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ABSTRACT. We prove the Haagerup property (= Gromov’s a-T-menability) for finitely
generated groups defined by infinite presentations satisfying the graphical C ′(λ)–small
cancellation condition with respect to graphs endowed with a compatible wall structure.
We deduce that these groups are coarsely embeddable into a Hilbert space and that the
strong Baum-Connes conjecture and, hence, the Baum-Connes conjecture with arbitrary
coefficients hold for them. As the main step we show that C ′(λ)–complexes satisfy the
linear separation property. Our result provides many new examples and a general tech-
nique to show the Haagerup property for graphical small cancellation groups.

1. INTRODUCTION

The aim of this paper is two-fold: to show a general analytic result, the Haagerup
property, for a wide class of graphically presented groups and to provide an approach to
a long-standing problem on the existence of a coarsely embeddable, into a Hilbert space,
but not coarsely amenable group.

Graphical presentations are group presentations where relators are words labeling cy-
cles of a given graph. Every group has a graphical presentation in a trivial way: the
corresponding graph is the disjoint union of simple cycles labeled by the relator words. In
general, given a labeled graph, one expects that its combinatorial structure and properties
of the labeling encode algebraic and geometric features of the group it defines.

The first concrete use of non-trivial graphical presentations is due to Rips and Segev
in the context of Kaplansky’s zero-divisor conjecture: they give the first example of a
torsion-free group that is not a unique product group [RS87]. A recent application is the
celebrated construction of Gromov’s monster group which contains an infinite expander
family of graphs in the Cayley graph [Gro03,AD08]. Both constructions follow a general
idea: find an appropriate combinatorial interpretation (e.g. the expansion) of a required
group property and combine it with a suitable small cancellation condition on the label-
ing (e.g. the geometric small cancellation in the case of Gromov’s monster) in order to
produce a group containing a given graph in its Cayley graph. This approach leads to
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spectacular counterexamples: to the unique product property [RS87] and to the Baum-
Connes conjecture with arbitrary coefficients [HLS02].

In contrast to such specific counterexamples, our first goal is to prove an affirmative
result, the Haagerup property, for many groups given by graphical small cancellation
presentations.

A second countable, locally compact group G has the Haagerup property (or G is a-
T-menable in the sense of Gromov) if it possesses a proper continuous affine isometric
action on a Hilbert space. The concept first appeared in the seminal paper of Haagerup
[Haa78], where this property was shown for finitely generated free groups. Regarded as
a weakening of von Neumann’s amenability and a strong negation of Kazhdan’s property
(T), the Haagerup property has been revealed independently in harmonic analysis, non-
commutative geometry, and ergodic theory [AW81,Cho83,BJS88,BR88], [Gro88, 4.5.C],
[Gro93, 7.A and 7.E]. A major breakthrough was a spectacular proof of Higson and Kas-
parov [HK97] of the strong Baum-Connes conjecture (which is strictly stronger than the
Baum-Connes conjecture with coefficients [MN06]) for all groups with the Haagerup
property. It follows that the Novikov higher signature conjecture and, for discrete torsion-
free groups, the Kadison-Kaplansky idempotents conjecture hold for these groups. Nowa-
days, many groups have been shown to have the Haagerup property and significant appli-
cations in K-theory and topology have been discovered [CCJ+01,MV03], making groups
with the Haagerup property increasingly fundamental to study.

Groups given by classical small cancellation presentations1 are known to possess the
Haagerup property by a result of Wise [Wis04] for finitely presented groups and by a
recent result of the authors [AO12] for infinitely presented groups. In contrast, there
exist non-trivial graphical small cancellation presentations defining infinite groups with
Kazhdan’s property (T), hence, without the Haagerup property [Gro03, Sil03, OW07].

In this paper, we determine a natural compatibility assumption between the graph com-
binatorics and the graphical small cancellation condition on the labeling, which guarantee
the Haagerup property of the resulting graphically presented group.

Main Theorem. Let G be a finitely generated group given by graphical presentation
satisfying the lacunary walling condition (see Definition 5.2). Then G acts properly on a
space with walls. In particular, G has the Haagerup property.

A systematic discussion of groups having proper actions on a space with walls can be
found in [Cor13]. In the terminology of that paper, our main result means that G has
Property PW.

We actually prove a stronger result which, in addition, holds for more general spaces.

Theorem 1.1. A complex X with the lacunary walling condition satisfies the linear sep-
aration property, that is, the path metric on X(0) and the wall pseudo-metric are bi-
Lipschitz equivalent.

1The graph is the disjoint union of simple cycles and the labeling satisfies the classical C ′(1/6)–small
cancellation condition [LS01].
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Our method arises in ambition to approach the following – still open – well-known
problem (see e.g. [AD02], [NY12, 5.3.3]):
Does there exist a finitely generated group which coarsely embeds into a Hilbert space
but which is not coarsely amenable?

The concept of coarse embedding was introduced by Gromov [Gro93, p.218]. Yu [Yu00,
Theorem 1.1] proved the coarse Baum-Connes conjecture for every discrete space with
bounded geometry coarsely embeddable into a Hilbert space. This implies the Novikov
higher signature conjecture for all closed manifolds whose fundamental group, viewed
with the word length metric, admits such a coarse embedding. This result generated an
intense study of groups and metric spaces coarsely embeddable into a Hilbert space.

Coarse amenability is a weak form of amenability. It was introduced in [Yu00], under
the term Property A, as a sufficient condition for coarse embeddings into a Hilbert space.
For a countable discrete group G, coarse amenability is equivalent to the existence of a
topological amenable action of G on a compact Hausdorff space and to the C∗–exactness
of the reduced C∗–algebra C∗r (G), see e.g. [NY12].

All finitely generated groups currently known to be coarsely embeddable into a Hilbert
space are, moreover, coarsely amenable. That is, the above question remains open. To-
wards a positive answer, we have the following assertion.

Theorem 1.2. Let (ri)i∈N be graphs with all vertex degrees at least 3. Let G be given
by graphical presentation with relators (ri)i∈N satisfying the lacunary walling condition.
Then G has the Haagerup property but is not coarsely amenable. In particular, G admits
a coarse embedding into a Hilbert space but G is not coarsely amenable.

The lacunary walling condition (see Definition 5.2) assures some upper bound on all
vertex degrees and girth tending to infinity as i → ∞. Coarse non-amenability of such
a group G follows then by a result of Willet [Wil11] combined with Lemma 2.1, and the
fact that coarse amenability is inherited by subspaces, see e.g. [NY12, Proposition 4.2.5].
The Haagerup property ofG follows by our Main Theorem and the coarse embedding into
a Hilbert space is provided by an orbit map of the given proper affine isometric action.

The question above and the interplay of coarse amenability versus coarse embeddings
and the Haagerup property are still challenging as an explicit construction of such a se-
quence (ri)i∈N is yet an open problem. Specifically, the existence of a graphical small
cancellation labeling (see the next Section for the terminology) is of great interest.

Open problem. Is there a sequence (ri)i∈N of graphs with all vertex degrees between 3
and some upper bound such that some graphical presentation with relators (ri)i∈N satisfies
the C ′(1/6)–small cancellation condition?

A natural candidate for a sequence (ri)i∈N as in Theorem 1.2 is Arzhantseva-Guentner-
Špakula’s box space [AGŠ12]. This space is the first example of a metric space with
bounded geometry (indeed, of a regular graph) which coarsely embeds into a Hilbert
space but which is not coarsely amenable. In [AGŠ12], a wall structure on this graph is
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provided. We show in Example 3 that this wall structure indeed satisfies our β–condition
and, after a slight variation of the construction, our δ–condition (Definition 3.1), both
required by the lacunary walling condition.

In quest of a sequence of graphs (ri)i∈N as above, we prove the following general result,
of independent interest, as it provides the first – explicit – small cancellation labeling of
an appropriate subdivision of any given sequence of bounded degree graphs.

Theorem 1.3. Let Γ = (Γi)i∈N be a family of finite graphs with degree bounded by d. For
every λ = (λi)i∈N with λi ∈ (0, 1), there exists a sequence (ji)i∈N of natural numbers
with the following property. There exists an explicit labeling of the family (Γjii )i∈N of
subdivisions by d+ 2 letters satisfying the C ′(λ)–small cancellation condition.

Moreover, in Theorem 6.2, for a given infinite family of graphs we describe a method
of labeling it (modulo a subdivision) in such a way that a stronger lacunarity condition
(see Definition 4.1) is satisfied. This is then used to provide examples of non-classical
infinite graphical small cancellation presentations of groups with the Haagerup property.

Organisation. In § 2, we define small cancellation complexes and graphical presen-
tations. In § 3, we describe the structure of a space with walls on small cancellation
complexes and introduce the (β, δ)–separation condition, required for the definition of the
lacunary walling condition. In § 4, we define the lacunary walling condition and prove
that a complex with the lacunary walling condition satisfies the linear separation property,
Theorem 1.1. In § 5, we deduce Main Theorem. In § 6, we prove Theorem 1.3. Then
we give concrete examples of graphical small cancellation presentations that satisfy the
hypothesis of our Main Theorem and that do not reduce to classical small cancellation
presentations. This is done in § 7, where we also discuss the box space from [AGŠ12].
Finally, we show that our lacunary walling condition, crucial for the proof of Theorem 1.1,
cannot be removed, see § 8.

Acknowledgments. We thank Rufus Willett for comments on the Baum-Connes conjec-
tures and Jan Špakula for the discussion on the box spaces in Example 3.

2. SMALL CANCELLATION COMPLEXES

2.1. C ′(λ)–complexes. Here we describe the spaces that we work on throughout this
paper. Let X(1) be a graph. Our graphs have no loops neither multiple edges, and
moreover, all our graphs have uniformly bounded degree. Let (ϕi : ri → X(1))i∈N be
a family of local isometries of finite graphs ri. We call these finite graphs relators. We
assume that ϕi 6= ϕj , for i 6= j. The cone over the relator ri is the quotient space
cone ri := (ri × [0, 1])/{(x, 1) ∼ (y, 1)}. The main object of our study is the coned-off
space:

X := X(1) ∪(ϕi)

⋃
i∈N

cone ri,
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where ϕi is the map ri×{0} → X(1). We assume that X is simply connected. The space
X has a natural structure of a CW complex, or even of a simplicial complex, however we
will not specify it. Nevertheless, we usually call X a “complex”. Throughout the article,
if not specified otherwise, we consider the path metric, denoted by d(·, ·), defined on the
0–skeleton X(0) of X by (combinatorial) paths in the 1–skeleton X(1). Geodesics are the
shortest paths in X(1) for this metric.

A path p ↪→ X(1) is a piece if there are relators ri, rj such that p ↪→ X factors as
p ↪→ ri

ϕi−→ X and as p ↪→ rj
ϕj−→ X , but there is no isomorphism ri → rj that makes

the following diagram commutative.

ri X

rjp

.............................................................................. ............

............................
.....
.......
.....

............
............
............
............
............
.....................
............

.............................................................................. ............

......................................
.....
.......
.....

This means that p occurs in ri and rj in two essentially distinct ways.
Let λ ∈ (0, 1). We say that the complex X satisfies the C ′(λ)–small cancellation

condition (or, shortly, the C ′(λ)–condition; or we say that X is a C ′(λ)–complex) if every
piece p ↪→ X factorizing through p ↪→ ri

ϕi−→ X has length strictly less than λ · girth ri.
In this paper, we use the following stronger variant of the C ′(λ)–small cancellation

condition. Let λ := (λ(ri))i∈N be a vector with λ(ri) ∈ (0, 1). We say that the complex
X satisfies the C ′(λ)–small cancellation condition if every piece p ↪→ X factorizing
through p ↪→ ri

ϕi−→ X has length strictly less than λ(ri) · girth ri.

Lemma 2.1 (Relators embed). If X is a C ′(1/24)–complex, then the maps ϕi : ri → X
are isometric embeddings.

Proof. This follows from results in [Wis11] (see also [Wis12, Chapter 10] or [Oll06,
Theorem 1]). Indeed, by the proof of Lemma 3.46 there, X has short innerpaths, and by
Theorem 3.31 the nonpositive curvature Condition 5.1.(2) is satisfied (see also [Wis12,
Lemma 9.12]). Thus, the claim follows from Lemma 5.5. �

In our case, of graphical small cancellation, the preceding result can be strengthened
to C ′(1/6)–complexes. We do not elaborate on this since anyway we will use C ′(λ)–
complexes as λ→ 0.

2.2. C ′(λ)–presentations. Let Y (1) be a finite graph and let (ϕi : ri → Y (1))i∈N be a
family of local isometries of graphs. They form a graphical presentation

〈Y (1) | (ri)i∈N〉,(1)

defining a group G := π1(Y (1))/〈〈π1(ri)i∈N〉〉, being the fundamental group of a coned-
off space:

Y := Y (1) ∪(φi)

⋃
i∈N

cone ri.
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We say that 〈Y (1) | (ri)i∈N〉 is a C ′(λ)–small cancellation presentation (respectively, a
C ′(λ)–small cancellation presentation) if the universal cover X of Y , with the induced
maps (ϕi : ri → X(1))i∈N, is so.

2.3. Local-to-global density principle. Here we provide a simple tool that allows us
to conclude global properties of complexes from the local ones. Its proof can be found
in [AO12].

Let γ be a simple path in X(1). For a subcomplex B of γ, by E(B) we denote the set
of edges of B. Let U be a family of nontrivial subpaths of γ, and let A be a subcomplex
of
⋃

U (that is, of the union
⋃
U∈U U ).

Lemma 2.2 (Local-to-global density principle). Assume that there exists C > 0, such
that

|E(A) ∩ E(U)|
|E(U)| > C,

for every U ∈ U. Then |E(A)| > (C/2)|E(
⋃
U)|.

3. WALLS

Let X be a C ′(λ)–complex. In this section, we equip the 0–skeleton X(0) of X with
the structure of a space with walls (X(0),W). We use a method of constructing walls
from [Wis11].

Recall, cf. e.g. [CMV04], that for a set Y and a family W of partitions (called walls) of
Y into two parts, the pair (Y,W) is called a space with walls if the following holds. For
every two distinct points x, y ∈ Y the number of walls separating x from y (called the
wall pseudo-metric), denoted by dW(x, y), is finite.

Now we define walls for X(0). For a tentative abuse of notation we denote by “walls”
some subsets of edges of X(1), then showing that they indeed define walls. Roughly
speaking, two edges are in the same wall if they are “opposite” in a relator, and then this
relation is transitively closed. This general idea goes back to the definition of walls for
the classical small cancellation theory; see [Wis04, AO12] for finite and infinite classical
small cancellation complexes, respectively. However, since there is no notion of “op-
positeness” in a general graph relator ri, we require certain assumptions on each graph
ri.

3.1. Defining walls. A wall in a graph Γ is a collection w of edges such that removing
all open edges of w decomposes Γ in exactly two connected components. In particular, it
requires Γ to be connected. We call Γ a graph with walls, if every edge belongs to a wall.

If not stated otherwise, we assume that for a C ′(1/24)–complex X , with given relators
ri, each graph ri is a graph with walls. Observe that every ri is in fact an isometrically
embedded subgraph ofX , by Lemma 2.1. Following [Wis11, Section 5] (see also [Wis12,
Chapter 10]), we define walls in X(1) as follows: Two edges are in the same wall if they
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are in the same wall in some relator ri. This relation is then extended transitively for all
relators.

In general, the above definition may not result in walls for X(1) — they might not
decompose X(1), etc. We require some further assumptions on walls in relators, which
are formulated in the next section. Then, in Section 3.3, we prove that our definition of
walls in X(1) makes sense, and we explore further properties of such a system of walls.

3.2. Separation property.

Definition 3.1 ((β, δ)–separation). For β ∈ (0, 1/2] and δ ∈ (0, 1) a graph r with walls
satisfies the (β, δ)–separation property if the following two conditions hold:

β–condition: for every two edges e, e′ in r belonging to the same wall we have

d(e, e′) + 1 > β · girth r.

δ–condition: for every geodesic γ in r, the number of edges in γ whose walls meet γ at
least twice is at most δ · |γ|.

A complex X satisfies the (β, δ)–separation property if every its relator does so.

There are other ways of defining an analogue of the β–condition above, which would
make the δ–condition unnecessary. However, one requires then large β, which is not
convenient for providing examples.

3.3. Walls in X . Let us show that a C ′(λ)–complex X satisfying the (β, δ)–separation
property, does possess the wall structure given by the walls as defined in Subsection 3.1,
for sufficiently small λ 6 1/24. We use results of Wise [Wis11, Section 5] (see also
[Wis12, Chapter 10]). In particular, we have to check that X satisfies the assumptions
from [Wis11].

Lemma 3.2 (Generalized B(6)). Let X be a complex satisfying the β–condition from
Definition 3.1. Then there exists λ 6 1/24 with the following property. If X satisfies the
C ′(λ)–condition then X satisfies the generalized B(6) condition of [Wis11, Definition
5.1].

Proof. Condition (1) of [Wis11, Definition 5.1] follows immediately from our definition
of the coned-off space X . Condition (2) follows from the C ′(1/24)–condition (see the
proof of Lemma 2.1 above). Conditions (3) and (6) follow from our definition of walls
in graph relators. For a given β the conditions (4) and (5) are implied by the β–condition
together with the C ′(λ)–condition, provided λ is sufficiently small. �

For the rest of this subsection we assume that X satisfies the β–condition, for some
β ∈ (0, 1), and the C ′(λ)–small cancellation condition for λ as in Lemma 3.2. With this
fact in hand we use [Wis11, Section 5] in our setting.

Lemma 3.3 ([Wis11, Remark 5.24] and ([Wis12, Theorem 10.1])). Removing all open
edges from a given wall decomposes X(1) into exactly two connected components.
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Thus, we define the family W for X(0) as the partitions of X(0) into sets of vertices in
the connected components described by the lemma above.

Proposition 3.4. With the system of walls defined as above, (X(0),W) is a space with
walls.

Proof. Since, for any two vertices, there exists a path in X(1) connecting them, we get
that the number of walls separating those two vertices is finite. �

We recall further results on walls that will be extensively used in Section 4.
For a wall w, its hypergraph Γw is a graph defined as follows (see [Wis11, Definition

5.18] and [Wis04]). There are two types of vertices in Γw (see e.g. Figure 1):
• edge-vertices correspond to edges in w,
• relator-vertices correspond to relators containing edges in w.

An edge in Γw connects an edge-vertex with a relator-vertex whenever the corresponding
relator contains the given edge.

Lemma 3.5 ([Wis11, Theorem 5.19]). Each hypergraph is a tree.

The hypercarrier of a wall w is the 1–skeleton of the subcomplex of X consisting of
all relators containing edges in w or of a single edge e if w = {e}.
Theorem 3.6 ([Wis11, Corollary 5.34]). Each hypercarrier is a convex subcomplex of
X(1), that is, any geodesic connecting vertices of a hypercarrier is contained in this hy-
percarrier.

The following result is implicit in [Wis11, Section 5], and formally it follows from
Lemmas 3.5 & 3.6 above, and from [Wis11, Lemma 5.9].

Corollary 1. Relators are convex subcomplexes of X(1).

4. LINEAR SEPARATION PROPERTY

In this section, we perform the main step toward Main Theorem, namely, we prove The-
orem 4.7 below (Theorem 1.1 from Introduction). This implies the properness of the
wall pseudo-metric and it is the most involved part of the paper (cf. also Remark after
Definition 4.1 and Section 8 below).

From now on, unless stated otherwise, each complex X considered in this paper has
relators (ri)i∈N being graphs with walls, and satisfies the following lacunary walling
condition.

Definition 4.1 (Lacunary walling). Let β ∈ (0, 1/2], δ ∈ (0, 1),M ∈ (0, 1), K > 0, and
let k be a natural number larger than 1. Let λ = (λ(ri))i∈N be a vector with λ(ri) 6
λ, where λ < β/2 is the constant from Lemma 3.2 (that is, such that X satisfies the
generalized B(6) condition). We denote by bri(t) the maximal number of edges in a ball
of radius t in the graph ri. We say that X satisfies the lacunary walling condition if:
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• X(1) has degree bounded by k;
• (Small cancellation condition) X satisfies the C ′(λ)–condition;
• (Lacunarity) bri(λ(ri) · girth ri) 6 K · girth ri;
• (Separation condition) X satisfies the (β, δ)–separation property;
• (Compatibility) (1− δ)(β − λ(ri))− 2K − 4λ(ri) >M · (β − λ(ri)).

Observe that this definition makes sense, that is, there are choices of all the constants
and functions above satisfying the given constraints. To see this, note that (in the compat-
ibility condition):

(1− δ)(β − λ(ri))− 2K − 4λ(ri) =

(
1− δ − 2K + 4λ(ri)

β − λ(ri)

)
(β − λ(ri)).

Thus, after setting β and δ, one can choose small K and λ so that the compatibility
condition holds. Then one may further decrease the function λ to satisfy the lacunarity
condition.

Remarks. 1) Our assumptions are not quantitatively optimal, they suit our general goal
toward explicit examples (cf. Section 7). However, in Section 8, we argue that the lacu-
nary walling condition is in a sense necessary in our approach.
2) In this paper, we follow (up to some notations) the construction of walls provided by
Wise [Wis11] in a much more general case of small cancellation over CAT(0) cubical
complexes. In fact, for graphical small cancellation — as considered in our paper — one
could adapt the proofs provided in [Wis04] in the classical small cancellation case (cf.
e.g. [OW07]). We decided to follow the more general approach having in mind possible
future extensions of our results.
3) Whereas the construction of walls for (cubical) small cancellation complexes is en-
tirely the idea of Wise, the properness of the wall pseudo-metric is proved only in some
cases in [Wis04, Wis11]. In particular, as we point out in [AO12, Section 6], there ex-
ist classical B(6) small cancellation complexes whose wall pseudo-metric is not proper.
In [Wis11, Section 5.k] the linear separation property is proved in the case of graphical
small cancellation under the additional assumption on the presentation finiteness. The
proof does not extend to our – infinitely presented – case. In Section 8, we comment on
relations between our approach and the one from [Wis11, Section 5.k].

By Subsection 3.3, for a complex X with the lacunary walling condition, there is a
structure of space with walls (X(0),W). The rest of this section is devoted to proving that
(X(0),W) satisfies the linear separation property (Theorem 1.1 in the Introduction, and
Theorem 4.7 below) stating that the wall pseudo-metric on X(0) is bi-Lipschitz equivalent
to the path metric (cf. e.g. [Wis11, Section 5.11]).

Let p, q be two distinct vertices in X . It is clear that

dW(p, q) 6 d(p, q).
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For the rest of this section our aim is to prove an opposite (up to a scaling constant)
inequality.

Let γ be a geodesic in X (that is, in its 1–skeleton X(1)) with endpoints p, q. Let A(γ)
denote the set of edges in γ whose walls meet γ in only one edge (in particular such walls
separate p from q). Clearly dW(p, q) > |A(γ)|. We thus estimate dW(p, q) by closely
studying the set A(γ). The estimate is first provided locally (in Subsection 4.1 below) and
then we use the local-to-global density principle (Lemma 2.2) to obtain a global bound.

We begin with an auxiliary lemma. Let r be a relator. Since r is convex in X , its
intersection with γ is an interval p′q′, with p′ lying closer to p — see Figure 1. Consider
the set C of edges e in p′q′, whose walls w meet γ at least twice and, moreover, have the
following properties. Let e′ ∈ w (considered as an edge-vertex in the hypergraph Γw) be
a closest vertex to e in Γw, among edges of w lying on γ. In the hypergraph Γw of the
wall w, which is a tree by Lemma 3.5, consider the unique geodesic γw between vertices
e and e′. We assume that there are at least two distinct relator-vertices on γw, one of them
being r.

e

w

e′
p

p′

r

z′ z

e′′
x′

x

q′
qe

r

e′

e′′

r′′

Γw X

FIGURE 1. Lemma 4.2.

Lemma 4.2. In the situation as above we have |C| 6 2 · br(λ(r) · girth r).

Proof. Suppose that q′ lies between e and e′ (on γ). Let e′′ 6= e be the edge-vertex on
γw adjacent to r and, consequently, let r′′ be the relator-vertex on γw adjacent to e′′ —
see Figure 1. By convexity (Lemma 3.6) and the tree-like structure (Lemma 3.5) of the
hypercarrier of w, containing e and e′, we have that q′ ∈ r′′. Since r ∩ r′′ is convex and
contains both e′′ and q′, by the small cancellation condition we have

d(e′′, q′) + 1 6 λ(r) · girth r.

Therefore, the number of edges e′′ as above is at most br(λ(r) ·girth r). The same number
bounds the quantity of the corresponding walls. By our assumptions, every such wall



GRAPHICAL SMALL CANCELLATION GROUPS WITH THE HAAGERUP PROPERTY 11

contains only one edge in p′q′. Thus, the number of edges e as above is at most br(λ(r) ·
girth r). Taking into account the situation when p′ lies between e and e′ we have

|C| 6 2 · br(λ(r) · girth r).

�

4.1. Local estimate on |A(γ)|. For a local estimate we need to define neighborhoods
Ne – relator neighborhoods in γ – one for every edge e in γ, for which the number
|E(Ne) ∩ A(γ)| can be bounded from below.

For a given edge e of γ we define a corresponding relator neighborhood Ne as follows.
If e ∈ A(γ) then Ne = {e}. Otherwise, we proceed in the way described below.

Since e is not in A(γ), its wall w crosses γ in at least one more edge. In the wall w,
choose an edge e′ ⊆ γ being a closest edge-vertex to e 6= e′ in the hypergraph Γw of
the wall w. We consider separately the two following cases, see Subsection 4.1.1 and
Subsection 4.1.2 below.

4.1.1. (Case I.) The edges e and e′ do not lie in common relator. In the hypergraph Γw
of the wall w, which is a tree by Lemma 3.5, consider the geodesic γw between vertices
e and e′. Let r be the relator-vertex in γw adjacent to e. Let e′′ be an edge-vertex in γw
adjacent to r. Consequently, let r′′ be the other relator-vertex in γw adjacent to e′′. The
intersection of r with γ is an interval p′q′. Assume without loss of generality, that q′ lies
between e and e′ — see Figure 1.

We define the relator neighborhood Ne as the interval p′q′ = r ∩ γ.

Lemma 4.3.

|E(Ne)| > (β − λ(r)) · girth r.

Proof. Let xq′ be the geodesic between e′′ and q′. Let z be the vertex in e closest to q′ —
see Figure 1. By the (β, δ)–separation property we have

|xq′|+ |q′z|+ 1 > β · girth r.(2)

On the other hand, by the small cancellation condition, we have

|xq′|+ 1 6 λ(r) · girth r.(3)

Combining (2) with (3), we obtain

|p′q′| > |q′z|+ 1 > β · girth r − |xq′| > β · girth r − λ(r) · girth r

> (β − λ(r)) · girth r.

�

We are now ready to state the main result in Case I.
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Lemma 4.4 (Local density of A(γ) — Case I). The number of edges in Ne, whose walls
separate p from q is estimated as follows:

|E(Ne) ∩ A(γ)| > (1− δ) · (β − λ(r))− 2K − 4λ(r)

β − λ(r)
|E(Ne)|.

Proof. To estimate |E(Ne)∩A(γ)|, that is, the number of edges inNe that belong toA(γ),
we explore the set of edges f in Ne outside A(γ). We consider separately the three ways
in which an edge f of Ne may fail to belong to A(γ) — these are studied in Cases: B, C
and D below.

Since f /∈ A(γ) there exists another edge of the same wall wf in γ. Let f ′ be a closest
to f such edge-vertex in the hypergraph Γwf

. Denote by γwf
the geodesic in Γwf

between
f and f ′. Let rf be the relator-vertex on γwf

adjacent to f .

Case B: There is only one relator-vertex between f and f ′ on γwf
, and rf = r. By

convexity of relators, the segment p′q′ is geodesic in r. Thus, by the (β, δ)–separation
property, the cardinality of the set B of such edges f is bounded by

|B| 6 δ · |E(Ne)|.(4)

e

w

e′
p

p′

r = rf

e′′

q′
q

f

f ′′

f ′

wf

f

rf = r

f ′

f ′′

Γwf
X

FIGURE 2. Lemma 4.4, Case I(C).

Case C: There are at least two distinct relator-vertices between f and f ′ on γwf
, and

rf = r — see Figure 2. The cardinality of the set C of such edges f is bounded, by
Lemma 4.2, as follows:

|C| 6 2 · br(λ(r) · girth r).(5)

Case D: rf 6= r. Let the set of such edges f be denoted by D. Let p′′q′′ := rf ∩ γ, with
p′′ closer to p.

First consider the subcase when the relator-vertex rf is adjacent to both f and f ′. Ob-
serve that, since rf 6= r, the edge f ′ does not belong to r. Without loss of generality,
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e

w

e′
p

p′

r

e′′

q′
q

f f ′

wf
rf

rf

Γwf

f

X

FIGURE 3. Lemma 4.4, the possible Case I(D).

we may assume that q′ lies (on γ) between f and f ′. Since rf is convex, it follows that
the interval on γ between f and q′ is contained in rf — see Figure 3. Thus, by the small
cancellation condition, the number of such edges f is bounded by (taking into account the
symmetric situation after exchanging p′ and q′):

2 · λ(r) · girth r.(6)

e

w

e′
p

p′

r

e′′

q′
q

f f ′

wf

rf
f ′′

p′′ q′′

rf

Γwf

f

X

f ′′

FIGURE 4. Lemma 4.4, the impossible Case I(D).

The other subcase to consider is when there is another relator-vertex r′f 6= rf on γwf

adjacent to f ′′, that is itself adjacent to rf . The number of edges f for which rf contains
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p′ or q′ is, again by the small cancellation condition — see Figure 3, bounded by:

2 · λ(r) · girth r.(7)

Thus, further we assume that p′′q′′ ⊆ p′q′ — see Figure 4. We will show that this is
impossible. By the small cancellation condition, we have

|p′′q′′| 6 λ(r) · girth r.(8)

On the other hand, by Lemma 4.3 we obtain

|p′′q′′| > (β − λ(r)) · girth r.(9)

Combining (8) and (9), we get

λ(r) > β − λ(r).

This however contradicts our choice of β and λ (see Definition 4.1).

Combining quantities (6) and (7) above we obtain the following bound on the number
of edges in D:

|D| 6 4 · λ(r) · girth r.(10)

Now we combine all the cases: B, C, and D, to obtain the following bound in Case I,
see estimates (4), (5), and (10) above.

|E(Ne) \ A(γ)| 6 |B|+ |C|+ |D|
6 δ · |E(Ne)|+ 2 · br(λ(r) · girth r) + 4 · λ(r) · girth r.

By lacunarity (see Definition 4.1), we have br(λ(r) · girth r) 6 K · girth r, and by
Lemma 4.3, we get girth r < |E(Ne)|

β−λ(r)
. Therefore,

|E(Ne) \ A(γ)| 6 δ · (β − λ(r)) + 2K + 4λ(r)

β − λ(r)
|E(Ne)|,(11)

and hence

|E(Ne) ∩ A(γ)| > (1− δ) · (β − λ(r))− 2K − 4λ(r)

β − λ(r)
|E(Ne)|.(12)

�
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e

w

e′
p

p′

r

q′
q

r

Γw

e

e′

X

FIGURE 5. Lemma 4.4, Case II.

4.1.2. (Case II.) The edges e and e′ lie in common relator r. We may assume (exchanging
e′ if necessary) that e′ is closest to e (in X) among edges in w lying in r ∩ γ.

The relator neighborhoodNe is now defined as the interval p′q′ = r∩γ — see Figure 5.

Lemma 4.5 (Local density of A(γ) — Case II). The number of edges in Ne, whose walls
separate p from q is estimated as follows:

|E(Ne) ∩ A(γ)| > (1− δ) · β − 2K − 4λ(r)

β
|E(Ne)|.

Proof. We consider again the set of edges f in E(Ne) \A(γ). As in Case I (Lemma 4.4),
we consider separately three possibilities: B, C, D for such an edge f to fail belonging to
A(γ). The same considerations as in Case I lead to the estimates:

|B| 6 δ · |E(Ne)|,
|C| 6 2 · br(λ(r) · girth r),

|D| 6 4 · λ(r) · girth r.

By the (β, δ)–separation property, we have

|E(Ne)| > β · girth r.

Combining all the inequalities above we get

|E(Ne) \ A(γ)| 6 |B|+ |C|+ |D| 6 δ · β + 2K + 4λ(r)

β
|E(Ne)|,

and hence

|E(Ne) ∩ A(γ)| > (1− δ) · β − 2K − 4λ(r)

β
|E(Ne)|.

�
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4.1.3. Final local estimate. We are ready to combine all the previous estimates.

Proposition 4.6 (Local density of A(γ)). The number of edges in Ne, whose walls sepa-
rate p from q is estimated as follows:

|E(Ne) ∩ A(γ)| >M · |E(Ne)|.
Proof. If e ∈ A(γ) then the assertion is clear. If e /∈ A(γ) then we use Lemma 4.4 or
Lemma 4.5. �

4.2. Linear separation property. Using the local estimate on the density of A(γ) (see
Proposition 4.6) and the local-to-global density principle (Lemma 2.2) we now estimate
the overall density of edges with walls separating p and q, thus obtaining the linear sepa-
ration property.

Theorem 4.7 (Linear separation property). For any two vertices p, q in X we have

d(p, q) > dW(p, q) >
M

2
· d(p, q),

that is, the path metric and the wall pseudo-metric are bi-Lipschitz equivalent.

Proof. The left inequality is clear. Now we prove the right one. Let γ be a geodesic
joining p and q. The number |E(γ)| of edges in γ is equal to d(p, q). On the other hand,
the number |A(γ)| of edges in γ whose walls meet γ in only one edge is at most dW(p, q).
We will thus bound |A(γ)| from below.

For any edge e of γ, let Ne be its relator neighborhood. The collection U = {Ne | e ∈
E(γ)} forms a covering family of subpaths of γ. By the local estimate (Proposition 4.6)
we have that

|A(γ) ∩ E(Ne)|
|E(Ne)|

>M.

Thus, by the local-to-global density principle (Lemma 2.2), we have

|A(γ)| > M

2
· |E(γ)|,

that finishes the proof. �

5. MAIN RESULT: THE HAAGERUP PROPERTY

A consequence of the linear separation property (Theorem 4.7) is the following main
result of the paper.

Theorem 5.1. Let G be a group acting properly on a simply connected C ′(λ)–complex
X satisfying the lacunary walling condition. Then G acts properly on a space with walls.
In particular, G has the Haagerup property.
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Proof. The group G acts properly on the set of vertices X(0) of X equipped with the
path metric d(·, ·). By Proposition 3.4, this action gives rise to the action by automor-
phisms on the space with walls (X(0),W). By the linear separation property (Theo-
rem 4.7), we conclude that G acts properly on (X(0),W). By an observation of Bożejko-
Januszkiewicz-Spatzier [BJS88] and Haglund-Paulin-Valette (cf. [CMV04]), the group G
has the Haagerup property. �

Definition 5.2 (Lacunary walling of a presentation). A graphical presentation

〈Y (1) | (ri)i>1〉

is said to satisfy the lacunary walling condition if the universal cover X of the coned-off
space Y (1) ∪(φi)

⋃
i cone ri satisfies the lacunary walling condition introduced in Defini-

tion 4.1.

Observe that Main Theorem follows immediately from the above, since the given group
G acts properly on the corresponding universal cover, as described in Section 2.

6. AN EXPLICIT SMALL CANCELLATION LABELING OF A SUBDIVIDED FAMILY OF
GRAPHS

The aim of this section is to show that for any (infinite) family of graphs there exists a
small cancellation labeling of them, after subdividing edges in a non-uniform way (Theo-
rem 6.1). Furthermore, one may enhance the labeling (up to taking a subsequence) to the
one satisfying the lacunarity condition (Theorem 6.2). This result allows us (in Section 7)
to give many – non-classical – examples of presentations satisfying the lacunary walling
condition.

All graphs considered in this section are oriented. For a (oriented) graph Γ and j ∈ N,
by Γj we denote the j–subdivision of Γ, that is the (oriented) graph obtained by sub-
dividing every edge of Γ into j edges, all directed toward the endpoint of the original
orientation.

Theorem 6.1 (Small cancellation labeling of subdivisions). Let Γ = (Γi)i∈N be a (possi-
bly infinite) family of finite graphs with degree bounded by d. For every λ = (λi)i∈N with
λi ∈ (0, 1), there exists a sequence (ji)i∈N of natural numbers with the following property.
There exists a labeling of the family of subdivisions (Γjii )i∈N by d+ 2 letters satisfying the
C ′(λ)–small cancellation condition.

Proof. For each n, k ∈ N, let In,k denote the labeling of the segment with all edges
directed toward common end-vertex of length |In,k| = kn + k2/2 + k/2 defined as (here
ai denotes a labeling i consecutive edges, similarly for bj; orientation from left to right):

anbanb2anb3 . . . anbk−1anbk.
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Observe that if a labeling of a subsegment I appears in In,k twice (in different places) then
the length of I is at most

(k − 2) + n+ (k − 1),(13)

which is the length of the sequence bk−2anbk−1. If a labeling of a segment I appears in
two labelings In,k and In′,k′ , with n 6= n′, then its length is at most

min{2n+ k − 1, 2n′ + k′ − 1},(14)

that corresponds to the sequence anbk−1an or an′
bk

′−1an
′ . Combining (13) and (14) we

have that if a subsegment I of In,k appears in two different places in the family {In,k | n 6=
n′ if (n, k) 6= (n′, k′)} then its length is less than

2(k + n).(15)

The following technical claim follows from an elementary calculation.

Claim. ∀E,N ∈ N there exist E pairwise distinct numbers n1, n2, . . . , nE > N and E
numbers k1, k2, . . . , kE > N such that |Ini,ki | = |Inj ,kj |, for all i, j.

c1

c2
c3

cp3

cp2

cp1

In2,k2

In1,k1

In3,k3

a

b

a

a
a

b

b

FIGURE 6. Labeling of Γjii .

Now we come to the actual subdivision and labeling of (Γi)i∈N. We proceed inductively.
Let c1, . . . , cd be pairwise different and different from a, b, letters. We label Γjii such that
edges in the subdivision adjacent to an original vertex of Γi are all labeled by different
letters among c1, . . . , cd (this is to prevent foldings). Then we use labelings In,k to label
further subdivided edges of each Γi — see Figure 6. Assume that we defined the required
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numbers j1, . . . , jM , and we found the required labeling of the subfamily (Γjii )i6M . We
find now jm+1 and the required labeling of (Γjii )i6M+1, that is, we show an appropriate
labeling of Γ

jM+1

M+1 . Let N be greater than any index n appearing in In,k used for labeling
the family (Γjii )i6M , and greater than 8/λM+1.

Let E be the number of edges in ΓM+1. Let n1, . . . , nE , and k1, . . . , kE be as in Claim
(for E,N as specified above). Then we set jM+1 := |Ini,ki| + 2 and we label each of E
subdivided edges of ΓM+1, using one of Ini,ki as:

cma
nibanib2anib3 . . . anibki−1anibkicp.

We check now that (Γjii )i6M+1 satisfies the small cancellation condition. Let p be a
path in some Γjii such that p appears also elsewhere — in the same graph or in another
one. Then there is an edge of Γi such that the intersection of p with the ji–subdivision e of
this edge has length at least |p|/2. If for the labeling of e we used the labeling In,k (with
ji = |In,k| + 2) then we have a subsegment of In,k of length at least |p|/2 − 1 appearing
also in another place in the family {In,k | n 6= n′ if (n, k) 6= (n′, k′)}. By the formula
(15), it means that

|p|/2− 1 < 2(k + n).

Since ji = |In,k|+ 2 = kn+ k2/2 + k/2 + 2 we obtain

|p| < 4(k + n) + 2 =
4(k + n) + 2

ji
· ji =

4(k + n) + 2

kn+ k2/2 + k/2 + 2
· ji

=
8

k
· (k2 + nk)/2 + k/4

kn+ k2/2 + k/2 + 2
· ji <

8

k
· ji < λi · ji < λi · girth Γjii ,

(16)

since k > 8/λi. This proves the small cancellation condition for (Γjii )i6M+1 and, by
induction, finishes the proof of the theorem. �

Using the same method one can prove the following stronger result that will be used
for providing examples in Section 7.

Theorem 6.2 (Lacunary labeling of subdivisions). Let Γ = (Γi)i∈N be an infinite family
of finite graphs with degree bounded by d and girth tending to infinity as i → ∞. For
every λ = (λi)i∈N with λi ∈ (0, 1), there is n0 > 0 and there exists a sequence (ji)i>n0

of natural numbers with the following property. There exists a labeling of (Γjii )i>n0 by
d + 2 letters satisfying the C ′(λ)–small cancellation condition and, moreover, satisfying
the lacunarity condition of Definition 4.1, for a given K > 0.

Proof. We use the same labeling of subdivisions as in the proof of Theorem 6.1. We
follow the notations of that proof. For simplicity, by Γ we denote Γi, for a given i, and
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by Γ′ we denote its ji–subdivision Γjii . By the formula (16) the labeling of Γ′ satisfies the
C ′(λ)–small cancellation condition for λ = 4(k+n)+2

kn+k2/2+k/2+2
. Observe that

girth Γ′ = ji · girth Γ and bΓ′(t) 6 ji · bΓ(t/ji),

where bΓ, bΓ′ are the functions introduced in Definition 4.1. Therefore, we obtain the
following

bΓ′(λ · girth Γ′) 6 ji · bΓ(λ · ji · girth Γ/ji)

= ji · girth Γ · bΓ(λ · girth Γ)

girth Γ
=
bΓ(λ · girth Γ)

girth Γ
· girth Γ′.

For sufficiently large ji, that is, for large k, n, we have that λ is small. For large i the
girth is arbitrarily big. Thus, setting n0 and ji (for i > n0) large enough we can obtain
bΓ(λ·girth Γ)

girth Γ
6 K. Hence the lacunarity condition is satisfied. �

In [OW07] it is shown that for a finite family of graphs, random labeling leads to a
small cancellation labeling of some subdivided graph (up to folding). Their method does
not extend to infinite families. A random labeling of an infinite expander family, used by
Gromov [Gro03, AD08] in his construction of Gromov’s monster, satisfies the so-called
geometric small cancellation condition (which is of rather different nature). Thus, it is
very interesting to know whether a random labeling of some subdivisions of an infinite
family of bounded degree graphs does satisfy the C ′(λ)–small cancellation condition.

7. EXAMPLES

In this section, we first give examples of infinite graphical small cancellation presen-
tations that do not reduce to classical small cancellation presentations treated in [Wis04,
AO12]. Then we show that the construction of Z/2–homology covers from [AGŠ12] pro-
duces a sequence of regular graphs satisfying the (β, δ)–separation property required by
the lacunary walling condition. Such a sequence is a natural candidate for a sequence
(ri)i∈N satisfying the hypothesis of Theorem 1.2, and, hence, for the construction of a
group which is coarsely embeddable into a Hilbert space but not coarsely amenable.

Example 1. For any natural number k, let Θk be the graph being the union of three
segments: Ia, Ib, Ic of length 3k each, with three start-points identified and three end-
points identified — see Figure 7. We label edges of Ia, Ib, Ic in order as, respectively:

a1a2 . . . ake1e2 . . . eka
′
1a
′
2 . . . a

′
k,

b1b2 . . . bke
′
1e
′
2 . . . e

′
kb
′
1b
′
2 . . . b

′
k,

c1c2 . . . cke
′′
1e
′′
2 . . . e

′′
kc
′
1c
′
2 . . . c

′
k.

Using this labeling we define walls. There are four kinds of them, for every i = 1, . . . , k
— see Figure 7:

• the wall wei consists of edges: ei, e′i, e
′′
i ;
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• the wall wai consists of edges: ai, a′i;
• the wall wbi consists of edges: bi, b′i;
• the wall wci consists of edges: ci, c′i.

It is easy to observe that the following inequalities hold:

d(ei, e
′
i) + 1 = d(e′i, e

′′
i ) + 1 = d(e′′i , ei) + 1 > 2k + 1 >

1

3
· 6k =

1

3
· girth Θk,

d(ai, a
′
i) + 1 = d(bi, b

′
i) + 1 = d(ci, c

′
i) + 1 = 2k =

1

3
· girth Θk.

Moreover, for every geodesic the fraction of edges meeting this geodesic twice is at most
2/3. Thus, the system of walls satisfies the (β, δ)–separation property for β = 1/3 and
δ = 2/3.

Using Theorem 6.2, one can now find a sequence (kj)j∈N of natural numbers and an
appropriate explicit labeling (different from the one used just for defining walls) of graphs
Θkj that defines an infinite graphical small cancellation presentation of a group satisfying
the lacunary walling condition.

e1 e2 ek

e′1 e′2 e′k

e′′1

e′′2
e′′k

a1

a2

ak a′1

a′2

a′k

bk

bk−1

b1 b′k
b′k−1

b′1

c1
c2

ck c′1
c′2

c′k

wa2

we2

Ia

Ib

Ic

Θk

FIGURE 7. Example 1.

Example 2. Let In be the 1–skeleton of an n–cube. Subdividing every its edge into
k edges we obtain the graph Ink — see Figure 8. This graph possesses a natural wall
structure — opposite edges in every 4k cycle belong to the same wall (edges e, e′, e′′, e′′′

form the wallw in Figure 8). For any median graph r (i.e. the 1–skeleton of a CAT(0) cube
complex) one can equip each k–subdivision of r (every edge subdivided into k edges) with
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a wall system, applying the above rule to each cube (or simpler – just to each square) of
r. Observe that for any two edges e, e′ of the same wall, we have

d(e, e′) + 1 > 2k,

which means that the β–condition from Definition 3.1 is satisfied for β = 1/2. Further-
more, one easily sees that the δ–condition from Definition 3.1 is satisfied for δ = 1/3.

e

e′

e′′

e′′′

w

I3k

FIGURE 8. Example 2.

Using Theorem 6.2, any sequence of median graphs (ri)i∈N may be transformed (up
to taking a subsequence) into a sequence of their subdivisions (r′i)i∈N with a small can-
cellation labeling, satisfying the lacunary walling condition. The resulting group acts
then properly on the corresponding space with walls and hence, possesses the Haagerup
property.

Example 3. We recall the construction of the box space which is coarsely embeddable
into a Hilbert space but not coarsely amenable [AGŠ12]. Let Fm be the free group of rank
m > 2. Arzhantseva-Guentner-Špakula’s box space is a regular graph

Θ =
∞⊔
n=1

Θn :=
∞⊔
n=1

Fm/((F(2)
m )(2))...(2),

which is the disjoint union of the Cayley graphs Θn of quotients of Fm by the subgroups
generated iteratively, over n > 1, by the squares of the group elements. That is, F(2)

m is
the normal subgroup of Fm generated by all the squares of elements of Fm, then (F(2)

m )(2)

is such a subgroup of F(2)
m , and so on. The corresponding Cayley graphs are viewed with

respect to the canonical image of the free generators of Fm.
The graph Θn is the Z/2–homology cover of Θn−1 (with Θ0 being the bouquet of m

circuits), that is, a regular cover of Θn−1 whose the group of deck transformations is the
rank(π1(Θn−1))–fold direct sum of Z/2Z’s.

The graph Θ is the graph with walls [AGŠ12, Section 3]. For each edge e ∈ E(Θn−1)
and the covering map πn : Θn → Θn−1, the wall we is defined by we := π−1

n (e) ⊆ E(Θn)
and {we | e ∈ E(Θn−1)} provides the wall structure on Θn, for all n > 1.
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The following general observation shows that this wall structure on Θ does satisfy the
β–condition from Definition 3.1.

Lemma 7.1. Let π : Γ̃ → Γ be a Z/2–homology cover endowed with the wall structure
as above. Then the β–condition holds, with β = 1/2.

Proof. Observe that girth Γ̃ = 2 · girth Γ. Indeed, let γ be a cycle in Γ of length girth Γ.
We remove an arbitrary edge from γ, include the remaining path into a spanning tree of Γ,
and take the Z/2–homology cover of Γ with respect to this spanning tree. The resulting
cover coincides with Γ̃, as it does not depend on the choice of a spanning tree, and we
have girth Γ̃ = 2 · girth Γ.

Let e, e′ belong to a common wall in Γ̃. Then π(e) = π(e′), by our definition of
walls [AGŠ12]. Let γ ⊆ Γ̃ be a geodesic between e and e′, with endpoints v ∈ e and
v′ ∈ e′. Let w 6= v be another vertex of e. If π(v) = π(v′) then π(γ) contains a closed
path in Γ. If π(w) = π(v′) then there is a closed path in Γ of length at most d(v, v′) + 1.
In both cases we obtain

d(e, e′) + 1 = d(v, v′) + 1 > girth Γ = (1/2)girth Γ̃.

�

In order to guarantee the δ–condition from Definition 3.1, we take the Z/2–homology
cover of an appropriately chosen sequence of graphs (instead of the above tower of suc-
cessive covers starting with the bouquet of m circuits).

Let Λ = (Λi)i∈N be an infinite family of finite 2-connected graphs, with girth Λi →∞
as i→∞, and such that diam Λi/girth Λi 6M for some M > 0, uniformly over i ∈ N.
Let Λ̃ = (Λ̃i)i∈N be the corresponding infinite family of the Z/2–homology covers: Λ̃i is
the Z/2–homology cover of Λi, for each i ∈ N. Observe that girth Λ̃i → ∞ as i → ∞.
We endow Λ̃ with our wall structure as above.

Lemma 7.2. Let γ be a geodesic in Λ̃. Then there exists δ ∈ (0, 1) such that the number
of edges in γ whose walls meet γ at least twice is at most δ|γ|.
Proof. The image of γ under the covering projection π : Λ̃→ Λ is a so-called admissible
path π(γ) in Λ, see [AGŠ12, Definition 3.5]. We have |γ| = |π(γ)| for the edge-length,
see [AGŠ12, Lemma 3.6 and Proposition 3.8], and the path π(γ) either does not contain
any loop, or else every edge on any loop it contains is traversed exactly once, see [AGŠ12,
Lemma 3.12]. Note that π(γ) has no any backtrack since γ is geodesic, see [AGŠ12,
Remark 3.9]. Therefore, if it does not contain any loop, then no walls meet γ at least
twice, and the δ–condition is satisfied for all δ ∈ (0, 1).

Suppose now that π(γ) contains L > 1 loops. Then π(γ) decomposes into L loops
c1, . . . , cL traversed exactly once, l geodesics t1, . . . , tl which are followed twice (toward
and backward each loop as well as between such “flowers”), and finitely many geodesics
s1, s2, . . ., traversed exactly once, joining several trees formed by tj’s, see Figure 9.
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FIGURE 9. Decomposition of a shortest admissible path π(γ) in Λ.

For all k and j, we have |ck| > girth Λi and |tj| 6 diam Λi, for some i. Using the
induction on L, taking into account the tree structures formed by tj’s, one checks that
l 6 2L. Thus, we have

|γ|/|γ|W =

∑
k |ck|+ 2

∑
j |tj|+

∑
q |sq|∑

k |ck|+
∑

q |sq|
6 2 +

2(2L)diam Λi

L girth Λi

6 2 + 4M,

where |γ|W is the length of γ with respect to the wall pseudo-metric, that is, the number
of edges in γ whose walls meet γ exactly once [AGŠ12, Proposition 3.10]. Therefore, Λ̃
satisfies the δ–condition with δ = 1− 1

2+4M
= 1+4M

2+4M
. �

We have just checked, using the results of [AGŠ12], that the graph metric and the wall
pseudo-metric on Λ̃ are bi-Lipschitz equivalent. This is the main result of [Ost12] (also
giving δ, see inequality (3) in that paper), where such a choice of Λ was explored, in the
context of metric embeddings into the Banach space `1.

The existence of infinite families Λ = (Λi)i∈N as above, consisting of finite regular
graphs of vertex degree at least 3, is well-known. For instance, the famous Ramanujan
sequence of Lubotzky-Phillips-Sarnak provides such a family of finite (p + 1)–regular
graphs, where p is an odd prime.

Thus, Λ̃ = (Λ̃i)i∈N is coarsely embeddable into a Hilbert space, has a bi-Lipschitz
embedding into the Banach space `1 (as every wall space has an isometric embedding
into `1), but is not coarsely amenable since girth Λ̃i → ∞ as i → ∞ and the graphs are
regular of vertex degree at least 3 [Wil11]. By Lemmas 7.1 and 7.2, Λ̃ = (Λ̃i)i∈N satisfies
the (β, δ)–condition required by the lacunary walling condition.
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8. DISCUSSION ON THE OPTIMALITY

In this section, we argue that our lacunary walling condition is essential for obtaining
the main result — linear separation property for small cancellation complexes; see Theo-
rem 1.1 in Introduction and Theorem 4.7. We focus on the (β, δ)–separation property and
on the lacunarity (together with the compatibility) from Definition 4.1. We provide exam-
ples showing that if any of them fails then the wall pseudo-metric may be non-comparable
with the 1–skeleton metric.

8.1. (β, δ)–separation property. The β–condition from Definition 3.1 is essential for
the definition of walls in X; see Section 3.3. Without it one cannot usually extend the
walls in relators to the whole X . It corresponds to the π

2
–strong separation property from

[Wis11, Section 5.k], and is essential also in the finitely presented case. For the rest of this
subsection we therefore focus on the δ–condition from Definition 3.1. This condition is
required in the infinitely presented case and may be easily omitted in the finitely presented
one.

Consider the (4k+2)–gon Ck = (v1, v2, . . . , v4k+2, v4k+3 = v1). Assume that for every
i ∈ {1, 2, . . . , k}∪{2k+2, 2k+3, . . . , 3k+1} the edges vivi+1 and vi+k+1vi+k+2 are dual
to common wallwi. Moreover, let the edges vk+1vk+2 and v3k+2, v3k+3 be dual to common
wall wk+1 — see Figure 10. Observe that the system of walls satisfies the β–condition
from Definition 3.1, for β approaching from above 1/4 while k grows. Note however,
that d(v1, v2k+2) = 2k + 1 while dW (v1, v2k+2) = 1, where dW is the wall pseudo-metric
given by walls wi, that is, the number of walls separating given vertices. This means that
an infinite family {Cki}i∈N does not satisfy the δ–condition for any δ > 0.

v1

v2

v3

v4 v5

v6

v7

v8

v9

v10

v11v12

v13

v14

w4

w1

w2

w3

w10

FIGURE 10. Failure of the δ–condition.
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One can easily construct a (classical) infinite small cancellation presentation with re-
lators being (4k + 2)–gons as above. When equipped with walls induced by the above
walls in relators, the Cayley complex of the group G defined by such a presentation be-
comes a space with walls. Yet X contains arbitrarily long geodesic (contained moreover
in relators) separated by one wall. Consequently, the group G does not act properly on
the obtained space with walls. It shows that both: the β–condition and the δ–condition,
are necessary in our approach.

Note that the system of walls as above can satisfy (choosing an appropriate small can-
cellation labeling) the π

2
–strong separation property from [Wis11, Section 5.k]. This

means that the pathologies as just described are characteristic for infinite presentations,
and not for finite ones.

8.2. Lacunarity/Compatibility. Consider a relator r as in Figure 11. Here, walls corre-
spond to the sets of edges:

{ai, a′i, a′′i , a′′′i }, {bi, b′i, b′′i , b′′′i }, for i = 1, 2, 3, 4, and {c, c′}, {d, d′}, {e, e′}, {f, f ′}.
Observe that girth r = 16, and that the wall system satisfies the (β, δ)–separation property
for β = 1/4 and some δ < 1.

a1

a′1

a2 a3 a4

a′2

a′3
a′4

a′′4 a′′3

a′′′4 a′′2

a′′′3 a′′′2

b1b2b3b4

b′1

b′2

b′3
b′4

b′′3 b′′4

b′′2 b′′′4

b′′′2 b′′′3

e

e′f

f ′

T

c
d c′

d′

FIGURE 11. Relator r.

For k = 3, 4, . . . , we now construct a complex Xk satisfying the C ′(1/8)–small can-
cellation condition using the relator r — see Figure 12. The complex Xk is the union of k
copies of r, such that consecutive copies share a common tree of valence 4 and diameter
3, consisting of edges labeled by a′i or b′i in r (like the tree T in Figure 11).

We equip the complex Xk with the wall system W as in Subsection 3.3, by extending
the walls in r. Note that Xk does not satisfy the lacunarity/compatibility conditions from
Definition 4.1. By lacunarity we have to have (using the notations from Definintion 4.1):

br

(
1

8
· 16

)
= 4 6 K · 16,
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p q
b̃3

b′3

a1 a2 a3 a4 b1b2b3b4

T

FIGURE 12. The complex Xk, for k = 3.

which implies K > 1/4. For such K however there is no way to satisfy the compatibility
condition for any M > 0.

Consider X3, and a geodesic with endpoints p, q, as in Figure 12. Observe that no wall
in W, corresponding to ai, bi separates p from q. Therefore we have dW(p, q) = 8 and
d(p, q) = 24, in X3. Similarly, for any k, in Xk one may find a geodesic (corresponding
to pq) of length 8k whose endpoints are separated by 8 walls from W. This shows that in
the corresponding infinite union X∞ the wall pseudo-metric is not proper.

Similarly, one can construct other examples for arbitrary small cancellation constant
λ > 0. The point here is that the number of edges in the tree T may be exponentially
large compared to its diameter. Then the corresponding walls may “exhaust” most of the
edges in a given geodesic.

Observe that in the above example we use only finitely many (precisely, one) types of
relators. This corresponds to the case of finitely presented groups. Wise [Wis11, Section
5.k] uses a notion of π

2
–strong separation property for relators, to obtain an analogous lin-

ear separation for finitely presented graphical small cancellation groups. In our approach,
the π

2
–strong separation property is replaced by the lacunarity condition. Neither of these

properties implies another one. We decided to use the lacunarity as a condition that suits
better our – quantitative – approach to spaces with walls.

REFERENCES

[AW81] Ch. A. Akemann and M. E. Walter, Unbounded negative definite functions, Canad. J. Math. 33
(1981), no. 4, 862–871.

[AD02] C. Anantharaman-Delaroche, Amenability and exactness for dynamical systems and their C∗-
algebras, Trans. Amer. Math. Soc. 354 (2002), no. 10, 4153–4178 (electronic).

[AD08] G. Arzhantseva and T. Delzant, Examples of random groups (2008), preprint, available at http:
//www.mat.univie.ac.at/˜arjantseva/publicationsGA.html.
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UNIVERSITÄT WIEN, FAKULTÄT FÜR MATHEMATIK, OSKAR-MORGENSTERN-PLATZ 1, 1090 WIEN,
AUSTRIA.
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