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ABSTRACT 
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utility of these methods is illustrated through examples using 
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I. INTRODUCTION 

Comparing two multivariate samples is a basic statistical procedure. 

Friedman and Rafsky (1978) (hereafter referred to as FR78) have presented 

several nonparametric multivariate two-sample tests sensitive to general 

alternatives. Such tests yield a significance level for the (null) hy- 

pothesis that the two samples are identically distributed. Whether or 

not the null hypothesis can be rejected, an understanding of the differ- 

ence between the two samples can be helpful. Although the techniques of 

FR78 were discussed strictly within the framework of hypothesis testing, 

we show that they lend themselves to graphical representations that often 

provide such insight. 

Graphical methods for the multivariate two-sample problem are of 

two types: 

(1) Methods that produce planar point plots from multivariate 

data. These are applied to the pooled sample, and points 

in the resulting plot are then labeled with their original 

sample identity. 

(2) Methods that intrinsically use sample identities in 

constructing the two-dimensional display. 

Included in (1) are projections on pairs of coordinates as well as the 

generally more revealing "multidimensional scaling" techniques (see 

Kruskal - Wish, 1978, and references contained therein). These latter 

techniques -- also known as "nonlinear mapping" and "smallest space 

analysis" -- attempt to position the planar points so that interpoint 

distances are closely related (in some sense) to corresponding distances 

in the original multivariate space. In the present context, it is the 
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("zero-intercept linear") metric versions -- which try to make corres- 

pondtig distances actually equal -- that would be most appropriate (see 

also Kruskal, 1977, p. 304-311). 

Other type (1) techniques involve projection on new coordinates 

judiciously chosen after examining the full multivariate data set (Pro- 

jection Pursuit, Friedman-Tukey, 1974), as well as familiar and general- 

ized eigenanalysis (see e.g., Gnanadesikan, 1977, p. 5-26, 48-62). It 

is clear that type (1) methods, without point labeling, are also useful 

for examining the structure of a single multivariate sample. There are 

a variety of other graphic displays -- not point plots -- designed for 

multivariate data that, although originally intended for other purposes, 

could be applied to the pooled or separate samples (glyphs and variations, 

faces, function plots, etc.: see Gnanedesikan, 1977, especially p. 63-39, 

207-255). We find them less helpful for the two-sample problem, espe- 

cially with many observations, since identity labeling is less conven- 

ient and differences within-sample tend to obscure those between-sample. 

And even if sample differences are properly revealed, the information 

provided by such displays often lacks direct geometric interpretability. 

(See Note 2 of Section 6). 

Type (2) methods include univariate two-sample graphics (e.g., P-P 

and Q-Q plots, Wilk and Gnanadesikan, 1968) applied to individual mar- 

ginals, as well as projections onto planes defined by the Fisher linear 

discriminant axis separating the two samples and a second linear dis- 

criminant axis determined as Fisher's but constrained to be orthogonal 

to it (see Friedman-Tukey, 1974, and Sammon, 1970). 
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We first present a type (2) graphic technique that is a multi- 

varia%e generalization of P-P plots. We al so give a modification de- 

signed particularly for scale differences. We then describe a type (1) 

procedure with aims similar to metric multi dimensional scaling (the term 

"planing" is convenient for any such approach). Our methods are illus- 

trated on five examples- 

II. MINIMAL SPANNING TREES 

The multivariate two-sample problem begins with a sample X1, .'.Xm 

from Fx and a sample Y1, . . . Yn from Fy, both defined on Rp. The pro- 

cedures in FR78 for testing Fx=Fy start by constructing the minimal span- 

ning tree (MST) of the N=m;tn pooled sample points. MSTs are natural ob- 

jects: they are a collection of straight line segments ("edges") with 

sample points as endpoints, having minimum total (Rp Euclidean) distance 

while providing a path between every sample point pair. It is immediate 

that MSTs have precisely N-l edges and do indeed form a tree, i.e., have 

no cycles. MSTs can be determined quite rapidly (the full interpoint 

distance matrix need not be computed: see Appendix, FR78) and provide 

compact descriptions of point sets. Formal graph theory definitions, 

both for MSTs and for terms used below, may be found in FR78. But graph 

theory is blessed with terminology so vivid that few readers will require 

any assistance. 

III. MULTIVARIATE P-P PLOTS 

The multivariate Smirnov generalization presented in FR78 involves 

sequencing the pooled data points in Rp (after building an MST) and 
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wp lying the standard univariate Smirnov test to the resu 1 ting sequence. 

Two s%quencing procedures were presented, one for genera 

other for use when pure scale differences are expected. 

quencing which generalizes the standard Smirnov test, beg 

the MST at an end point of a tree diameter (longest path 

use,and the 

The first se- 

ns by rooting 

in the tree) 

and then traverses the tree (roughly by following that diameter) in a 

special preorder. The preorder visits shallow subtrees of a given point 

before deeper ones. The order in which points are visited in this tra- 

versal defines the sequence. The traversal is designed so that points 

generally close in Rp are also close in the sequence. This is illus- 

ir MST, and 

in this case, 

trated in Figure 0. Shown are 50 points 

the derived sequence. Note that the tree 

is the 19 edge path from point 1 to point 

in the plane, the 

diameter, unique 

50. 

Concentrations of one sample or the other in portions of such a se- 

quence tend to represent local concentrations of corresponding points in 

RP. Location shifts in Rp will thus be reflected by location shifts in 

the sequence, and likewise for scale. Inferences concerning the nature 

of the difference between the two samples can, therefore, be based on a 

P-P plot of the points taken in sequence order. (Observe that a P-P plot 

of two (univariate) samples depends only on the ranks of the m sample X 

and n sample Y points.) 

Our multivariate P-P plot will be effective to the extent that our 

sequencing accurately reflects the multivariate interpoint distances. 

Evidence presented in FR78, and the examples below, indicate that the se- 

quencing defined achieves its goal reasonably well. Interpretations of 

our P-P plot are as in the univariate case: nearly identical samples 

will have plots that are close to the graph of y=x, location differences 
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will lead to plots that lie predominately above or below this line, 

while-scale differences will be revealed by plots that tend to lie 

first on one side of y=x, intersect the line, and then lie on the other 

side for the remainder of the plot. There are, of course, a wide variety 

of distributional differences that lend themselves to analogous interpre- 

tations. 

Our second sequencing, which generalizes a "radial" Smirnov test, 

ranks points on their depth in the MST when the tree is 

center. (In Figure 0, points 20 and 2 1 are centers: po 

along a diameter.) Depth (of a point) is the number of 

i 

rooted at a 

nts "halfway" 

points encountered 

on the MST path between the point and the center root, excluding the point 

itself. Note that a center of an MST tends to lie near the geometric 

center of the multivariate point sample and, in many ways, is analogous 

to the median of a univariate sample. Since the edges of an MST tend to 

be directed along density gradients, the path between a point and an MST 

center will tend to follow density gradients of the pooled distribution. 

For spherically symmetric distributions (and their affine transformations 

depth can thus be interpreted as the number of points encountered on a 

"steepest density descent" path from the center and is, therefore, 

estimating a quantity similar to (weighted) distance from the mode. 

Concentrations of points from one sample in portions of this second 

type of sequence tend to represent concentrations at a given (weighted) 

distance from the center. Scale differences in Rp will appear as location 

differences in this sequence, and we can construct from the sequence a 

useful "radial" P-P plot. 
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Jlultivariate rank P-P plots based on these sequencings are obviously 

good adjuncts to the corresponding Smirnov tests: the tests are based 

on the statistic max ]Fx - FYI, the maximum taken over points in sequence 

order. Their utility in general exploratory analysis can, of course, 

be established only with use. Examples using artificial and real data 

are presented and discussed in Section V. 

IV. MST PLANING 

The multivariate "runs" test presented in FR78 is based on a di- 

rect relationship between sample identities and the MST, without the 

intermediate stage of establishing a sequence. In order to graphically 

present the results of this procedure, one needs a graphical representa- 

tion of the MST. It is always possible to plot the multivariate data 

points in two dimensions so that the N-l MST edge lengths are exactly 

preserved. One can view this plot (with point labels identified) for 

possible interpretation. 

Preserving the N-l MST edge lengths does not completely specify the 

planar locations of the N observations. Each point is free to rotate in 

a circle about its parent at a radius equal to the (multivariate) dis- 

tance from its parent. To constrain the locations of all the points, it 

is necessary to expand the graph so that each point is part of a cycle. 

Lee, Slagel and Blum (1977) present an ingenious technique for ex- 

panding the graph and constraining the planar locations of the data 

points. Their procedure begins by rooting the MST arbitrarily, and se- 

quentially "mapping" (placing in the plane) the points in the order in 
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which they are visited in a breadth first search of the tree, starting 

at the root (i.e., one depth at a time; see Aho, Hopcroft, Ullman, 1974, 

Ch. 5). The position of each point in the plane is fixed by the require- 

ment that the (multivariate) Euclidean distances between the point and 

both its parent and the root be exactly preserved in the plane. Since 

these three points form a triangle in p-space, their three interpoint 

distances specify the location of a point being mapped up to a sign am- 

biguity: one can place a point either to the right or left of the line 

joining the root and its parent, and still preserve the sides of the 

triangle. This ambiguity can -be resolved: choose the location that 

minimizes the discrepancy (absolute difference between multivariate and 

planar distance) between the point and a third point already mapped. 

Our multivariate planing procedure is a modification of this tech- 

nique: 

1. Root the MST at a tree center 

2. Map this center, its farthest Euclidean distance daughter, and 

another (arbitrary) daughter into the plane preserving their 

three interpoint distances. 

3. __ For each remaining daughter of the center 

Map it to preserve its distance to the center and 

to the farthest daughter from the center (resolve 

sign ambiguity with another daughter already mapped) 

end For 

Comment: This completes the mapping of the depth zero (center) 

and depth one (daughter) points 

4. For each depth 2 2 

While points at this depth remain unmapped 

4.1 Find point at this depth not already mapped 

that is farthest from its parent 
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4.2 Map this point: Attempt to preserve its 

distance to its parent and to the farthest 

point already mapped (resolve sign ambiguity 

by minimizing discrepancy with grandparent). 

If attempt fails - 

Map the point to preserve distance from 

parent and minimize discrepancy with farthest 

point. 

4.3 For each sister of point mapped in Step 4.2 

Map to preserve distance from parent and 

from point mapped in Step 4.2 (resolve sign 

ambiguity with grandparent). 

Comment: Triangle inequality insures success 

end while -- 

end For -- 

This mapping procedure yields a two-dimensional representation of 

the multivariate observations in which all (multivariate) MST edge dis- 

tances are preserved, as well as distances from each point to its sister 

farthest from their common parent. This causes the interpoint distances 

between MST neighbors to be reproduced fairly well. In addition, global 

information is introduced by constraining one of the daughters to re- 

produce as accurately as possible a relatively large interpoint distance 

(that to the farthest point so far mapped). Starting with the tree cen- 

ter and mapping radially outward with increasing depth insures that many 
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different points serve as this, global (farthest so far mapped ) referen ce 

point, The resulting configuration of points in the plane is intended to 

reflect the interpoint distance relationships in Rp. In order to gauge 

the degree to which this goal has been achieved, we compute and append 

to the plot a planing error ("absolute value stress") that is the normal- 

ized total discrepancy: 

c 1 Dij - dij 1 

E= i<j 

c D.. 
i<j lJ 

where D.. 
1J 

is the p-dimensional Euclidean distance between the ith and jth 

points and dij is their distance in the plane. If the multivariate ob- 

servations all lie in a two-dimensional linear subspace of Rp, E has the 

value zero and our planing procedure gives a perfect representation. 

While in no way attempting to systematically minimize (l), our 

planing technique nonetheless competes, in some sense, with procedures 

that do minimize similar stress quantities (usually a function of squared 

discrepancies to insure differentiability). These procedures, employing 

gradient techniques, or in the case of "zero-intercept linear" metric 

scaling, a standard eigenanalysis, are remarkably effective but somewhat 

time-consuming. MST-based planing, on the other hand, is exceptionally 

fast: planing 10,000 points is a perfectly reasonable task. 

It is apparent, however, from examining the recommended procedure 

that MST-planing does a better job of matching small interpoint distances 

than larger ones. We may conclude, therefore, that MST-planing is even 

more competitive with those multidimensional scaling approaches that 
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minimize "weighted stress" -- larger distances getting smaller weight 

than pall ones. This behavior might well be fortuitous: giving less 

weight to large distances allows the planar placement to concentrate on 

local information with the well known result that the final display is 

more responsive to general nonlinear singularities. But it must be ad- 

mitted that more powerful (although costly) "parametric mapping" tech- 

niques exist for uncovering such structure (see Shepard-Carrol, 1966, 

and Gnanadesikan, 1977, p. 35-48). 

Multidimensional scaling procedures can produce, moreover, minimum- 

stress point placements in higher dimensions and are, therefore, used to 

uncover well-fitting lower-than-p-dimensional configurations (p>Z). (They 

can also be used to find any dimensional metric representations when the 

interpoint distances are given directly and not formed originally from 

N points in p-space - for instance, subjectively determined dissimilari- 

ties. But in this case, non-metric techniques, requiring only that 

fitted and original distances be monotonically related, might be more 

appropriate). There is no bar to extending the sequential mapping tech- 

nique of planing to three or more dimensions: full dimensional simplexes 

would play the role of triangles. In R', for instance, a point could be 

mapped preserving an MST edge length and the distances to two points pre- 

viously mapped. We have not yet implemented this idea, however, and de- 

tailed experimentation remains to be done. 

Nonetheless, our MST-planing serves well in its intended role: a 

graphical adjunct to the multivariate Wald-Wolfowitz test of FR78. The 

test statistic used is the number of MST edges linking points from the X 

sample to points from the Y sample, and these edges can be directly shown 
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on the planing. For nearly identical samples, these edges will obscure 

the plot, but for differing samples there should be few enough edges to 

be manageable. (The edges could themselves be sampled and fewer shown). 

They will assist the eye in picking out regions of overlap, and will also 

highlight stray X's in a dense Y region (and vice-versa). This high- 

lighting is particularly important when color is not available for dis- 

tinguishing the sample identities of the plotted points. When these 

edges, moreover, link points that do not appear close in the plane, they 

reveal distortion and local contributions to overall planing error. 

V. EXAMPLES 

To evaluate the utility of these procedures and gain insight into 

their properties , we apply them to four data sets. 

The first two are artificially generated so that the graphics can 

be judged in light of known multivariate structure. The third data set 

is the well known Iris data of E. Anderson (Fisher, 1936). The fourth 

was collected in a particle physics experiment, 

The data of Figure 1 are two samples of 100 observations from ten- 

dimensional product double exponental distributions with unit scale pa- 

rameter, separated in location by a distance of three units. Figure la 

displays the "standard" multivariate P-P plot, Figure lb the "radial" 

P-P plot. These plots clearly suggest that the two samples differ pri- 

marily in location. 

Figure lc shows our planing of these data with sample identities 

indicated. The value E = 0.53 indicates that there is considerable 

distortion of the p-dimensional interpoint distances. This is not sur- 
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prising since the data are fully ten-dimensional by construction. In 

spitedf this, one can still observe that the first sample (indicated by 

small squares) predominately populates the lower right of the plot, while 

the second sample (indicated by small crosses) dominates the upper left, 

leading to the inference that the two samples differ in location. 

Figure Id shows the same plot along with (multivariate) MST edges 

that connect points from different samples. This gives an indication of 

those observations from one sample that lie near to or in regions domi- 

nated by the other sample. 

The data of Figure 2 are similarly ten-dimensional product double 

exponential samples; here the scale of one is three times that of'the 

other. The multivariate P-P plots and the planing reflect this quite 

well. Comparing Figures 2c and Zd, we note that adding the X-Y edges 

helps the eye see clearly the outer ring of X's, 

We now consider the Iris data, 50 observations in four dimensions 

on each of three species. Figure 3 is a planing of the full data set 

with the three species identified after plotting. It is instructive to 

compare this plot to the CRIMCOORDS projection which uses a three-group 

discrimination to define the display coordinates (Gnanadesikan, 1977, 

p. 221). One should also compare the Projection Pursuit display (Fried- 

man-Tukey, 1974, p. 886) and Sammon's "nonlinear map" (a type of weighted- 

stress minimization, Sammon, 1969, p. 403). Lee, Slagle, and Blum (1977, 

p. 292) reproduce their MST-based planing of the Iris data, but they have 

apparently not used the entire data set. 
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Figure 4 focuses on the two similar species (Versicolor and Virginica). 

Heregne sees that the two samples approach each other quite closely but 

overlap very little. Moreover, the Iris Virginica measurements appear to 

be more spread out in 4-space and have a somewhat different shape than 

Iris Versicolor. 

The data in our final example are measurements of the energy deposited 

by particles as they pass through a particle detector comprised of crystals 

of sodium iodide (Richardson, 1978). The amount of energy absorbed by 

the 13 crystals closest to where a particle passed is recorded. The ob- 

ject is to try to distinguish between various types of particles that 

pass through the apparatus, based on the relative values of these 13 

energies. In particular, one wishes to know whether the apparatus can 

be used to distinguish between electrons and negative pi mesons. 

In order to test this, data for 200 electrons (first sample, repre- 

sented by squares) and 200 pi mesons (second sample, represented by 

crosses) are examined. Figure 5a indicates a strong location difference 

between these two samples in the 13-dimensional space. Figure 5b indi- 

cates that there may also be a substantial scale difference. Figures 5c 

and 5d show a somewhat complicated configuration. The electrons are all 

concentrated near the origin while the pi mesons tend to have two com- 

ponents, one also concentrated near the origin and the other small com- 

ponent with larger scale distributed over the extent of the plot. Fig- 

ures 5e and 5f magnify the central region near the origin. Here one sees 

a rather complex structure which is not easily categorized as either a 

location or scale difference but is probably closer to a location dif- 

ference. 
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The displays of Figure 5 indicate a considerable difference between 

the gistributions of the electrons and negative pi mesons in the 13- 

dimensional observation space. The rather low planing error (E = 0.22) 

indicates that the two-dimensional plot does not grossly misrepresent 

the relationships between the points in R 
13 

. One can conclude that the 

apparatus could successfully differentiate electrons from pi mesons but 

that a simple decision rule, such as a linear discriminant, would be in- 

adequate. Nearest neighbor or piecewise linear discrimination might be 

more effective. (The recursive partitioning decision rule of Friedman 

(1977) was able to achieve an error rate of 2%). 

The examples of this section indicate that our graphical methods 

can be useful. They present to the data analyst more information 

than the value of a test statistic and can serve as a useful adjunct to 

two-sample testing. FORTRAN programs implementing these ideas are avail- 

able from either author. 

VI. NOTES 

1. The methods suffer from some limitations that should be kept in 

mind when interpreting results. They are based on interpoint distance 

relationships in the pooled sample and, in particular, depend upon the 

order of the sorted N(N-1)/Z interpoint distances (or general dissimil- 

arities). As discussed in FR78, our methods are resistant to moderate 

changes in this order but are not fully robust. Moreover, equality of 

two distributions in a p-dimensional coordinate space is uneffected by 

arbitrary strictly monotone transformations on any coordinate. But 

procedures based on interpoint distances are invariant only to global 
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shifts (translating each point by the same amount) and global expansion 

or coJtraction (scaling each coordinate by the same amount). Best. choice 

of relative coordinate scaling, or perhaps a more complicated transfor- 

mation, depends on the particular situation. 

2. It is clear that any type (1) graphic technique can be applied as 

well to the k-sample problem: the planar display is constructed from 

the pooled sample and then labeled with sample identities. We did just 

that, in fact, when we planed the Iris data. We observed that it was 

helpful to proceed stagewise: use the planing to identify a well sepa- 

rated sample, remove it, plane again, etc. Undoubtedly this is a good 

procedure generally; the speed of planing allows for many repetitions 

(and, therefore, also facilitates error analysis through cross-validation 

or subsampling). The stagewise approach would be particularly useful 

when clustering, i.e., using planing on a single sample to uncover 

clusters of observations. If we had no knowledge of sample identities 

in the Iris data, stagewise planing and visual examination would have 

recovered the Setosa group perfectly -- as any reasonable procedure 

must -- and would (depending on individual judgment) most likely identify 

two more clusters: one almost purely of Virginica and the other about a 

30% - 70% mix of Virginica and Versicolor. One could, moreover, proceed 

by separately planing the two groups resulting from the first stage, then 

plane the resulting four, etc., similar to the recursive partitioning 

approach of Friedman (1977). 

Our earlier comments on the lack of geometric interpretability for 

the displays that are not point plots apply equally well to the k-sample 

or the clustering situations. Mezzich and Worthington, 1978, ran an 

experiment asking thirteen subjects to view, individually, the same data 
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set displayed using linear and circular profiles, Andrews curves, prin- 

cipal&component projection, Chernoff faces, and nonmetric multidimensional 

scaling. The data set consisted of four groups, each containing eleven 

observations in 17-dimensional space. The group identities of the ob- 

servations were not shown; subjects were asked to uncover the clustering 

structure. An analysis of their responses demonstrates emphatically that 

only the multidimensional scaling display allowed an accurate reconstruc- 

tion and --probably because of its familiar geometric interpretability-- 

was rated by the subjects as easy to use. (Principal component projection 

--also a point plot-- was ranked second in ease-of-use score; the others 

were far behind.) It is dangerous, however, to draw general conclusions 

from the experiment. Several design defects weaken its verisimilitude: 

(1) the four groups were very well separated, (2) the variables were all 

identically scaled ordered categories, (3) the subjects were told to look 

precisely for four clusters consisting of eleven observations, and (4) the 

subjects were untrained in statistics data analysis. 

3. The sequencings used to construct the P-P plots (and the Kolmogorov- 

Smirnov statistics of FR78) depend on a choice of center and diameter. 

(Similarly, planing depends on a choice of center.) Since we choose ar- 

bitrarily, the sensitivity of our approach to these choices might well be 

questioned. While altering, say the choice of diameter changes the se- 

quencing and the resulting plot, a variety of simulations have convinced 

us that our techniques possess "impression robustness" --i.e., the data 

analytic conclusions we draw from these displays are almost always un- 

affected. 
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4. It is often held that Q-Q plots, which reflect (univariate) location 

diffewnces by non-zero intercepts, scale differences by non-unit slopes, 

and more general differences by deviations from straightness, are data 

analytic tools superior to P-P plots. There is some interest, therefore, 

in multivariate generalizations of the Q-Q plot. Our sequencings could 

yield such a generalization directly but, since Q-Q plots depend on the 

actual values of the order statistics in each sample, we would have to 

depend on actual distances along the sequence instead of merely the 

ordering it induces. These distances are unreliable since most multi- 
. 

variate data produce an enormous stress when forced to lie in R' (stress 

defined by analogy with (1)). 

It is possible to define and generalize a "rank" Q-Q plot: replace 

in the univariate case every data value by its rank in the pooled sample, 

and then construct an ordinary Q-Q. It is clear that this is equivalent 

to applying a monotone transformation (w -+ Fxy (w), where Fxy is the 

empirical cdf of the pooled sample) to each axis. Examples have convinced 

us, however, that the "stretching" involved destroys all interpretability. 

5. It is important to realize that our planing procedure is the result 

of heuristic arguments, Gedanken experiments, and extensive simulations. 

We have attempted to strengthen the Lee-Slagel-Blum procedure in a number 

of ways, trying to arrive at the most reasonable tradeoff of planer place- 

ment optimality and computing effort, but the end product is only one of 

many plausible fast approximations to (zero-intercept linear) metric 

multidimensional scaling. An alternative that we abandoned introduces 

more global information by preserving an MST edge distance and the dis- 

tance to the farthest point already mapped for every point, not just for 
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one among every group of sisters. We found the decrease in planing 

error-achieved, did not warrant the additional computing required. 
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