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ABSTRACT

Graphical Techniques for Maintenance Planning

Items subject to stochastic failure are candidates

for preventive maintenance where often an item is replaced

or restored to a good-as-new condition. For single com-

ponent items, the optimal interval for this type of pre-

ventive maintenance might be determined via some mathe-

matical model of replacement. Usually, these models

require knowledge of the failure distribution as well as

the costs of preventive and corrective maintenance. For

most problems there is considerable uncertainty as to the

appropriateness of a failure model. Bergman and others

have espoused graphical te-.hniques for the Age Replacement

model which do not require specification of the failure

model., We prpsE several graphical techniques for two N

other replacement models, Block Replacement and one we call 4

Blind Replacement. c

These techniques use historical data (a moderate

amount) to estimate the optimal replacement interval. In

the absence of such data the techniques here do not apply.

With a view toward small-sample size statistical inference,

we investigate the bias in graphical estimates of the

optimal replacement interval, t*, for Age, Block, and Blind

ix
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Replacement. We find that, for small samples, techniques

using the total time on test statistic may have positive

bias. We propose a survivor time on test statistic which

results in estimates that may have a negative bias. We

recommend composite estimators in some cases to mitigate

bias when sample sizes are small.

These graphical techniques provide only point

estimates at t*. Accordingly, we propose two confidence

bounds techniques using a bootstrap resampling approach.

For Age and Blind Replacement, we show that these tech-

niques in many cases produce useful confidence bounds

for t*.
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CHAPTER I

INTRODUCTION AND SUMMARY

Introduction to Planned Maintenance

Maintenance strategies are sets of actions to be

taken periodically on a repairable system in order to sus-

tain its performance. An optimal strategy results in

system performance at its best, as measured by a specified

criterion. System performance can be classified into dis-

crete categories of conditions, such as a two-state case

of good and failed or a multi-state case with conditions

between these extremes. For simple systems, that is

single-component systems which either are in good condi-

tion or have failed, we can consider four basic mainte-

nance strategies. Two of these strategies apply in the

situation when the system's condition is known at every

instant, while the other two apply when the condition is

not known except by inspection.

The first basic strategy, used when the system's

condition is known, is that of replacing (or restoring to

a "good-as-new" condition) the item at failure or at

.1 age t, whichever occurs first. This policy is known as

Age Replacement and requires knowledge of both the item's

age and its condition. The second strategy uses

." 1
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information on the item's condition, not its age; this

policy is to replace the item at failure and at fixed

points in time. Such a policy is known as Block Replace-

ment; it avoids the expense of recording failure times and

tracking age. However, it incurs the additional cost of

possibly replacing relatively new items.

In the above two strategies, the only uncertainty

is that of an item's "lifetime," i.e. the age when failure

occurs. On the other hand, if an item's condition (either

good or failed) is unknown except by periodic inspection,

then there are two kinds of uncertainty: that of the

item's lifetime and that of the item's condition between

inspections. The third and fourth basic maintenance

strategies address both of these uncertainties. The third

strategy, which we call Maintenance Inspection, is to

inspect the item periodically every t units of time and

to replace only if there is a discovered failure. The

fourth strategy, which we refer to as Blind Replacement,

is to replace the item regardless of its condition every

t units of time. This fourth strategy is prudent if the

cost of replacement is less than the cost of inspection

(as would be the case if an inspection were destructive to

the item). Note that under both Maintenance Inspection

and Blind Replacement, a failed unit will not be replaced

at the time of failure. These strategies are to be used

only under circumstances in which the failure of the item

is not fatal to the system.

.~~~~~T .
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In this chapter, we provide a synopsis of the

literature on three of these four strategies and summarize

our findings and conclusions. Since Maintenance Inspec-

tion models are complex (cf. Brender (1963)} and do not

appear amenable to graphical solution, we do not address

them.
%

All of the three strategies that we address have a

common structure known as a renewal process. In a renewal

process, the instant in time, at which the item is made

"good-as-new" by either repair or replacement, is a renewal

point. A sequence of renewal points through time is a

renewal process as shown in Figure 1.

1  time__ __ _ __ __ _ __ __ I I t
v1 v2 v. 1 .th

1st 2nd i-lst 2

renewal renewal renewal renewal
time time time time

Fig. 1. A General Renewal Process

The times between renewal points, L. for i=l, ... which are

random variables, can be summed to obtain the time of the

th n
n renewal point, Sn= E L.. Moreover, there is usually

i=1 1

a cost (of repair, replacement, inspection, unavailability,

etc.), Vi , incurred during (Si-l, Si] the ith renewal

interval. This cost is also a random variable. The

average cost per unit time during the interval (0, Sn ]
n n

equals the ratio V./ X L.. Assuming that, in the two

sequences of random variables {VI, ... , Vi, ...1 and %

... ,

%'.%
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{LI , ... , L., ... 1, (Vi, Li) are independent and iden-

tically distributed, Ross (1983:78-79) proves that the

long run, average cost per unit time is

n

lim i=l E{V}
n-c n - E{LT (1.1)

~L

where E{V} = E{V I} = = E{V n  ... , and E{L} = E{LI
n 1

E{L n }  ... The solutions techniques for the
n

probability models which we address all seek the value of

the decision variable which minimizes this long run,

average cost per unit time.

Age Replacement Model

Barlow and Proschan (1965) discuss Age Replacement

using long run, average cost per unit time as the cri-

terion. They presume a failure results in a cost, C1,

and that each replacement incurs a cost, C2 , where either

a failure or a replacement results in a renewal of the

system. They show that the long run, average cost, C(t),

for a policy of replacement at failure or at age t can be

expressed as

CI Fit) + C 2 Rlt) Oi-

c -CF(t) t (1.2)
ftR (x) dx

0

~ -. S -. ~ ..
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where F(t), the cumulative distribution function (cdf),

is the probability that a failure will occur prior to or

at age t, and R(t) is the probability that the item will

survive beyond age t {i.e. R(t) = l-F(t)). The numerator

of equation (1.2) is the expected cost per renewal inter-

val, E{V}, while the denominator represents the .expected

length of a renewal interval, E(L}, given that lifetimes

are truncated at age t, i.e.

It
Efmin(L,t)) = Wx(x) + t dF(x) R X)dX

0 t 0

The quantity R(x)dx Pit) has a crucial role in Age

Replacement. It is the expected operating time of an

item which is withdrawn from service upon attaining age t.

Clearly, V1(1  is the mean life (or mean time between

failures given that there is no preventive replacement)

while Ps(tis the "conditional mean life" (or mean time

between maintenance).

Solution to Age Replacement
When F(t) is Specified

Since R(t) = l-F(t), equation (1.2) can be alge-

braically rewritten as

C 2
c- + F (t)

C_ M 1 2

Ct) = CIt)t 12 (1.3)Cl-C2_ J . )::

0I

R(x)dx ;:::

Of% A
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Although the criterion, C(t), is recast in equation (1.3)

as the long run, average standardized cost per unit time,

a graphical clarity can be obtained as shown in Figure 2.

If we consider the curve {x(t), y(t)) = {p(t), F(t)} for

0 < t < -, the slope, c, of any line y = cx-C 2 /(C1 -C2 )

from the point {0, -C2/(CI-C2)} to {x(t), y(t)1 equals

C(t). The tangent line, as drawn in Figure 2, is the line

with minimum slope and thus represents the optimal solu-

tion. The parameter value at the point of tangency, t*, # V.

is the Age Replacement interval which achieves a minimum

for C(t). Therefore, t* is an optimal interval with

C(t*) equal to c*, the slope of the tangent line. Note

that there may be more than one point of tangency, in which

case there are multiple solutions. If p(-) < -, there

will always be at least one point of tangency as can be

seen from the geometry in Figure 2. A nice feature of this

graphical approach is that it avoids regularity conditions

for unique optimum solutions such as F(t) belonging to the

Increasing Failure Rate (IFR) class of distributions. We

remark that the curve {x(t), y(t)1 is increasing (that is

to say nondecreasing) in t because both Fit) and ,(t) are

increasing functions in t.

Solution to Age Replacement
When F(t) is Estimated

4 .

In order to use equation (1.3) and its yz.phi-al

representation for determining t*, the failure distribu-

tion, F(t), must be specified. Often in practic,-, F'(t) is

..

'V.-..
• e~%
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1.0 -

(x(t), y(t)}=

{(t), F(t)} {xt*)y(t*))

*U M
2 C

C d** ...-- 2.

1-2 y=c*x C_ 2

Fig. 2. Graphical Representation of Age Replacement

not known, and neither is it reasonable to assume a life-

time distribution. Arunkumar (1972) addresses this prob-

lem using ordered failure times to arrive at an empirical

failure distribution and at an analytical solution for t*.

Bergman (1977a) develops a graphical technique for esti- :.-.°

mating t* using the "total time on test statistic."

Bergman's technique supposes that there are n

observed lifetimes {t1 , t2 , ..., tn } of an item. These

are "free-flowing" (unrestricted) life lengths from a

complete life test obtained from the laboratory instead

of from truncated field data. These n lifetimes can be

ordered as {t(l) < t(2) < < tln)} , and the "total

time on test," T(t ), through the ith failure time, tWi,

can be calculated as

-.R

. ° ., , . . - ~~~~4..- o . . . °. . ° o . • . - . , . . • ° .••• . .,°.-•°
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i

T(ti ) (n-j+i) {t - t }j=l() (jl

where t0 =0. The ratio T(t(i))/T(t(n) =U i is the scaled

total time on test at age t(i) , and a plot of U . versus

i/n is known as a total time on test (TTT) plot. As we

discuss below, Bergman's idea is to change the scale of

the denominator of equation (1.3) so as to take advantage

of the geometric properties of the total time on test plot.

He then approximates this scaled denominator by U. and
1

estimates the failure distribution, F(t M ), in the

numerator of equation (1.3) by i/n.

Bergman's technique is illustrated in Figure 3 for

a sample of size four wherein we plot the point -C2/(CI-C2 )

on the horizontal axis and construct a tangent to the TTT

plot passing through this point. We remark that Figure 3

is a ref'lection of Figure 2 rescaled about the line y =x.

We present Bergman's technique as it is in Figure 3 because

others have used this same graphic portrayal [cf. Barlow

(1978)]. For reasons discussed below, we prefer the

graphical representation in Figure 2.

Bergman's technique involves several approxima-

tions. First, he estimates the theoretical failure dis-

tribution by an empirical distribution, F . Since

lim F = F, a finite number of observations results in ann

approximation of F that improves as the number of obser-

vations is increased. With ample observations, then,

Wa-'

, .'.' 4.
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equation (1.3) can be approximated as

~ ~ I-C--- + Fn(t)

C~t M C n~t M ( 1.4)
1O

f Rn (x)dx

Bergman (1977a) states that an estimate of t*, the mini-

mizer of equation (1.4), may be found among the n ordered
lifetimes {t < t 1; "thus to estimate the

(1) - - (n)

optimal age replacement interval it is enough to find the

index j for which

1 2

Cn(t(J))= i)Rn(X)1.5)

is a minimum." Finally, Bergman estimates the empirical

failure distribution using the plotting position "i/n" and S.Z.

the conditional mean life using the total time on test

statistic, T(ti), divided by n. A plotting position is
Mi)

a representation of the empirical cumulative probability,

-thFn(t i of the i ordered observation, tli We dis-

cuss the plotting position of i/n in greater detail later.

Thus, using these two estimates, equation (1.5) is further

approximated as

n n) C2__

Cti Tt(t ( + _ • (1.6)

M 1

h% ..
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Since U i = T(t M/T(t(n)

C 2 i

C (tn Tt) 2 (1.7)

In lieu of minimizing equation (1.7) Bergman maximizes its

reciprocal, i.e. he maximizes the ratio

1 2 n

since the term n/T(t ) is constant. The geometric idea(n)

is that this ratio, which is the slope of any line passing

through the point {-C 2 /(CI-C 2),0} and the TTT plot, is

proportional to Cn (t(i) -  In order to minimize

Cn(t(i)) we need only maximize this slope. The maximum %

slope is attained by a line tangent to the TTT plot pass-

ing through the point {-C 2 /(C-C 2 ),0) as in Figure 3. -
2 1 2-

In Figure 3, the numerator i in the value i/n correspond-

ing to the point of tangency is the index of t(i)I an esti-

mate of the optimal replacement interval, t* (in Figure 3

this estimate is the failure time of the 3rd failure).

Bergman's technique is a significant contribution

to the area of maintenance planning. With this method,

maintenance analys' s can avoid the necessity of goodness-

of-fit testing and the inherent risk of incorrectly speci-

fying a theoreLical failure distribution. Although our



110.

ti

9.8

/ 4 2/43/4 4/4 C ,

Fig. 3. Bergman's Graphical Technique

sgraphical approach, in Figure 2, might appear at first to ?

differ from Bergman's approach, each is a reflection image
of the other (with different scaling) which leads to the

same result. Thus, our rationale, embodied in Figure 2,

is only a refinement of Bergman's graphical argument. ..

From a practical point of view, Bergman's method :::

is appealing because it lends itself to sensitivity analy- .-

sis for cost values. Since management may be more corn- ',

fortable with a range of cost values rather than point ';.

range of costs will display cost sensitivity in terms of a

.7-V

., ~range of the estimated optimal Age Replacement interval. *' ':

.4.

TT%* Plo
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Plotting Position and the Total

Time on Test Statistic

Bergman's technique uses the plotting position

i/n, known as the California position, to estimate the

failure distribution at t(i}  The California position is

perhaps the most frequently encountered representation of

Fn , and as we show below, it is intrinsic to the total time

on test statistic. There are other plotting positions

such as i/(n+l), the mean position; (i-l)/(n-l), the modal

position; and (i-i/2)/n, known as Hazen's position.

Weibull (1939a,b) recommended the mean position since, for

the ith order statistic X (a random variable), the

expectation of the cumulative probability at the ith order

statistic, E{F(X(i ) )), is i/(n+l). This result holds

regardless of the underlying distribution generating

ordered observations. Harter (1984) provided a comprehen-

sive review of the plotting position literature and noted

that

... much of the disagreement and confusion as to the
choice of plotting positions is due to the fact that
the cdf at the expected value of the ith order sta-
tistic is not equal to the expected value of the cdf
at the ith order statistic, i.e.

F[E{X(i)} # E(F(X(i))
except in the case of the uniform distribution
F(x) = x, 0 < x < 1.

In Chapter II, we investigate the question of bias

in Bergman's technique via Monte Carlo simulation and con-

clude that, for some common distributions, it produces

biased estimates of t*. There may be several reasons for

this bias. For examplo, Cunnano (1978) shows that the

in.
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California plotting position among others is biased for

several common probability plots. Such a bias would

affect Bergman's technique both in its estimate of F(t)

and of p(t).

Any bias in pi(t) would stem from the total time

of test statistic which is directly related to the empiri-

cal failure distribution, F (t). The standard convention
n

is to represent F n (t) as a right continuous step functionni

(as we show in Figure 4 for the uniform distribution and

its California position representation). The plotting

position determines the step size at t=t W and the

starting value Fn (t=O). In Figure 4, we depict the steps

occurring at E{ti) = i/(n+l) for ease of illustration,

although in practice this would be an unlikely realiza-

tion. The standard empirical survival distribution,

R (t), on the other hand, equals 1-Fn t) as shown in
n ni. %

Figure 5. Regardless of the shape of the distribution, an

estimate of p(ti), which is the area under R (ti 1 ,Mi n Mi
can be calculated for the California plotting position as

n MI1 n (2) (1)1 + + n I)M (i-l)j

E (n-j+l)|~~ ~ (.=]Ij) 0j-l) -

n

where t 0. Note that the numerator is the total time on

test statistic, T(t ). It follows, then, that any bias

I r:

" 2"''.
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in the empirical failure distribution due to the Cali-
fornia plotting position will also bias the estimate of

mean life, p(t), through the total time on test statistic.

As an alternative to the total time on test sta-

tistic, we propose another statistic which we call the

"survivor time on test statistic," S(ti). This sta-

tistic is based on the time on test accumulated by sur-

viving items which live beyond the age t It is com-

puted, at the ith failure time, t as

S Stli) = j =1j)-tlj-l
)

where to =0. In Chapter II, we show that a composite

estimator of t* using both T(t and S(t ) may produce

less bias under some circumstances than Bergman's esti-

mator.

Block Replacement Model

Barlow and Proschan (1965) also discuss a proba-

bility model for the second maintenance strategy where an

item is replaced at failure as well as at fixed calendar

time intervals of length t regardless of age. Their objec-

tive is to minimize long run, average cost per unit time

where, as in their Age Replacement model, C1 denotes the

cost of a failure and C2 represents the cost to replace '..,"*4

the item. In Figure 6, we picture this renewal process

with renewals occurring at replacement every t units of

• .

S e.*-:-- .... ;.'.[-'. Y -- ~-£5
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Failures Replacements

I I I time

0 t 2t 3tN1=2 N2=1 N3=0

Fig. 6. A Block Replacement Renewal Process
1.

time. Thus, in this model, the expected renewal length,
E{L) in equation (1.1), equals t. To obtain V i, the cost

of the ith renewal interval, we can multiply C1 by the

number of failures, Ni, in the it h renewal interval

((i-l)t, it] and then add C2 in order to account for the

cost of the single replacement. The expected cost during

a typical renewal interval, E{VI, can be expressed as

E{V} = C1 M(t) + C 2

where M(t) =E{Ni}, the renewal function [cf. Ross (1980: ,_
228-230)]. Thus, assuming the replacement process will

continue indefinitely, the long run, average cost per

unit time, B(t), for a Block Replacement policy is a func-

tion of the replacement interval, t, and can be expressed C-.L

as

E{V} C M(t) + C2  (1.8)
B(t) = t(1.8),.,

As an aid to a graphical representation, we can recast

equation (1.8) in terms of the long run, average stan-

dardized cost per unit time, i.e.

'I'r

= °o W71
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M(t) +
-(t B(t) Cl

= _ )_ 1 (1 .9 )

Solution of Block Replacement
When M(t) is Specified

If M(t) is specified, then analytical or numerical

solution techniques can be used to derive the optimal t*

which minimizes B(t). However, equation (1.9) has a use-

ful geometric interpretation when we plot y = M(t) versus

t as depicted in Figure 7. The renewal function, M(t),

determines the shape of this plot which can be shown to be

nondecreasing. If we consider the curve {t, y=M(t)} for

0 < t < -, the slope, b, of any line y=bt-C2 /C1 from the
point {0,-C 2/CI} to {t, M(t)} equals B(t). The tangent

line, as drawn in Figure 7, is the line with minimum

slope and thus represents the optimal solution. The value .''

t* at the point of tangency is the Block Replacement inter-

val which achieves a minimum for B(t). Therefore, t* is

an optimal interval with B(t*) equal to b*, the slope of '-

the tangent line. The utility of this graphical represen-

tation centers on a visual means of sensitivity analysis

for various values of C2 /CI. With a straight edge, we can

easily estimate t* for different cost ratios.

Depending on the shape of the renewal function, a

finite t* may not exist. In the case of exponential

failures, for example, the renewal function is linear, and

::::
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dY y

C 2
Y=b*t~ - Cl

oint of Tangency

Fig. 7. Graphical Representation of Block Replacement

thus the point of tangency occurs at infinity as long as

C2 /C 1 > 0.

Solution to Block Replacement
When M(t) is Estimated -'I

In Chapter III, we estimate the optimal Block

Replacement interval using the above graphical technique

*. and an empirical estimate of the renewal function. This

empirical renewal function, M n(t), is developed from the
superposition of a number of renewal sample paths.

Suppose we have identical components on test in n posi-

tions, and we replace these components immediately upon

failure. The sequence of failure times, Ni , in say the
'" .~th .

I component position, represents a sample path of the

renewal process. As in Figure 8, we can superimpose the

n sample paths on each other so as to constitute a super-

position process [cf. Karlin and Taylor (1975)]. The
n

superimposed number of failures Ni (t), form the series

(m) i=l
{Z( 1 ), () ... , Z~m } where the last superimposed .
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N 2
NNN1 I I I

I I I I .
•I I II

*I I II

I I I II

I I I I I I
I I I I I I

(1) ) z(4 z(6 .-
Z(2) Z(3) z(4) Z(5) Z(6)

Fig. 8. Superposition of n Renewal Processes

failure time, Z () could be determined by some life test

stopping rule. Then, by the Strong Law of Large Numbers,

N i (t)
lir i= = i=t).
n

"+
-
°  

n

There are two methods of stopping this life test,

i.e., we stop at a specified time, to, or stop after a

certain (say r) number of failures have occurred at each

component position. In the first case, both the number

of superimposed failures and their failure times are

random variables. Moreover, the number of superimposed

failures could equal zero. In the latter case, only the

superimposed failure times are random variables because .1*

the number of failures is fixed at m =nr. In the inter-

est of ensuring some superimposed failure times, we choose

. . . -.. - - -..- ..
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to stop after r failures have occurred in each component

position.

The graphical solution technique involves esti-

mating t* by one of the superimposed failure times, z (j)

and approximating the renewal function at z as

Mlz(j)) Sn(Z(j)) n  gWc lu

Our strategy is to plot y=Mn(z as in Figure 7 and

estimate t* from the point of tangency. In Chapter III,

we investigate (via Monte Carlo simulation) the accuracy

and bias of our estimator as well as the relative error in%

the objective function due to the estimate. We conclude

that a large number (greater than 30) of component posi-

tions may be necessary in order to reduce the likelihood

of making a substantial relative error in B(t*) due to

our estimator. If the underlying distribution is exponen-

tial and the cost ratio -C 2/C1 is small (close to the

origin), there is a large probability of incorrectly "

estimating a finite t*; however, the relative error in

B(t*) will tend to be small. We propose a data augmenta-

tion technique for use with scant data but show that it

may adversely affect our estimate when the number of com-

ponent positions is large.

Blind Replacement Model

Radner and Jorgenson (1962) formulate a model

where a replacement occurs at intervals of time t+ K

-LP
-. - ._ : '. '. '- '-,- ."..-," '.'----" ° / " " -" " "< "--' -' / - ' -" " -" " '" 2 " k ' '>- I ." "k
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regardless of the system's state, i.e. if we are uncertain

about the system's condition, we replace at periodic time

intervals rather than inspect and replace as necessary.

This model is fundamentally different from Age and Block

Replacement in that we do not replace at failure (an impos-

sible action if we do not know the instant of failure).

This Blind Replacement strategy is reasonable only if the

cost of an inspection is greater than the cost of replace-

ment or if an inspection will destroy or consume the item.

Otherwise, we would opt for a Maintenance Inspection

strategy.

Radner and Jorgenson suppose that each replacement

takes K units of time so that the system is renewed every

t+ K units of time as shown in Figure 9. Thus, the

expected renewal interval length, E{L} from equation (1.1),

equals t+ K. They describe, as their criterion, "goodtime"

(i.e. availability), Gi during the ith renewal interval.

Since E{V} = EIG. } = R(x)dx, the long run, average

availability per unit time is

{ of Rx) dx

E{V1G(t) = E 0L - t+K (1.10)

G G G
12 3

a..

0 t+K 2 (t+K) 3 (t+K)L 1  01,4 L 2  L--- -- L3  ..

Fig. 9. A Blind Replacement Renewal Process "

'" .',

.. . . . . ... . . . . . .. . . . . . ........... •.
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Solution to Blind Replacement V
When F(x) is Specified

A graphical solution to Blind Replacement can
0

be found by plotting the curve {t, y= R(x)dx} for

0 < t < - as in Figure 10. The slope, g, of any line
t

y=g(t+K) from the point {-K,o} to {t, f R(x)dx} equals

the value of the objective function G(t) at t. The

tangent line, as drawn in Figure 10, is the line with

maximum slope and thus represents the optimum solution.

The value t* at the point of tangency is the Blind Replace-

ment interval which achieves a maximum for G(t). There-

fore, t* is an optimal interval with G(t*) equal to g*,

the slope of the tangent line.

Y
y=g* (t+K)

t

y-- R (x) dx, ...

0

t a

-Kt*

Fig. 10. Graphical Representation of Blind Replacement

This graphical approach is similar to Bergman's

method shown earlier in Figure 3. However, there are

several minor differences. First, with this approach,

it is not necessary to scale the conditional mean life,t

f R(x)dx). Also, the value of G(t*) can be obtained
0

%--
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directly from the picture as the slope, g*. Finally,

the optimal Blind Replacement interval t* can be read

directly on the abscissa.

Solution to Blind Replacement

When F(t) is Estimated

We suggest estimating the optimal Blind Replace-

ment interval t* by one of the observed failure times and

approximating the conditional mean life by the total time

on test statistic divided by n. In Chapter IV, we report

on the results of Monte Carlo simulations of this tech-

nique for several DFR and IFR Weibull distributions.

We conclude that the total time on test statistic produces

positively biased estimates of t* for a small to moderate

replacement time, K. If we use the survivor time on test

statistic in lieu of the total time on test statistic,

then the technique produces negatively biased estimates of

t* for moderate to large K. As with Age Replacement, we

recommend a composite estimator for Blind Replacement in

order to mitigate bias.

Confidence Intervals for

Maintenance Planning

In the graphical solutions to the three maintenance

strategies discussed, we have only point estimates of the

optimal replacement interval t*. We show, in Chapters II,

III, and IV, that these graphical techniques are biased

and that the degree of bias diminishes as the sample size .J..

increases. A useful measure, in addition to a biased point
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estimate of t*, is a (l-a) 100 percent confidence interval

for t*. In Chapter V, we propose two confidence bounds

techniques based on Efron's (1982) bootstrap resampling

approach. We show, via Monte Carlo simulation for Age

and Blind Replacement, that these techniques can produce,

in many cases, useful confidence bounds. However, for

Age Replacement, the confidence bounds may not contain

t* when there are very large or very small differences

between the cost of failure and the cost of replacement.

Summary

Statistical inference issues are of concern when-

ever samples are used to infer the characteristics of a

population. Since graphical solution techniques for the

above-mentioned maintenance models employ estimates of the

survival probability and the conditional mean life based

on samples, the statistical characteristics of these esti-

mates are of interest.

We investigate the statistical inference issues of

graphical solutions for Age Replacement, Block Replacement,

and Blind Replacement in Chapters II, III, and IV respec-

tively. In many (but not all) cases, we observe a posi-

tive bias in the estimators for t* for all three models.

This positive bias in Age and Blind Replacement can be

offset in some cases with a composite estimator based on

the total time on test statistic and the survivor time on

test statistic.

r , -
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Since these graphical techniques provide only

point estimates of the optimal replacement interval, we

are also interested in a confidence interval methodology.

In Chapter V, we propose such a methodology using a boot-

strap resampling approach and demonstrate its utility for

both the Age Replacement and Blind Replacement models.

~.-

V..

;.-.
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CHAPTER II

I AGE REPLACEMENT

In an Age Replacement maintenance scenario, a

single-part item is replaced or renewed to good-as-new

condition at failure or at age t whichever event occurs

first. Barlow and Proschan (1965) provide a comprehensive

synopsis of the literature relating to Age Replacement and

a concise survey of useful renewal theory. Their develop-

ment of a transcendental solution for the optimal Age

Replacement interval, t*, presupposes that the costs of

failure (C1) and replacement (C2) are known with CI> C2 ,

that the survival distribution belongs to the Increasing

Failure hate (IFR) class, and that any failure (or life

until age t) is instantly replaced the moment it occurs.

This last assumption requires instantaneous knowledge of

condition and age, information which may be very expensive

to obtain. This expense is not considered in their formu-

lation.

Assuming Fit) is differentiable in equation (1.2),

Barlow and Proschan show that the t* which minimizes long

run, average cost per unit time must satisfy

26 . Sg
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R(t ) (xl - F(t*) = (2.1)
~R (t*) C1-C 2

where f(t) is the derivative of F(t). So long as

F(t) is IFR, they note that equation (2.1) implies

00' t* > [C2/CI R(x)dx, i.e. we would never want to

schedule a preventive replacement prior to this fraction ..

of the mean life (which is not the same as the conditional

life). They also remark that t* will be finite if the

ratio of the standard deviation to the mean of the sur-

vival distribution is less than [1-(C 2/CI)).

If, on the other hand, the survival distribution

belongs to the Decreasing Failure Rate (DFR) class where

the instantaneous probability of failure decreases with

age, then Barlow and Proschan point out that Age Replace-

ment is inappropriate since a used item has greater "

expected remaining life than a new item and, hence, there

is no incentive to replace. As a special case, the expo-

nential distribution is both IFR and DFR; its failure rate

neither increases nor decreases but rather is constant.

We can easily show that equation (2.1) has no solution if

the survival distribution is exponential. Therefore, we

would elect to forego preventive maintenance in this case

and establish the optimal Age Replacement interval at

infinity.

The IFR class contains many different distribu-

tions including the truncated normal and most of the many
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Weibull and gamma distributions. For these three types

of distributions, Glasser (1967) provides mnemonic graphs

based on equation (2.1) to aid the practitioner in deter-
'.. ...

mining the optimal Age Replacement interval. Of course,

an analyst could solve equation (2.1) via some search

technique, or for that matter, search techniques could be

used directly on the objective function, in equation (1.2),

should F(t) not be differentiable. Nonetheless, the

failure distribution must be specified a priori. In a

situation with scant failure data, however, there may be

some uncertainty as to the appropriate failure distribu-

tion. With this problem in mind, Arunkumar (1972) con-

siders a nonparametric approach to estimating F(t).

Arunkumar (1972) introduces the concept of an

empiric approximation to the survival distribution in Age

Replacement without recommending a plotting position. He

shows that an estimator of the optimal Age Replacement

interval, based on some empirical survival distribution,

is strongly consistent. In an applied innovation, Bergman ..- ,

(1977a) expands on this idea. He uses an empirical cdf

based on the California plotting position as an approxi-

mation to the failure distribution. As we discuss in

Chapter I, this approximation leads to the total time on

test statistic which, when divided by n, approximates the

conditional mean life. In this chapter, we consider the

rapidity by which Bergman's method, which we outlined in

-: - . -:":-. -.-[-5 '-.-" "" "'- -5 - .? -? -? --. < .- -'.-'- . .'-:'-. [.,. .:. ,----: .•--". --:-..' -"- - -... ,'. -.--.-.,...',
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Chapter I, converges to the optimal Age Replacement inter-

val.

Although we focus on Barlow and Proschan's Age

Replacement model, there are variations on this model which

also may be of interest to the maintenance community in

terms of graphical solutions. We do not pursue this issue

here, but rather, we detail several variations to indicate

a potential for further research. For example, Scheaffer

(1971) supposes that the cost function, C(t), includes a

term which increases with an item's age (to account for

increasing replacement cost "due to depreciation or wear").

His results require explicit knowledge of the relationship

between cost and age, which may be exceedingly difficult

to obtain in practice. Weiss (1956) formulates an Age

Replacement model which includes the time and cost of

repair as well as the cost of failure and replacement. He

indicates that an optimal solution may not always exist.

Graphical Solutions for Age Replacement

The total time on test statistic is used by

Bergman (1977a) to develop a graphical solution for Age

Replacement. The total time on test statistic,

T(ti ) M i t -t 0-1{ln-j+l}

when divided by the total time on test, T(tn), is the(n)

scaled total time on test, U, at age t (i), The plot of

16
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U. versus i/n is the total time on test (TTT) plot.

Barlow and Campo (1975) point out that, as n-c, an IFR

distribution results in a concave TTT plot on the inter-

val (0,1), whereas a distribution from the DFR class will

have a convex plot. An exponential life disi...uLOr

(which belongs to both the IFR and DFR classes) will have

a linear TTT plot passing through the origin at a 45

degree angle, i.e. the plot is both concave and convex.

An empirical life distribution need not belong to either

the IFR or DFR class, and thus, its TTT plot would not

necessarily be concave or convex. Barlow (1979) further

describes properties of TTT plots and shows that concave

. (convex) TTT plots imply IFR (DFR) survival distributions.

If the survival distribution belongs to the Increasing

Failure Rate Average (IFRA) class or to the Decreasing

Failure Rate Average (DFRA) class, then he proves that

the TTT plot will be anti-starshaped for IFRA distribu-

tions and starshaped for DFRA distributions. A starshaped

TTT plot is one that is on or below a linear TTT plot

passing through the origin at a 45 degree angle but that

is not necessarily convex. Conversely, an anti-starshaped

TTT plot is on or above a 45 degree line through the

origin but is not necessarily concave. Although an anti-

starshaped TTT plot is not sufficient evidence that the

life distribution is IFRA, Barlow (1979) remarks that this
is sufficient to conclude that a survival distribution

"is at least NBUE [New Better than Used in Expectation,

- -
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a class of distributions which includes the IFRA class]

if not IFRA."

Berman's method employs the TTT plot as a scaled

representation of the conditional mean life, i.e., Ui is

proportional to T(t )/n. Hence, the t which ainxi-

mizes the ratio Ui/{(C2/(C ) + (i/n)} will also maxi-

mize the ratio (T(t (i))/n)/{(C2 /(CI-C 2 )) + (i/n)}. As

Bergman (1977a) and others note, if t (j) t(n) then "it

seems reasonable to estimate the age replacement interval

as infinity," i.e. t* ==. This rationale is consistent
with the Age Replacement solution, t* = -, should the under-

lying survival distribution be exponential or DFR. If
the survival distribution is exponential, then the TTT

plot should approximate a 45 degree line from the origin.

If it is DFR, then the TTT plot should approximate a convex

function. In either case, the point of tangency would

likely correspond with t (n provided that there was ampleU

data to give a good approximation.

With small sample sizes, however, it may be diffi-

cult to conclude that the data was generated by an expo-

nential or DFR distribution. Given some failure data, we

may be able to apply a variety of goodness-of-fit tests

to reject the null hypothesis that our data could have

come from an exponential (or DFR) distribution. However,

if we can not reject the null hypothesis, then we still

can not confirm that the data are indeed exponential (or

DFR) since it could be that our sample size is insufficient

Ni

. . . . ........
J-"



32

to detect that the null hypothesis is false. As an

alternative goodness-of-fit test, Barlow and Campo (1975)

propose counting the number of times the empiric TTT plot

crosses the exponential TTT plot. Presumably, exponen-

tial observations will result in an empirical TTT plot

that crosses the 45 degree line from the origin a large

number of times. Bergman (1977b) provides the exact and

asymptotic distributions for the number of crossings for

exponential data. When using Bergman's graphical method

for Age Replacement without knowledge of the underlying

distribution, one should be concerned about the proba-

bility of estimating a finite Age Replacement interval

when, in fact, the distribution is exponential (or DFR).

To address this issue, we simulated 5000 applica-

tions of Bergman's method to IFR and DFR lifetime data for

various sample sizes. As one would expect, the expected

value of the longest lifetime, E{T (n) }, increases for

larger sample sizes from exponential and DFR distributions.

As we show in Table 1, Bergman's technique when applied on

exponential observations resulted in about a 50 percent

probability of incorrectly estimating a finite Age Replace-

ment interval when the cost ratio C2 /(CI-C 2 ) equals 1.0.

In this table, P{tn } is the probability of making the

correct decision not to have preventive replacement. This

probability is sensitive to the cost relationship. If

C2 /(CI-C 2 ) is greater than one (suggesting only a nominal J

difference between the cost of failure and the cost of

"
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N

TABLE 1

EXPECTED VALUE OF BERGMAN'S ESTIMATOR, E(T(j)}, AND
PROBABILITY THAT T(j| IS THE LAST FAILURE TIME,

P{tn}, FOR OBSERVATIONS FROM AN EXPONENTIAL
DISTRIBUTION (MEAN = 200)

E{T ) and P{t I for C2/(C1-C) =

WJ n 21 2

Sample 1 50 .01
Size E{T j)J P{t n W ET Wj) (j P{t n

10 553.4 .558 585.1 .98 243.5 .11

20 673.2 .520 720.9 .98 220.9 .06

30 742.8 .512 796.0 .98 199.8 .04

40 803.4 .507 855.5 .98 188.4 .03

50 851.4 .513 900.0 .98 182.2 .03

60 894.3 .524 941.8 .98 183.9 .03

70 905.2 .492 959.7 .98 175.4 .02

80 940.7 .507 995.1 .98 177.3 .02

90 972.1 .514 1012.8 .98 172.1 .02

100 978.3 .505 1030.5 .98 165.6 .02

..::.-
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replacement), then there is a higher probability of reach-

ing the correct conclusion of no preventive maintenance.

On the other hand, if C2/(C1 -C2 ) is close to the origin

(as would be the case with a substantial difference in

costs), then there is a large probability of reaching the

incorrect conclusion of a finite Age Replacement interval.

The reason for this phenomenon is that close to the origin

there is a "sample clutter" effect. This occurs when a

tangent line (passing through [-C2/(CI-C 2 ,0]) strikes a

point on the TTT plot associated with a failure time, 4""

t(j), less than t(n) where the tangent point may be only

slightly above the 45 degree line. Thus, for very large
differences between C and C, the practitioner ought to

view a finite estimate of t* with caution regardless of

the sample size. A prudent course of action would be to

check for exponentiality (or DFR) with some statistical

test and accept the finite estimate only if the data are

not exponential (or DFR).

The economic consequences of ignoring this issue

might be substantial. If the observed lifetimes are

exponential with scale parameter A, then t* =- and

C(-) = AC1 . However, if Bergman's technique produces a

finite estimate, t*, of t*, then C(t*)> C(t*). In

Table 2, we show the average relative error in the objec-

tive function, {C(t*)-C(t*))/C(t*), based on the simula-

tion of 5000 replications of Bergman's technique on expo-

nential observations. Note that, as the cost ratio
4." .'

."4..
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TABLE 2

AVERAGE RELATIVE ERROR (RE) IN THE AGE REPLACEMENT
OBJECTIVE, C(t*), DUE TO BERGMAN'S TECHNIQUE

FOR OBSERVATIONS FROM AN EXPONENTIAL
DISTRIBUTION (MEAN = 200)

C2 /(CI-C 2 1 =

Sample 1 50 .01 '.

Size % RE % RE % RE

10 6.20 0.35 2.03

20 3.34 0.18 3.12

30 2.45 0.12 4.14

40 1.79 0.09 5.00

50 1.47 0.08 5.65

60 1.24 0.06 6.10

70 1.09 0.05 6.47

80 0.92 0.04 6.75

90 0.88 0.03 7.21

100 0.79 0.03 7.52

.4.

4,N
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decreases, the sample clutter effect aggravates the

IA
average relative error in C(t*). We remark that this

average relative error is within a nominal 10 percent

range for the range of cost ratios shown.

For the Weibull family of distributions, the

probability of estimating an infinite replacement age

diminishes for increasingly IFR Weibull distributions and

increases for more DFR Weibull distributions as we see

in Table 3. Of concern, perhaps, is the relatively large

probability of incorrectly electing to forego preventive

replacement (this is P{t n I in Table 3 for items with a

slightly IFR survival distribution). In other words,

with Bergman's method, we may erroneously call for the

preventive replacement of an item not requiring it and,

conversely, in no preventive replacement for an item sub-

ject to wearout. The average relative error in C(t*) for

these distributions is shown in Table 4.

Bergman's method approximates the failure dis-

tribution, F(t), by the California plotting position, i/n,

and employs the total time on test statistic to approxi-

mate the conditional mean life. Moreover, the true,

optimal interval is approximated by one of the observed

failure times. The performance of these three approxi-

mations is of interest because, as we show below, their
synergistic effect on the estimator can be biased. We

simulated 5000 replications of Bergman's technique on
~three IFR Weibull distributions with different shapes

• ps.. , ''. - ' , v ." "." , " . . . . ..
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which result in a finite t* for any cost ratio,

0 <-C 2 /(CI-C 2) <w. These different shaped distributions

are convex ordered, and hence, a large shape parameter

distribution is said to be more IFR than a small shape

parameter distribution. Accordingly, these three dis-

tributions, which we consider, are nominally, moderately,

and highly IFR, respectively. For increasingly IFR

distributions, there is a decreasing probability of esti-
mating t* as infinity (see P{tn) in Table 5). We

(n)
observe, from Table 5, that the expected value of Bergman's

estimator, E{T*}, has a positive bias for moderate to

highly IFR Weibull distributions and a negative bias for

the nominally IFR distribution. " "

As an alternative to estimating t* with a graphi-

cal technique that approximates the conditional mean life

using the total time on test statistic, we could replace

this statistic with the survivor time on test statistic.

The resultant estimate has a negative bias for the low to

moderately IFR distributions and a positive bias for the

highly IFR distribution as we show in Table 6. A combina-

tion of these two estimators, then, may result in less

bias than either estimator alone if the failure distribu-

tion is moderately IFR. '-- , )

Summary

Graphical solutions to the Age Replacement problem

offer an attractive alternative to analytical solutions

p , .,. , .,',,-,..,. , .. % -, -, .•v .'",". ,'- .''" " ' .';'.' .' . . ..-.' .., ....,- ,. .-,, ..-- .-.-.



PWINrprjk~~ ~~~~~ .p-xw" ,mr r. rljv

40

0% 0 Ln N 0 Ln fn N- r Ln
to C> %D M. F-I 0 (n c0 0o N

dP (4 e4 C; H; H 0 0

Q a~ 0 C 0 0 0 0 0 0 00

H %

>44

E-4 04- E-4 V; * . . . .

a% 0~~ 0 c0 0 0 0 0 w w

H C 0) EnH H H H Ha

ECH -4 o UoN c4 ,

U) dP %D CD ' 0 0 0 0D 0D 0 0D 0 0

E.1
ZE4 0)

i) C(., 'on 0 0o 0l 0 0 0) a 0C
*Zz Z 4.' 0 0 0 0D 0 0 0 0I 0 0a

~-1" U) 0

0A E4-4iC

W. a H1 N. *0 q. 00 It (N(n to N -41 m

W~ 0 11 cmOII *%D k LA LA LA LA LA LA LA LA -
X) U 1 ~ N N N (1 r'4 N ' N N C4 N (Nq C14 C

O-4 1%

4N 04 01Y% 0 OD N W0 W LA 1

r4 ~ ~ H H P - H 0 0; 0; 0 0
I .u 0 $4

rA 0
4i4  Z E-4 4-4
0 E-4

LA D '0 0 IV H- 0 0 c0 0o f %0 C
E-4 4- H4 H H- H- H 0 0D 0 0 0

E40

H 01 01 N 4) 0 0L

22W C4 ON Sr co 0 wS S

E-4 0D ; 01 0 0; 0 H4 010

.

0 0 0 0D 0 0 Q 02 00
H, (N C (n V. LA '0 N- 0 01 0 8



41

TABLE 6

EXPECTED VALUE OF BERGMAN'S ESTIMATOR, E{T*}; PROBABILITY
THAT t(j) IS THE LAST FAILURE TIME, P{t(n)); AND AVERAGE
% RELATIVE ERROR (% RE) IN C(t*) FOR OBSERVATIONS FROM

VARIOUS WEIBULL DISTRIBUTIONS (MEAN = 200)
USING STT STATISTIC

for C2 /(C1 -C2) = 1.0 and Weibull Shape of

Sample 1.5 2.0 3.0

Size E{T*} % RE E{T*J % RE E{T*) % RE

10 266.2 6.52 221.5 3.35 185.9 2.77

20 309.6 3.26 235.1 1.93 185.6 1.97

30 328.5 2.35 239.0 1.49 185.2 1.60

40 342.2 1.86 242.4 1.19 185.2 1.33

50 " 352.5 1.55 243.0 1.04 185.1 1.15

60 363.2 1.27 244.4 0.93 184.3 1.03

70 372.6 1.11 245.5 0.86 183.6 0.91

80 376.9 1.00 245.2 0.78 183.7 0.86

90 380.7 0.93 245.3 0.73 183.5 0.80

100 386.6 0.81 246.8 0.70 183.3 0.74

481.0 - 249.9 182.7

* o.

pj.* ~ % . ~ ,* . *. .- ~ . . - * - *
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and their inherent uncertainty of the failure distribution

and the complexity of search routines to solve for the

minimizer of either equations (1.2) or (2.1). Bergman

(1977a) has proposed a simple graphical method involving

the total time on test plot and an empirical failure dis-

tribution. The sampling issues of this approach are of

interest when we consider statistical inferences from a

set of observed failures. We find that Bergman's method

may incorrectly lead to finite estimates of the optimal

Age Replacement interval if there are substantial differ-

ences between the costs of failure and replacement and if

the (unknown) parent failure distribution is exponential

or DFR. The economic consequences, however, in terms of

the percent relative error are nominal. Nonetheless, L.
Bergman's method may accurately estimate optimal Age

Replacement intervals for many IFR distributions with

samples as small as 20 observations.

I-,%
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CHAPTER III

BLOCK REPLACEMENT

Block Replacement is a maintenance strategy which

does not require knowledge of an item's age. Such infor-

mation may be expensive or impossible to obtain. Rather,

with Block Replacement, we replace or renew to good-as-

new condition at failure and at periodic intervals of time

regardless of when the last failure occurred. Barlow and

Proschan (1965; 1975) discuss Block Replacement and remark

that, when compared to Age Replacement, Block Replacement

results in more removals regardless of the survival dis-

tribution and in fewer failures when the survival dis-

tribution is IFR. Although more useful life is discarded

under Block Replacement than Age Replacement, there is no

necessity to record age.

Presuming a failure cost C1 and a preventive

replacement cost C2 , Barlow and Proschan (1965) formu-

late a long run, average cost per unit time function,

B(t), as

C1 M(t) + C2  (3.1)-2B (t) =t(3.1) ..+
t

1 43
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They show the first order necessary condition to be

C2
mltt - Mlt) = (- (3.2)

C1

where m(t) is the derivative of the renewal function,

M(t), which is the sum of the k-fold convolution of the

failure distribution with itself for k-l, ... , . As we

explain in Chapter I, the renewal function gives the

expected number of failures in the interval (O,t]. Barlow

and Proschan reason that B(t) approaches infinity as t

approaches zero and conclude that B(t) has a minimizer,

t*, in the interval (O,coJ where t*=w is interpreted as

replacement at failure only. As we also explain in

Chapter I, a graphical clarity can be obtained by consider-

ing the standardized objective

C14(t) +-

(t) = (t) =1 Cl(33)
C1  t

The renewal function can be expressed in terms of

the fundamental renewal equation

t
) M F t + / (t-x)d(x) (3.4)

which is often solved via the Laplace-Stieltjes transform.

There are several basic results for selected processes

which we use in later examples. Karlin and Taylor (1975)

F,:
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characterize a Poisson process with parameter A as a

renewal process and note that M(t) -At, a linear func-

tion. They also give a closed form solution for the

renewal function of an IFR gamma distribution with shape

parameter of two and scale parameter beta as

(2t
•~ M (35)

2$ 4

This renewal function is a convex function in t. As for

the DFR class of distributions, Brown (1980) proves that

their renewal functions are concave. We make use of these

geometric properties in a graphical solution to Block

Replacement.

Earlier in Figure 7, we depicted a geometric solu-

tion to the Block Replacement model by plotting y=M(t)

versus t. If the lifetime distribution is exponential,

then the renewal function, M(t), is a linear function in

t so that there is no finite tangent point as long as

C2/C1 > 0. Hence, the optimal Block Replacement policy

for exponential lifetimes is to replace at failure only.

However, an IFR gamma distribution, with shape parameter

two and scale parameter beta, has a convex renewal func-

tion in t. Barlow and Proschan show that this renewal

function results in a finite optimal Block Replacement

interval so long as C1 and C2 satisfy the inequality

C2/C 1 <.25. DFR distributions, on the other hand, have

concave renewal functions and, hence, optimal Block

. . .. - -6-- -
: r " -.
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Replacement intervals of infinity. Notwithstanding these

geometric properties, an analytic or numerical solution to

Block Replacement requires specification of the renewal

function or at least the lifetime distribution. As we

outlined in Chapter I, we can address our uncertainty of

the renewal function by approximating it by an empirical

renewal function developed from a superposition process

as in Figure 8.
n

The superimposed number of failures, N. (t). ~i=l i .. (

form the series {Z , Z2, ... ' Z } where the last
(1)' Z(2)' * * (in)

superimposed failure time, Z (i), is determined by some

arbitrary life test termination time t, i.e. Z t.

Then, by the law of large numbers,

) n a

~N (t)
lim i=l = .

" n-o n

For n finite, we can approximate M(t) as

M(t) M M(t) = m ,

The number of events, m, in this superposition process is

a function of t. There are two methods of determining t

which are akin to the notion of life test censoring.

Either the life test is stopped at a specified time, to o,

or it is terminated after a particular number of failures,

say "r," have occurred at each component position. In the

first case, both the number of superimposed failures
•-
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(possibly zero) and their failure times are random vari-

ables. In the latter case, only the superimposed failure

times are random variables since the number of failures is *.

fixed (at some positive quantity). We choose to terminate

after r failures occur in each component position, thereby

guaranteeing a quantity of m superimposed failures. Here,

m will be equal to the product of the number of component

positions, n, and the number of failures at each position,

The order in which these r lifetimes will occur in

any component position is random. For any given set of r

lifetimes, there are rl possible sample paths representing

the permutations in which these lifetimes could occur.

We can make full use of the information in the n sets of

r lifetimes by sampling within each set to obtain more

sets of r lifetimes with a different order of occurrence.

We discuss this issue later as a data augmentation tech-

nique.

Graphical Solution to Block Replacement

Following an argument similar to that of the

graphical approach to Age Replacement, we can solve an

approximation to equation (3.3). by direct numeration

methods. Given a set of superimposed failure times,

{zl 1, ..., z ), we estimate 'the minimizer, t*, of
(Mn)

Bt) by one of the summed failure times, t*=z such

that,

that 14,
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|+

Bj(t*) +(z(j) 1 (3.6)

Since Mn (z (M)) =j/n, we can further approximate B(z(M))

by this empiric renewal function such that

C2
n C

Blz()) (3.7)

Our strategy is to initiate a life test with n component , .

positions and run the test until r failures have occurred

in each component position. We then evaluate equation

(3.7) for each summed failure time, z(i), and identify

that Z(j) = t* which minimizes B(z i). The accuracy of

our estimate will, in part, be a function of how many .'=

component positions we use in the life test as well as N

the number of failures at each position. If t* happens to

be z ( then two possibilities arise; either the true

optimal Block Replacement interval is indeed infinity or

the optimal interval, t*, is greater than z (M) but still

finite. To resolve this question, a practitioner should .-

extend the termination point (i.e. increase r) by some

reasonable amount with more life testing in each component

position.

We investigated the question of accuracy by simu-

lating 1000 applications of the above methodology for IFR

and DFR lifetime data with various pumbers of component

%A
w° a.
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positions. In Table 7, we show the expected value of our

estimator, E(T*), for increasing numbers of component

positions, n, when the survival distribution is an IFR

gamma distribution (shape parameter two, scale parameter

one). Recall that for cost ratios (C2/CI ) less than .25,

there should be a finite Block Replacement interval. As

we see in Table 7, the expected value of our estimator,

E{T*1, overestimates t* for large differences between C1

and C2 , say C2 /C1 < .04, but converges toward t* as the2.-2-1
number of positions increase. We note that the proba- .

bility of t* being the last observed superimposed failure,

P(t*= z } (which we denote as P{z I), is small as long
(in) m

as the cost ratio is small. However, as the cost ratio

increases there is a greater likelihood that t* z(m)

Thus, for cost ratios as small as ten to one, (which

should result in a finite t* for this distribution) there

is a substantial probability of incorrectly estimating the *'

optimal Block Replacement interval as infinity. This

accounts for the lack of convergence of E{T*), as shown

in Table 7, when C2 /CI = .10. If t* = - (as would be the

case if the point of tangency corresponds to z (M) ), then

by the elementary renewal theorem, B(t*=a=) =C 1 /p where p

is the expected value of a lifetime generated by the

underlying distribution. For finite t*, we can compute

B(t*) provided that we have a closed form solution for

M(t*) as in equation (3.5). Accordingly, in Table 8, we

show the average relative error, {[B(t*)-B(t*)1/B(t*)),

*. . . . ... . . .... ,-. ,.'.*+ #.- -- 0 %"_ t.. " . °,' +
°

.,-_
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in the objective function due to our estimator T* when the

failure distribution is gamma with shape parameter equal

two and scale equal one. These results lead to the intui-

tive conclusion that when there is a large cost differ-

ence between C1 and C2, we should employ this solution

technique with a large number of component positions.

Renewal function plots of DFR distributions are

concave. The exponential distribution, as a special case

DFR distribution, has a renewal function that is linear

in t. Theoretically, as long as the cost ratio C2/C is

finite, the slope b* of the tangent y =b*t-C2/C1 (shown

in Figure 7) will be zero and t* = . However, with an

empirical renewal function, we are approximating this

linear (or concave) renewal function with a piece-wise

linear function which may have a finite point of tangency.

In fact, .as we show in Table 9, smaller cost ratios (i.e.
closer to the origin), result in decreasing probability of

correctly estimating an infinite Block Replacement inter-

val. However, the consequences of this statistical error

appear to be minimal as evidenced by the low relative

error in B(t*) shown in Table 9.

Data Augmentation Technique
for Block Replacement

The empirical, renewal function estimator dis-

cussed above may require failure data from a large number

of component positions to estimate adequately the optimal

Block Replacement interval, t*, of an IFR class I.';

?S'.
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distribution. For small numbers of component positions,

the estimator may overestimate t*. The impact of scant

data might be diminished, however, by "creating" more data
i

with a sampling scheme. In this scheme, the r lifetimes

in a percentage of the component positions are randomly

reordered and treated as additional component position

failure data. These additional data, of course, are not .-.

independent of the original failure data. However, given

a large number of lifetimes in each position, a randomly

selected sequence of failure times may result in another

sample path which is weakly dependent on the original

sample path. Hence, our estimating technique might be

robust insofar as the requirement for independent sample

paths is concerned.

To illustrate this sampling idea via Monte Carlo

simulation, we used a sequential sampling plan where we

randomly sampled the r lifetimes in alternate component

positions. We drew r observations with replacement and

recorded them, in the order drawn, as failures in pseudo-

positions. Then, we superimposed the failure times in

both the actual positions and the pseudo-positions to form

the series {y( 1)< y (Ylm)} where m now equals 1.5 nr.

With this sampling plan, we artificially increased the

number of superimposed data points by 50 percent and (we

hope) improved our optimal Block Replacement estimator.

In Table 10, we display the results of 1000 iterations of

• ,this data augmentation technique to produce an expected

:5 "
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value of the estimate '=y(j) compared to the expected

value of the previous estimate t" for a gamma (shape 2,

scale 1) distribution with various cost ratios resulting L.
in a finite t*.

At first glance, this data augmentation technique

does not appear to result in an improved estimator except

when the cost ratio is very small (see C2/C 1 = .01 in

Table 10) and there are few numbers of component positions.

However, when the relative error in B{t'} is compared to

the relative error in B{t*l, shown in Table 10, we note

that the estimate t' results, on average, in smaller rela-

tive error. This advantage diminishes as the number of

component positions, n, increase, and for n greater than

30 (in Table 10), t* would be preferred to t'. Notwith-

standing this disadvantage, our data augmentation tech-

nique may be useful when there are scant data.

Summary

A graphical solution to Block Replacement can be

developed by using an empiric estimator of the renewal

function based on a superposition process concept. The

idea is to superimpose r lifetimes from each of n com-

ponent positions as {z < . z l and estimate the
ponnt(1) (in)

expected number of renewals in the interval [0,z as

i/n. The graphical technique, then, identifies that z(j)

which corresponds to the point of tangency on a plot of the

empiric, renewal function for a line drawn through the

-"+"
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point 10,-C 2/C1]. This zlj} is an estimator of the

optimal Block Replacement interval, t*, which minimizes

long run, average cost per unit time. The accuracy of

this estimator can be enhanced by increasing the number

of component positions. This is especially important

when the difference between the cost of replacement and

the cost of failure is great. K-

...

N.r
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CHAPTER IV

BLIND REPLACEMENT

"Inspection policies" are a class of maintenance

models characterized by two kinds of uncertainty. For

this class, not only are we uncertain of an item's life-
.4.

time, which can be expressed in terms of a probability

distribution, but we are also uncertain of the item's

condition (good or failed). Savage (1956) and others .

have referred to this class as that of "preparedness

models" pertaining to items in storage that may be called

into service during some random emergency. We choose to

broaden this definition to include in-service items, with

an emphasis on the matter of item condition and its uncer-

tainty. To determine condition, we generally inspect and

then replace (or repair) a defective item upon discovery.

For some items, the cost of inspection exceeds the cost

of replacement. For example, automotive engine crankcase
4'..

lubricant is commonly replaced at periodic intervals
rather than inspected for condition and replaced as neces-

sary. In this case, we presume the cost of inspection (a

laboratory analysis) greatly exceeds the cost of replace-

ment. For other items such as explosive devices, an

inspection involves consumption of the item, and hence ,%-

IN 58 S.
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condition can never be determined, for to do so would

terminate lifetime with certainty. It is this set of cir-

cumstances that Radner and Jorgenson (1962) describe in

their model for the replacement of a single-part equip-

ment with an arbitrary lifetime distribution. We will

refer to this model as Blind Replacement.

In Blind Replacement, Radner and Jorgenson presume

that each replacement consumes K units of time. They

formulate an objective as a function of the replacement

interval, t, which maximizes long run, average "time good"

per unit time so that

t

f R(x)dx
0G(t) = t+K (4.1)

Radner and Jorgenson show that equation (4.1) is a concave

function' in t and remark that first order optimality con-

ditions are sufficient to produce a unique maximizer, t*, :__

which satisfies "".

(t+K) R(t) = R(x)dx .(4.2)

Illustrating the use of equation (4.2) for exponential

lifetimes, they develop a transcendental equation for t*

4. and observe that "the optimal time to replacement

increases with an increase in the time required for -1

replacement." Moreover, they remark that t* increases as
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the mean exponential lifetime increases. Regardless of

the lifetime distribution, we note that to use either

equation (4.1) or (4.2), we must specify the survival dis-

tribution, R(x), as well as the replacement time, K. In

practice, we may be uncertain of either and, therefore,

may find empirical techniques similar to those of Bergman

to be useful.

Graphical Solutions for Blind Replacement

There are two straightforward geometric solution

techniques for Blind Replacement which use the same

which, as a consequence, may be subject to bias. Given a

set of complete, life test data, {t ... tn1, we
(1) t(n)

can evaluate either equation (4.1) or (4.2) for each t

(i=i, ... , n) and estimate t* by the maximizer, t

from the! set of failure times. Using equation (4.1), we

can numerically evaluate the objective function at each

t M and identify the t(j) which maximizes G(t Mi) as an

estimate, i*, of the optimal interval. We refer to this

as a "direct numeration" method. Another method evaluates

equation (4.2) for each t(i) , and it identifies that t(j)

which most closely satisfies the quality as the "first

order" estimate, t@, of the optimal Blind Replacement

interval. *.

. ''
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Direct Numeration Solutions

The graphical argument for the direct numeration

solution was portrayed earlier in Figure 10. Our approach

involves estimating t* by one of the ordered lifetimes

and approximating the conditional mean life, u(t(i))
tIM

= f(iR(xdx, by the total time on test statistic,
0

T(t i divided by n. Theoretically, for infinite tailed

distributions, a plot of the conditional mean life should

increase asymptotically to the mean life. Thus, (from

the geometry in Figure 10) as long as the replacement

time, K, is finite, the optimal Blind Replacement interval

will be finite, i.e. in Blind Replacement, we always

replace eventually regardless of the underlying distribu-

tion. So, if this graphical technique results in an esti-

mate t =t of t*, then we replace at tn ) rather than(j) (n) (n)
forego preventive replacement as we would in Age Replace-

ment.

To evaluate possible bias in our estimator, we

simulated 1000 iterations of this graphical solution tech- '

nique for various sample sizes from selected IFR and DFR

Weibull distributions and a uniform distribution. Our

results indicate that for a sufficiently small replacement 'V-

time, K, t(j) =t* will converge to t* from above as the

sample size increases, i.e., t*< t*. For a very large K,

however, convergence may be from below. The percent rela-

tive error in the objective function, G(t*), due to the

biased estimate is provided below. For the range of cases

.,
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considered, this percent relative error is within 10

percent.

For an exponential distribution, we can note in

Table 11, convergence from above for replacement times as

large as three times the mean lifetime. The rapidity of

convergence appears to be a function of the replacement

time, with convergence to within 5 percent of the actual

optimal interval for sample sizes as small as 30. As

indicated in Tables 12 and 13, convergence for IFR dis-

tributions may be more rapid than for DFR distributions

with the same mean lifetime. For these distributions

there is a concave ordering such that conditional mean

life plot of IFR distributions are more concave than con-

ditional mean life plots of DFR distributions. Thus, the

geometry of the direct numeration method leads to rapid

convergence for increasingly IFR distributions. Results

for the uniform distribution, shown in Table 14, also

demonstrate convergence from above for small K and conver-

gence from below for large K.

Of interest is the possibility of mitigating the

bias in this direct numeration technique. For a small

sample (say n less than 20) and a small-to-moderate

replacement time, K, we might presume that our estimate

might be greater than t*. Of course, if we collect more

data, our estimate, t*, of the optimal interval would con-

verge, i.e. there would be less bias in the estimate.

However, without any additional data collection, we could
A..

.,
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reaccomplish our graphical technique using the survivor

time on test statistic divided by n as an approximation

of the conditional mean life in lieu of the total time on

test statistic.

Direct Numeration with Survivor
Time on Test Statistic C

We may be able to improve on the estimate of t* V

by using the survivor time on test statistic, discussed in

Chapter I, in conjunction with the total time on test sta-

tistic. Our strategy is to approximate the conditional

mean life by the survivor time on test statistic divided a,

by n and identify as t# the point of tangency correspond-

ing to the tangent line from the point (-K,O). One naive a.

approach is to estimate t* as the average between t and

t*. For some small replacement times, t may not converge

to the optimal replacement interval from below because of

the geometry of the direct numeration method (see

Table 15). For large n, of course, there is no appreci-

able difference between t and t*.

The composite estimator tc (t* +t)/2 can produce

a smaller relative error than the estimator t* as we show

in Table 16 for the exponential distribution. This advan-^
tage of the composite estimator, tc, increases as the

replacement time, K, increases; however, it diminishes as

the sample size increases because of the convergence of
A% At* and tc A prudent strategy, then, would be to use such

%%
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TABLE 15

EXPECTED VALUE OF THE OPTIMAL BLIND REPLACEMENT ESTIMATOR,

E{T*J, FOR OBSERVATIONS FROM AN EXPONENTIAL DISTRIBUTION
(MEAN = 200) WITH DIRECT NUMERATION USING THE

SURVIVOR TIME ON TEST STATISTIC

E[T*} for Replacement Time, K =
Sample
Size 10 50 100 200 400

10 63.4 122.6 160.5 208.4 261.4

20 61.8 124.4 167.0 219.4 281.6

30 61.4 125.2 168.0 222.3 287.8

40 60.9 126.2 169.8 225.1 291.2

50 60.9 126.7 170.1 226.0 292.9

60 , 60.7 126.0 170.5 226.6 294.7

70 60.5 125.9 169.9 226.2 294.8

80 60.5 125.9 170.5 226.4 295.5

90 60.5 126.1 170.3 226.8 296.0

100 60.2 126.2 170.7 227.1 297.1

60.1 126.5 171.6 229.3 301.1

" .'-.

4..

,S.j

". . -...... n... % . **** *
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a composite estimator regardless of the sample size or the

replacement time.

First Order Solutions

Another geometric approach to solving Blind

Replacement uses the concave properties of G(t) and associ-

ated first-order sufficient conditions expressed in equa-

tion (4.2). We can overlay, on a plot of the conditional

mean life, y = f R(x)dx, a plot of the function
0 .

y= (t+K){R(t)). The latter function is the left hand side

of equation (4.2) while the former is the right hand side

of the equality. The solution to equation (4.2), then,

is that t* where these two plots cross as in Figure 11.

Radner and Jorgenson (1962) show that equation (4.2) has a

unique solution. Therefore, there can be only one cross-

ing of these two plots. Since at t =0, the left hand side

of equation (4.2) is greater than the right hand side (as

long as K >0), it follows that the conditional mean life

plot will cross the plot y= (t+K){R(t)l from below. Given

a set of ordered lifetime data, {t(l) , .. t(n) }, we can

approximate both of these plots in Figure 11 with lines

connecting each function evaluated at t(i) i=l, ..., n.

First, we approximate the conditional mean life,
t MOf R(x)dx' by the total time on test statistic divided

by n. Then, the second function can be approximated as
y= (t +K){(n-i+l)/n) using the California plotting posi-

tion. Thus, we can estimate t* by t@ where t@ is that

44. ',,

, !-:.~-W: ~~. ~>: ..
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K t

tt
t* t~n

Fig. 11. Graphical First-Order Solution
to Blind Replacement

t closest to the crossing of the piece-wise linear
approximations of both plots.

Since we approximate two functions with the first-

order solution technique rather than one function as with

a direct numeration solution, the first-order methodology

is more unstable than direct numeration. This instability

is apparent in a comparison of a first-order solution

versus direct numeration as shown in Table 17. Accord-

ingly, we do not recommend using a first-order solution

technique.

Summary ,

The Blind Replacement model espoused by Radner and
'C .°

Jorgenson is a simple, probabilistic representation of the

maintenance of a single-part item where the objective is to

p,.
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TABLE 17

COMPARISON OF EXPECTED VALUES OF OPTIMAL BLIND REPLACEMENT
ESTIMATORS FOR AN EXPONENTIAL DISTRIBUTION (MEAN = 200)

USING A DIRECT NUMERATION (t*) TECHNIQUE VERSUS A
FIRST ORDER (T@) SOLUTION TECHNIQUE

for Replacement Time, K =

Sample 10 400

Size E{T*} E[T@} E{T*} E{T@}

10 67.2 79.6 309.7 361.1

20 63.9 70.3 306.8 330.4

30 62.7 67.2 304.6 319.8

40 61.9 65.2 303.3 315.4

50 61.7 64.4 303.0 311.8

60 61.3 63.5 303.1 310.9

70 61.1 63.0 302.2 308.7

80 61.1 62.8 301.8 307.6

90 60.8 62.4 301.5 306.4

100 60.6 62.0 302.2 307.0K 60.1 60.1 301.1 301.1

.-

*1.

Y<'5
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maximize the item's availability when the item's condi-

tion is unknown. This model is amenable to graphical

solutions similar in nature to Bergman's technique for

Age Replacement. We proposed, herein, several solution

techniques and discussed the rapidity of convergence of

each to the optimal Blind Replacement interval based on

simulations from several common life distributions. We

note that the proposed first-order solution is relatively

unstable compared to direct numeration and, therefore,

do not recommend its use. As for direct numeration solu-

tion techniques, we show that the use of the total time on

test statistic leads to biased estimates of t*. This bias

might be reduced, for moderate replacement times, by using

a combination of graphical estimators based on the total .

time on test statistic and the survivor time on test sta-

tistic."

-.
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CHAPTER V

CONFIDENCE BOUNDS IN MAINTENANCE PLANNING

Given a sample of failure data, the graphical tech-.U

niques for Age, Block, and Blind Replacement, discussed in

Chapters II, III, and IV, provide point estimates of the

optimal replacement interval. Ideally, we would like to

see confidence bounds about these point estimates in order

to judge the degree of dispersion inherent in any sampling

technique. However, for a single sample of size n, the

distribution of the optimal replacement interval estimate,

t Z t*, is that of the Jth order statistic where J is
(j)

itself a random variable. Its sampling distribution is of

an unknoWn form and is not amenable to straightforward

statements of statistical variability. Thus, measures of

dispersion, which gage sampling accuracy for small sample

sizes, may have to be obtained by artificial sampling

experiments. In this chapter, we discuss several tech-

niques for bounding the true optimal replacement interval,

t*, using a distribution free resampling concept known as

the "percentile method." We illustrate this methodology

for Age Replacement and Blind Replacement; however, this

resampling concept is also appropriate for Block Replace-

ment.

74

..



r -, - M -"-.-

75

Efron (1982) discusses a resampling procedure

known as the "bootstrap" and advocates the percentile

method, a nonparametric confidence interval technique.-

developed from the bootstrap procedure. The bootstrap is

a computational process for estimating attributes of some

general random variable, X, with an unspecified cumulative

distribution function, F(x). This process involves

repeated resampling of a single set of observations,

{X 1 , x 2 , • •• 1, where n resample observations are .

uniformly drawn with replacement from the set of the

original n observations. Each bootstrap resample set,

{x*, xj, ... , xn}, can be used to compute some aspect of

X, while repeated bootstrap resampling provides statistics

on this aspect. In our case, we want to estimate t* from

a set of n observed lifetimes, {t < .• and

specify a confidence bound about t* without collecting

more data. Accordingly, we can resample with replacement

from the original lifetime data and accumulate b sets of

bootstrap data, It< < t {t*b< <t b

For each of the b sets of bootstrap observations, we can

compute (i=l, b) the bootstrap estimator of

t*. The collection of b bootstrap estimators can them-

selves be ordered as {t * ( I ) < < t*(b)j, and a 100 (1-a)

percent confidence bound can be constructed from these

ordered bootstrap estimators as It*1 b/2 1 t~lb-ab/2)]

We refer to this confidence bound as the "percentile

method" bound.

r >
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In order to investigate the performance of the

percentile method for Age Replacement and Blind Replace-

ment, we turn to Monte Carlo simulation involving several

distributions from the Weibull family whose true optimal

replacement intervals, t*, are known a priori.

The Percentile Method for

Age Replacement

We applied Efron's percentile method for confi-

dence bounds to Bergman's graphical Age Replacement esti-

mator, t*, based on 50 observations from selected IFR

Weibull distributions, each with the same mean value.

Our analysis is based on 1000 iterations of 50 original

observations per iteration from the respective Weibull dis-

tributions. At each iteration, we resampled the 50 obser-

vations (an arbitrary) 100 times with a bootstrap sample -.

size of 50. If the last ordered observation in the boot- - .

strap sample minimized the objective function, then for

numerical reasons we estimated t*' as a large number in

lieu of using infinity. We then constructed various con-

fidence level bounds for each iteration, and noted whether

the bound contained the true optimal Age Replacement inter-

val, t*, an appropriate fraction of the time. The results

from this simulation, summarized in Tables 18 through 20,

indicate that, for some distributions and cost ratios, the

percentile method may not provide confidence bounds that

are wide enough to contain t* with the correct probability.

.. . . . . . . . . . .- 's '' . ' ' ' 'J1. ' -/ _ . % .,i
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When there are large differences between the cost

of failure and the cost of replacement (i.e a small cost

ratio), the percentile method produces confidence bounds

which have a low probability of containing t* and the.'

potential for large relative error in the objective func-

tion. A partial explanation of this result involves the

geometry of Bergman's technique which leads to the first-

order statistic as an estimate of t* when the cost ratio

is small. With scant original samples, it is possible

that the smallest observed failure time is greater than t*

thereby leading to an inability of the percentile method

to capture t*. This difficulty can be diminished by

increasing the original sample size. Thus, for small cost

ratios, a prudent course of action would be to collect

reasonably large numbers of observed failure times.

With moderate cost ratios (i.e. a moderate differ-

ence between the cost of failure and the cost of replace-

ment), the percentile method performs adequately for

Weibull distributions with shape parameters greater than

or equal to 2.0. For large cost ratios (which implies a

nominal difference between the cost of failure and the cost

of replacement), the percentile method works well as long

as the Weibull distribution is not too IFR. Although the

A90 percent confidence intervals for these moderate to large

*cost ratios can be very wide (as shown in Table 19), the

average maximum relative error in the objective function

within these intervals is less than 10 percent.

>>5 ,L,. , ,>>.. .,.-,..-.,.-,. .-.- ..--.... , .. ....,....-.-....-.....-........,..,......-..........,-.....-....-..,................,.......
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The application of the percentile method to Age

Replacement can result in a confidence bound that is nil.

The likelihood of this possibility increases as the sta-

tistical confidence of the bound decreases. For the -

reasonably large confidence bounds (greater than 70 per-

cent), we never encountered a zero width confidence bound

throughout our simulation activity. Thus, for sufficiently

large numbers of observations, say at least 50, there

appears to be minimal risk of a zero range confidence

bound as long as we consider confidence levels greater or

equal to 70 percent.

The Percentile Method for

Blind Replacement"

We also applied Efron's percentile method for con-

fidence bounds to our TTT statistic direct numeration

estimator, t*, based on 50 observations from selected IFR

Weibull distributions, each with the same mean value.

Again our analysis is based on 1000 iterations of 50

original observations from the respective Weibull die-

tributions. At each iteration, we resampled the 50 obser-

vations 100 times with a bootstrap sample size of 50, con-

structed various confidence bounds for each iteration, and

noted whether the bound contained the true optimal Blind

Replacement interval. The results from this simulation,

contained in Table 21, indicate that the percentile method

produces confidence bounds which are not quite wide enough

to contain t* with the correct probability.
.4..
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The reason for this weak performance involves the

positive bias in the Blind Replacement estimator t* (using r

the total time on test statistic) which we noted in

Chapter IV. One approach for improving this performance

is to modify the percentile method by reducing the boot- 
X

strop resample size to some fraction of the original

observed sample size. Decreasing the bootstrap resample
%-"

size will increase the variability in our biased estimator

and, ideally, will widen the confidence bound. Unfor-

tunately, this approach does not work for Age Replacement

as it does for Blind Replacement. L
We replicated our Blind Replacement simulations

with a modified percentile method involving bootstrap

resample sizes of 80 percent of the original sample size

in lieu of the 100 percent bootstrap resample size used

above. In other words, each of the 100 bootstrap resampled

data sets contained only 40 observations drawn with

replacement from the original 50 observations. The

results, depicted in Tables 22 through 24, are quite

satisfactory. This modified percentile method produced

confidence bounds which contained t* approximately the

correct number of times in 1000 iterations as can be seen

in Table 22. The 90 percent confidence bounds given in

Table 23 are sufficiently narrow to be able to bracket

t* to within a 10 percent maximum relative error in the

objective function as shown in Table 24. "
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Nonparametric confidence bounds for the optimal

replacement interval, t*, can be constructed via a

resampling technique which Efron (1982) calls the per-

centile method. This method uses the order statistics

generated from a bootstrap resampling scheme to form

bounds with a given level of statistical confidence. A

Monte Carlo simulation of graphical solution techniques

for Age Replacement and Blind Replacement suggests that

in many cases the percentile method may not produce bounds

with the correct statistical confidence. Moreover, in

some cases, the average maximum error in the objective

function within the confidence bounds can be substantial. 4

For Blind Replacement, however, a modified percentile

method can produce bounds with satisfactory levels of sta- *

tistical,-confidence and nominal relative errors in the

objective function. ""
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APPENDIX

LIST OF SPECIAL NOTATION

EV} Expected cost during a typical renewal
cycle (p. 4)

E{L} Expected renewal cycle length (p. 4)

F(t) Failure distribution (p. 5)

Rit) Survival distribution (p. 5)

Pt) Conditional mean life (conditioned on
censoring lifetimes at time t)(p. 5)

t* Optimal replacement interval (p. 6)

{t ... , t Ordered observations where
• t~(1- 1) < t (i ) (p. -)K:

T(ti) Total time on test statistic (p. 7)

U Scaled total time on test statistic
1 (p. 8)

S(ti) Survivor time on test statistic (p. 15)

N. Sample path of a renewal process (p. 16)

Mt) Renewal function (p. 16)

t* Estimate of t* (p. 31)

E(T } Expected value of the i order sta-
tistic (p. 32)

E[T*) Expected value of the estimator of t*
(p. 39)

M(t) Renewal density function (p. 43)

Estimate of t* based on i t h bootstrap
resample of n observed lifetimes (p. 75)

% *
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