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Graphical Templates 

for Model Registration 
Yali Amit and Augustine Kong 

Abstract-A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnew method of model registration is proposed using graphical templates. A graph of landmarks is chosen in the 
template image. All possible candidates for these landmarks are found in the data image using local operators. A dynamic 
programming algorithm on decomposable subgraphs of the template graph finds the optimal match to a subset of the candidate 
points in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApolynomial time. This combination of local operators to describe points of interestllandmarks and a graph to describe their 
geometric orientation in the plane, yields fast and precise matches of the model to the data, with no initialization required. 

Index Terms-Graphical templates, decomposable graphs, model registration, dynamic programming, image matching. 

1 INTRODUCTION 

N recent years there has been a growing interest in de- I formable models for the analysis of images of families of 
objects which manifest a continuous type of variability, in 
particular in the context of medical and biological imaging. 
The ultimate goal is to describe each image in the family in 
terms of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdeformation of a template or model which yields 
the best match to the image. This description can then be 
used in a variety of ways. First it provides an automatic 
means of identifying the various components of the object 
in the image, and in some cases of segmenting the image. 
Secondly it provides a means of studying the variability in 
the family, classifying subgroups and identifymg abnor- 
malities. Thirdly it can provide a means for coding or data 
compression. The most extensively studied models come 
under the general title of elastic matching. 

1.1 Elastic Matching Versus Landmark Matching 

Grenander zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[13] introduced the idea of elastic deformations 
of one and two dimensional templates. These ideas were 
implemented in a Bayesian framework in [2] for hand x- 
rays and in [21] for MRI images of the brain. Similar ideas 
were proposed in [3] for MRI brain images, using tech- 
niques developed in the optical flow and image sequence 
analysis literature, [17], [18], [22], [27]. A comparison of 
these methods both from the point of view of the optimiza- 
tion problem being posed and the numerical techniques can 
be found in [l]. 

There are several limitations to these elastic deformations. 
First the template is simply one image from the family, no 
modeling is involved at this level. Second the matching of 
the deformed template to the data image is pixel intensity 
driven. In other words the matching criterion is minimizing 
the mean square over all pixels of the difference between 
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the intensity of the deformed template and that of the data 
image. This does not ensure that specific points of interest 
or landmarks be matched with great precision. Third the 
deformations being used are generic or non-parametric in 
nature and do not depend on the specific family of objects. 
Fourth, because of the inherent non-linearity of the prob- 
lem, and the fact that the deformations are high dimen- 
sional, the computational tools for calculating the match 
must use relaxation techniques which run the risk of 
converging to a local minimum which corresponds to a 
poor match. 

These issues point to three categories which must be ad- 
dressed simultaneously and in an integrated manner in any 
approach to the template matching problem. The data term 
which drives the matching. The model and its variability. 
The computational tools and their limitations. 

The main goal of this paper is to present a new computu- 
tionally eflicient model registration method consisting of a 
graphical template of landmark points which describes 
their planar arrangement, together with robust local opera- 
tors which identify candidates for the various landmarks in 
the data image. This is essentially a new approach to the 
general program outlined in [15]. Namely image features are 
defined and then correspondence is obtained through a 
consistency model, which is optimized through an efficient 
algorithm consisting of dynamic programming on decom- 
posable graphs. 

Thus more emphasis is put on the precise matching of 
landmarks, see [9], local features, or points of interest 1151. 
These landmarks are both important for understanding and 
analyzing the image and can be identified using various 
local operators which employ more information than indi- 
vidual pixel intensity. Moreover modeling the variability in 
terms of the relative locations of the landmarks yields a 
more specific and lower dimensional description of the 
variability within a certain family of objects. The same point 
is made in [lo] with respect to the 1D elastic contour models. 

These ideas can also be found in the 3D object recognition, 
stereo and robot vision literature, in the context of the well 
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known correspondence problem. Another related problem 
is stellar constelation matching where the graphs provided 
by the Delaunay triangulation are used to impose hard con- 
straints on the arrangement of the landmarks, [16]. In these 
applications the variations in the locations of the landmarks 
are subject to very stringent constraints due to the inherent 
rigidity of the objects. Here we will be dealing with non- 
rigid objects which exhibit a larger variability. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.2 Local Operators and Graph Matching 

The local operators used here involve only rank relations 
between intensities in the neighborhood of a pixel. These 
turn out to be very robust, and can be used both to describe 
local boundary shape and local topographies such as 
maxima, minima, saddle points etc. The algorithm however 
can be implemented with any choice of local operators. 
Usually the same local operator will be used for several 
landmarks, and many more candidates will be found in the 
data image, than landmarks associated with that operator 
in the model, see Fig. 7. To find the correct match of the 
landmarks in the model to the candidate pixels in the image 
it is necessary to introduce constraints on the relative loca- 
tions of the landmarks in the plane. Note that the variabil- 
ity of these relative locations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan not be expressed as a uni- 
form affine transformation on all points. 

The constraints are described through a collection of tri- 
angles between triples of landmarks. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA cost function is as- 
sociated with each such triangle which penalizes its shape 
deviation from some mean triangle. It is important to note 
that these constraints need not be local, indeed they could 
involve far apart landmarks. This is in contrast to the im- 
plicit constraints used in the elasticity models which essen- 
tially penalize large changes in the local lattice elements. 

The total cost function is the sum of the cost functions 
over all the triangles in the model. The collection of trian- 
gles can also be expressed as a coloured graph, where the 
nodes are the landmarks, the colour or type of a node is 
given by the type of local operator used to find its candi- 
dates. The edges in the graph exist between each two 
landmarks which belong to a triangle. This graph is called 
the template graph. Note that in this context the deformable 
template is not an image but a graph model. 

Finding the optimal match then reduces to an inexact 
consistent-labeling problem [15]. The inexact consistent label- 
ing problem is generically exponential in complexity, how- 
ever if the template graph is chosen to be decomposable, it 
is possible to find the optimal match in polynomial time us- 
ing dynamic programming on the graph, see, for example, 
[26]. Decomposability in the present context means that 
there exists an order in which the triangles of the graph can 
be successively eliminated, such that each triangle in its 
turn has a free vertex contained in no other triangle. When 
the free vertex and the two edges emanating from it are 
removed, one of the vertices of the next triangle in the order 
is freed and so on (see Fig. 1). Dynamic programming has 
been used in image analysis in a variety of contexts such as 
road tracking [4], stereo [23], and artery tracking [24]. All 
these settings are one dimensional in nature, and the con- 
straints enforced by the underlying graph are all local. To 
our knowledge thds is the first attempt to incorporate the 

efficient computational tool of dynamic programming in an 
inherently two dimensional and non-local imaging problem. 

Decomposability imposes certain limitations on the 
graph, and may limit the geometric and topological infor- 
mation it contains. This has been addressed by iterating 
between two graphs as described in Section 2. Another limi- 
tation of this method is that the graph is constructed by 
hand as opposed to the automatic generation of a Delaunay 
graph for example as in [16]. 

1.3 Interpolation and Initialization of Elastic 

Deformation Algorithms 

Once the matching of the template graph to a subset of the 
landmark candidates in the data image is completed, we 
are in the same situation described in Bookstein's work on 
image warping. In the latter case both the landmarks in the 
template are chosen manually, as well as their matches in the 
data. The following step is calculating a planar mapping 
which interpolates between the existing point matches. We 
refer the reader to [20] and [8] for further details. 

The planar mapping can now serve as an initial point to 
an elastic deformation algorithm for image matching. We 
employ a spectral method described in [l] where the 
parameters of the deformation are the coefficients of its 
expansion in some orthonormal basis (Fourier or wavelet). 
The cost function in that approach is non-linear and the 
solution corresponds to a local minimum obtained through 
gradient descent where the initial point was always taken 
to be the identity map (no deformation). This method 
worked well in several cases and was able to identify large 
warpings. However since the deformations are not dedicated 
to the specific image families and in view of the non- 
linearity of the functional, mistakes are bound to occur as 
illustrated in Fig. 9. This image represents the final deforma- 
tion of the template, obtained from the elastic deformation 
algorithm, subtracted from the target image. The fingers 
got confused. 

Now that an interpolated match of the landmarks is 
available, it is taken as the initial point for the gradient 
descent. The large scale global matching has already been 
obtained through the matching of the landmarks. The 
image warping should now serve for small scale correc- 
tions and adjustments, see Figs. 10 and 11. 

The strength of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis algorithm is its computational efficiency 
and the absence of any need to initialize the matching algo- 
rithm or the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoptimization procedure. This is one of the draw- 
backs of many relaxation techniques. If the template or model is 
not initially set nearby the correct location the relaxation algo- 
rithm may end up in completely erroneous solutions. Indeed 
the match provided by this method can serve to initialize de- 
formable template methods using relaxation techniques, such 
as [28] and [lo]. 

To demonstrate the power of combining decomposable 
graphs of triangles with additive shape cost functions, 
together with dynamic programming, to match a model to 
the data, we start out in the extreme case where only one 
local operator is used, namely a local maximum operator. 
This is the hardest case because no assistance is provided 
by having a variety of colours in the graph. On the other 
hand since both the cost function and the local operator are 



AMlT AND KONG: GRAPHICAL TEMPLATES FOR MODEL REGISTRATION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA227 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
scale, rotation and translation invariant, the entire algo- 
rithm will be invariant to such transformations. The data 
we use are 128 by 128 low resolution digitizations of x- 
ray images of hands. 

The components of the implementation together with the 
details of the graph matching using dynamic programming 
on appropriate subgraphs of the template graph are de- 
scribed in Section 2. In Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3, we describe the experi- 
ments and show an example where this algorithm was im- 
plemented on high resolution x-ray images using a vari- 
ety of local operators, thus obtaining very precise 
matchings of various anatomical components. We also 
present an example of the use of the graph match to 
initialize the image warping algorithm. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 LOCAL OPERATORS, DECOMPOSABLE GRAPHS, 

AND DYNAMIC PROGRAMMING 

2.1 The Local Operators 

The local operators were designed to be very robust to 
changes in pixel intensities and noise. A certain size neigh- 
borhood is chosen, say zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm x n. Two m x n arrays L, of 1-s and 
0-s, and L-, of -1-s and 0-s are chosen, which characterize 
the local operator. The supports (sets of pixels for which the 
value is non-zero) of the two arrays should be disjoint but 
their union need not be the entire m x n neighborhood. Let 
n, and n-, be the number of non-zero elements in the two 
arrays, respectively. 

The sign of the difference between the intensity at a 
given pixel i, j, and the intensity at each of the pixels in its 
m x n neighborhood is calculated, to yield an array zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA(’”) of 
1-s and -1-s, at pixel i, j. The next step is calculating 

where ‘.’ indicates inner products of the two arrays. If s1 
and s - ~  are larger than some tolerances, a candidate for op- 
erator (Ll, L-l) has been found at pixel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ) .  

The simplest example is L, all 1-s, and L-, all 0-s. This 
corresponds to a local maximum operator. The reverse cor- 
responds to a local minimum operator. Other configura- 
tions yield crude descriptors of the topography of the pixel 
intensity in the neighborhood of a landmark. The pixels 
corresponding to a certain local operator typically occur in 
clusters. These were identified and the average location 
calculated. In Section 5 a description of the four local opera- 
tors used for the high resolution x-rays is given, together 
with the tolerances. 

For simplicity the graph matching procedure is described 
assuming only one local operator. 

2.2 The Graph 

To create the template graph together with the ”mean” for 
every triangle in the graph, the local maxima of an arbitrary 
image, henceforth called the template image, were displayed 
and those which appeared the most descriptive of the anat- 
omy of the image were chosen to be the landmarks, namely 
the vertices of the template graph. These points were either 

at the joints of the fingers or at certain locations in the palm 
where there is a high bone concentration. The edges of the 
graph were then introduced manually by connecting vertices 
which seem to have an important geometric relation with 
each other. 

The problem now is to determine which of the many 
local maxima found in the data image are the true land- 
marks and how to correctly match them to the corre- 
sponding landmarks of the template. 

The graph which we call the template graph, is constructed 
so that all its cliques are triangles. Cliques being maximal 
subsets of the vertices, all pairs of which are neighbours in 
the graph, see Fig. 1. These triangles are assigned a certain 
cost function. A match of the template graph to some subset 
of the local maxima found in the data image, will have a 
cost associated with it. This cost penalizes deviations from 
the shape of the original triangles of the graph of landmarks 
in the template image. Here shape refers to the angles of the 
triangles, not to scale or rotation. Hopefully the choice of 
triangles and cost functions are such that the optimal match 
to the data will yield a match of the anatomical locations 
which the landmarks represent. 

Finding the optimal match of the template graph to a 
subset of the local maxima extracted from the data image is 
a very difficult problem. It is clearly impossible to evaluate 
all possible combinations, this will quickly lead to a compu- 
tational explosion, even for relatively small collections of 
data points and small graphs. 

The graph is chosen so that it is decomposable. In the 
framework described here, where all cliques contain exactly 
three elements, this property can be described as follows. 
There exists an order of successive elimination of the cliques, 
such that in each clique, in its turn, there exists a free vertex, 
contained in no other clique, which can be eliminated, so that 
the remaining subgraph is again a collection of cliques of 
three. When a free vertex is eliminated the next clique in the 
ordering will again have a free vertex to eliminate, and so on 
until the last clique. Figuratively speaking the graph can be 
folded away triangle by triangle, see Fig. 1. These concepts 
will be defined formally in the next section. For decomposable 
graphs the optimization can be translated into a dynamic 
programming algorithm and therefore done in polynomial time. 

This choice of graph, which is motivated solely by com- 
putational considerations, necessarily leads to the loss of a 
significant amount of topological information. Many closed 
loops, which severely constrain the possible configurations 
of maxima are eliminated. This loss in constraints is offset 
by iterating between two or more graphs, each of which is 
decomposable and which have at least two vertices in 
common, see Figs. 2c and 2d. A subset of common vertices 
of the two graphs is chosen. An optimal match is found 
using the first graph. When the optimization procedure 
begins for the second subgraph the match for this subset of 
data points is fixed as the match provided by the first sub- 
graph. Now the optimal match is found for the remaining 
vertices of the second subgraph. The match found through 
this iteration procedure is not guaranteed to be the global 
optimum, however it appears that a good choice of sub- 
graphs yields very good matches which should be very 
close to the optimum. In the following section we describe 
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the technical details of the matching algorithm for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdecmposabk 
graphs through dynamic programming. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.3 Decomposable Graphs 

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx,, ...., x, be n landmarks identified on the template. 

Let V = (v,, ..., v,,,} be the set of candidate landmarks in 

the data image with m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 n. Any sequence (il, ..., in) satis- 

fying i, E {I, ..., m} for all k denotes a match of candidate 

landmarks vll, . . ., vl, to the template landmarks x,, . . ., x,. 
Let S be the index set (1, . . ., n) and let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE be a set of pairs of 
elements in S .  The pair (S, E) is a graph; S is the set of verti- 
ces and E is the set of edges. See, for example, Fig. 1. Two 
vertices are called neighbors if they correspond to an edge. 
For any graph, a clique C c S is a maximal subset of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS 
whose elements are all neighbors to each other. Let C be the 
set of cliques of a graph (S, E). (Note that E and C can be 
determined from each other.) In the present context each 
clique consists of exactly three vertices. A cost function 
vc(i,; k E C )  is assigned to each clique C, which depends 

only on the candidate landmarks vlk for k E C. Of interest is 
the candidate match that minimizes 

~ ( i  ,,...,in) = Cyc( i , ;k E c). 
CEC 

The minimizer is denoted by (i;, ..., ii) and will be re- 

ferred to as the best match. The graph and the functions vc(.) 
are chosen to ensure that the geometric configuration of the 
points in the best match is close to that of the template 
landmarks with respect to some geometric criteria which 
fall under the general title of shape. In the experiments this 
is formulated in terms of relative distances between land- 

marks and the functions ye(.) are constructed so that a can- 
didate match will be penalized if the relative distances be- 
tween vzk, k E C do not match closely with those between 

xk, k E C for each clique C. Specific choices of yc() are dis- 
cussed below. We describe here the computations required 
to find the best match. 

Because there are m possibilities for each of the n land- 
marks, there are a total of mn candidate matches. Evaluating 
Y for every candidate match is feasible only for very small 
n. However, by applying dynamic programming, see 161, 
and putting certain restrictions on the graph, it is demon- 
strated that the amount of computations necessary to find 
the best match is proportional to nm . For computational 
and modeling purposes, we focus on a class of graphs 
having the following properties. 

PROPERTY I. The vertices of the graph can be ordered in 
such a way that all the neighbors of vertex 1 are neigh- 
bors of each other, so that together with 1 they form a 
clique, denoted C,; If the vertices are eliminated one at a 
time from the graph in increasing order, after vertex t 
(for t = 1, ..., n - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3)  is eliminated, all the neighbors of 
vertex t + 1 in the new subgraph are neighbors of each 
other, namely together with t + 1 they form a clique, 

denoted Ct+l. Henceforth this will be the ordering of the 

3 

vertices of the graph. 

PROPERTY 11. Following the order of elimination in the de- 
scription of Property I, any vertex t, for t = 1, ..., n - 2, 

has exactly two neighbors a,&, when it is being elimi- 
nated, namely it is not in any other clique of the current 
sub graph. 

Property I is one of many possible characterizations of a well 
studied class of graphs called decomposable graphs 151, [26]. 

It can be shown that properties I and I1 imply that for 
t = 1, . . ., n - 3, the vertices a,, b, of property I1 belong to at 

least one other clique zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC,, such that ut  > t. This is called the 
running intersection property and is discussed in more de- 
tail below. These concepts are illustrated in Fig. l. 

Fig. la.  The steps in the successive elimination of the vertices and the 

corresponding cliques. The cliques of the graph are: 

The indices U ,  defined in the running intersection property are: 
u1 = 2, up = 3, ~3 = 4. Also (al, b,) = (2,5) and (a2, b2) = a3, b3)= (5,6). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc, = { x ~ ~ x p r ~ ~ } ~ c ~  = { x ~ J x ~ T x ~ } l c 3  = { x 3 ! x s / x 6 } r c ,  = { x ~ T x g , x 6 } ’  

Fig. 1 b. Dynamic programming for minimizing the function 

~ ( x ~ , .  . . , x6) = Cf_, yc (xk I k E C )  amounts to carrying out the 

following iterative minimization from the interior parentheses and out. 
Observe that each minimization only involves calculations on triples of 
variables: 

X4,X5Ja min [ w c , ( ~ 4 r x s ’ x 6 )  

2.4 Dynamic Programming 

The idea behind dynamic programming can be illustrated 
in the following simple example. Letf(x,, x2, xy x4) = g ( x ,  x2, x3) 

+ h(x2, x3, x4), where x, are variables in a finite set V. For 

each x2, x3 E V let g*(x,, x3) = minx, g(xl, x2, x3), where 

x;(x2, x3) denotes the value of x1 at which the minimum is 

achieved. Then 

minx1,x2,~3,x4f(X1~X2~x3~ x4)=minx2,x3,x4 g*(’2Tx3) 

+ h ( X 2 , X ~ ~ X 4 ) = m i n x 2 , x 3 , x 4 f ” ( X 2 ~  ‘3Tx4)‘ 
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* * *  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The minimum on the right is achieved at ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx2, x3 , x4) if and 

only if the minimum on the left is achieved at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( x ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(xi, x3), x2, x3, x4). The number of combinations needed 

to obtain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg* and x; for each x2, x3 E V is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA\VI3 where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIVI is 
the cardinality of V. The number of combinations needed to 
find the minimum of f" is the same. Doing the minimiza- 

tion by brute force would require trying zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIVI4 combinations. 

any other clique, we can write 

* * *  

More formally, since 1 is the vertex in C, which is not in 

Y ( z l , . . . , i n ) = i v c , ( i k ;  k E C t ) =  v&; k E C l ) + z v C , ( i k ;  k E C , )  
T 

f=l t=2 

d_ef - vC,(i,; k E C,) + A(i2,  ..., in). 

Assume C, = (1, a, b}.  For any fixed pair (i,, ib) of candidate 

points, let i;[i,,i,] be the choice of i, which minimizes 

vcl(i,, i,, ib). Since A(.) does not depend on i,, it is easy to see 

that in the optimal match i; ,..., ii satisfies i, = i, i,, $, . 
Note that finding i;[i,, ib] for all possible pairs i,, i, = 1, . . ., m 

requires evaluating yc,(i,, i,, i,) for all possible combina- 

tions of i,, i, and i,. Hence, the amount of computations is 

proportional to I VI = m . For each pair (i,, ib) the index 

i;[i,, ib] is stored as well as ycl(i;[ ia, ib],i,,ib), so that the 

* "[ * "I 

3 3  

amount of storage required is proportional to mL. 

By the running intersection property there exists a clique Cul 

which contains vertices a and b. Let Cu, = {a, b, c). Define 

+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc.1 ( ik ;k  E cui) = +cul(ia,ib,ic) = yc"l(ia,j~,i~)+ycl(i~[~,,ib],i,,i~), 

&(ik; k E C,) = ycl(ik; k E C,) for t = 2, ... T ,  t # ul, 

and 

m(i2, ..., in) = C 4 c l ( i k ;  k E c,). 

Note that vCl (i; [i, , i, ,I, i, , ib) is a function of i, and i, only, 

and hence iC (.) is a function of ( ik, k E CUI). The amount 

of computations required to evaluate the function 4 (.) for 

all triples of candidate points is again proportional to m . It 
is easily seen that Q(i;, .. . , i:) = Y(i ; ,  ... , i:) and (i;, . .. , i:) 
is the minimizer of @(.). The original problem is thus re- 
duced to a similar one with one vertex eliminated. By elimi- 
nating the vertices one at a time in increasing order of the 
labels, the problem can be solved when only the last three 
vertices n - 2, n - 1, n, are left (Fig. 1). Note that when 
ii-2,i;-l,i: are determined, we can go backwards and 

determine i:-3,.. . , i; sequentially. Because the amount of 
computations needed to eliminate one vertex is proportional 
to m , the total amount of computations is proportional to 

nm . From the discussion in the next section it follows that 
this procedure necessarily covers all cliques in the graph 

t=2 

Y 

CUI 
3 

3 

3 

and thus obtains the minimum of the function Y. 
In light of the discussion above it is now possible to appre- 

ciate the importance of Properties I and II. Computationally, 
requiring that the graph is decomposable and that I C I = 3 for 
all C E C, ensures that each stepsof dynamic programming 
involves computations of order m and hence is manageable 
in many circumstances. Moreover the homogeneity in the 
local structure of the graph greatly simplifies the implemen- 
tation of the dynamic programming algorithm in terms of 
book keeping requirements, as can be seen in the implemen- 
tation section below. 

2.5 Some More on Decomposable Graphs 

To further understand the implications of Properties I and 
11, it is helpful to re-express them in the following way. 

PROPERTY I*. The running intersection property: There exists an 

ordering of the cliques, C,, C,-, ..., C,, such that, for 

T > t 2 1, there exists U, > t such that 

c, n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(U:) = c, n CUI. 

PROPERTY 11". The cliques of the graph are all triples and 
the number of cliques is equal to the number of vertices 
minus2,i.e, IC1 = 3 f o r C ~  Cand IC1 = T = n - 2 .  

Results established by [14] and [12] demonstrate that 
Properties I and I* are equivalent. Given Property I, Prop- 
erties I1 and II* are equivalent as can be seen from the 
following discussion. 

Suppose the cliques are labeled so that the running in- 

tersection property is satisfied. Because C, is a clique, C, # 

C, fl Cut, which implies that C,, t = T - 1, ..., 1, must con- 
tain at least one vertex which is not in the cliques with 

higher labels.' Hence, n 2 I C, I + T - 1. From Property II*, 

I C, I = 3, so n 2 T + 2. However, Property 11* also specifies 

that n is exactly T + 2, which implies that C,, t = T - 1, . . ., 1, 
has exactly one new vertex which is not in the cliques with 

higher labels. This means I C, f l  Cut I = 2. for t = T - 1, ..., 1. 
We now relabel the vertices in the following fashion. Let 

the three vertices in C, be arbitrarily labeled as n, n - 1, n - 
2. For t = T -1, . . ., 1, let the new vertex in C, be labeled as t. 
From here on, the vertices are assumed to be labeled this 
way. This labeling obviously satisfies Properties I and 11. 
Indeed, the two neighbors of vertex i, i = 1, ..., n - 2, at the 
time it is eliminated are the two other vertices in C,. From 
the above it also follows that if Properties I and I1 are 
satisfied then, 

PROPERTY 111. For t < T, the subgraph defined with vertex 
set S,, = {t, t + 1, .. ., n) and clique set C,, = {Ct,Ct+l, ..., C,} 
satisfies properties I, 11 as well. 

Property I1 allows us to introduce genuinely rotation 
and scale invariant functionals. Consider the cliques and 
vertices in reverse order as is done in the statement of 
Property I*. With Property II*, every time a new vertex 
t, t = n - 3, n - 2, ..., 1, is added, a new clique C, is in- 
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troduced. The associated function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyct(i,; k E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACi) allows 
us to model the location of the new (tth) landmark 
relative to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo of the existing landmarks. Namely in 
terms of relative lengths and angles. The fact that it is 
two of the existing landmarks instead of one is very im- 
portant. To understand this, suppose Property 11* is 

violated so that for some t ,  C, n C,, is a singleton set (z]. 
The graph can then be partitioned into two pieces which 
are only connected through the vertex Z. If the functions 

yc,(.) are restricted to those which are scale and rotation 
invariant, the angle between the two pieces cannot be mod- 
eled. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Remark: Suppose a graph satisfies Property I but does 
not necessarily satisfy Property 11. Then, by applying 
dynamic programming in a similar fashion, it can be 
shown that the amount of computations required to find 
the best match is proportional to 

Y 
t=l 

In general, if G = (S, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE) does not satisfy Property I, i.e., it is 
not decomposable, then the computations for finding the 
best match will be given by the above formula, however 
stmming oxer the cliques of some decomposable grapQ 
G 
depends on the order of elimination when dynamic pro- 
gramming is applied. Algorithms related to finding the op- 
timal elimination order can be found in 161. For example in 
order to apply dynamic programming to the original grapk 
in Fig. 2a, it would be necessary to embed it in some G 
which would have some cliques of more than three elements. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.6 Implementation 
The dynamic programming procedure described above is 
implemented as follows. Two arrays book-kepf and book-kepi 
are created with rows corresponding to all possible pairs of 
landmark candidates, and columns corresponding to each 

= (S, E ) of which G is a subgraph. The graph G 

1 
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0.6 - 

0.5 - 

0 2  "1 h 
1 

1 ,  I # , , , / , , I  
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Fig. 2. Top left: The full graph: The triples (3, 4, 5), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6, 7, 81, (7, 8, 9), (10, 11, 121, (11, 12, 16) are all cliques for which the three corresponding land- 
marks are colinear. Top right: The graph overlayed on the template image. Bottom left: First sub-graph. Bottom right: Second sub-graph. The verti- 
ces in all graphs are numbered according to the order of elimination. 
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clique in the decomposable subgraph. Thus both arrays are of 
dimension zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm x T. In the first step for each possible assign- 

ment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi,, ib of a pair of candidates to vertices a, b in the first 

clique of the graph, the value of ycl(i,, i,, ib) is calculated for 

each possible assignment i, of a candidate to vertex 1. As 

above let ii[ia, ib] denote the index of the data point at which 

the minimum is achieved. The value of ‘ycl (ii[i,, ib], i,, ib) is 

stored in book-keepfl(i,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAib), 11. The index i;[ia,ib] is stored in 

book-keepi[(i,, ib), 11. Looping over all pairs, the amount of 

computation involved in this step is proportional to m . 
At the tth clique with graph vertices (a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf i  ~, for each as- 

signment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAip, i, the functionf(ia) = ‘ycr(i, ip, $) is calculated. 
If (a, b) is contained in any previously eliminated clique, 

namely in any clique C,with z <  t, the one with largest in- 

dex z* is found, i.e. the last such clique. The value of 

book-keepfl(i,, ip), z*] is added tof(i,). Similarly, if (a, c) is 
contained in any eliminated clique z < t, the value of 

book-keepfi(i,, ir), 2*3 is added tof(i,), where z* is the last 

such clique. Similarily for (b, c). For given (ip, ir) this is 

done for every i, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, . . ., m. The index i, ip, i, which mini- 

mizes the updated Ria) for the pair (ip, 4) is stored in 

book-kqi[(ip, +), t], the value of f ( i i [ iP, iY])  is stored in 

book-keepfi(ip, +), tl. 
After looping through all cliques find the row in 

book-keepf which contains the minimal value in the last 

column T. Rename the corresponding pair as (ii-,, ii). The 

corresponding data points match the graph vertices n - 1, n, 

respectively. The index ii-, = book- keepi[(ii-, ,  i i -2) ,  7’1 

will match the graph vertex n - 2. Now go to vertex n - 3 
which must lie in clique T - 1 and which must have a pair 
in common, say (n - 2, n), with clique T. Then 

ii-3 = book- keepi[(i;-,, ii), T - 11. Continue backwards in 

the same way. Vertex t in the graph is in clique C, which 
must have an edge in common with a subsequent clique z> t. 
Since all the vertices in C r  have already been matched to 
data points, the same lookup in book-keepi will yield the 
data point matching the tth vertex. At the end of the reverse 
loop on the cliques we obtain the optimal match of data 
points to the graph vertices, with respect to the functional Y. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.7 The Clique Functions 

The clique functions on the triangles of the graph were 
set as follows. Given a triangle a,, a,, a, of landmarks 
corresponding to a clique C in the graph (S, E), labeled 
according to the order in which they are eliminated, and 
with angles a,, a,, a3 respectively, let I, denote the 

length of the edge opposite the point ui for i = 1,2,3. The 

2 

3 

‘[ 1 

cost function is taken to be the sum of squares of the 
differences of the log ratios of the lengths in the data 
and the log ratios of the lengths in the templates. More 

precisely let b,, b,, b3 be three data points with indices 

i,, i,, i,. Let r,, r,, r3 be the respective lengths of the 

edges in the triangle, and let p,, p,, p, the respective 
angles, the following quantity is calculated 

2 
vc(i1Ji2,i3) = J(r1rr2,r3) = (log(u, / r2)-log(ll,/12)) 

Although triangles with similar log-ratios have similar 
shapes they may have different orientations. Keeping 
the triangles oriented in the same way as in the template 
graph is necessary for preserving the planar configuration 
of the vertices. On the other hand certain triangles with 
very small angle a, for example, should be allowed to 

change orientation around the vertex a,, namely they 

are allowed to flip around the edges ala2 or ala,. 
These considerations were implemented as follows. A 

certain tolerance E is set. If Isin(a,)l < E the sign of /3, is ig- 

nored. However the triangle b,, b,, b, is ruled out if 

lsin(pl)l > E .  If on the other hand (sin(a,)l > E then the 

triangle b,, b,, b3 is ruled out if sign@,) f sign(al). The same 

procedure is applied to a,, p,. In the experiments E = .25. 
The J functional is very convenient because it involves 

only pairs of points. The log-distances between every two 
points in the data are calculated and stored ahead of time. 
This does not require too much memory for data sets of 50- 
100 points. Calculating J thus reduces to three multiplica- 
tions. Most of the calculation is concentrated in checking 
the angle constraints. The angles involve triples of points 
and precalculating them requires much more memory. In 
our implementation we have calculated them online. 

There are many other functionals which are transla- 
tion and rotation invariant and describe the shape of the 
triangle in some sense. For example one could work di- 
rectly with the three angles and penalize deviations 
from the sines of the angles. Other possibilities can be 
found in the literature on statistical models of shape see 
for example [7] and the discussion thereof. In general 
the relationships between these different types of cost 
functions are highly non-linear and do not lend them- 
selves to any simple form of analysis. 

It should be emphasized that the clique function yc 

could include terms of the form C k e C  o(utk, xk)  where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo 

quantifies how wellthe candidate utk matched the local 
operator corresponding to the kth vertex in the graph. The 
presence of such a term does not affect the possibility of 
minimizing through dynamic programming. In principle 
such a term could replace the ”hard” threshold used for 
the local operators, however this would imply that every 
pixel in the image is a candidate for each vertex thus 



232 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 18, NO. 3, MARCH 1996 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
causing an explosion in the size of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV, and subsequently in 
the computation time and memory requirements. Thus 
the threshold serves as a pruning mechanism to limit the 
size of the state space. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADESCRIPTION OF EXPERIMENTS 

3:1 Low Resolution X-Rays 

The experiments were carried out on a collection of x-ray 
images of hands. One of the images was chosen arbitrarily, 
as the template and is referred to as x-ray no. 1. The local 
maxima of the image were highlighted. Of these local 
maxima 20 were chosen which seemed to represent impor- 
tant landmarks in the hand. The next step was to create a 
graph with these 20 vertices. This again was done manu- 
ally. The vertices together with the edges of the graph are 
shown in Fig. 2a. Fig. 2b shows the graph overlaid on the 
original x-ray no. 1. The two subgraphs used iteratively are 
shown in Figs. 2c and 2d. Note that both subgraphs are de- 
composable even though the full graph is not. First the op- 
timization was carried out on graph 2c. Then vertices zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5,15, 
16, and, 19 were held fixed and the optimization was car- 
ried out on graph 2d. 

At the outset of the project only graph 2c was used. 
Attempts were made to prevent erroneous matchings 
such as in Fig. 3b, by creating complicated cost func- 
tions and introducing a host of hard constraints, to 
prevent extreme distortions of some triangles while 
allowing more flexibility for others. This soon led to 
the introduction of an intractable number of parame- 

ters and is clearly conceptually the wrong way to do 
things. Subsequently graph 2d was introduced to com- 
plement graph 2c, the cost functions were simplified as 
well as the hard constraints. One iteration on each 
subgraph produced matches with the proper planar 
configuration. It should be noted that even if the 
matching of the first subgraph produced non- 
overlapping matches for the fingers, their length may 
turn out disproportional, see for example Fig. 4b. The 
additional triangles between the fingers in the second 
subgraph help in adjusting these proportions. 

The data points were extracted by scanning over all pixels 
and choosing those at which the intensity was greater than 
the intensity at a fraction p of the neighbors in a L x L 
neighborhood. We used p = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.9 and L = 9. This procedure 
creates clusters which are thinned out by averaging a cer- 
tain minimum distance between any two data points. The 
algorithm is robust to variations in the parameters related 
to the extraction of the data points, as long as correct points 
are found corresponding to each point in the model in addi- 
tion to the erroneous ones. Thus the algorithm will perform 
fine with more data points, for example by decreasing p or 
L. The only problem is that an increase in data points se- 
verely slows down the dynamic programming procedure. 
Thus with 40-50 data points the minimization would take 
less than a minute on a SPARC 10. With 70 data points it 
would take 3-4 minutes. In the first two experiments (Figs. 
3 and 4) we eliminated local maxima with a pixel intensity 
lower than some fraction of the maximal pixel intensity. 
This took care of many spurious local maxima in the back- 
ground. The third experiment shows the result without 

Fig. 3. Left: Extracted local minima. Middle: First match. Right: Second match. 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Left: Extracted local minima. Middle: First match. Right: Second match. 
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-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-1 -1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-1 1 1 1 -1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-1 -1 -1 
-1 -1 -1 -1 1 1 1 -1 -1 -1 -1 
-1 -1 -1 -1 1 1 1 -1 -1 -1 -1 
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-1 -1 -1- -1 0 0 0 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

eliminating the background points. The algorithm still per- 
forms fine however slows down considerably due to the 
presence of more data points. 

Fig. 3a shows the image of x-ray no. 2 with the points 
identified as local maxima. Fig. 3b shows the initial opti- 
mal match of the template graph to these points using the 
first subgraph. Fig. 3c shows the final match after using 
the second subgraph. 

Figs. 4a, 4b, and 4c shows the same sequence for x-ray 
no. 3 which has also been rotated and scaled. Since the local 
operator and the cost functions are inherently scale and 
rotation invariant, the algorithm was able to find the correct 
match of the template, and the interpolation automatically 
incorporated an appropriate scale and rotation. 

Finally Figs. 5a, 5b, and 5c shows a match where the 
background local maxima are not eliminated. 

3.2 High Resolution X-Rays 

We now describe an experiment with high resolution x- 
rays, and four types of local operators. The aim here was to 
obtain precise locations of specific anatomies. The local 
maximum operator was again used to identify the finger 
joints. The second operator identified the points of contact 
of the finger bones, the third which is the second flipped 
along the horizontal axis identified a point of bifurcation in 

1 1  1 1  1 1  1 - 1 - 1 - 1 - 1  
1 1  1 1  1 1  1 - 1 - 1 - 1 - 1  
1 1  1 1  1 1  1 - 1 - 1 - 1 - 1  

- 1 - 1  0 0 0 0 0 0 0 - 1 - 1  
- 1 - 1  0 0 0 0 0 0 0 - 1 - 1  
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

Fig. 5. Left: Extracted local minima. Middle: First match. Right: Second match. 

1 

Fig. 6. The two decomposable subgraphs with color number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat each vertex. 
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50 100 150 200  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA250  300 350 400 450 500 

Fig. 7. The candidates for the four colors found in the data. * = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, + = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, 

50 100 1 5 6  200 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi50 300 350 400 450 500  

0 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 , x  = 4. 

50 100 150 200 250 300 350 400 450 500 

Fig. 8. The match of the the two graphs overlayed. 

graphs were used, one for the area of the fingers and one 
for the upper palm. Fig. 6 shows the two components of the 
the template graph with the operator or color number. 

The left hand graph was matched first. The four points at 
the bottom were held fixed and then the right hand graph 
was matched. Observe that the right hand graph is decom- 
posable only because the top four points are given. The rea- 
son is that once the location of these points is determined, 
the cost on triangles they belong to is simply added to the 
cost of any other triangle with a common edge. The dy- 
namic programming is done on the decomposable graph 
obtained by cutting out these four points and the edges 
emanating from them, with updated cost functions. 

Fig. 7 shows the candidate points in two data images, 
along with their color number. Fig. 8 shows the match of 
the two subgraphs to the data images. 

This procedure has been successful on a collection of ten 
high resolution hand x-rays of highly varying sizes, shapes 
and in particular angles between the fingers. 

Fig. 9 shows the difference image of a failed match using 

50 100 150 200  250  300  350 400 450 500 

only the elastic deformation algorithm between two hands. 
For the same two hands Fig. 10 shows one as the tem- 

plate image and the interpolated warp of the template 
image obtained from the graph match. Fig. 11 shows the 
improvement obtained by running the elastic deformation 
algorithm initialized with the warped template (lob), and 
the target image. 

4 CONCLUSION 

We have suggested the matching of landmark graphs to 
collections of extracted data points in the data image. The 
cliques of the landmark graphs are all triangles and the cost 
of a match is expressed in terms of the deviations of the 
shapes of the triangles. The actual implementation of the 
match is carried out through dynamic programming on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
decomposable subgraphs of the original template graph. In 
the experiments described above we iterated between two 
such subgraphs keeping certain points of the first match 
fixed. The matched points can then interpolated to create a 
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tially guided by our intuition. It is easy however to auto- 
matically generate decomposable graphs from collections of 
vertices, it would therefore be interesting to study how sen- 
sitive the method is to different graphs. 

Given a large enough data set from a family of images it 
would be possible to actually estimate the appropriate cost 
functions or certain relevant parameters. This could either 
be done manually by pointing out the correct matches for 
the images in the data set, or using the cost functions sug- 
gested above to calculate these matches and then estimate 
the parameters, which are subsequently used to update the 
cost functions. Once the parameters are estimated it may be 
possible to deal with occlusion and missing components, to 
characterize subfamilies and identify abnormalities. 

50 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA100 150 200 2 5 0  300 350 400 450 500 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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