
GRAPHITE:  An Extensible Graph Traversal Framework for 
Relational Database Management Systems  

Marcus Paradies*, Wolfgang Lehner*, and Christof Bornhoevd°  |  SSDBM‘ 15 

*TU Dresden       °Risk Management Solutions, Inc. 



2 

Graph Processing on Enterprise Data 

Relational + Application Logic Relational + Graph + Application Logic 

Data already in RDBMS 
SQL as the only interface/no graph abstraction 
Data transfer to application 

Efficient processing in GDBMS 
Processing on replicated data 
Data transfer to application 
No combination with other data models possible 



3 

Integration of Graph Processing into an RDBMS 

How could a deep integration of graph functionality into an RDBMS look like? 

Graph operators can be seamlessly combined with other plan operators 



4 

Columnar Graph Storage 

All available data types can be used as vertex/edge attributes 

Lightweight 
compression 
techniques (RLE) 



5 

Graph Traversal Workflow 

Traversal 
Configuration 

Traversal 
Kernels 

• S – set of start vertices 
• φ – edge predicate 
• c – collection boundary 
• r – recursion boundary 
• d – traversal direction 
  

Pluggable physical traversal kernels as  
implementations  of a logical traversal operator 



6 

Graph Traversal Formalism 

 

 

 

 FORMAL DESCRIPTION (SET-BASED) 

• A traversal operation is a totally ordered set P of path steps  
 
• Each path step pi receives a vertex set Di-1 discovered at level (i-1)  
    and returns a set of adjacent vertices Di    (1 ≤ i ≤ r, r is recursion boundary) 
 
• Initally, D0 =  𝑆  

 

 Di =  𝑣  ∃𝑢 ∈ 𝐷i−1 :
 𝑒= (𝑢,𝑣) ∈ 𝐸 ˄ 𝑒𝑣𝑒𝑒(𝑒,φ)  

 
• The final output R is defined as 

 

 R = ⋃ 𝐷𝑖𝑟𝑖=𝑐  \ ⋃ 𝐷𝑖𝑐−1𝑖=0   

Target  
vertices 

Visited 
vertices 



7 

Graph Traversals by Example 

Traversal Configuration Result 

{ { A }, “type=‘a‘“, 0, 1,  } { A, B, C, D } 

Traversal Configuration Result 

{ {A}, “type=‘a‘ OR type=‘b‘“, 2, 2,  } { E, F } 

Traversal Configuration Result 

{ { A }, “type=‘a‘“, 1, 1,  } { B, C, D } 

Traversal Configuration Result 

{ { A }, “type=‘a‘“, 1, ∞,  } { B, C, D, F} 

Traversal Configuration Result 

{ { E }, “type=‘b‘“, 2, 2,  } { D } 

Root vertex 

Discovered vertex 



8 

Level-Synchronous (LS) Traversal 

SCAN-BASED GRAPH TRAVERSAL EDGE CLUSTERING 

Scan partitions 
(dictionary-encoded) 

Fetch neighbors 
by position 

Clustering by 
edge type 

Clustering by 
source vertex 

Set operations on 
vectorized bitsets 

Keep (intermediate) 
results as bitsets 

  



9 

Fragmented-Incremental (FI) Traversal 

• Partition column into fragments 
• Track dependencies between fragments in index structure 
• Goal: Minimize number of fragment reads 

Fragment 

Transition 8  13  12 

Transition Graph 

Probabilistic 
Fragment Synopsis 

Fragment Queue 

Execution Chain 

For a fragment size equal to |E|, FI-traversal degenerates to LS-traversal 



10 

Experimental Evaluation 

 EVALUATED REAL-WORLD DATA SETS 

• Six real-world data sets with different 
topology characteristics 

 EVALUATED SYSTEMS 

• Implementation in main-memory column store prototype (C++) 
• Graph database (Neo4j) 
• RDF DBMS (Virtuoso 7.0 with columnar storage layout) 
• Commerical columnar RDBMS (via chained self-joins, with and without index support) 

  



11 

Experimental Evaluation 

 COMPARISON OF LS-TRAVERSAL AND FI-TRAVERSAL 

Traversal performance depends on the traversal depth and the topology 

FI-Traversal outperforms 
LS-Traversal by one order 

of magnitude 

LS-Traversal starts 
outperforming  

FI-Traversal 

Different performance 
characteristics for different 

fragment sizes 

Scan-based traversal outperforms 
fragmented traversal depending on 
traversal depth and graph topology 

 



12 

Experimental Evaluation 

 SYSTEM-LEVEL BENCHMARK 

Combination of LS and FI-traversal outperforms native graph systems  
by up to two orders of magnitude 

 



13 

Summary 

 GRAPHITE 

• Graph processing tightly integrated into RDBMS 
• Extensions of core components by graph extensions 

(operators, cost model, index structures) 
• Topology characteristics-aware traversal operators 

 GRAPH-SPECIFIC DATA STATISTICS AND ALGORITHMS 

• Diverse graph topologies demand different algorithmic design decisions 
• Index scan versus full column scan decision also applies for graph 

traversals 
 

 FUTURE WORK 

• Integration with temporal, spatial, and text data 
• Language extensions for custom code executed during graph traversal 

Integration of GRAPHITE into RDBMS 

   



Contact 

Marcus Paradies, TU Dresden 
m.paradies@sap.com 
https://wwwdb.inf.tu-dresden.de/team/external-members/marcus-paradies/ 

mailto:m.paradies@sap.com


Backup Slides 



16 

Experimental Evaluation 
 EFFECT OF FRAGMENT SIZE AND FALSE POSITIVE RATE 

Higher impact on 
sparse graphs 

Elapsed time of FI-traversal more sensible to a change  
of the fragment size than  a change to the false positive rate 

 



17 

Experimental Evaluation 

 MEMORY CONSUMPTION 

Smaller memory 
footprint for very sparse 

graphs 

Memory footprint of the index can be reduced  
by increasing  the fragment size or the false positive rate 

No significant 
improvement for 

very sparse graphs 

 



18 

Cost Model 

• Models based on the total number of accessed edges including a constant access cost 
• Goal is to minimize the number of edges to read 

 LEVEL-SYNCHRONOUS 

 FRAGMENTED-INCREMENTAL 

  


	GRAPHITE:  An Extensible Graph Traversal Framework for Relational Database Management Systems 
	Graph Processing on Enterprise Data
	Integration of Graph Processing into an RDBMS
	Columnar Graph Storage
	Graph Traversal Workflow
	Graph Traversal Formalism
	Graph Traversals by Example
	Level-Synchronous (LS) Traversal
	Fragmented-Incremental (FI) Traversal
	Experimental Evaluation
	Experimental Evaluation
	Experimental Evaluation
	Summary
	Contact
	Backup Slides
	Experimental Evaluation
	Experimental Evaluation
	Cost Model

