
Graphical User Interfaces Validation:
A problem analysis and a strategy to solution

Stephen W.L. Yip and David J. Robson, September 1990

Computer Science Dept., University of Durham, South Road, Durham DH1 3LE,
England, UK. Telephone +44 91 374 3651, Email S.W.L.Yip@UK.AC.DURHAM

Abstract

This paper begins by justifying the importance of graphical user
interfaces (GUIs) and the need for proper validation. The
various problems in GUI validation are classified lnto 3
categories : functional, s t r u c ~ a l and environmental issues.
The functional aspects of GUI are examined from the mapping
of display objects on screen, icteraction functions, to basic
interaction components and window management functions.
The largest functional issue identified is the lack of a formal
specification suitable for deriving test cases. The main structural
problem is in deciding on which of the software levels (i.e.
window systems, toolkits, UIMS and applications) to target
tests. The environmental issues concern human testers,
automation, input synthesis and output visual verification.

At the heart of all software testing activities, whether GUI or
conventional, lies the problem of test case selection as testing
budgets are finite. This paper concludes with a strategy for
validation, based on derivation of test cases from a formal
specification.

1 The advent of CUI software

Human Computer Interface (HCI) is an important subject.
Command Languages have been the major means of HCI until
the recent arrival of window or graphical user interfaces. With
the advent of Graphical User Interfaces (GUI), a new style of
user interaction called Direct Manipulation has emerged [38].
Instead of using a command language to describe operations on
objects that are invisible, users perform (or request) operations
by manipulating objects that are visible on a computer screen.
Alongside a new class of word processors called WYSIWYG
(“What You See Is What You Get” that requires no embedded
formatting commands), user interactions are given graphical
visual feedback and a sense of control over what is happening
on a graphic display. From the direct manipulation of a
spacecraft in a video game, to the deletion of a fide by placing
its file icon onto the trash-can icon, the user interaction is direct,
visible and graphical. However as user-interfaces are
becoming more graphical, interactive and easier to use, their
development costs are also higher. It is now recognised that
user-interface software is often large, complex, difficult to
create, test and maintain [33]. Surveys of artificial intelligence
applications, for example, reported that 40% to 50% of the code
and run time memory are devoted to user-interface aspects [4] .
[14] reveals reports of 50% to 80% of interactive systems are
devoted to user interfaces.

Over the last decade, research and development efforts towards
better or more formalized design of user-interface software has
been making advances. Since the Graphical Input Interaction
Technique (GIIT) Workshop at Seattle (1982) and the User
Interface Management Systems (UIMS) Workshop at Seeheim
(Germany, Nov. 1983, [36]) , a number of models and
specification methodologies have been published. The term
UIMS (User Interface Management System) was first coined at
the Seattle workshop. User Interface Management System
(UIMS) can be perceived as an integrated set of tools that help
user-interface developers to create and manage many aspects of
interfaces.

The user-interface issue is further promoted, with the
emergence of the X Window System in 1987 as the de facto
standard window system, upon which applications can build
their graphical user interfaces. This promotes the portability of
X Window System based applications [2], [32]. However a
window system library can be tedious to use, as it generally
provides a programming interface of low level routines. To
encourage programmers to use windows, low level routines are
built together to form a higher level programming interface
generally called a toolkit.

2 Problems confronting GUI validation

In contrast, very little effort has been directed towards more
systematic and automated validation of user-interfaces.
Prototyping is the only accepted requirements testing practice,
in both the indusmal and academic worlds. The aim of
prototyping is to get users to try out prototypes and then
introduce modifications according to their comments [33],
[lo]. Prototyping as a means of testing the specification of
user requirements is useful for obtaining feedback from the
users about the overall usability and acceptability of the user-
interface. However it is by-no means a thorough testing
procedure. In many cases the fiial implementation is likely to be
quite different from the prototype. Proper testing is needed to
uncover bugs and to establish an acceptable level of confidence
in the user-interface.

Until now the testing of GUIs is usually undertaken by human
testers who exercise the system to check its functionality.
Often these tests are managed in an ad hoc manner. When an
error is discovered, it may well depend on previous interactions
and human testers easily forget such earlier events. Thus the
exact cause of the problem is very difficult to determine. It is
not an interesting task for any human tester to try to check
through a large number of windows and menus. It is important
that the problems of GUI testing be investigated, with the goal
of finding ways towards systematic, thorough and automated
testing.

91
0073-1 129/91/0000/0091$01.00 0 1991 IEEE

The problems in validating GUI software are similar to that of
highly interactive programs, being difficult to automate. The
need to test interactions has outdated the old practice of running
a long script in batch mode to exercise programs thoroughly.
There are the usual testing need of test case selection and test
oracles (see Appendix A). Some fundamental questions are also
useful to rouse a wider understanding of the problem areas.

Q1- How is a GUI different from other software and does it
deserve a separate investigation ?

Q2- What are the problems of applying existing software
validation techniques to GUI ?

Q3- Are there any theoretical, mathematical concepts or abstract
models to help to reason about GUI software and its
validation ?

Some answers to the above questions will emerge in our
discussion. In the following sections, the various problem areas
within the domain of GUI validation are exposed and analysed
tn 3 categories : Jknctional, structural and environmental
issues.

Presentation 4-b

3 Functional aspects of GUIs and testing

The general functions of user interfaces is illustrated in the
Seeheim Model ([36], probably the most well known model for
user interfaces) as shown in the following diagram :

Dialogue Application

Control interface .-

Model
L

Figure 1 The Seeheim Model of User Interface

In the Seeheim Model of user-interface, the presentation
component is responsible for the physical appearance of the
user-interface including all device interactions. The dialogue
control component manages the dialogue with the user. The
application interface model holds the communication between
the user-interface and the other parts of the application program.
The lines and arrows indicate directions of communications.
The small box at the bottom is intended for emergency use, to
allow messages (e.g. alarms) to be sent to the user rapidly,
bypassing normal communication overheads.

From a functional view, GUIs are similar to communication
programs or other highly interactive programs, in which an
input produces an output (or a change of state). GUIs differ
from this class of programs principally in that both the input and
output are voluminous and graphical, useful validation can be
done by abstracting away some details, and extracting the
significant features of the YO.

3.1 Highly interactive and modeless
Like other highly interactive systems, GUIs are largely mode-
free [33]. This means the user has many choices at every point.
The partitioning of the screen into different windows and
display objects has made it possible for users to quickly move
from one mode of interaction to another by moving onto another
object or window, thus reducing the restriction of modes.
However this functional requirement of mode-free interaction

could easily lead the user-interface into a state that has not been
foreseen by the designers. There is an obvious need for the
formal specification of user interfaces, where a sound
mathematical base and precise denotations allow a user interface
design to be checked for consistency, completeness, and
reachability.

3.2 Screen presentation
A basic YO function that is vital to GUIs is the movement of the
mouse pointer on the screen. Although the tracking of the
mouse pointer is mainly achieved by hardware, this basic
function is important as most U0 functions (e.g. selecting a
menu option) rely on this accurate mapping between screen
positions and the internal (x,y) coordinate representations used
in the software. This is a main functional difference between
GUIs and other interactive programs. Effectively a GUI has
extended the one dimensional input space of command line
interfaces to a two dimensional input space, by utilizing the
capability of modern display hardware.

The main difficulty in validating this new position dependent
I/O function is that it requires visual inspection of screen
objects. Visual inspection can be time consuming, tiring and
prone to human errors. There are questions concerning whether
all locations within the screen map (e.g. 5 12 x 5 12 points) are
to be checked. More importantly, testers need to know the
correct shape, size and position of display objects (i.e.
presentation attributes) for the purpose of verification.

3.3
In graphical user interfaces, display objects are given interaction
functions. For example if we move the mouse pointer inside an
icon of a certain program, the clicking of the mouse button at
this point would invoke the interaction function to execute that
program. To ensure a systematic and thorough testing of GUIs,
it is vital that all display objects and interaction functions are
identified so that none would escape testing. [39] has shown
that a proper enumeration of program paths is a non-trivial
problem and is vital to structural (code based) testing. For our
GUI validation work, we have developed an algebraic notation
for the enumeration of objects and functions. An example is
given in section 7 where we also discuss how path algebra can
be used to select interaction sequences for testing.

3.4 Basic Interaction Components
Although window user interfaces are highly interactive and
modeless, so far only a few basic types of interaction
components are in common use. Our survey has revealed the
following common interaction components :

Terminal emulation windows
Icons
Menm (Pop-up or pull-down, and variants such as
command and radio buttons, check boxes)
Text editing windows
Scroll bars (sliders, dials and other "control panel"
component variants)
Dialogue boxes (combination of command buttons and text
editing fields, which may block processing until the dialogue
box is cleared)

The identification and breaking down of a GUI into basic
interaction components is a process of functional decomposition
for validation purposes [17]. In this way we have reduced a
large problem of validating the whole user interface into smaller

Display objects and interaction functions

92

problems of validating the basic interaction components that
make up the user interface. The interaction (or display) objects
that we have discussed earlier can be looked at as instances of
the different types of interaction components. Interaction objects
that are instances of the same basic component are expected to
behave in similar (or even equivalent) manners.

3.5 Window Management Functions
Window management is concerned with the arrangement of
display objects on the screen. A literature survey has revealed
that most window managers on different systems seem to share
a similar set of features [32]. A list of the basic window
management functions are :

Move display objects (windows, icons, menus, etc.).
Resize display objects.
Create and destroy display objects.
Iconize windows.
Hide and raise overlapping windows.

Window managers are usually part of the underlying window
system and not part of the user interface. However in most
window management operations, the window manager only
makes decisions and draws the window frames. It is up to the
application programs to repaint the window contents upon
notifications from the window manager concerning changes in
position, size, overlapping orders and other attributes.
Therefore the testing of window management functions of user
interfaces must not be overlooked.

4 Structural aspects of window software and testing

The structure of GUIs varies to a large degree depending on the
underlying software, such as window systems, toolkits or
UIMSs. For example the program interface of a UIMS is of a
higher level than that of a window system (see Figure 2). Code
based (structural) testing of GUIs has to adapt to the underlying
software. The problem is in determining the software level to
target tests, so that these tests can be reusable.

4.1 CUI Program Code
The modeless nature of CUI user-interfaces is generally
implemented in terms of events and call-back routines. Call-
back routines are part of the user interface code, which would
be given control to handle certain pre-declared events as they
occur. The testing of interaction functions (e.g. clicking on a
menu option) would in turn test the asynchronous event
handling of these call-back routines. Often the main program of
a GUI includes a loop waiting for the next event (or user input).

We have observed that window based applications could have a
significant increase in its user-interface source code, when
compared with the conventional character based version. This
becomes apparent when comparing the two versions of the
"Hello world" program in C [45]. Additional code is required
to open and close windows, set up various window atmbutes
(position, size, colour, etc.), different styles of fonts for textual
output, and graphics for display objects (e.g. icons).

t
I
I
I

me
winbow

Figure 2 The Structure of the X Window System [37]

4.2 Structural testing and functional testing

Research in software testing has traditionally been classified
[34] into two main categories : functional testing and
snucturul testing. Functional testing (also known as Black Box
testing) is a testing snategy in which the testers are unconcerned
about the internal behaviour of the program under test, they
perform testing on their understanding of the intended
functions of the program. On the other hand, structural testing
(also known as White Box testing) is a testing strategy, under
which the testers are concerned about the internal strucnve of
the program, they derive test data according to their
understanding of the logic of the program code.

4.2.1 Static Structural Testing
Most GUI software is seen to contain a large number of library
calls to the underlying window system. The X Window
System provides more than 200 different routines that can be
called from GUI applications. Since these routines are external
to the application packages, it gives rise to difficulties with
some structural testing techniques like code inspection and
source analysis. This is because the correctness of the GUI
application programs has now become dependent on the
parameters and sequences of these routine calls. Information
(or rules) about the correct use of parameters and routine
sequences are external to the application program. This
information is not always available, nor is it likely to be
precisely, unambiguously or formally stated.

For instance, consider the simplest program that uses the X
Window System, as show in Figure 3. This program consists
of nothing but routine calls to the window system. Existing
code analysers are designed for standard programming language
constructs and would not be able to validate these external
routine calls. To build a tool that would understand the syntax
and semantics of all these routine calls so as to validate them
could require an effort that is comparable to the development of
the window system itself. Also UIMSs and window systems

93

have different program interfaces and this argument is
applicable to other large or complex Application Program
Interfaces.

Xrefresh - Refresh the Screen.

The following program (xrelresh) is the simplest X application :

%include cWXlib.hr
%include cddio.h,
r

* Copyright 1985, MIT

/

main (argc. argv)
int argc;
char "argv; ' windoww;

if (XOpenDisplay(argc ? argdl] : ' .) -= NULL)
lprintl (stderr. 'Could not open Dispiay!O);

w - XCreateWindow (RootWindow, 0 . 0 , Displaywidth(),
DisplayHeightO. 0, (Pixmap) 0, (Pixmap) 0):

XMapWindow(w); f put it up on the screen */
XDestroyWindow(w); r throw it away */
XFlushO; r and make sure the Server sees it */

1

Figure 3 An example application program

4.2.2 Dynamic Structural Testing
It is possible to take a dynamic approach (as different from the
static code analyser approach) to the structural testing of GUIs
by attempting to ensure that every line of code is executed
during testing. This requires the tester to validate the behaviour
of the user interface as each line of code is being executed.
Since the user interface code consists of many routine calls to
the window system, this again requires the detailed
understanding of the window system functions.

4.2.3 Functional Testing
Structural testing tools and techniques are more developed as
they are considered to be more reusable. For GUIs, functional
testing appears to have the benefit of being generally applicable
to different window user interfaces. This is due to the
observation [45] that features and basic interaction components
provided by different window systems are very similar even
across different hardware platforms.

Ideally a user interface should have the same functions
disregarding the structure of underlying software. A functional
specification at the highest level (i.e. at the level of user
interactions) encompasses all the required functions of lower
level software. For example when a user interface is ported onto
a different window system or hardware, the functional
specification of a menu with four options would remain the
same, whilst the names and number of routine calls and
arguments to set up the menu may change.

Another reason why research has concentrated on structural
testing is that the program code actually provides a precise
notation required for the generation of test data [18]. Functional
descriptions of programs are often informal and hence
unsuitable for the automation of the testing process. However,
the advent of formal specifications has now provided a concrete
basis for systematic functional testing.

5 Environmental aspects of (;U1 testing

A "record and playback" mechanism seems to be a viable
approach that has been pursued towards the automation of
interactive system testing. One of the early attempts to address
the problem of testing interactive systems was the AutoTester
project at Wang Laboratories [24]. Other investigations, such
as [5] , [29], [22], [25] which also proposed the use of Journal
Record and Replay (JRR) for user interface testing. There are a
small number of commercial products available for JRR, such
as "Auto Mac" [30], "Evaluator" [l 13, "CAPBAWX" [41] for
specific hardware platfoms.

5.1 Limitations of the JRR approach
It is important to stress the fact that a JRR mechanism would
only repeat the tests (or interactions) that a human tester has
carried out by hand previously. JRR does not help to solve the
problem of test case design. Technically there are three
problems that are mixed together :

P1- Knowing what to test (i.e. identifying and selecting items to

P2- Knowing how to carry out the execution of the test cases

P3- Finding a tool to automate test case execution.

A JRR tool is only an answer to the third problem listed above.
Our approach to solve the first two problems is the use of a
formal specification that will identify all items to be tested with
pre- and post- conditions for test case generation. Assuming we
have the answers to all the three problems above, the next
problem is :

P4- How do we know if the CUI being tested is functioning
correctly ? (the need for test oracles)

5.2 Visual verification
Some research [22], [19] has made attempts to validate CUI
screen outputs by comparison with previously recorded good
bitmaps. This approach has a number of difficulties :

deciding suitable check points where snapshots of screen have

large storage space requirement for bitmap files.
screen images are sometimes shifted by a small number of
pixels, and temporal displays such as time and date can also
cause problem during bitmap comparison.
minor changes in layout of display objects would invalidate
test cases.

In our approach, the actual visual appearance of display objects
are included in our specification to form a special kind of state
transition diagram called WinSTD . The WinSTD is to be used
by human testers for checking visual appearance of objects, as
well as for identifying interaction functions for testing.

5.3 Input synthesis
Input synthesis is an approach to simulate keyboard and mouse
inputs, so as to release human testers from having to execute
tests by generating inputs physically by hand. The journal file
of a JRR mechanism can provide the first step towards input
synthesis. New or variations of the recorded interaction
sequences can be produced by providing the facilities for the
editing of the content of the journal file [22]. Another step
forward would be to generate the contents of the journal file by
means other than recording, such as derivation of test cases

be tested).

(i.e. interaction sequences required).

to be taken.

94

from specifications. Release 4 of the X Window System,
XllR4 [31] from MIT contains an "Input Synthesis Extension
Proposal" to allow the client program to generate user input
actions without the user. It will also allow the client program to
control the server actions in handling user inputs. Basically this
proposal gives a programming interface for user inputs to be
simulated. However there are synchronization problems with
input synthesis that are non-trivial to resolve [19], [21], [8].

6 Survey of Formal Specifications for GUIs

In our discussion so far, the need of functional specification for
GUI has become obvious for software validation purposes.
There are a number of published works on the application of
formal specification methods to user interfaces in general ([161
, [14]),.graphics ([27], [9]), menu-based systems [3], and text
processing ([43], [6]).

Confusion often arises concerning the languages and interfaces
associated with interactive systems . A working group at the
Seillac I1 workshop addressed this issue([27]) :

In the interactive world, we distinguish two interfaces to
the computer. The first between the user or operator and
the computer is called the User Interface. The second
between the programmer of the system and the computer is
called the Program Interface. Each interface needs a
Specification Language. In addition, the User Interface
provides a means to communicate with the computer by
using the Dialogue Language. The Dialogue Language is
handled by its counterpart on the programmer side: the
Programming Language.

In this definition, the research work (e.g. ([27], [9]) mentioned
above are on the specification of the program interface. There
are also a number of published work on dialogue specification.
[35] suggested using state transition diagrams (STD) to describe
interactions. [201, 1121, [l l , [28] discussed the use of STD,
BNF-like grammar, event languages, CSP with me roo, STD
with VDM. In [U] we have surveyed specification methods
used in six user interface systems, and concluded that no one
single method alone is satisfactory in providing all the necessary
information for test case generation.

A user interface specification suitable for testing and software
engineering purposes should include detailed and precise
information covering three areas :

Presentation attributes of display objects :
It is important for human testers to know the visual
appearance of objects for verification.
Syntax rules governing interaction sequences or dialogue :
It is important for testers to be able to see clearly the control
flow of interactions.
Semantics specification of operations or functions associated
with each interaction step. It is helpful if functions are
specified in a precise and unambiguous notation.

Perhaps one of the main problems facing testers is that such an
ideal specification does not normally exist. A formal
specification approach aimed to satisfy all the above
requirements is outlined in the following.

7 Developing a strategy for GUI validation

Considering the phases of software engineering life cycle, the
proper some for deriving test oracles is the specification. The
specification is the global reference point upon which
communications and mutual understanding between designers,
programmers, testers and users are based. It has been advocated
[26] that specifications should be precise, unambiguous and
should be reasonably easy to understand. In the case of user
interface specification, comprehension is improved when the
control flow is clearly presented. For the derivation of expected
results for test cases, a formal specification is preferable .
7.1 Our approach to CUI specification
For graphical user interfaces, we see one additional requirement
in the specification of presentation attributes of display objects.
Being aware of the recent interest in visual languages [13],
[40], we see no reason why visual information like the
appearance of a menu or an icon should be specified in yet
another textual language (e.g. [ATTRIBUTES; ...;
label-text:"OK"; width:50; height:20; x: 160; y:75; METHODS:
...I as used in the Serpent UIh4S [7]). Our contribution to GUI
specification is the proposal of a method that includes :

A) WinSTD, a set of special State Transition Diagrams which
shows the visual appearance of display objects linked together
by arcs that represent the interaction functions. Effectively the
display objects or components are the nodes (or states) in the
user interface specification, and the interaction functions (arcs)
indicate state transitions. In a WinSTD, every display object
(and components) as well as all functions (arcs) are enumerated
with a unique name.

B) WinSpec, a language to formally specify all the interaction
functions. It employs predicate calculus and set theory to
minimize ambiguity and misinterpretation. WinSpec is a model
based, formal and mathematical specification approach, similar
to Z [42] and VDM [23]. Predicates of pre- and post- conditions
are specified for each of the interaction functions, to allow the
behaviour of a user interface implementation to be checked.
Alternatively a WinSpec can also be used for program
verification. WinSpec has special constructs for abstracting
GUI interactions in a comprehensible manner.

C) Algebraic notations to help us to enumerate and to
reason about display objects, interaction functions and
sequences. Eventually we intend to apply path algebra to solve
our problems of identifying all paths, nodes for test coverage.

Including all display objects in a state transition diagram is the
most natural way to link display objects to the flow of
interaction as shown in a WinSTD. The human tester can see
clearly the expected visual appearance of objects together with
their respective interaction functions to be tested. A WinSTD is
useful for detecting any missing objects or functions in the
design or implementation. Apart from testing, often pictures of
display objects (e.g. menus) have to be made available in
documents like user manuals. A WinSTD could also be useful
for users to receive earlier training and evaluation of the
interface. With a WinSTD, human testers will be able to cope
with minor changes in layouts of display objects, which may
invalidate a whole suite of test cases previously recorded with a
JRR mechanism. Practically a WinSTD can be made easily as
most window systems can produce screen dumps on paper.

95

Alternatively the user interface designer could produce design
drawings of display objects using a drawing tool (e.g.
MacDraw). The tester has to add the arcs joining objects, and
then identify and enumerate all objects and functions for testing.

7.2 FIS and FES
In order to reduce the need for testing a large number of
interaction sequences, we have introduced the concepts of
Functionally Equivalent Sequences (FESs) and Functionally
Independent Sequences (FISs). FISs are two different
interaction sequences that are independent of one another such
that each can be carried out before or after the other with no
effective difference in the final outcome as far as software
testing is concerned.

For example the MacWrite menu bar has a number of options.
The two options "Font" and "Style" both have a relative large
number of sub-options. By our definition of FIS, the two sets
of sub-options are independent. This means that we don't have
to test all possible combinations of the two sets of sub-options.
Let say if there are 20 different names of fonts and 10 different
styles, we will be testing 20 + 10 = 30 cases, instead of 20 x 10
= 200 cases. (We need, of course, to check that our concept of
applying FIS to reduce test cases is reliable in practice.)

Functionally Equivalent Sequences (FES) are interaction
sequences that would produce the same outcome if any one of
them is selected for execution. One main application of FES is
to select the shortest equivalent sequence to reach to a certain
object or function for testing.

An example of FES is the movement of the mouse pointer. We
could, in most cases of interaction, move the mouse pointer to
go over all different locations on the screen (e.g. 512 x 512
points) and then settle on one location where we click the mouse
button. (Formally expressed as : Loc(x1,yl) o Move-to(1,l) o
Move_to(l,2) o ... Move-t0(512,511) o Move_to(512,512) o
Move_to(x2,y2) o Mouse-click)

In effect we could have moved the mouse pointer straight onto
its final location without going round everywhere (Formally :
Loc(x1 ,yl) o Move-to(x2,y2) o Mouse-click), the outcomes
are the same. We say the two interaction sequences are
equivalent :

Loc(x1,yl) o Move-to(1,l) o Move_to(l,2) o ...
Move_to(512,511) o Move_to(512,512) o Move_to(x2,y2) o
Mouse-click
=

Another application of the concept of FES is in the testing of
multiple instances of the same interaction component. For
example we could have a number of terminal windows
(different instances of the same terminal emulation program) on
a workstation screen. We would only need to perform an
exhaustive set of interaction sequences on one of the terminal
windows. However it is necessary to have multiple terminal
windows for testing window management functions such as the
overlapping of windows.

Loc(x1,yl) o Move_to(xZ,y2) o Mouse-click

7.3
In the following we give an example of our formal visual
specification approach for a simple "Logon" GUI. The

An example of GUI specification

following diagram is the WinSTD for the Logon interface :

Frn

08JW

FU2 F P

OBJ2ao T

I

085210

A
Figure 4 WinSTD for Logon interface

WinSTD notation . Each display object is assigned a name.
On the top interaction level we have :
OBJOO = (OBJOl,OBJ02)
OBJOO - a composite object for the Logon dialogue box
OBJOl - a text editing field, an object within OBJOO
OBJ02 - a non-echoing editing field, within OBJOO

If there are more display objects, the enumeration carries on as :
OBJ03, ... OBJ09, OBJOA, OBJOB, ... OBJOY, OBJOZ.
Display objects appear at a later stage of interaction are denoted
with a longer subscript (e.g. OBJ210 as from OBJ02).
A subscript with a trailing "0" denotes a composite object
(OBJxO).

The interaction functions associated with each of the objects are
identified as :
FO1 - Move mouse pointer into OBJOl
F02 - Move mouse pointer into OBJ02
F10 - Keyboard inputs in OBJOl
F20 - Keyboard inputs in OBJ02
F11 - Carriage-return input in OBJOl
F21 - Carriage-return input in OBJ02

Interaction sequences can be expressed in this algebraic
notation, e.g. :
F01 o F10 o F11 (Function F01 then F10 then F11)

WinSpec notation. In addition to mathematical symbols, a
number of special notations have been introduced in our
WinSpec language to abstract useful 1/0 details of user
interactions :

kb? Keyboard input,

mb? Mouse button input,
e.g. kb?=<CR> is a carriage-return input.

e.g. mb?=Click is a mouse button click.

e.g. mp?=[.] OBJxx means pointer is inside OBJxx
mp?=.O OBJxx means pointer is outside OBJxx .

mp? Mouse pointer input,

OBJxx Visible

OBJxx HiLit

OBJxx DeHiLit
-OBJXX
- F X X
v x x

OBJxx is visible on screen (see
WinSTD for visual appearance).
The border of OBJxx is highlighted
(thicken).
The border of OBJxx is normal.
OBJxx is not visible on screen.
The reverse of function Fxx .
Vxx is the global variable associated
with the state for OBJxx .

We have extended the Seeheim Model to show the user interface
and the main body of the application communicating through
messages. GUI validation is to check these application
messages together with visual outputs (specified in WinSTDs).

App-Msg-Sen t (MSGxx)
A message MSGxx has been sent to application. This is a
predicate that will become true when a message buffer is
filled and a ready flag is set :
(Msg-Buf=MSGxx) is true AND (Msg-ToApp-Ready=l)

App-Msg-Recvd (MSGyy)
A message MSGyy has been received from application, as :
(Msg-Buf=MSGyy) is true AND (Msg-FrApp-Ready=l)

A- > Temporal logical and,
e.g. mp?=[.]OBJOl A-> mb?=Click
means mp?=[.]OBJOl "and then" mb?=Click

I Comments, e.g. I No visible objects

ton for f u n a n FOO ;
Pre-conditions : -0BJn , V n E N , the set of natural

numbers I No visible objects
A-> kb?=<CR>

Post-conditions : OBJOO Visible

w i f i c a t i o n for f m n FO1 ;
Pre-conditions : mp?=[.] OBJOl
Post-conditions : OBJO1 HiLit

Soecification for f m n F10 ;
Pre-conditions : FO1 A-> kb?
Post-conditions : OBJOI=kb? A VO1 =kb?

! VO1 holds username i/p from kb?
I OBJO1 echoes i/p from kb?

Pre-conditions : (FOl A-> kb?=<CR>)

Post-conditions : OBJO1 DeHiLit A OBJ02 HiLit
V NIP?=[.] OBJ02

Pre-conditions : mp?=[.] OBJ02
Post-conditions : OBJ02 HiLit

on F70 ;
Pre-conditions : F02 A-> kb?
Post-conditions : OBJOl=** I No password echo

A V02=kb? I V02 holds password i/p
from kb?

r w n F31 ;
Pre-conditions : F02 A-> kb?=<CR>
Post-conditions : App-Msg-Sent (VO1, V02) A->

IF App-Msg-Recvd ("Logon failure")
THEN OBJ210 Visible

Pre-conditions : F02 A-> kb?=<CR>
Post-conditions : App-Msg-Sent (VO1, V02) A->

IF App-Msg-Rewd ("Logon OK") THEN
085220 Visible

n F210;
Pre-conditions : mp?=[.] OBJ211
Post-conditions : OBJ211 HiLit

n F711 ;
Pre-conditions : F210 A-> mb?=Click
Post-conditions : -0BJn , V n E N , the set of natural

numbers I No visible objects

7.4 Interaction sequence and path algebra
For the Logon user-interface specified above, imagine that the
"Logon failure" dialogue box has been changed to include the
display of an additional information about the reason for logon
failure : "Invalid username" or "Invalid password". We have to
retest this dialogue box, which is precisely identified in our
notation as OBJ210. Path algebra is used to list the possible
paths to reach to OBJ210 as follows. (See [46] for details about
path algebra for GUI.)

Normal path:
FOO o FO1 o F10 O F02 o F20 o F21 --> OBJ210

Skip usemame entry, F10 :
FOO O FO1 O F02 O F20 o F21 --> OBJ210

Skip password enuy, F20 :
FOO 0 FO1 0 F10 0 F02 o F21 --> OBJ210

Skip usemame field, F01 and F10 :
FOO O F02 O F20 O F21 --> OBJ210

Skip FO1,FlO & password entry,F20 :

The last path in the above list is the shortest path to reach to
OBJ210 for the display of the "Logon failure" dialogue box.
This interaction sequence should test the "Invalid username",
according to the revised specification for F21. To test the
"Invalid password" display, the 3rd path in the above list should

FOO o F02 O F21 --> OBJ210

91

be followed, where F10 should be the entry of a valid mp?=Click F211 -0BJn , V n E N
username. The revised formal specification for F21 is given
here : . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -

I No visible objects

Preconditions : F02 A-> kb?=<CR>
Post-conditions : App-Msg-Sent (VO1, V02) A->

IF App-Msg-Recvd ("Invalid
username") THEN (OBJ210 Visible
A OBJ21 2="lnvalid username")
ELSE
IF App-Msg-Recvd(

"Invalid password")
THEN (OBJ210 Visible A

OBJ212="lnvalid password")

We have added a new object OBJ212 within the dialogue box
object OBJ210. The formal specification for F211 remains the
same as before.

7.5 Test case selection
In the following three test cases for validating the "Logon"
interaction are given. We begin by following the WinSTD in
enumerating and selecting objects, functions and messages for
testing. Then the use of WinSpec pre-conditions is
demonstrated, for designing the required interaction steps for
test cases. The post-conditions are used as oracles to validate
the Logon interface implementation. Our strategy is to select the
minimum number of interaction sequences for :

100% display object coverage.
100% function coverage.
100% application message coverage.

In these test cases, we have not selected all keyboard keys for
input testing, because the ability to input all keyboard keys
belong to the underlying window system and device driver. We
are interested in the GUI's ability to pass keyboard inputs to
other parts of the application program.

It is also important to note that we are not testing the other part
of the application that actually undertakes the authorization
check of the username and password against the authorization
database. This is the reason why we have only selected one
instance for each of the three possibilities :

Invalid usemame
Invalid password
Logon ok

Required input
SeauenceS
kb?=<CR>
mp?=[.] OBJOI
kb?=<CR>

mp?=[.] OBJ211

Function
I.esuL
FOO
FO1
F11

F2 1

F210

Expected Outcome

OBJOO Visible
OBJOl HiLit
OBJOl DeHiLit
OBJ02 HiLit
App-Msg-Sent (VOl="",
v 0 2 = " ")
OBJ210 Visible
OBJ212="lnvalid

username"
OBJ211 HiLit

dQh&mea

Test case (B)

Required input
SeauenceS
kb?=<CR>
mp?=[.] OBJOl
kb?="DemoUser"
kb?=<CR>

kb?=<CR>

Test case (C)

Required input
SeauenceS
kb?=<CR>
mp?=[.] OBJOl
kb?="DemoUser"

mp?=.[] OBJ02
mp?=[.] OBJ02
kb?="DemoPass"

kb?=<CR>

kb?=<CR>

Function
lfste!i
FOO
FO1
F10
F11

F21

Function
ie.S&d-
FOO
FO1
F10
F11

F02
F20
F22

- F 0 2

Expected Outcome
lwxsmk&
OBJOO Visible
OBJO1 HiLit
OBJOl ="Demouser"
OBJO1 DeHiLit
OBJ02 HiLit
App-Msg-Sent (
VO1 ="Demouser",
v 0 2 = " ")
OBJ210 Visible
OBJ21 2="lnvalid
password"
OBJ211 HiLit
-0BJn , V n E N
_ _ _ _ _ _ - _ _ _ _ _ _ _ - - _

Expected Outcome

OBJOO Visible
OBJO1 HiLit
OBJOl ="DemoUser"
OBJ02 HiLit
OBJ02 DeHiLit
OBJ02 HiLit
OBJO2="" I No echo

VO1 ="Demouser",
V02="DemoPass")
OBJ220 Visible

l k b u h & a

App-M sg-Se nt(

The Logon user interface is small. We have applied the same
validation approach to a larger user interface (Xmail) developed
under the X Window System [46] and find it useful for
systematic testing of user interface functions and uncovering
errors.

8 Conclusion

In this paper we have undertaken an analysis of the problems
concerning the validation of GUI software. Functionally GUI
software is highly interactive, modeless, it handles position
dependent and window based VOs, graphical information and
direct manipulation. Structurally GUIs are closely coupled and
dependent on underlying software with large numbers of
external routine calls, and it handles asynchronous events by
call back routines.

The theoretical concept of a Finite State Machine (FSM) forms
the basis of State Transition Diagrams (STDs) which is very
suitable for describing the flow of interactions in a GUI. An
algebraic notation for enumerating display objects and functions

98

can also benefit from mathematical concepts such as path
algebra for identifying test coverage. Concepts of functional
decomposition, FESs and FISs can help the design and
selection of test cases.

We have argued that a functional testing approach is suitable for
GUI software and conclude that the derivation of test cases
from formal specification is an important step towards the
automation of GUI validation. Our research direction is to
pursue this strategy of GUI validation by tool implementation
and to extend our specification to properly introduce temporal
logic and concurrence.

The tool implementation consists of two parts : generate test
inputs from WinSTDs, and extract expected outputs from
WinSpecs. So far we are able to produce an internal
representation of a WinSTD that extracts information for
invoking interaction functions on objects. We have also started
work on a WinSpec interpreter. Eventually we aim to generate
test cases (scripts of mouse positions, keyboard and mouse
button inputs, and expected outputs) automatically from
specifications and feed them into a JRR tool to automate testing.

Acknowledgement
S.W.L.Yip is funded by grants from the UK Science and
Engineering Research Council (SERC) and the British
Telecom Research Laboratories (BTRL). We gratefully
acknowledge their support.

References

[11 Alexander H., "Formally-Based Tools and Techniques for
Human-Computer Dialogues", PhD. Thesis, Stirling University
1986.

[2] Special Report on "Major Vendors Agree on Window
Standard", The Anderson Report, February 1987, Page 5-6,
Anderson Publishing Company .
[3] Arthur J.D., "Towards a Formal Specification of Menu-
based systems", The Journal of System and Software 1987.

[4] Bobrow D.G., "Expert Systems: Perils and Promise",
Communications of the ACM, Sept. 1986, p880-894.

[5] Casey B.E., Dasarathy B., "Modelling and Validating the
Man-Machine Interface", GTE Labs.,Software Practice and
Experience 12(6) p558-569, 1982.

[6] Chi U.I., "Formal Specification of User Interface: A
Comparison and Evaluation of 4 Axiomatic Approaches", IEEE
Trans. Software Eng., 11(8), p671-685, 1985.

[7] "Serpent Overview", SEI Carnegie Mellon University,
August 1989.

[8] Coutu D., "Automating X Window System testing by User
Synthesis", Digital Equipment Corp., X Technical Conference,
Jan 1990. (Abstract only).

[9] Duce D.A., Fielding E.V.C., "Towards a formal
specification of the GKS output primitives", Proc.
Eurographics '86, p307-324, 1986.

[lo] Ehrlich K., et al., "Incorporating usability studies &

Interface design into Software development" , Sun Micro-
systems Inc. 1989

[111 Elverex, "Evaluator" - Sales Literature, in Personal
Computer Magazine, August 1989.

[121 Green M., "A Survey of Three Dialogue Models", ACM
Trans. Graphics, July 1986, p244-275.

[13] Hare1 D., "On Visual Formalisms", Comms. of ACM,
31(5), p514-531, May 1988.

[14] Harrison M., Thimbleby H. (eds), "Formal Methods in
Human-Computer Interaction", Cambridge Univ. Press 1990.

[151 Hartson R.,"User-Interface Management Control and
Communication", IEEE software, Jan 1989, p62-70.

[16] Hekmatpour S., Ince D., "Software Prototyping, Formal
Methods and VDM", Addison-Wesley 1988.

[171 Howden W.E., "Functional Program Testing & Analysis",
McGraw-Hill 1987.

[18] Ince D., Hekmatpour S., "An evaluation of some black-
box testing methods", Technical Report No 84/7, Computing
Discipline, Faculty of Mathematics, Open University.

[191 Islam N., Ingoglia J.P., "Testing Window Systems",
Proc. 28th Annual Technical Symposium "Interfaces : System
and People Working together", Washington D.C. ACM
Chapter.

[20] Jacob R.J.K., "A Specification Language for Direct
Manipulation User-interfaces", ACM Transactions on Graphics,

[21] Jamison A., "Enhancing the Input Synthesis Extension
with Xtrap", Digital Equipment Corp., X Technical Conference,
Jan 1990. (Abstract only).

[22] Johnson M.A., "Automated Testing of User Interfaces",
p285-293, Pacific North West Software Quality conference
1987.

Oct. 1986, ~283-317.

[23] Jones C.B., "Systematic Software Development Using
VDM", 2nd edition, Prentice-Hall 1990.

[24] Leach D.M., M.R.Paige, and J.E.Satko, "AutoTester: A
Testing Methodology for Interactive User Environments", Wang
Laboratories; Software Reliability Engineering Group. IEEE

[25] Lewis R. and D.W.Beck (BTRL, UK) , J.Hartmann and
D.J.Robson (Durham University), "ASSAY - A Tool To
Support Regression Testing", Published in Procs. of 2nd
European Software Engineering Conference, Sept. 1989.

[26] Liskov B., Guttag J., "Abstraction and Specification in
Program Development", MIT Press, 1986.

[27] Mallgren W.R., "Formal specification of interactive
graphics programming languages", PhD. dissertation, Univ.
Washington, Seattle, 1981.

CHI August 1983, p143 - 147.

99

[28] Marshall S.L., "A Formal Description Method for User
Interfaces", PhD. thesis,University of Manchester 1986.

[29] Maurer M.E., "Full-screen testing of interactive
applications", IBM Systems Journal, 22(3), p246-261, 1983.

[30] Microsoft Corporation, "AUTO MAC 111, Macro
Recorder" Reference Manual, 19 8 8.

[31] Various documents in XllR4 distribution tape, MIT 1989.

[32] Myers B.A., "A Taxonomy of Window Manager User
Interfaces", IEEE Computer Graphics and Applications, Sept.
1988, Page 79-109.

[33] Myers B.A., "User-Interface Tools: Introduction and
Survey ", IEEE Software, Jan 1989.

1341 Myers G.J., "Art of Software Testing", John Wiley &
Sons 1979.

[35] Parnas D.L., "On the use of transition diagrams in the
design of a user interface for an interactive computer system",
in Proc. 24th National ACM Conference, p379-385, 1969.

[36] Pfaff G.E. (ed), "User Interface Management System"
(Proceedings of Workshop on UKMS, Seeheim, Germany, Nov.
1983), Springer-Verlag 1985.

[37] Scheifler R.W. , Gettys J., "The X Window System",
ACM Transactions on Graphics, April 1986, Vol. 5 No. 2.

[38] Shneiderman B., "Direct Manipulation: A Step Beyond
Programming Languages", Computer, August 1983 p57-69.

1391 Shooman M.L., "Software Engineering", McGraw-Hill
1983.

[40] Shu N.C., "Visual programming: Perspectives and
approaches", IBM System Journal, 28(4), p525-547, 1989.

[41] Software Research, "CAPBAWX - Test Capturerneplay
for X Windows, Technical Specifications", Software Research
Inc., May 1990, San Francisco, USA.

[42] Spivey J.M., "An introduction to Z and formal
specifications",Software Engineering Journal, Jan 1989 p40-
c n
J U .

1431 Sufrin B., "Formal specification of a display-oriented text
editor", Sci.Comput.Program., Vol. 1, p157-202, 1982.

[44] Yip S.W.L., "A survey of 6 user interface systems in
search for a specification approach suitable for deriving test
cases", unpublished manuscript.

[45] Yip S.W.L., Robson D.J., "User Interfaces and Software
Maintenance", submitted to the Journal of Software
Maintenance, Sept. 1990.

[46] Yip S.W.L., "Functional Testing for Graphical User
Interfaces (Test Cases for Xmail)", Technical Report 5\90,
Computer Science Dept., University of Durham.

Appendix A Definition of terms

A Graphical User Interface (GUI) is the use of interactive
display objects such as windows, icons, Popup (or pulldown)
menus, together with user inputs on the mouse pointer, mouse
button(s) and keyboard to achieve a Human Computer Interface
(HCI). This is generally called graphical or window user
interface to distinguish it from the traditional textual command
line interface.

Window systems provide the underlying window graphics
libraries and device drivers for the construction of window or
graphical user interfaces (e.g. X [371).

Toolkits and UIMSs, see section 1.

Dialogue separation means separating out the user-interface
code from the other computing components of the application
program. Dialogue separation requires design decisions that
affect only the user interface to be isolated from those that affect
the other components of the application program [15]. Dialogue
separation is crucial for easy modification and maintenance of
user interfaces, and could also increase the portability of
software packages.

Journal Record and Replay (JRR), see section 5.

Input synthesis, visual verification, see section 5.

Software testing is the execution of a program with the intent
of finding errors [34].

Program verification, use mathematical induction to prove
an implementation is in accordance with its formal specification.

Validation involves checking the software against its
requirements or specifications.

A test case is a set of tests designed by human testers, it
consists of both a detailed description of the input data and a
precise description of the expected (or correct) output.

A test oracle is someone who could give a precise and
authoritative description of the expected (or correct) output and
behaviour of the program when executed with a certain test
case.

Functional Testing, Structural Testing, see section 4.2 .
Completeness of specifications requires that all functions (or
operations) on all objects of the type of interest are defined by
the specification . The most obvious reason for incompleteness
is that of missing functions [17].

Reachability of a specification requires every state satisfying
the state definition can be reached by some sequence of
operations applied to the initial state. .

100

