will no longer be
the maximum likelihood solution and won’t even be ’close’ to
a likely solution.

The EKF has no way to find and jump to another region
of the state space. Therefore, it can only be part of a larger
solution to the SLAM problem and not the ultimate solution.
Multiple hypothesis solutions, [9], will suffer from the fact
that over large loops the number of hypothesis that will be
needed will be way too large.

One needs a single real-time solution for many applications
but one would like to be able to impose the loop closing
constraint on that solution. The ultimate solution will be
continuously providing a map that is locally consistent and a
pose estimate on that map. It will also be able to incorporate
global consistence constraints as they become available to
produce a more correct map and pose estimate. This is our
goal.

IV. THE PROBABILISTIC FOUNDATION

We have a robot moving through a series of poses {xi}
taking measurements of both the relative movement between
poses and of the relative position of features. Here i runs from
1 to Np. The movement measurements can be denoted by
{di} while the feature measurements will be denoted by {fk},
where k runs from 1 to Nm. The set of feature coordinates will
be denoted by {zj}and the number of features by Nf ≤ Nm.
An association of feature measurements with features will be
denoted by Λa. This association then indirectly specifies the
number of features, Nf .

Now for each Λa and values for the poses and features we
will have an explanation of the measurements. We will need
to express the probability of a particular explanation. The best
explanation would then be the one that gives the maximum
probability, the maximum likelihood solution. If we denote

the probability of an explanation as P (x, z, d, f,Λ) we can
write:

P (x, z, d, f,Λ) = P (d, f |x, z,Λ)P (x, z,Λ) (1)

Now the term P (x, z,Λ) is the apriori probability of a path,
map and an association. We make an assumption here that this
does not depend on the map or path and that it only depends
on the number of features in the resulting map Nf . The idea is
that the smaller the number of features the more apriori likely
the association. So our first assumption is:

P (x, z,Λ) ∝ P (Λ) = P (Nf ) ∝ e−λNf (2)

Here we have chosen a rather arbitrary exponential form for
the probability which is justified by two facts. It leads to very
simple expressions and it works well. We will also assume
that the motion and feature measurements are independent.

P (x, z, d, f,Λ) ∝ P (d|x)P (f |x, z,Λ)e−λNf (3)

Now we can define the ’energy’, or entropy, of our system.

E(x, z, d, f,Λ) = − log(P (d|x) − log(P (f |x, z,Λ) + λNf

(4)
The last term can be rewritten as:

λNf = Nm −

Nf∑

j=1

λ(nj − 1). (5)

Where nj is the number of measurements associated with
feature j. In this form we have an energy reduction if we
associate a new measurement with an existing feature as
opposed to creating a new feature for that measurement.

EΛ = −

Nf∑

j=1

λ(nj − 1). (6)

The parameter λ specifies how much we can distort the
graph edges to make a match and still lower the energy. It will
be important when making the data associations. If the energy
after matching two measurements is more then before, the
match is likely incorrect. This λ is similar to the threshold one
normally places on the mahalanobis distance when matching
when using a maximum likelihood estimator.

The movement term gives rise to an energy:

Ed = −

Np∑

i=1

logP (di|xi−1, xi) =
1

2

Np∑

i=1

ξikiξi (7)

Here we assume a independent Gaussian model and drop an
additive constant. The ki are the inverse covariance matrices
of the dead reckoning estimates and

ξi = T (xi|xi−1) − δi. (8)

Here T denotes the non-linear transformation to the robot
frame at xi−1. The term δi is the estimated motion in the robot
frame.
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Fig. 1. The energy nodes are filled. The state nodes are not.

Making similar assumptions, the feature measurements give:

Ef = − log(P (f |x, z,Λ) =
1

2

Nm∑

k=1

ηkkkηk (9)

ηk = f(T (zj |xi)) − ζk. (10)

Where xi is the pose from which measurement k was made
and zj is coordinates of the feature associated with measure-
ment k. f is a non-linear function describing the measurement.
The assumptions about independence are essential but the
distributions need not be Gaussian, only C2 .

V. THE GRAPH

We combine the results from the last section to find:

E = Ed(x) +Ef (x, z) +EΛ(nj). (11)

It is this energy that we must minimize to find the maximum
likelihood solution. The energy is a sum of terms each one
relating a few poses and features to one another plus the
last term which is the match energy giving us the benefit to
matching a measurement to an existing feature. This structure
leads us to a represent the map and poses as a graph. This will
be easier to work with than matrices and long state vectors.

Our graph has two basic types of nodes, state nodes and
energy nodes. The state nodes contain coordinates (the x
and z), while the energy nodes contain the functionality and
information needed to calculate one of the terms in the energy
sum above. Thus, each energy node will have edges connecting
it those state nodes that it needs to calculate the energy.

State nodes are composed of pose nodes, x’s and feature
nodes, z’s. The energy nodes are move nodes and feature
measurement nodes. So, a move node would have edges to two
pose nodes and would store the ki and δi needed to calculate
one term of eq. (7).

So that eq. (11) leads to a graph with nodes organized as
a chain of pose nodes connected by move nodes. The feature
nodes will then be linked to the pose nodes as shown in fig. 1.

VI. MAP UPDATE

In general, finding the minimum of eq. (11) is not feasible
due to the large dimensionality of the state vector. We can
however try to start the state near the measurement values
and use the derivatives of the energy drive the system towards
lower energy states. If we start at well chosen states we can
build up the graph by adding measurements one at a time and
then relaxing the graph.

We will now describe how the graph is built up as the robot
moves about. At the ith step we will need to add the ith pose
node and possibly some new feature nodes to the graph. The
nodes can be added at their equilibrium positions assuming
the positions of the old nodes are fixed.

Having added the new nodes and edges we must calculate
the change induced on the rest of the map. We have to find
the minimum of eq. (11) with respect to the pose and feature
positions. We expand eq. (11) about the current state out to the
quadratic terms. The terms associated with a particular node,
call it A, look like:

EA =
∑

i:edgesofA

[Ei(x̄A, x̄i) + 5Ei(x̄A, x̄i) ·

(
∆xA

∆xi

)
+

(1/2)
(

∆xA, ∆xi

)
·5T 5Ei(x̄A, x̄i) ·

(
∆xA

∆xi

)
] (12)

Now we condense the notation to:

G = 5EA =

(
GA

Gi

)
(13)

H = 5T 5EA =

(
HAA HAi

HiA Hii

)
(14)

Where ∆xA = xA − x̄A, etc. Here we just call everything
x and make no distinction between pose and feature nodes.
the subscript i indicates all the coordinates that are not node
A but share an edge with A. An important number for us
is the prediction of the energy gain from moving a node to
the minimum position holding all other nodes fixed. This can
easily be calculated. First the new node position would be:

(xA − x̄A) = −H−1

AA · GA (15)

Then the change in energy would be:

4EA = −(1/2)GA · H−1

AA · GA (16)

This 4EA will be used to make decisions as to what
optimization method to use and whether an update is needed.

The simplest and slowest method is to use steepest decent.
We use this as a last resort when near a saddle point. This is
the situation that eq. (16) gives 4EA > 0. In that case, we
need to move the node away from the positively curved region.
We move in the direction of the gradient a small step and then
recalculate and repeat until no significant change occurs. The
step size is increased if the change in energy seems to indicate
a flat region, (ie. the change is given by the gradient times the
change in x), and decreased if the curvature is too high.

The next simplest method is to use eq. (15) directly. This
will move the node to the bottom of the energy surface but
the higher order terms in the energy might require us to iterate
this a number of times until there is no significant change in
the energy. We will refer to the use of these two methods,
(steepest descents and eq. (15)), for per node minimization, as
relaxing the node.



Having implemented only this much we found that the
maps were already looking better than our previous SLAM
maps,[10]. The updates were rather slow however. One must
relax the new node then all the adjacent nodes then if any of
those changed one must relax any adjacent to them and so
on. This causes the update to move back and forth between
nodes a lot when what is needed is to move a set of nodes
simultaneously. We were able to significantly speed up the
procedure by doing what we call chained updates on the pose
nodes.

For that we exploit the special nature of our problem. We
have a chain of pose nodes connected by the dead-reckoning
edges. Let us consider pose node A with the previous pose
node labeled B. We will consider the features and the next
pose node as fixed while nodes A and B are variable. In this
subspace, we can always eliminate a pose node A’s coordinates
in terms of B’s by making the substitution:

(xA − x̄A) = −H−1

AA · [HAB · (xB − x̄B) + GT
A ] (17)

Making this substitution we find the edge AB now con-
tributes some extra terms to B’s gradient and Hessian at the
current state.

∆ḠB = −HBA · H−1

AA · GT
A (18)

∆H̄BB = −HBA · H−1

AA · HAB (19)

We now move to B and repeat the procedure using the
gradient and Hessian with the extra terms added to them. First
test if B needs an update, (ie. does eq. (16) gives 4EB <
some threshold). Then, if an update is needed, eliminate B in
terms of the previous pose, C. Then move to C.

When we get to a node that doesn’t need an update we can
then use its coordinate values to update its next node, then
the next node’s coordinates to update its next node, and so on
until we get back to node A.

We have essentially inverted the Hessian matrix for the
chain of pose nodes assuming the feature nodes to be fixed.
This is easy to do via operations on the pose nodes themselves
as each pose node is attached to only two other pose nodes.

After doing this we must move to the feature nodes attached
to the updated pose nodes and check if they need updating.
This repeats until no updates are needed. In general the number
of nodes needing updates only depends on the size of the
perturbation caused by the measurement. Most measurements
only cause a few nodes to change. This is why in general the
method scales well to large maps, (constant time wrt. N). Also
we note that we undo any updates that turn out to cause the
energy to increase, thus we always move to lower energy.

VII. FEATURE MATCHING

We try to build the map up incrementally in a way that
the energy in each new feature measurement does not exceed
λ. We do this by first adding the feature measurement, then

calculating the new equilibrium position. One can then com-
pare the total energy before and after adding the measurement.
Thus, the data association problem is reduced to checking
the change in energy. We need not be very careful when
adding measurements to our graph. We use a relatively loose
matching requirement and rely on this check of the energy
to uncover any mistakes after recalculating the equilibrium.
This formulation is similar in some ways to expectation
maximization, EM, methods, [2] and shares those methods
robustness with respect to matching errors.

The energy of an energy node is the sum of squares of
independent normal variables. It is thus a χ2 variable. One
can then check the energy of individual energy nodes at any
time to see if the associations still make sense.

We should mention here one of the major advantages of
this representation of the map. We can at any time and with
little effort go in and make changes to the graph. We can
for example merge features by simply moving the edges from
one feature node to the other and then discarding the node.
We can check the energy before and after the merge to see
if they really should be merged. We can add information to
existing edges. We can also remove edges if we find that they
no longer make sense. And, of course, the initialization of the
features is trivial. All these things are very tricky or impossible
with a Kalman filter and thus our approach is both easier to
implement and able to use more information.

VIII. CLOSING THE LOOP

By closing the loop we are, of course, interested in a loop
that did not close by applying the above update rules. This
situation presents two separate problems. First, how does the
robot realize that there is a problem. Second how can the map
be changed to close the loop. We will show a way to solve the
second problem. We pause the SLAM program and check the
map. Then supply the program with a list of pairs of features
that are to be matched, (ie. one wall from the beginning of the
loop and one from the end). The map will then be recalculated
with the new constraints added.

If one first merges the features then recalculates the poses
the result tends to bend to fit the map on the pose update and
when the features are updated the gradients are too small to
move them much. The initial brute force way we chose to
get around this is to ignore most of the map and instead use
only the features from the loop closing constraint and the robot
path to adjust the existing graph. We then re-attach the feature
edges to our graph one at a time. This worked but there is a
much better way to do this as we will soon describe.

IX. REDUCING THE GRAPH - STAR NODES

An optimization would be to simplify the graph by com-
bining nodes. For a linear system one can reduce the graph
with an exact formula. One simply chooses a state node that
one wants to remove, call it node A. We let B represent the
whole space of neighboring state nodes. One then ends up
with a sub-system with an energy that is a quadratic function
of xA and xB . Here we have simply called everything x with
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Fig. 2. Here we show how a node can be eliminated by creating edges
between all its neighbors. x0 becomes the relative frame of the star node.

no distinction between features and poses. The energy of this
sub-system can be represented as a single energy node, which
we call a star node, with edges radiating out to all these nodes.
So we combine all the energy nodes into star node and use
Gaussian elimination to remove the variables of node A.

In our case we have a nonlinear system. We must therefore
expand the equations around the current equilibrium point. We
chose to only eliminate pose nodes. Thus, we end up with a
solution for the pose node’s coordinates in terms of all the
attached state coordinates. We make the Taylor expansion of
the terms in eq. (11) that come from node A . The A part of
the gradient is zero, due to being at equilibrium,

EA =
∑

j:edgesofA

[Ei(x̄A, x̄j) + Gj · (xj − x̄j) +
1

2
·

·
(

xA − x̄A, xj − x̄j

)
· Hj(x̄A, x̄j) ·

(
xA − x̄A

xj − x̄j

)
] (20)

We can now solve for (xA− x̄A) in terms of the (xB− x̄B).

(xA − x̄A) = −H−1

AA · HAB · (xB − x̄B) (21)

Is the optimal solution. We can then plug this into eq. (20)
to get the new energy equation with A eliminated,

E∗ = EA =
∑

j:edgesofA

{Ej(x̄A, x̄j) + Gj · (xj − x̄j)+

1

2
· (xj − x̄j) · Hjj · (xj − x̄j)−

∑

i:edgesofA

(xi − x̄i) · HiA · H−1

AA · HAj · (xj − x̄j)} (22)

We see that the new Hessian has terms connecting nodes i
and j that had no connection before the reduction. This new
energy equation is then stored in the star node. We can start
by eliminating x1, fig. 2. We then end up with a star node
with edges to x0, x2 and zi for the features, i, connected to
x1. We can then continue by eliminating x2 and so on. If we
continue all the way to the current pose we end up with a fully
connected graph with only one pose variable. This is similar
to what happens in the extended Kalman filter.

However, we should not carry the reduction though the
whole set of poses. The resulting system would be too hard
to update. That is because it is no longer sparsely connected.
Therefore, we stop at some point and start a new star node.

If we first chose to eliminate every other pose node, we can
then merge two star nodes separated by a pose node into a
larger star node by eliminating the pose node between them.

One continues in this way forming a tree until there is only
one star node representing the interactions of a section of the
graph. The advantage of forming a tree rather than just a long
chain is numerical stability as we end up with a sum of terms
with a small number of multiplications in each term rather
than multiplying a single matrix many times. The depth of the
tree gives a simple stopping criteria so we can for instance go
to a depth of 7 (127 reductions).

We need not do the combining for the most recent poses.
One can wait, say, 50 poses before starting to combine. So as
each new pose is added to the graph we try to eliminate the
pose 50 steps earlier. The advantage is that the linearization
will be done about a better point and the match energy will
have been observed for some time. This can be compared to
the EKF where these steps are done at once.

Making Star Nodes Invariant

The star node calculates the energy using a Hessian matrix
as described above. This Hessian should have symmetries due
to the nature of the measurements that it represents. These
would be expressed by zero eigenvalues of the matrix.

One symmetry is that of translation and rotation of all the
state coordinates. Another would be sliding the end-points of
walls perpendicular to the wall normal vector. That is, in the
case that the end-points were not directly measured, a fairly
common situation. By defining natural coordinates for the star
node we can eliminate these zero eigenvalues and represent
the energy in a lower dimensional space as eigenvectors and
eigenvalues > 0. This makes the star node explicitly stable
and invariant, two very nice properties.

We define coordinates q as the state coordinates, x, trans-
formed to the frame of one of the pose nodes, x0 and then
project out the part normal to the walls.

qi = P · T (xi|x0). (23)

We illustrate the simple case for P = I , two pose nodes
and the rest point nodes. We can show how to transform the
Hessian to the q coordinates.

q = T (x|x0) = W · (x). (24)

W = W0 + W̃ (25)

W0 =




−R 0 0 · · ·
0 −1 0 · · ·

−R 0 0 · · ·
−R 0 0 · · ·

...
...

...
...




(26)

W̃ =




0 0 0 R 0 0 0 · · ·
0 0 0 0 1 0 0 · · ·
0 0 0 0 0 R 0 · · ·
0 0 0 0 0 0 R · · ·
...

...
...

...
...

...
...

...




(27)



R =

(
cos(θ0) sin(θ0)
−sin(θ0) cos(θ0)

)
(28)

Now the Jacobian for this coordinate change looks almost
like W .

J = J0 + J̃ + J2 (29)

J2 =




q1
−q0
0
q3
−q4

...




·
(

0 0 1 0 0 · · ·
)

(30)

Where J0 = W0 and J̃ = W̃ . Of course q has 3 less
dimensions than x. In general:

Hxx = JT · Hqq · J +
∂2q

∂x∂x
· Gq ≈ JT · Hqq · J. (31)

Where we use the fact that the Gq term is typically much
smaller than the other terms and can be dropped, (ie the state
is near the equilibrium point of the star node when we want
to use this formula). By working backwards from eq. (31) and
noticing that J̃ · JT = I , we see that,

Hqq = J̃ · Hxx · J̃T . (32)

We had more symmetries to deal with, P 6= I , so that the
dimension of q was typically nearly half that of x. These
projections were done using constant P , so J = P for them.
This is an approximation that the wall normals in the star
frame don’t change significantly.

We now have an explicitly invariant representation that can
be reduced using principle component analysis to a set of
eigenvalues and eigenvectors. By adjusting the linearization
point in the q space we can eliminate the gradient terms.

E∗ = E∗(q̄) +
1

2

∑

j

[b∗j (V
∗

j · ∆q)2] (33)

Here q are the ’natural coordinates’, b∗j are the eigenvalues
and V ∗

j are the eigenvectors. The q are expanded around the
equilibrium point, q̄. In this form the star nodes have some
very nice properties.

Nice Star Properties

Star nodes can be re-centered. When the the base pose
node, x0, has moved significantly, one can make the q to x
transformation by inverting the above formulas to express the
energy as a quadratic form in the world coordinates about
the current, x̄ = x. One uses this until the base node has
again moved significantly. This makes updates very fast. Re-
centering removes most of the non-linear effects of large
changes.

Star nodes can have information added to them. One starts
by re-centering and then adds the Hessian, gradient and
constant pieces of new information, possibly adding edges to

new state nodes. Then do the x to q transformation to get the
invariant form with the new information.

Star nodes can be used to eliminate state nodes. Any state
node that is only connected to one star node can be removed
by setting its part of ∆q = 0 in eq. (33).

Star nodes represent a kind of local map. They contain in-
formation on the features attached to them that is independent
to the information in the other star nodes. The relationships
between star nodes are represented by edges to common state
nodes. These are ’correct’ relationships based on the likelihood
function. The q̄ represent the star node equilibrium position
for the attached state nodes. The star nodes look much like
the local sub-maps of the ’Atlas Framework’ [7].

Star nodes can be used to organize the global calculations
efficiently. One can ignore the features completely to get
an approximate solution by using ∆q = 0 for them when
calculating the energy and its derivatives. This is equivalent
to treating the features attached to each star node as being
different from the features attached to other nodes. By doing
this the pose-pose forces from a star node will reflect the
feature measurements, (ie. the links will be stiffer than dead
reckoning) but the graph will be able to adjust to stresses more
quickly due to the simplified structure. This leads to objects
that look like the strong links of [4]. One can then put back in
the constraint that the stars have features in common to refine
the solution.

The ideas here result in a representation of the map very
similar to the sparse extended information filter [11]. The
difference here is that we do not linearize once at the time
of the observation and lock the approximation in that frame.
Instead we linearize a section of the graph in a relative frame
and at a time when it is more mature. This avoids most of the
non-linear effects that would otherwise result from the local
frame being rotated in the world frame. Another difference is
that Lui and Thurn ’throw away’ some information in order
to prevent a fully connected system. We instead leave some
pose nodes around which achieve the same end without loss
of information.

Closing Simple Loops

We can use the ∆q’s of eq. (33) and the ideas above to
set constraints around a loop. We start by adding a Lagrange
multiplier to our cost function,

C(Λ,∆q) = Λ · (
∑

i

∆xi − dc) +
1

2

∑

i

∑

j

ib∗j (iV
∗

j · ∆q)2

(34)
Where i is the index of the star nodes around the loop, ∆xi

is the difference between the two poses attached to star node
i and dc is the constraint on the change in pose. Now we use,

∆xi =

(
Ri 0
0 1

)
· (∆qi + q̄i). (35)

This is the way we defined the natural coordinates in terms
of relative poses. The qi above refers to the first 3 components



of the q vector for the ith star node. The above equation
assumes that the q’s have the right sense around the loop, this
is not important (possible minus signs). Also all the feature
components of ∆q are set to zero for now as explained above.

In general the rotation matrices, Ri, make the minimization
of the above cost function non-linear. If we assume that the
rotation matrices are constant (at the current values), we can
solve this easily,

∆qi = −
∑

j

iṼ
∗T
j iṼ

∗

j

ib∗j

(
RT

i 0
0 1

)
·ΛT . (36)

Where iṼ
∗T
j are the first 3 components of the the jth

eigenvector for the ith star node.

ΛT = S−1{[
∑

i

(
Ri 0
0 1

)
· q̄i] − dc}. (37)

S =
∑

i

{

(
Ri 0
0 1

)
·[
∑

j

iṼ
∗T
j iṼ

∗

j

ib∗

j

]·

(
RT

i 0
0 1

)
}. (38)

By using these formula a number of times, (3 in practice),
each time with the new rotation terms, one can solve the
nonlinear system. Then it is just to turn on the feature matches
between star nodes to get the exact solution.

This procedure is quite fast taking a few seconds even
for large loops with significant closing errors. The matrix
operations are all 3x3. The Lagrange multiplier equation takes
order N time,where N is the number of star nodes around the
loop. The fine tuning after turning on the features takes the
most time and depends on the stopping criteria.

X. EXPERIMENTS

We have implemented our method on an ATRV2 outdoor
robot equipped with a cross-bow D-FOG 6-axis inertial sensor,
which we use to adjust the odometry and to obtain the pitch
and roll angles of the robot. To measure the walls we use
a SICK laser scanner. We measure the angle, perpendicular
distance and if possible the angle of the endpoints of the walls.
The dead-reckoning data fusion and the feature detection are
described in an earlier paper, [10]. The output of the feature
detection module is simply fed to the grapher.

The representation for walls is two endpoints each with (x,y)
values. The pose is (x,y,z,θ, φ, ψ). The measurement nodes do
not always constrain all the dimensions. Thus, the z, φ and ψ
values are, for example, simple fixed at the values provided
by the dead-reckoning module.

In figure 3 we show an example map. This map has 7,500
pose nodes and 11,975 pose-wall measurements. The average
times per iteration for graph update do not include the time
for feature extraction, but does include matching the found
features to the map as well as searching for features that the
map says should be visible but the feature extractor did not
find. This was running on a laptop with a 550 Mhz Pentium
III. The pose nodes are so tightly packed as to appear as a
continuous line. One can notice that there is a large error at
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Fig. 3. This is the resulting map and path generated by the graphical SLAM
method. The average time per iteration was 30 msec. The doted lines show
the actual building outline. The path was traversed counterclockwise. No
approximations were made. No attempt is made to match wall that are ’far’
from the current node, as measured by the number of graph edges. Thus, the
walls from the begining of the loop appear as new walls at the end.
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Fig. 4. This map shows the result of reducing the graph by introducing star
nodes. The pose nodes that remain are shown as dots about 10 m apart. The
50 pose nodes at the end of the path, where no reduction has been done,
remain. Calculation time was less than half that for the full non-linear case.

one point of the path to the left side of the building. This was
due to the robot sliding down an incline while rotating.

We then tried out the graph reduction ideas, shown in
figure 4. We calculate exactly as previously but then after
each update we reduce the pose nodes 50 nodes back from
the current pose node. We form a star node tree as described
in section IX, stopping at level 7, (127 pose nodes per star).

This method was only a little slower than our compressed
Kalman filter but the time for a particular iteration can be
longer than the average. It is therefore necessary to collect the
data in a queue with separate process and then have the SLAM
program read the data from the top of the queue and process
it. We use a separate feature extractor/tracker to maintain this
queue in our real-time implementation.

The map can be compared with the maps made using our
compressed Kalman filter, the errors on the Kalman filter map
are typically larger. Also the CEKF could not fix the map as
we do next.

The result of our loop closing procedure are shown in
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Fig. 5. The map was forced to close using the Lagrange multiplier method.

figure 5. One can see that most of the walls moved closer
to their true positions. This map is globally consistent. The
loop closing calculation took less than 2 sec.

XI. DISCUSSION

We believe that the results of the experiments confirm the
validity of our approach. We can make good quality maps
in this straight forward way. The graphs contain information
and computational machinery that allows us to do things like
imposing global constraints on the map.

Our goal in this paper is to introduce the concept of
graphical SLAM and to draw attention to the aspects of the
SLAM problem that are the most difficult. Those aspects are
characterized by the appearance of inconsistancies in the map.
These might be bad data associations or loops that don’t close.
A solution to the SLAM problem must be able to survive and
profit from these inconsistancies when they are discovered.

The representation of the map as a graph allows us to try out
different methods to solve inconsistency problems. The graph
leads directly to program structures that are easy to understand
and work with. It also represents the information compactly.
One can say that the edges represent the non-zero components
of the information matrix.

We can compare the graphical representation of the map
to the Kalman Filter type representation. The Kalman filter
represents the probability density of the map as a Gaussian.
Although we did assume a Gaussian for the measurements
this did not result in a Gaussian for the state space. Also the
assumption of Gaussian measurements was only an illustrative
example, not essential. So that the graph can represent much
more complex probability surfaces.

CONCLUSIONS

We have presented an approach to solving the SLAM
problem which avoids its three most troublesome stumbling
blocks. The non-linear effects are eliminated by postponing
the linearization and linearizing in a local frame. The data
association errors are detected and corrected automatically.
And finally large loops can be closed in a way that is consistent
with all the information collected.

We have outlined an efficient implementation that is running
the algorithm in on an outdoor robot. The time for a map
update is independent of map size and only depends on
how well the measurements agree with previous information.
Experimental results have also been shown to confirm that the
algorithm does produce good maps. A comparison to a Kalman
filter SLAM implementation on the same platform shows that
the maps are in many ways superior.

Our method, while not being very subtle, does solve the
problem in the most straight forward way possible. We have
shown that this intuitive approach is robust and easy to
implement. The main advantage of our formulation is the fact
that all information is stored and accessible in the graph. This
allows one to try different methods to improve the map. The
energy in the graph gives a useful measure of goodness for
the map and allows one to compare two solutions. The graph
gives a representation of a general map probability distribution
and is not limited to ’Gaussian maps’.

The reduction of the graph using star nodes which contain
all the symmetries of the original measurements is a powerful
way to correctly impose topological constraints on the map.
The beauty being the simplicity and tractability of the resulting
equations. Imposing constraints is reduce to solving an easy
Lagrange multiplier equation and then fine tuning using all the
information.
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