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Graphical-statistical method to explore variability

of hydrological time series

Charles Onyutha
ABSTRACT
Due to increasing concern on developing measures for predictive adaptation to climate change

impacts on hydrology, several studies have tended to be conducted on trends in climatic data.

Conventionally, trend analysis comprises testing the null hypothesis H0 (no trend) by applying the

Mann–Kendall or Spearman’s rho test to the entire time series. This leads to lack of information about

hidden short-durational increasing or decreasing trends (hereinafter called sub-trends) in the data.

Furthermore, common trend tests are purely statistical in nature and their results can be meaningless

sometimes, especially when not supported by graphical exploration of changes in the data. This paper

presents a graphical-statistical methodology to identify and separately analyze sub-trends for

supporting attribution of hydrological changes. Themethod is based on cumulative sum of differences

between exceedance and non-exceedance counts of data points. Through themethod, it is possible to

appreciate that climate variability comprises large-scale random fluctuations in terms of rising and

falling hydro-climatic sub-trendswhich can be associatedwith certain attributes. Illustration on how to

apply the introduced methodology was made using data over the White Nile region in Africa. Links for

downloading a tool called CSD-VAT to implement the presented methodology were provided.

Key words | climate variability, hydrological change attribution, Mann–Kendall test, River Nile,

Spearman’s rho test, sub-trend analysis
HIGHLIGHTS

• Common trend tests are purely statistical. They can yield meaningless results in some cases.

• Conventional testing of the null hypothesis (no trend) using entire data leads to lack of

information about sub-trends.

• Analysis of sub-trends maximizes understanding on how changes in the data can be linked to

certain driving factors.

• This paper presents a methodology for graphical-statistical analyses of sub-trends.
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INTRODUCTION
In the last decade, almost 90% of the scientific articles pub-

lished on precipitation, hydrology, and extreme climatic
conditions contained the word ‘trends’ (Iliopoulou &

Koutsoyiannis ). A popular practice by hydrologists in

the 21st century has been fitting of trends everywhere,

based on real data, and projecting them to the future

(Iliopoulou & Koutsoyiannis ; Koutsoyiannis ). To

do so, non-parametric or distribution-free methods including
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the Mann–Kendall (MK) (Mann ; Kendall ) and

Spearman’s rho (SMR) (Spearman ; Lehmann )

tests are conventionally applied to the entire time series

for determining whether the null hypothesis H0 (no trend)

is rejected. There are some crucial issues regarding the con-

ventional approach of testing trends in climatic data:

1. Common trend detection methods tend to be applied in a

purely statistical way. Results from such purely statistical

trend tests can bemeaningless in some cases (Kundzewicz

& Robson ), especially if not supported by inferences

from graphical exploration of changes in the data.

2. The idea of testing the H0 (no trend) using the entire data

record to get insight on the future climatic condition is a

misleading practice. Prediction of the future using trends

fitted to the entire record was recently found to be worse

than simply taking the mean of the data (Iliopoulou &

Koutsoyiannis ). By testing the H0 (no trend) using

an entire long-term record, a great deal of information

is missed out about hidden short-durational increase or

decrease (hereinafter referred to as sub-trends) in the

data. In other words, application of MK or SMR test to

a given long-term (for instance, 100-year) series can

show that the H0 (no trend) is not rejected (p> α). This

can be achieved because the effects of increasing and

decreasing sub-trends within the series cancel each

other and the net result of such cancellation may yield

trend statistics for which the H0 (no trend) cannot be

rejected (p> α). However, the H0 (no trend) may be

rejected (p< α) for several sub-series from the same data-

set when analyzed separately. Therefore, instead of

focusing on long-term (like 100-year) trend which may

be due to the effect of an external forcing on the

system, analyses of sub-trends are important to character-

ize climate variability, a phenomenon which is crucial for

consideration of designs of hydraulic structures or oper-

ation of hydrological applications. Here, there are two

factors to be considered, including the relevant time

scales and length of the sub-series for which the H0 (no

trend) is rejected (p< α). For instance, a 15-year data

period is relevant as the design life of some water

supply projects or systems for an irrigation scheme.

Importantly, identification of sub-trends can reveal fas-

cinating information on temporal variability in climatic
://iwaponline.com/hr/article-pdf/52/1/266/847153/nh0520266.pdf
data and this can invite further investigations to maximize

our understanding on driving forces of hydrological pro-

cesses over short-durational or long periods. Large-scale

random fluctuations in terms of rising and falling hydrolo-

gical trends could be associated with specific attributes

over the relevant sub-periods. These large-scale random

fluctuations may be considered deterministic, especially if

they could be conditioned by a physical explanation and

predictability (Koutsoyiannis ). If the fluctuations

defy a deterministic description, a plausible option of

hydrological data analysis would be to adopt a stochastic

description (Montanari & Koutsoyiannis ; Koutsoyiannis

& Montanari ).

The main aim of this paper was to present a graphical-

statistical methodology (based on cumulative sum of

differences between exceedance and non-exceedance

counts of data points) for identification and analyses of

sub-trends in climatic series. The innovative aspect of

the presented methodology lies in the tailored partial

sums of the new trend statistic to graphically separate tem-

poral clusters of events above or below the long-term

mean of the climatic dataset. The method involves testing

the H0 (natural randomness) in the given data using a

non-overlapping window of relevant length passed from

the beginning to the end of the time series. Depending

on whether the H0 (natural randomness) is rejected (p< α),

further investigation can be conducted to confirm if

there are persistent fluctuations. This leads to testing on

various other hypotheses to determine attributes of a

hydrological change. Furthermore, assessment of persist-

ence allows us to decide on which statistics to employ for

further analyses of the given climatic or hydrological time

series.
THE NEW METHOD TO ANALYZE TRENDS, SUB-
TRENDS AND VARIABILITY

General

The method being introduced (which for lack of an appro-

priate name due to its elaborate nature for multi-purpose

application can simply be referred to as Onyutha's test or

method) depends on non-parametrically re-scaled series.
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To go through the method in a step-wise way, let the inde-

pendent and dependent variables be denoted by X and

Y, respectively. Consider that the sample size of X or Y

is n. We can re-scale X and Y into series dx and dy, respect-

ively, using

dy,i ¼ n�wy,i � 2ty,i and dx,i ¼ n�wx,i � 2tx,i for 1 � i � n

(1)

where, ty,i and tx,i denote the number of times the ith obser-

vation exceeds other data points in Y and X, respectively.

Similarly, wy,i and wx,i refer to number of times the ith

data point appears within Y and X, respectively. For

instance, a given dataset Y with n¼ 9 such that y¼ {3, 4,

3, 4, 5, 2, 7, 1, 6} yields ty¼ {2, 4, 2, 4, 6, 1, 8, 0, 7}, wy¼ {2,

2, 2, 2, 1, 1, 1, 1, 1}, and dy¼ {3, �1, 3, �1, �4, 6, �8, 8, �6}.

Due to re-scaling, the mean of either dy or dx is zero.

We can standardize dy and dx to obtain series ey and ex,

respectively, using

ey,i ¼ dy,i ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n� 1) × (cy)

�1
q

and ex,i

¼ dx,i ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n� 1) × (cx)

�1
q

for 1 � i � n (2)

where,

Cy ¼
Xn

i¼1
(dy,i)

2 and Cx ¼
Xn

i¼1
(dx,i)

2 (3)

For the case when a data point y (or x) is tied n times,

each value of dy will become zero, meaning that ey,i ¼ 0

for 1� i� n.

The new method’s trend statistic T can be given by

T ¼
Xn

j¼1

Xj

i¼1
ey,i (4)

Positive and negative trends are indicated by T> 0 and

T< 0, respectively. The strength of co-variation of X and Y

can be measured using the metric S1 such that

S1 ¼
Xn

j¼1

Xj

i¼1
ex,i

� ��1
× T (5)
om http://iwaponline.com/hr/article-pdf/52/1/266/847153/nh0520266.pdf

022
Another metric S2 in terms of B ¼ Pn
j¼1

Pj
i¼1 dy,i

for 1� i� n was considered as trend statistic such

that (Onyutha a):

S2 ¼ 6B
n3 � n

(6)

If Rx and Ry are ranks of X and Y, respectively, and

given that the X’s and Y’s are permutations of numbers

from 1 to n, the product moment coefficient ρ of correlation

between X and Y in terms of F ¼ Pn
i¼1 (Rx,i � Ry,i)

2 can be

given by (Spearman ):

ρ ¼ 1� 6F
n3 � n

(7)

Based on Equations (6) and (7), we obtain

S2 ¼ (1þ ρ)
B
F

(8)

and given that S1 ¼ S2, the relationship between T (Equation

(4)) and ρ (Equation (7)) can be given by

T ¼ (1þ ρ)(n� 1)B
2F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n(nþ 1)

3

r
(9)

Important notes are that ρ ¼ S1 ¼ S2 for regular data

and the mean of ρ is zero. Some vital results due to Student

() but presented by Pearson () indicated that the

second moment of ρ about the mean or μ2(ρ) is given by

μ2(ρ) ¼
1

n� 1
(10)

Like for ρ, the mean of S1or S2 is zero. Furthermore, as

shown in Section SM1 of the Supplementary material, the

variance of S1 denoted as V(S1) is also (n� 1)�1 like μ2(ρ)

in Equation (10). Given that V(S1) is equal to V(S2), it fol-

lows that the variance of the term B or V(B) is

V(B) ¼ n2(n2 � 1)(nþ 1)
36

(11)
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Finally, the mean of T (Equation (4)) is zero and for

large n the distribution of T is approximately normal (see

Figure SM1 of the Supplementary material) with the var-

iance of T or V(T ) (as shown in Equation (SM9) under

Section SM1 in the Supplementary material) given by

V(T ) ¼ n(n2 � 1)
12

(12)

The V(T ) in Equation (12) is valid for independent data.

For dependent data, V(T ) is affected based on the form of

persistence in the data. For instance, V(T ) is more inflated

by fractional Gaussian noise (FGN) than the first-order auto-

regressive AR(1) model. For auto-correlated data, the

corrected variance of ρ or VA(ρ) is given by (Moran ;

Hamed )

VA(ρ)¼ 122

2πn2(n2�1)2
Xn
i¼1

Xn,j≠i

j¼1

Xn
k¼1

Xn,l≠k

l¼1

(i�1)(k�1)sin�1(ρijkl)

(13)

where

ρijkl ¼
ρ jl � ρil � ρ jk þ ρikffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2� 2ρij)(2� 2ρkl)

q (14)

and ρij, ρkl, ρ jl, and ρik denote the correlation between yi and

yj, yk and yi, yj and yi, and yi and yk, respectively, for a given

dataset Y considering the series to be the equivalent normal

variates with Gaussian dependence. Using Equation (SM7)

in Section SM1 of the Supplementary material, it follows

that the exact expression of the variance of T or VC(T ) for

persistent data with multivariate Gaussian dependence can

be given by

VC(T) ¼ 6
n(nþ 1)π

Xn
i¼1

Xn,j≠i

j¼1

Xn
k¼1

Xn,l≠k

l¼1

(i� 1)(k� 1)sin�1(ρijkl)

(15)

Actually, Equation (15) is so computationally arduous

that it can be limited to theoretical consideration based on

small samples with n< 10. In practice, analyses of trends
://iwaponline.com/hr/article-pdf/52/1/266/847153/nh0520266.pdf
in data with persistence require long-term series. Similarly,

sub-trends can occur over long periods, of say, greater

than ten years. In such situations, V(T ) can be corrected

from the influence of autocorrelation by a suitable approxi-

mation following a slight modification of the formula from

Onyutha (b) (see Section SM4 of the Supplementary

material).

For data which follow the FGN model, the corrected

V(T ) denoted as VF(T ) following 10,000 samples of FGN

synthetic series generated under various circumstances of

sample sizes and scaling coefficients was found to be

VF(T ) ¼ V(T ) × β × nθ (16)

where

β ¼ 1:4784H4
Est þ 0:5094H3

Est � 3:9455H2
Est

þ 0:8312HEst þ 1:4174 (17)
θ ¼ �0:4512H4
Est � 0:4057H3

Est þ 1:9193H2
Est

þ 0:4237HEst � 0:6144 (18)

And HEst is the sample scaling coefficient obtained after

removal of an apparent trend from the data. A number of

approaches exist to estimate HEst (see Section SM6 of the

Supplementary material). Distribution of HEst estimated

from a large number of (or 50,000) synthesized white

noise series was found to be approximately normal with

the mean μH and standard deviation σH given by

μH ¼ 0:5� 2n�0:8 and σH ¼ (0:57 × n�0:5 þ n�1) × (1:0406�
0:0001 × n), respectively. Consider Zα/2 as the standard

normal variate at the selected α. If the absolute value

of the standardized metric Hz given by Hz¼
(HEst � μH) × (σH)

�1 is less than jZα=2j the H0 (the given

time series is not different from a typical white noise) is

not rejected (p> α). In this case, the new method’s standar-

dized test statistic Z which follows the standard normal

distribution with mean (variance) of zero (one) is given by

Z ¼ T × (V(T))�0:5 where V(T ) is from Equation (12), other-

wise if the H0 (the dataset is like white noise) is rejected
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(p< α), we make use of Equation (16) to compute Z using

Z ¼ Tffiffiffiffiffiffiffiffiffiffiffiffiffi
VF(T)

p (19)

The H0 (no trend) is rejected (p< α) for jZj> jZα=2j;
otherwise, the H0 is not rejected (p> α). Adequacy of the

variance correction approaches summarized in Equation

(16) can be found in Figure SM2 of the Supplementary

material. To take into account of the influence of seasonality

on trend results, seasonal trend test for the new method can

be found in Section SM8 of the Supplementary material.
Graphical diagnoses of sub-trends

For graphical diagnoses of sub-trends in the data, series a can

be generated through sequential accumulation of ey using

aj ¼
Xj

i¼1

ey,i for 1 � j � n (20)

Temporal variation in the values of aj from Equation (20)

comprises an analogy to the description of a limit Markov or

memory-less process of finite-variance random walks with

short-range correlation. In other words, Equation (20)

employs the concept of a Brownian bridge which is based

on the standard Brownian motion. Actually, a finite-variance

motion converges towards the Gaussian limit distribution

(Benson et al. ). This property makes the application of

Brownian motion (in terms of the Brownian Bridge) so attrac-

tive in hydrology, especially in the change-point detection, see

for instance, the Pettit test (Pettitt ) and distribution-free

cumulative sum test (Pages ). However, this paper

makes use of Equation (20) to indicate sub-periods over

which the cumulative effect of temporal variation in the

time series is consecutively positive or negative. To diagnose

sub-trends, aj is plotted against j or time of observations and

this is called the sub-trend plot. To assess the significance of

trend in the data, a step-wise summation is applied to a of

Equation (20) to obtain another series q using

qk ¼
Xk
j¼1

aj for 1 � k � n (21)
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In another step, qk is plotted against k or time of

observations.

Significance of an identified sub-trend of interest

The H0 (no sub-trend) is tested by adding 100(1� α)% con-

fidence interval limits (CILs) to the plot of qk versus k using

CILS ¼ ±jZα=2j ×
ffiffiffiffiffiffiffiffiffiffiffiffiffi
VF(T)

p
(22)

If the sub-series is of reasonable length and is not differ-

ent from a typical white noise, we use V(T) from Equation

(12) instead of VF(T). If the scatter points go outside the

100(1� α)% CILs, the H0 (no sub-trend) is rejected (p<

α); otherwise, the H0 is not rejected (p> α).

Variability based on sub-trends

To test the H0 (natural randomness), we select some time

scale t relevant to the objectives of the study. The unit of t

is similar to the time unit of the series being analyzed. For

instance, if we are analyzing annual data, t takes the unit

as year. If our dataset X comprises a subset x from the uth

to the vth value of X, we compute standardized trend stat-

istic Z for each window moved in an overlapping way

from the start to the end of the series. For a selected t, we

make some term ψ ¼ 0:5 × (tþ 1) and ψ ¼ 0:5 × t in the

cases when t is odd and even, respectively. To compute

sub-trends we use

Z(t)
j ¼ f(x ⊂ Xjxu � x � xv) for j ¼ 1, 2, . . . , n (23)

where, Zj is the jth value of Z (or Z from the jth time slice),

and the terms u and v (to define the beginning and end of

each time slice) are all based on j such that:

if j< ψ , v ¼ tþ j� ψ � 1

if j � ψ and j � (n� ψ), u ¼ j� ψ þ 1, v ¼ jþ ψ

if j> (n� ψ) and j � n, u ¼ j� ψ þ 1, v ¼ n

9>=
>;

(24)

Normally, the number of values calculated based on a

window of a particular length when moved from the
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beginning to the end of the series leads to loss of information

proportional to the selected window length. However,

Equation (24) ensures that there is no loss of information

due to the movement of the time slice or window from the

start to the end of the series. In other words, the number

of values computed from Equation (23) is equal to the

sample size of the give dataset. To test the H0 (natural ran-

domness), thresholds on the variability can be constructed

using ±Zα/2 after plotting Zj against the corresponding jth

time, such as, data year. If the values of Z go outside the

100(1� α)% CILs, the H0 (natural randomness) is rejected

(p< α); otherwise, the H0 is not rejected (p> α). If the H0

(natural randomness) is not rejected (p> α), it means tem-

poral variation in the sub-trends occurs randomly. On the

other hand, if the H0 is rejected (p< α) we suspect persist-

ence or long-range dependence (LRD).

Checking for persistence or LRD

To reliably assess long-term hydrological changes, natural

variation in hydro-climatic variables should adequately be

characterized in terms of the statistical dependence

(Onyutha et al. ). Thus, instead of testing for the H0

(natural randomness) using a single time scale, we look for

an evidence of multiple-scale variability by quantifying

LRD or the Hurst exponent H (Hurst ).

Attribution

To assess the attributes of temporal variation in sub-trends of

river flow, we can test several hypotheses, such as (i) varia-

bility in precipitation, (ii) changes in potential evapo-

transpiration (PET), and (iii) land-use changes and/or

human factors. Full details of the hypotheses and the pro-

cedure to test each of them can be found in Table SM1 of

the Supplementary material.
COMPARING PERFORMANCE OF THE NEW
METHOD AS WELL AS MK AND SMR TESTS

Rejection rates of the new method as well as SMR and MK

tests were compared under various circumstances of coeffi-

cient of variation (CV), sample size, lag-1 serial correlation
://iwaponline.com/hr/article-pdf/52/1/266/847153/nh0520266.pdf
coefficient or first-order autoregressive AR(1) process, and

trend slope over the ranges 0.1–0.9, 20–200, �0.9–0.9, and

0.001–0.009, respectively. Each simulation experiment was

done using 5,000 synthetic series. Rejection rate was com-

puted as the number of times the H0 (no trend) was

rejected divided by 5,000.
APPLICATION OF THE NEW METHOD

The use of synthetic data

Several synthetic series Ys with n¼ 200 or n¼ 300 were gen-

erated for the purpose of illustrating how to apply the new

method for graphical-statistical diagnoses of sub-trends. To

each of the series, the following steps were taken:

1. Equation (2) was applied to the full time series.

2. Sub-trend plot was made in terms of aj (Equation (20))

versus j (or time of observations).

3. Sub-trends in the data were identified and separated in

the form of areas enclosed between curves and the refer-

ence (or aj ¼ 0 line).

4. For each sub-trend, the corresponding sub-series (or data

points over the corresponding sub-period) were separated

from the full time series.

5. Equation (21) was applied to each separated sub-series.

6. A plot of qk from Step (v) against corresponding time of

observations was made.

7. To the plot in Step (vi), 100(1� α)% CILs were added

based on Equation (22).

Real climatic data

The new method was applied to long-term annual river flow

data observed at three hydrological stations along the White

Nile in Africa. Monthly river flows observed at Malakal and

Mongalla (labeled Stations 1 and 2, respectively) were

obtained from the Global Runoff Data Centre (GRDC),

Koblenz, Germany. Monthly river flows observed at Kam-

dini (Station 3 from 1950 to 2000) and Jinja (Station 4

measured over the period 1900–1995) were obtained from

a report submitted to Uganda Electricity board in 1997 by

Kennedy & Donkin Power Ltd in Association with Sir
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Alexander Gibb & Partners and Kananura Melvin Consult-

ing Engineers. Data at Station 4 comprised Lake Victoria

outflows. Monthly Lake Victoria level time series from

1900 to 1995 was also available at Station 4. Additional

monthly Lake Victoria outflows at Jinja (Station 4) covering

the period 1996–2005 were obtained from Ministry of Water

and Environment, Uganda. An overview of the data can be

seen in Table 1. Also obtained for this study were gridded

hydro-climatic datasets over the upper White Nile,

especially in the Equatorial region including (i) monthly pre-

cipitation and PET of the Climatic Research Unit (CRU)

over the period 1901–2019 (Harris et al. ) and (ii)

monthly precipitation of CenTrends v1.0 time series from

1900 to 2014 (Funk et al. ). Figure 1 shows time series

plots of annual data after re-scaling or division of the

series by their long-term mean (LTM).

To assess co-variation of observed flow and modeled

runoff, a simplified procedure for lumped rainfall-runoff gen-

eration was adopted. Precipitation and PET were used to

estimate soil moisture deficits. Runoff was generated as a

function of the antecedent soil moisture when the evapor-

ation demand was met.
Figure 1 | Rescaled (a) annual flow and (b) annual precipitation or PET.

Table 1 | Selected stations and overview of the data

S. no.
Station
name Data period

Latitude
(�)

Longitude
(�) LTM (m3/s)

1 Malakal 1912–1982 9.58 31.62 939

2 Mongalla 1912–1982 5.20 31.77 1,050

3 Kamdini 1950–2000 2.24 32.33 1,075

4 Jinja 1900–2005 0.41 33.19 864
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Temporal sub-trends in the hydro-climatic variables

were computed using Equation (23). Co-variability of the

hydro-climatic variables was assessed using correlation

analysis. Attribution of the temporal variation in sub-

trends of the river flow was done using various hypotheses

and procedure presented in Table SM1 of the Supplemen-

tary material. The Hurst parameter was also estimated for

each series.
RESULTS AND DISCUSSION

Results of the new method applied to synthetic series

Figure 2 comprises graphical illustration on diagnoses of

sub-trends and their significance. In sub-trend plots, the

horizontal (or a¼ 0) line is the reference indicating the

case when there is completely no trend in the time series.

When there is no trend (see Case 1), the reference is crossed

several times with no clear area enclosed between the scat-

ter points and the reference (Figure 2(a)). In this case, the

significance of the trend in the data is determined using

the entire or full time series. Using α¼ 0.05, it can be

noted that the data with no trend yielded values of qk
which were entirely within the 95% CILs and the H0 (no

trend) was not rejected (p> 0.05) (Figure 2(j)). To statisti-

cally quantify the significance of the trend in such series,

we apply Equation (19) to the entire dataset since there

are no sub-trends.

Monotonic trends (Cases 2 and 3) exhibit sub-trend

curves described by quadratic polynomials (Figure 2(b)



Figure 2 | Plots for (1)–(9) synthetic series Ys of n¼ 200, with associated (a)–(i) sub-trend plots and (j–r) significance of sub-trends for the corresponding series. Legends of charts (k)–(r) are

the same as that in (j).
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and 2(c)). The sub-trend curve for a dataset with positive

trend (Case 2) will exhibit a concave curve (Figure 2(b)).

If the dataset has a negative trend (Case 3), a convex

curve will be formed in the sub-trend plot (Figure 2(c)). It

is worth noting that for the case with monotonic trend,

the maximum absolute value of aj tends to occur around

i¼ n/2 or the mid of the data period. This can easily be

shown (by differentiating Equation (SM3) of the Sup-

plementary material with respect to i and equating

the derivative to zero) that the point of inflection is at

i¼ n/2. If the datasets are dominated by a monotonic

trends as indicated by the entire sub-trend curve falling

below or above the reference, the significance of the

trends should be determined using the full time series.

For Case 2, values of qk were above the reference and

up-crossed the upper limit of the 95% confidence interval.

Similarly, for Case 3, values of qk were below the reference

and down-crossed the lower limit of the 95% confidence

interval. Thus, for Cases 2 and 3, the H0 (no trend) is

rejected (p< 0.05) (Figure 2(k) and 2(l)). Statistically, we

apply Equation (19) to the entire dataset since there are

no sub-trends or the series is dominated by a monotonic

increase or decrease.

When the dataset has various sub-trends, two or more

curves are formed in the sub-trend plot (see Cases 4 and

5). For the part of the data with positive/negative sub-

trend, the sub-trend curve will be concave/convex

(Figure 2(d) and 2(e)). In Case 4 or Case 5, there are

two sub-trends, one positive and the other negative.

Here, the significance of each sub-trend should be deter-

mined separately using sub-data taken over the

corresponding sub-period. For instance, in Case 4 or

Case 5, one sub-trend occurred from i ¼ 1 to i ¼ 100

and the other over the sub-period 101 � i � 200. It can

be seen from Figure 2(m) and 2(n) that the H0 (no

trend) is rejected (p< 0.05) for each of these sub-trends.

In other words, the negative and positive sub-trends

down-crossed and up-crossed the lower and upper and

95% CILs, respectively (Figure 2(d) and 2(e)). In the con-

ventional procedure of trend analyses without separating

sub-trends, the series in Case 4 or Case 5 would yield qk
at k ¼ n equal to zero (or qn ¼ 0) thereby indicating no

trend, something that would be misleading. Value of qk
at k ¼ n can be zero for data with two sub-trends because
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the positive and negative trends cancel each other. How-

ever, in reality the H0 (no trend) should be tested

separately for each identified sub-trend.

For a step jump in mean (see Case 6 and Case 7), the

sub-trend plot produces two lines (having opposite slopes)

(Figure 2(f) and 2(g)). These lines have their point of inter-

section below (above) the reference in the case the data is

characterized by a step downward (upward) jump in mean

(Figure 2(f) and 2(g)). The significance of sub-trends in the

sub-series over the two periods (one before and the other

after the change point) should be determined separately.

As seen from Figure 2(m) and 2(n), the H0 (no trend) is

not rejected (p> 0.05) for each of these sub-series. In

other words, increase or decrease in each sub-series is mini-

mal and the scatter points in the sub-trend plot do not cross

the 95% CILs (Figure 2(o) and 2(p)).

A given dataset can have no trend over some sub-series

while the other part is characterized by an increasing or

decreasing sub-trend (see Cases 8 and 9 of Figure 2). In

such situations, the sub-series with no trend can be indicated

by a line in the sub-trend plot. However, the sub-series with

increasing/decreasing sub-trend can exhibit concave/

convex curve in the sub-trend plot (Figure 2(h) and 2(i)).

For Cases 8 and 9, the sub-series over the periods with

sub-trends should be separated from the full time series. Sig-

nificance of the various sub-series should be assessed

separately. For the various sub-trends, since the values of

qk go beyond the 95% CILs, the H0 (no trend) is rejected

(p< 0.05) (Figure 2(q) and 2(r).

Figure 3 shows sub-trend plots for synthetic data each of

n¼ 300 and having three sub-series with either trend or no

trend combined. The first section is from i ¼ 1 to i ¼ 100

The second and third sub-series are over the sub-periods

101 � i � 200 and 201 � i � 300, respectively (see Cases

1–7 of Figure 3). It can be noticed that the sub-trend plots

show lines for sub-trends with no trends. However, for

sub-series with trends, corresponding sections of the sub-

trend plot appear as curves (Figure 3(a)–3(g)). The signifi-

cance of the various sub-series is determined separately

(Figure 3(j)–3(r). It is vital to note that because the sample

sizes of the sub-series are the same (or n ¼ 100), the

widths of the 95% confidence intervals are uniform in

each plot while testing the significance of the various sub-

trends. In reality, sub-trends can be of different lengths of



Figure 3 | Plots for (1)–(7) synthetic series Ys of n¼ 300 as well as (a)–(g) sub-trend plots and (h–n) significance of sub-trends for the corresponding series. Legends of charts (h)–(n) are the

same as that in (i).
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sub-periods and, therefore, the widths of the 95% confidence

intervals can differ among sections of the sub-trend plot.

An important question to answer is: Can partial sums of

MK and SMR tests be applied to produce the equivalent of

sub-trend plots such as, those presented in Figures 2(a)–

2(i) and 3(a)–3(g)? Application of partial sums of MK and
://iwaponline.com/hr/article-pdf/52/1/266/847153/nh0520266.pdf
SMR to produce equivalent sub-trend plots as in Figures 2

and 3 has limitations. Partial sums of MK and SMR trend

statistics in their current forms cannot directly be applied

to separate clusters of events which occur above and

below the long-term mean of the time series. This is because

partial sums of the MK test statistic decrease from the
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beginning towards the end of the series while fluctuating

randomly regardless of whether there are sub-trends in the

data. SMR test statistic comprises squared difference

between ranks of X and Y and this makes its partial sums

to always increase in magnitude even when there is an

apparent negative sub-trend. Further explanations of these

limitations can be found in Section SM3 of the Supplemen-

tary material.

Table 2 shows differences among methods or

approaches for analyzing changes in series. It is noticeable

that the conventional application of MK and SMR tests

can yield trend statistic values for which the H0 (no trend)

is not rejected (p> α) despite presence of apparent sub-

trends. In cases where there are monotonic trends (and no

sub-trends), the new methodology is consistent with conven-

tional approaches. Here, it is important to first graphically

show using sub-trend plots that the series has no sub-

trends or it is dominated by a monotonic increase or

decrease over the entire data record. Application of trend

tests to the full time series characterized by step jump in
Table 2 | Statistical trends, sub-trends, and measures of persistence in synthetic series

S. no. Synthetic data being analyzed

Common trends tests
applied to the entire data Th

MK SMR Pa

1 Figure 2 (Case 1) � 0.01 0.04 �
2 Figure 2 (Case 2) 5.46*** 5.81*** 4.

3 Figure 2 (Case 3) � 5.08*** � 5.47*** �
4 Figure 2 (Case 4) 0.14 0.13 3.

5 Figure 2 (Case 5) � 0.14 � 0.13 �
6 Figure 2 (Case 6) � 5.35*** � 5.31*** �
7 Figure 2 (Case 7) 5.07*** 5.22*** �
8 Figure 2 (Case 8) 4.59*** 4.94*** �
9 Figure 2 (Case 9) � 4.49*** � 4.80*** �
10 Figure 3 (Case 1) � 1.33 � 1.26 �
11 Figure 3 (Case 2) 6.85*** 6.87 �
12 Figure 3 (Case 3) 2.92*** 3.25*** �
13 Figure 3 (Case 4) 7.30*** 8.37*** �
14 Figure 3 (Case 5) 8.84*** 9.91*** �
15 Figure 3 (Case 6) 0.14 � 0.26 3.

16 Figure 3 (Case 7) 0.30 0.21 4.

Bold values indicate that the H0 (no trend) was rejected for p< 0.01 (**), and p< 0.001 (***). ‘
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means can lead to rejection (p< α) of the H0 (no trend)

when actually there are no apparent sub-trends. Therefore,

trends in the sub-series before and after the step jump

should be analyzed separately.

The value of H for white noise or series with random

fluctuations is 0.5. Here, the H0 (natural randomness)

tested using temporal variation in sub-trends was not

rejected (p> 0.05) for the series with H¼ 0.502. Further-

more, the H0 (the series is like white noise) was not

rejected (p> 0.05) for this dataset with H¼ 0.502. For

series which are not statistically different from white noise,

classical statistics can be used for analyses. Application of

classical statistical metrics, such as mean, coefficient of vari-

ation, and correlation follows the assumption that the

sample comprises independent, and identically distributed

events. Other values of H in Table 2 are all above 0.5 and

for the corresponding series, the H0 (the given dataset is

typical of white noise) was rejected (p< 0.05). This means

that these series were characterized by persistent fluctu-

ations. Furthermore, for each of these series, the H0
e new trend test applied to sub-trends

Parameter H of the entire datart 1 Part 2 Part 3

0.07 NA NA 0.502

94*** NA NA 0.885

4.68*** NA NA 0.871

63*** �3.63*** NA 0.856

3.63*** 3.63*** NA 0.856

0.69 �0.12 NA 0.892

0.60 �0.60 NA 0.876

0.28 3.65*** NA 0.888

3.65*** 0.28 NA 0.887

3.63*** 3.63*** �3.63*** 0.864

4.93*** �3.72*** 3.63*** 0.938

4.68*** 2.32** 3.63*** 0.939

0.15 �0.71 1.00 0.969

2.41** 3.59*** �0.14 0.977

59*** �0.14 �0.14 0.948

94*** 4.94*** �3.53*** 0.962

NA’¼No other sub-trend(s).
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(natural randomness) was rejected (p< 0.05) using temporal

variation in sub-trends. Results from Table 2 show that

occurrences of sub-trends in a given series can characterize

statistical persistence or LRD. The case with H> 0.5 indi-

cates that successive values in a given series depend on

the previous values. For instance, if a given value in a

series is greater than the mean, the next value is expected

to exceed the sample mean with a probability greater than

0.5 (Onyutha et al. ). Generally, values of H which are

greater than 0.5 as shown in Table 2 indicate association

with large-scale and/or multiple-scale variability or

enhanced natural variability.

Enhanced natural variability means that at large hor-

izons, we can encounter increased unpredictability.

Perhaps, at short time scales, temporal clustering can

be present and this can yield some potential for predict-

ability (Dimitriadis et al. ). Generally, two

frameworks exist to characterize and predict persistent

processes. The first option is the Markovian framework

in which the latest observations are considered to influ-

ence future probabilities. Secondly, in the Hurst–

Kolomogorov (HK) (Kolmogorov ; Hurst ) frame-

work, we consider the entire record of past realizations

to condition simulations of future climatic conditions

(Koutsoyiannis ). Application of the HK framework

(which admits stationarity) can make us appreciate the

coexistence of stationarity with change at all time

scales. Normally, the future climatic condition tends to

be predicted deterministically (such as, using linear

trend). Here, the uncertainty band around the linear

regression line may be narrow indicating reduced uncer-

tainty on our prediction. However, when we apply the

HK approach, the uncertainty about the future climatic

conditions would be very large, and this may be realistic

given the possible limited knowledge we always have

especially about the (very) distant future.

Comparing performance of the new method as well as

MK and SMR tests for series

Results from various tests applied to series without consider-

ing the need to separate sub-trends were highly comparable.

Details of graphical comparison can be seen in Figures SM3

and SM4 of the Supplementary material.
://iwaponline.com/hr/article-pdf/52/1/266/847153/nh0520266.pdf
Results of the newmethod applied to real data from the

White Nile region

Figure 4 shows graphical diagnoses of sub-trends in annual

hydro-climatic series. Analyses were conducted using the

period over which all the hydro-climatic variables had avail-

able data records. Hereinafter, White Nile flow means the

average of records from Stations 1–3 of Table 1. White

Nile flows and Lake Victoria outflows exhibited an

upward step jump in mean (Figure 4(a)). White Nile flows

majorly come from Lake Victoria. Precipitation directly con-

tributes to not less than 80% of the water in Lake Victoria

which acts as the reservoir supplying Victoria Nile and

White Nile. Less than 20% of the Lake Victoria water

comes from tributaries. In other words, the Lake Victoria

water level and flow from White Nile are largely influenced

by precipitation over the Equatorial region. Precipitation

from both sources (CenTrends and CRU) also exhibited an

upward step jump in mean. However, two curves were

formed by scatter points of PET over the periods 1912–

1960 and 1961–2000 (Figure 4(a)). This means that PET

over the Upper Nile (or White Nile) region was character-

ized by increasing sub-trends. However, the magnitudes of

the linear increase of PET with time were different over

the periods 1912–1960 and 1961–2000.

Figure 4(b) and Table 3 show the significance of ident-

ified sub-trends. Over both sub-periods 1912–1960 and

1961–2000, precipitation and river flows were characterized

by decreasing trends. However, PET was characterized by

increasing trends. For PET, the H0 (no trend) was rejected

(p< 0.05) for increasing trends over both sub-periods

1912–1960 and 1961–2000. Over both sub-periods, the H0

(no trend) was not rejected (p> 0.05) for the decreasing pre-

cipitation trends. For both White Nile flow and the Lake

Victoria outflow, the H0 (no trend) was rejected (p< 0.05)

for decreasing trends over the second (or 1961–2000) sub-

period.

Co-variation of sub-trends in hydro-climatic variables

Figure 5 shows co-variability of 15-year sub-trends in annual

hydro-climatic variables over the White Nile region. Periods

over which the newmethod’s trend statistic Z values for PET

were consecutively positive (negative) were 1915–1926,



Table 3 | Statistical analyses of sub-trends

S. no. Series name

Period 1912–1960 Period 1961–2000

Slope Z Slope Z

1 Precipitation_CenTrends � 0.80 � 0.75 � 1.56 �1.22

2 Precipitation_CRU � 0.71 � 0.72 � 2.84 �1.53

3 PET_CRU 2.16 4.22*** 1.16 3.38***

4 Lake Victoria outflow � 0.003 � 0.01 � 0.76 �3.37***

5 White Nile flow � 2.10 � 1.78 � 13.81 �4.11***

A bold value with the designator *** indicates that the H0 (no trend) was rejected for p< 0.001.

Figure 4 | Sub-trend plots in terms of (a) cumulative effects of temporal variation in annual hydro-climatic series and (b) significance of sub-trends.
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1935–1954, and 1979–2006 (1901–1914, 1927–1934, 1955–

1964, and 2007 until recent 2015). The H0 (natural random-

ness) was rejected (p< 0.05) over the period 1901–1914.

Consecutive positive (negative) sub-trends in the Lake Vic-

toria outflow and White Nile flow occurred over the period

1949–1967 (1967–1993). Precipitation exhibited positive

(negative) sub-trends over the periods 1953–1965, 1983–
om http://iwaponline.com/hr/article-pdf/52/1/266/847153/nh0520266.pdf
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1995, and 2005 until recent 2019 (1966–1980 and 1995–

2004). However, the H0 (natural randomness) was not

rejected (p> 0.05) for temporal sub-trends in precipitation.

Figure 5(b) shows correlation between hydro-climatic sub-

trends shown in Figure 5(a) applied to 15-year time slice or

window moved in an overlapping way from the beginning

towards the end of the data. Resulting correlation coefficients



Figure 5 | Comparison of variation in 15-year (a) sub-trends in annual data and (b) correlation among sub-trends in annual hydro-climatic data.
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were plotted against the ending year of each window.

Throughout the data record period, the H0 (no correlation)

was rejected (p< 0.05) for the correlation between White

Nile flow and Lake Victoria outflow. TheH0 (no correlation)

was also rejected (p< 0.05) for the correlation between

White Nile flow and precipitation as well as PET and precipi-

tation. Correlation between White Nile flow and

precipitation was mainly positive although negative over a

small epoch from the late 1930s to mid-1940s. During this

period, correlation between PET and precipitation was also

positive. Generally, correlation between PET and precipi-

tation was negative except from the late 1930s to mid-

1940s. The conclusive points to take from Figure 5 are

that: (i) variation in the White Nile flow is significantly
://iwaponline.com/hr/article-pdf/52/1/266/847153/nh0520266.pdf
(p< 0.05) determined by changes in the Lake Victoria

water level; (ii) variance in Lake Victoria water level and

eventually White Nile flow can be significantly (p< 0.05)

explained by the variability in the precipitation over the

Equatorial region; (iii) variation in precipitation on land is

negatively correlated with PET variability; and (iv) temporal

co-variability among hydro-climatic variables depend on the

period selected for analyses.

Attribution of sub-trends in the White Nile flow

Table 4 shows results of various hypotheses put forward to

explain temporal variation in sub-trends of the White Nile

flows with focus on the upward step jump in mean in 1961.



Table 4 | Hypotheses for temporal variation in sub-trends of the White Nile flows

Hypotheses Result Decision/Conclusion

Changes in precipitation The H0 (no correlation between precipitation and river flow
sub-trends) was rejected (p< 0.05). On a 15-year time
scale, up to about 75% of the variance in the sub-trends
in White Nile flow was explained by the variability in
precipitation.

The upward step jump in White Nile
flow mean was potentially caused
by the upward step jump in
precipitation over the Equatorial
region. The precipitation variability
in the Equatorial region could be
linked to changes in the Indian
Ocean Dipole and the El Nino
Southern Oscillation.

Changes in PET The H0 (no correlation between PET and river flow sub-
trends) was rejected (p< 0.05). Variability in PET
explained up to about 30% of the changes in the White
Nile flow variability.

Although the River Nile loses about
50% of its water by evaporation in
the floodplains of the Sudd region
in South Sudan, the PET changes
over the areas upstream of the
Sudd region has less influence on
White Nile flow than precipitation
variability.

Joint influence of PET, precipitation,
and soil moisture on rainfall-
runoff generation

On average, modeled runoff explained more variance
(about 90%) in White Nile flow than when individual
predictors including precipitation (75%) and PET (30%)
were used.

Temporal variation in the sub-trends
in White Nile flow is potentially
influenced jointly by precipitation,
PET and other factors.

Changes in the Lake Victoria water
level as a reservoir supplying the
White Nile

Variance in the White Nile flow explained by the changes
in Lake Victoria water level was found to be more than
94%.

Temporal variability in White Nile
flow sub-trends significantly (p<
0.01) depends on the variation in
the Lake Victoria water level. In
turn, about 80% of the Lake
Victoria water directly comes from
precipitation.

Changes of recording methodology
and equipment

Records of Nile flows from several hydrological stations
along the upper White Nile were found to temporally
resonate closely with each other as well as the Lake
Victoria water level.

Inconsistencies in data records were
very unlikely important to explain
the upward step jump in the White
Nile flow in 1961.

Land-use and land cover (LULC)
changes and/or human factors
such as, urbanization,
deforestation, wetland
reclamation, and overgrazing

Although not investigated (for brevity), the White Nile or
upper Nile sub-basin has high population growth. LULC
changes follow transition in policy-institutional factors
such as, shifts in land laws among the countries in the
region.

LULC changes and/or human factors
were unlikely important to explain
the variation in the Lake Victoria
water level and the White Nile
flow.

Other human intervention such as,
water abstractions, diversions, and
installation or construction of
hydraulic structures

Owen Falls Dam (now Nalubale Dam) through which the
Lake Victoria water discharges into the Victoria Nile
(where White Nile starts) operates based on a curve or
level–discharge relationship agreed by Egypt and Britain.
The ‘agreed curve’ constructed using data observed
between 1939 and 1950 was to originally vary from 10.3
to 12.0 meters of water level on the Jinja gauge. The
upward step jump in mean of the Lake Victoria water
level in 1961 prompted water to rise above the stipulated
‘12-meter’ mark on the Jinja gauge. This forced extension
of the ‘agreed curve’ to operate between 10.3 and 15
meters with the main aim of ensuring that the pre-dam or
original natural relationship between the Lake Victoria
level and the outflow in to the Victoria Nile was retained.

Other human interventions, such as
abstraction were unlikely important
to explain the changes in White
Nile sub-trends. Control of the
Victoria Nile flow via the ‘agreed
curve’ was unlikely to explain the
upward step jump in mean of the
White Nile flow.
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Measure of long-range dependence

Table 5 shows measures of statistical dependence in hydro-

climatic series over the White Nile region. The H0 (the

given dataset is not different from a typical white noise)

was rejected (p< 0.05) for each series. Values of H in

Table 5 are all above 0.5 (and significantly different from

H¼ 0.5). This means that each of the hydro-climatic series

was characterized by persistent fluctuation thereby indicat-

ing association with large-scale and/or multiple-scale

variability or enhanced natural variability. Results in

Table 5 are consistent with the assumption that rejection of

theH0 (natural randomness) from Figure 5(a) was due to per-

sistence in the hydro-climatic series. Conclusively, the

temporal changes in the sub-trends of the hydro-climatic vari-

ables analyzed in this study characterized large-scale random

fluctuations in the hydro-climate of the White Nile region.

Since annual data were used, high values of H indicate

high climate variability (Koutsoyiannis ). Generally, tem-

poral change is an inherent characteristic of each

hydrological process and this is due to the persistent stochas-

tic nature of the hydrological processes (Koutsoyiannis ).
CONCLUSIONS

Conventional trend analysis in which Mann–Kendall and

Spearman’s rho tests are applied to the entire given series

leads to lack of information on sub-trends (or hidden

short-durational trends) in the data. Furthermore, common

trend detection methods are purely statistical in nature

and they can yield meaningless results in some cases if not

supported by graphical exploration of changes in the data.
Table 5 | Values of the Hurst exponent

S. no. Data H

1 Lake Victoria water level 0.738

2 Lake Kyoga flow 0.717

3 White Nile at Malakal 0.723

4 White Nile at Mongalla 0.721

5 Precipitation over White Nile region 0.653

6 PET over White Nile region 0.682

7 Modeled runoff 0.674
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This paper presented a graphical-statistical method-

ology (which for lack of appropriate name due to its

elaborate procedure, can simply be referred to as Onyutha’s

test (for detecting trends or sub-trends) or Onyutha’s

method (for other applications such as, variability analyses,

and hydrological change attribution)) to identify and separ-

ately analyze sub-trends to support attribution of

hydrological change. The methodology considers differ-

ences between exceedance and non-exceedance counts of

data points. This method (among other things it does)

can be used to (i) graphically identify sub-trend(s) over

unknown period(s) of increase or decrease in the time

series, (ii) statistically and graphically test for sub-trends

and/or trends, (iii) analyze temporal variability based on

sub-trends using time slice or window of fixed length

moved from the start to the end of the dataset, and (iv)

test various hypotheses for hydrological change. Further-

more, the methodology makes it possible to appreciate

that climate variability comprises large-scale random fluctu-

ations in terms of rising and falling hydrological sub-trends

which could be associated with specific attributes over the

relevant sub-periods. To accurately characterize large-scale

random fluctuations in hydrological systems, long-term

series should be considered for analyses.

To implement the CSD-based methodology presented in

this paper, the reader can download a MATLAB-based tool

named CSD-VAT (which stands for variability analyses tool

VAT based on cumulative sum of difference CSD between

exceedance and non-exceedance counts of data points) via

either https://www.researchgate.net/publication/332798309

or https://sites.google.com/site/conyutha/tools-to-download

The steps for applying the presented methodology

include the following:

1. Identify epochs with clusters of data points above and

below long-term mean of the time series. To do so:

(a) Select a number of time scales (for instance, 5, 10, 15,

20, 25, 30). Here, the unit of each scale is the time unit

of the series. For instance, when using annual data,

the unit of time scale is year.

(b) For each time scale from Step(a), apply Equation (23)

of the main paper with Zj replaced by Aj, where Aj

denotes the average of sub-series within the window

running from the uth to the vth data point.

https://www.researchgate.net/publication/332798309
https://sites.google.com/site/conyutha/tools-to-download
https://sites.google.com/site/conyutha/tools-to-download
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(c) To each of the series generated from Step(b), apply

Equation (20).

(d) Make sub-trend plot to graphically identify sub-

trends (if any) in the series of each time scale. Con-

sult Figures 2 and 3 for a guide in graphical

diagnoses of sub-trends. The choice of an epoch

with a sub-trend should be based on the purpose

for which analysis is being conducted. For water

resources applications, sub-trend can be considered

relevant for analysis if the epoch over which it

occurs is equal to or greater than ten years. This

means sub-trends over epochs less than ten years

can be filtered and left out (unless they are relevant

for intended applications). For epochs over which

sub-trends exist, one needs to separate sub-series

and separately assess the significance of each sub-

trend. If there are no sub-trends, test the H0 (no

trend) using the entire data record. For testing the

H0 (no trend), make use of Equations (4), (12),

(16), and (19) of this paper.

2. Test for H0 (natural randomness) using temporal vari-

ation in sub-trends. To do so:
(a) Considering the time unit of the series, select a

number of time scales (for instance, 10, 15, 20, 25,

30 years).

(b) For each time scale, apply Equation (23) as it is to the

given series.

(c) Plot results from Step (b) against time of observations

and add the 100(1� α)% CILs.

(d) Separately test the H0 (natural randomness) using

results based on each time scale.

From Step 2(d), if the H0 (natural randomness) is not

rejected (p> α) from results of any time scale, check

whether the entire given series is statistically not different

from a typical white noise. In other words, check if H is stat-

istically different from 0.5. CSD-VAT makes use of the

generalized Hurst exponent H(q#) based on the scaling of

renormalized q#–moment of the distribution (Di Matteo

). For other methods to estimate H, see Section SM6

of the Supplementary material. In further analyses, treat

the series using classical statistics if it is not statistically

different from a typical white noise.

From Step 2(d), if the H0 (natural randomness) is

rejected (p< α) from results of any time scale, the given
om http://iwaponline.com/hr/article-pdf/52/1/266/847153/nh0520266.pdf
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time series can be assumed to be characterized by persist-

ent fluctuations. Estimate the scaling exponent H. If the

dataset is confirmed to be statistically different from a typi-

cal white noise, determine attributes of identified sub-

trend(s) in the hydrological time series by testing various

hypotheses. Here, make use of the procedure in

Table SM1 of the Supplementary material. If we use classi-

cal statistics for series characterized by H being statistically

different from 0.5, only a portion of the natural uncertainty

of the hydrological or hydro-climatic processes would be

described stemming from an implicit assumption of a

stable climate (Koutsoyiannis ). Therefore for further

analyses, use a suitable procedure such as the Hurst–Kolo-

mogorov (Kolmogorov ; Hurst ) framework to

characterize and predict the persistent process. Impor-

tantly, the prediction should be on a short period.
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