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Abstract: As an emerging electrochemical energy storage device, potassium-ion 

batteries(PIBs) have drawn growing interest due to the resource-abundance and low cost of 

potassium. Graphite-based materials, as the most common anodes for commercial Li-ion 

batteries, have a very low capacity when used as anode for Na-ion batteries, but they show 

reasonable capacities as anodes for PIBs. The practical application of graphitic materials in 

PIBs suffers from poor cyclability, however, due to the large interlayer expansion/shrinkage 

caused by the intercalation/de-intercalation of potassium ions. Here, a highly graphitic carbon 

nanocage (CNC) is reported as a PIBs anode, which exhibits excellent cyclability and superior 

depotassiation capacity of 175 mAh g-1 at 35 C. The potassium storage mechanism in CNC was 

revealed by cyclic voltammetry as due to redox reactions (intercalation/de-intercalation) and 

double-layer capacitance (surface adsorption/desorption). The present results give new insights 
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into structural design for graphitic anode materials in PIBs and understanding the double-layer 

capacitance effect in alkali metal ion batteries.  

 
Lithium-ion batteries (LIBs) have been widely used in portable electronic devices and are 

regarded as the most promising candidates for electric vehicles due to their high energy and 

power densities.[1] Since large-scale electrical energy storage systems are critical for utilizing 

intermittent renewable energy, in the foreseeable future, the high cost and the limited nature of 

lithium resources would hinder further application of LIBs in this field.[2,3] Therefore, secondary 

metal-ion batteries based on low-cost and resource abundant elements (such as Na,[4-6] Mg,[7] 

Al[8] and K[9-11]) are being widely considered. Among these emerging battery technologies, 

potassium-ions batteries (PIBs) have great advantages as an ideal alternative for LIBs because 

potassium not only is a low-cost, non-toxic and resource-abundant element (2.4 wt.% potassium 

in the Earth’s crust), but also has a low redox potential of -2.93 V vs. standard hydrogen 

electrode (SHE) as the K+/K couple, resulting in a high working voltage and high energy density 

for PIBs with low cost. 

To date, alloy-based materials,[12-16] transition-metal oxides/sulfides,[17-19] and MXene-based 

materials[20-22] have been reported as anode materials for PIBs. Carbon-based anode 

materials,[23-37] however, are regarded as the most promising ones for large-scale applications. 

As one advantage for PIBs, graphite, the current commercial anode material for LIBs, can be 

used as anode for PIBs.[23a, 25] Accordingly, PIBs could be well suited to the existing LIB 

manufacturing technology due to their similar working mechanism and cell structure.[38] 

Graphitic materials show amazing electrochemical activity when used as anode for PIBs, since 

their layered structure is available for K+ intercalation to form the stage-one K-graphite 

intercalation compound (KC8) with the theoretical capacity of 279 mAh g-1.[23a] Moreover, the 

graphitic materials have a long and stable K+ intercalation/de-intercalation plateau above 0.1 V 

vs. K+/K. This low plateau potential not only is suitable for a high working voltage and thus 
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high energy density when coupled with cathode materials,[39] but also avoids the formation of 

potassium dendrites and the related safety concerns. Nevertheless, the full potassiation of 

graphite with almost 60% incremental expansion in the interlayer distance would lead to 

irreversible structural damage due to the larger K+ radius (1.38 Å, almost 1.82 times larger than 

Li+). Therefore, potassiation/depotassiation of graphite is not highly reversible, even under 

charge/discharge at low current density. With few reports on graphitic carbon anodes for 

PIBs,[23-25] this issue is still not effectively solved. Therefore, the main problem for graphite as 

an anode material of PIBs is the severe structural degradation during cycling. Accordingly, 

designing a highly stable structure to accommodate the expansion in interlayer distance during 

charge/discharge is urgent for application of graphitic materials in PIBs. 

In this study, we propose a highly graphitic carbon nanocage (CNC) to meet the requirements 

on anode materials for PIBs. The cage-like structure could effectively reduce anisotropy due to 

the concentric arrangement of carbon layers and thus avoid interlayer slipping to ensure 

structural integrity. Accordingly, the hollow cage-like structure could effectively accommodate 

the strain relaxation during K+ intercalation/de-intercalation and thus improve the cyclability. 

Moreover, the interconnected network structure of CNC is a three-dimensional (3D) electrically 

conducting network that permits fast electron transfer among the different carbon nanocages, 

thus achieving better electrochemical kinetics to ensure excellent rate performance. Based on 

the above, CNC exhibits excellent cyclability and a superior depotassiation capacity of 175 

mAh g-1 with high capacity retention of 79% at 35 C. In addition, the cyclic voltammetry 

analysis has revealed the hybrid potassium storage mechanism in CNC, i.e. redox reactions 

(intercalation/de-intercalation) and double-layer capacitance (surface adsorption/desorption). 

The present results give new insights into structural design for graphitic anode materials with 

stable cyclability in PIBs and understanding the hybrid potassium storage mechanism. 
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The CNC were prepared by high temperature treatment of Ketjen carbon black (EC300J) at 

2800°C under Ar atmosphere (Figure S1 in the Supporting Information). Since Ketjen carbon 

black is a commercially available material and the high-temperature treatment of carbonaceous 

materials is a mature technology, the production of CNC could be easily scaled up. The CNC 

has the appearance of a string of grapes with interconnected structure in 3D space (Figure 1a), 

and the integrated structure can be further proved by the high resolution transmission electron 

microscope (HRTEM) image (Figure 1b). In addition, the CNC has a uniform hollow cage-like 

morphology (Figure 1c) with an average particle diameter of about 50 nm and a shell thickness 

of ~ 5 nm. The interconnected structure could permit fast electron transfer among different 

nanocages (illustrated schematically in Figure1d), and the hollow nanocage morphology with 

thin shells could effectively reduce the ion diffusion length in solid phase, thus achieving better 

electrochemical kinetics to ensure excellent rate performance. In the X-ray diffraction (XRD) 

patterns (Figure 1e), the sharp (002) peak indicates the highly graphitic layered structure of 

CNC, which is critical to ensure its typical graphite-like electrochemical behavior with a low 

potassium storage potential for PIBs. The Raman spectrum of CNC (Figure 1f) shows a strong 

G band (1585 cm-1, graphitic structure) and D band (1360 cm-1, defective structure). The 

integrated intensity ratio of the G band to the D band (IG/ID) is as high as 3.96, confirming the 

highly ordered graphitic structure of CNC, which corresponds to the XRD and HRTEM results. 

Furthermore, the appearance of the D band reveals the existence of defective sites on the surface 

of nanocage, suggesting an imperfectly closed cage-like structure for the CNC. Unlike the edge 

sites in graphite-based materials with open layered structure, those surface defective sites are 

active sites for ion intercalation/de-intercalation.[40] As a reference sample, mesophase graphite 

(MG) was prepared in our laboratory by polycondensation from coal tar pitch and graphitization 

at 2800°C. This widely applied commercial LIBs anode material with high cycling stability has 

a highly graphitic nature (XRD pattern and Raman spectrum in Figure 1e and f, respectively) 

with an open-layered structure (Figure S2). 
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The potassium intercalation/de-intercalation behavior of CNC was investigated by cyclic 

voltammetry (CV) and galvanostatic charge-discharge. As shown in Figure 2a (CV curves at 

scan rate of 0.1 mV s-1), potassium ion intercalation/de-intercalation in CNC can be clearly 

observed by the presence of two pairs of redox peaks between 0 and 0.6 V vs. K+/K, which 

correspond to the phase transformation phenomenon of K-graphite intercalation compounds 

(K-GICs) from a dilute stage to a high stage (Stage 1, KC8) and their backward 

transformation.[23a, 24] A strong reduction peak around 0.7 V can be observed only in the first 

scan, which is attributed to the formation of solid electrolyte interphase (SEI) due to the 

decomposition of electrolyte.[23a] In the following scans, the CV curves are almost overlapping, 

indicating the excellent electrochemical reversibility of CNC. In the high potential region (0.6-

3.0 V vs. K+/K), the well separated cathodic and anodic segments with rectangular shape in the 

CV curves of CNC electrode imply significant capacitive potassium storage behavior in 

comparison with the CV curve of MG electrode (Figure S3a). Voltage profiles of CNC and 

MG electrodes at the current density of 0.2 C (1 C = 279 mA g-1) are shown in Figure 2b and 

Figure S3b, respectively. The long and stable voltage plateaus above 0.1 V vs. K+/K help to 

avoid the formation of potassium dendrites and allow a high working voltage when coupled 

with a cathode in the full cell system.[9, 10] From Figure 2b, several small plateaus corresponded 

to the different stage phase transformations can be well distinguished, which are consistent with 

the CV results. In the initial charge-discharge, a large irreversible capacity can be observed, 

corresponding to the formation of the SEI due to the high surface area of CNC. During the 

following 50 charge-discharge cycles, the overlapping voltage profiles suggest the excellent 

cyclability of CNC. In comparison with CNC, the separated voltage profiles of MG (Figure 

S3b) indicate fast capacity fading. Moreover, the small voltage hysteresis (Figure S3c) between 

the charge and discharge curves of CNC also confirms the far better electrochemical kinetics 

than that of MG. This improvement of CNC is likely to be due to the large specific surface area 

(102.7 m2 g-1), which provides higher electrochemical activity, and the thin shells of graphitic 
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nanocages, which reduce the ion diffusion distance in the solid phase. The cycling performances 

of CNC and MG at 0.2 C are shown in Figure 2c. The CNC delivers an initial reversible 

capacity of 212 mAh g-1 with a Coulombic efficiency of 40%. The reversible capacity of CNC 

is lower than the theoretical capacity of KC8, which is ascribed to the presence of crystal defects 

in CNC, such as turbostratic structure. Since the stage 1 intercalation compounds (such as KC8 

and LiC6) prefer adjacent carbon layers with “AAAA” stacking arrangement[23b,c], carbon layers 

with turbostratic disorder unable shift into the “AAAA” stacking arrangement to form stage 1 

intercalation compound [23d] thus resulting  lower capacity  of CNC than the theoretical capacity. 

The low initial Coulombic efficiency of CNC is ascribed to its large surface area, which 

consumes more electrolyte for the formation of SEI and can potentially be improved by 

additives in the electrolyte or using pre-potassiation technology.[41] After 100 cycles, CNC still 

has a reversible capacity of 195 mAh g-1 with a high capacity retention of 92%. After 140 cycles, 

further cycles can be achieved by replacing potassium metal and adding new electrolyte to the 

cell due to the potassium metal with high chemical activity consuming limited amount of 

electrolyte (shown in Figure S4 and see more detailed discussion in Supporting Information).[9] 

Although MG has a higher initial reversible capacity of 248 mAh g-1 at 0.2 C, its reversible 

capacity decreases gradually with cycling. After 50 cycles, only 62% of the initial capacity can 

be maintained. The fast capacity fading in MG electrode may be ascribed to structural 

degradation induced by the large expansion in interlayer distance. 

In order to reveal the different cyclability of CNC and MG electrodes after 100 cycles at 0.2 

C, the electrodes were characterized by HRTEM. As the HRTEM images shown in Figure 2d, 

the interconnected cage structure of CNC still can be clearly observed, which is essential to 

ensure stable cyclability. The well-dispersed C, K, F, S, and O elements (Figure 2e) that have 

come from SEI components revealed the stable nature of the electrode/electrolyte interface 

during cycling. Moreover, the interlayer spacing in the original CNC and the CNC after 1 cycle 

were evaluated by selected area electron diffraction (SAED) in Figure S5. The results indicated 
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that the interlayer spacing in CNC was increased to 3.53 Å from 3.46 Å, suggesting that the 

few-layer graphitic shell structure can be expanded. After 100 cycles, the interlayer spacing in 

CNC was 3.54 Å, which is very similar to that of CNC after 1 cycle, demonstrating that the 

high structure stability of CNC, and the few-layer graphitic shell can reversibly expand/shrink 

due to potassium intercalation/de-intercalation. By comparison, the MG was exfoliated to 

carbon nanosheets dispersed in amorphous SEI (Figure 2f), indicating severe structural 

degradation owing to large interlayer change during potassiation/depotassiation. It is well 

known that the structural degradation would also consume electrolyte and increase the internal 

resistance, thus leading to cell failure. For reviewing the interfacial features of the carbon 

electrodes in different cycles and avoiding interference from potassium metal, electrochemical 

impedance spectroscopy (EIS) was carried out on symmetric cells (see more discussion of 

symmetric cell EIS in the Supporting Information) after different cycles (Figure S6). The 

semicircle in Nyquist plots of fresh cells reflects the intrinsic interface impedance between the 

carbon particles and the electrolyte, which is related to the electronic resistance of the electrode 

and the ion adsorption process on surfaces. After cycling, the semicircles became depressed 

and large, indicating a new interface state due to the formation of the passivated layer. For CNC 

electrodes (Figure 2g), the diameter of the semicircle increased gradually from the 1st cycle to 

the 10th cycle, while the Coulombic efficiency increased rapidly to 95% from 40% (Figure 2c), 

and then remained stable, even after the 30th cycle, suggesting that the SEI layer is stable after 

initial few cycles of activation. For MG electrodes, however, the diameter of the semicircle 

keeps growing as cycling continues, indicating that structural degradation has induced the 

repeated growth of SEI. Thus, we can conclude that there is no significant structural degradation 

of CNC during cycling, which is consistent with the HRTEM observations (Figure 2d). It is 

well known that a stable electrode/electrolyte interface is critical for stable electrochemical 

performance. Since the outer surface of CNC is composed of carbon basal planes, there is no 

doubt that the formation of a stable electrode/electrolyte interface can be ascribed to its unique 
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cage-like structure. As mentioned above, the excellent cyclability of CNC should be attributed 

to its cage-like structure, because the cage-like structure could effectively reduce the anisotropy 

due to the concentric arrangement of carbon layers and thus avoid interlayer slipping to ensure 

structural integrity. The cage-like structure possesses high chemical and structural stability, as 

it cannot be exfoliated by Hummers’ method under rigorous conditions.[42] Moreover, the cage-

like structure is also a hollow structure. Since hollow structure has been demonstrated to be an 

attractive structure with excellent electrochemical performance in LIB/sodium ion battery (SIB)  

electrode materials,[43-45] the unique hollow structure could effectively accommodate strain 

relaxation during potassium ion intercalation/de-intercalation and thus help to maintain the 

structural integrity to alleviate capacity fading.[46] The poor cycling performance of MG is 

ascribed to its open-layered structure, which could not endure the large interlayer changes 

during potassiation/depotassiation. The structural variations of CNC and MG during potassium 

storage are schematically illustrated in Figure 2i. 

The rate capability between CNC and MG was also compared, as shown in Figure S7. CNC 

has a reversible capacity of 137, 99, 71, and 56 mAh g-1 at current rates of 0.5 C, 1 C, 2 C, and 

3 C, respectively. Even at the high current density of 5 C, the CNC can still delivers a reversible 

capacity of 40 mAh g-1. Among the reported graphitic materials,[23a, 24, 26] CNC has the superior 

rate performance. In contrast, the capacity of MG quickly dropped to 100 mAh g-1 at 0.5 C and 

only 30 mAh g-1 at 1 C. Although CNC exhibits much superior rate capability to MG, the 

capacity drop of CNC at high current rates seems too fast, which is ascribed to the large 

polarization and impedance in the potassium half-cell (Figure S8) because potassium metal 

may not be a good reference electrode (see more comments in the Supporting Information).[10] 

To further examine the depotassiation capability of CNC and avoid the influence of polarization 

on potassiation, CNC electrode was potassiated at 0.1 C and depotassiated at different rates. As 

shown in Figure 3a, CNC can present a large reversible capacity of 175 mAh g-1 at an ultrahigh 

rate of 35 C, i.e. the capacity retention is as high as 79% of that at 0.1 C (221.5 mAh g-1). These 
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results indicate that CNC has outstanding high-rate depotassiation capability. As summarized 

in Table S1, a stable plateau with a capacity contribution of 75% is rarely reported at such a 

high rate of 35 C. After high rate depotassiation, the CNC electrode was taken out from the cell 

and characterized by HRTEM. It is clearly observed that CNC still had an interconnected cage 

structure with no exfoliation (Figure 3c), indicating that there was no structural degradation 

during high rate depotassiation. 

The electrochemical behavior and kinetics of CNC were analyzed by CV techniques to gain 

further insight. As mentioned above, the CV curves of CNC show two different types of 

electrochemical behaviors in the low and high potential ranges. In the low potential range, the 

redox peaks dominated region (Figure S9a), indicating the typical faradic process, is attributed 

to the K+ intercalation/de-intercalation reaction. For the high potential range (Figure S9a and 

b), the rectangle-shaped region is attributed to the double-layer capacitive behavior, as CNC 

has a well-developed surface area. This phenomenon has been observed and accepted in both 

lithium storage (Figure S9c and d) and sodium storage,[47-51] proving the ubiquity of double-

layer capacitance in electrochemical energy storage systems with electrode materials that have 

a high specific surface area. The CV curves for CNC/K half-cells at various scan rates from 

0.01 to 0.5 mV s-1 (Figure 4a) show similar shapes with redox peaks in the low potential region 

and a rectangular shape in the high potential region, indicating intercalation and double-layer 

capacitance dominated behaviors, respectively.[52] The capacitive effects were analyzed by the 

power law relationship between the measured current (i) and the sweep rate (v) according to the 

following equation: 

 i = aυb,  (Equation 1) 

where the b-value can be determined from the slope of the plot of log(i) vs. log(υ).[52,53] For b 

= 0.5, the current is diffusion-controlled, indicating a faradaic intercalation process; moreover, 

b = 1 represents a capacitive response because the capacitive current is linearly proportional to 

the scan rate. As shown in Figure 4b, the b-values were plotted as a function of potential in the 
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cathodic scan. At potentials higher than 0.7 V, the b-values are in the range of 0.8-1.0, 

suggesting that the current is dominated by capacitive behavior. This result also corresponds 

with the rectangular shape in the CV curves within the high potential range (Figure 4a). In the 

low potential range of 0-0.5 V, the b-values are slightly higher than 0.5 within the range of 

0.55-0.65. This result indicates that the response current due to double-layer capacitance is 

independent of the potential, although the current comes primarily from the K+ intercalation in 

a faradaic intercalation dominated process. Therefore, capacitive behavior should exist 

throughout the reduction. The capacitive characteristics of CNC was also investigated in a CNC 

symmetric cell. As shown in Figure 4c, the CV curves show a typical rectangular shape even 

at an ultrahigh scan rate of 50 V s-1, indicating the extraordinary power capability of CNC.[54] 

Since the response current from the double-layer capacitance is linearly proportional to the 

scan rate and exhibits rectangular shape in the CV curve,[52] we assume that the capacitive 

current is not affected by the faradic current, so that the double-layer capacitance contribution 

in potassiation can be quantified based on the current response at high potential. A typical 

separation of the double-layer capacitance contribution is shown in Figure 4d. Note that the 

capacitive contribution was considered only in the cathodic process (K+ intercalation) because 

the current baseline in the anodic scan is difficult to distinguish. The ratios of double-layer 

capacitance to the total charge are shown in Figure 4e, the quantitative results indicate that the 

double-layer capacitance contribution is 12.8% at 0.01 mV s-1, which increases gradually with 

the scan rate and reaches a value of 22.1% at 0.5 mV s-1. Furthermore, the capacity retention of 

intercalation reactions drops quickly with scan rate. The capacity retention of double-layer 

capacitance decreases slowly, however, and is always higher than that of intercalation reactions 

at the same scan rates, because a capacitor has a better rate durability than a battery. Therefore, 

we may conclude that the double-layer capacitance effect should not be neglected due to its 

high power capability. 
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The diffusion coefficients of CNC and MG were evaluated from the galvanostatic 

intermittent titration technique (GITT) profiles (Figure S10 and S11) by Fick’s second law 

using Equation S1.[27] In potassiation, the diffusion coefficients decrease slowly below 0.25 V 

and then drop quickly, suggesting that the formation of a high stage intercalation compound 

might be the kinetics limited step. For depotassiation, the diffusion coefficients with relatively 

higher values throughout the process reveal the excellent depotassiation capability of CNC, 

which is consistent with previous electrochemical tests. Moreover, CNC shows lower over-

potential and higher diffusion coefficients than MG in both potassiation and depotassiation, 

suggesting better electrochemical kinetics for CNC than that for MG. The potassium storage 

mechanism in CNC consists of potassium intercalation with high energy density and surface 

capacitive adsorption with high power density, which is briefly shown in Figure 4f. 

In conclusion, CNC exhibits excellent cyclability and a superior depotassiation capacity of 

175 mAh g-1 with high capacity retention of 79% at 35 C. The excellent cyclability and 

depotassiation capability of CNC are attributed to its unique interconnected cage structure as 

well as its hybrid potassium storage mechanism. First, the cage-like structure could effectively 

reduce anisotropy due to the concentric arrangement of carbon layers, and thus avoid interlayer 

slipping to ensure structural integrity. Moreover, the hollow structure could effectively 

accommodate strain relaxation during potassium ion intercalation/de-intercalation and thus help 

to maintain the structural integrity. It is well known that maintaining the structural integrity 

during electrochemical reactions is essential for maintaining stable electrochemical properties. 

Therefore, the ultra-stable cage-like structure is the basis for realizing stable electrochemical 

reactions. Second, the thin shell of CNC could effectively reduce the K+ diffusion distance in 

the solid phase, while the interconnected structure of CNC represents a 3D electrically 

conducting network that permits fast electron transfer among the different cages, thus achieving 

better electrochemical kinetics to ensure excellent rate performance. Last but not least, the 

highly graphitic structure of CNC is essential to ensure the low and stable K+ intercalation/de-
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intercalation potential, which would be helpful for realizing a high working voltage in K-ion 

full cells. The hybrid potassium storage mechanism in CNC was revealed by cyclic 

voltammetry as due to redox reactions (intercalation/de-intercalation) and double-layer 

capacitance (surface adsorption/desorption). The quantified capacitive contributions indicate 

that the double-layer capacitance effect with high capacity retention is critical for achieving 

high power capability. As a non-negligible potassium storage behavior, the double-layer effect 

also plays an important role in realizing high power performance in CNC electrodes due to the 

nature of adsorption/desorption. In future research, the ratio between capacitance and 

intercalation, which offers a combined energy storage with redox reactions (chemical energy 

storage) and surface adsorption/desorption (physical energy storage), should be optimized to 

achieve a good balance between the energy density and power density. 
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Figure 1. SEM image (a), HRTEM images (b and c), and schematic illustration of the structure 
(d) of CNC. XRD patterns (e) and Raman spectra (f) of CNC and MG. 
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Figure 2. Electrochemical properties. CV curves at the scan rate of 0.1 mV s-1 (a) and voltage 
profiles (b) at 0.2 C (1 C = 279 mA g-1) of CNC. (c) Galvanostatic cycling at 0.2 C of CNC and 
MG. HRTEM image (d) and high-angle annular dark-field image with corresponding EDS 
maps (e) of CNC. HRTEM image of MG (f) after 100 cycles at 0.2 C. Electrochemical 
impedance spectra (Nyquist plots) of CNC (g) and MG (h) electrodes after different cycles in 
symmetric cells. Schematic illustration of structural variations of CNC and MG electrodes 
during potassium storage (i). 
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Figure 3. Retention of depotassiation capability with rate capability shown in the inset (a), and 
voltage profiles at different depotassiation rates (b) of CNC electrode. HRTEM image of CNC 
electrode after depotassiation at the high rate of 35 C (c). 
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Figure 4. Electrochemical kinetic analysis of potassium storage behavior of CNC electrodes. 
(a) CV curves at different scan rates. (b) b-values plotted as a function of potential for the 
cathodic scan (K+ intercalation). (c) CV curves of CNC symmetric cell at high scan rates. (d) 
Separation of the double-layer capacitance contribution in the cathodic scan of CNC with 
potential window of 0-1.1 V at a scan rate of 0.01mV s-1. (e) Double-layer capacitance 
contribution and its capacity retention at different scan rates. (f) Schematic illustration of the 
hybrid potassium storage behavior in CNC electrode. 
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Experimental Section  

Materials Synthesis. CNC was synthesized by high temperature treatment of Ketjen carbon 

black (EC300J) at 2800°C under Ar atmosphere. Mesophase graphite (MG) with an average 

particle size of 8.4 μm was prepared in our laboratory by polycondensation from coal tar pitch 

and graphitization at 2800°C. 

Materials characterization. The morphologies of CNC and MG were observed by field-

emission scanning electron microscopy (FESEM, ZEISS SUPRATM 55) and high-resolution 

transmission electron microscopy (HRTEM, JEM-2010 and ARM-200F, JEOL). Raman 

spectroscopy (Renishaw inVia Reflex using 514 nm laser excitation) and X-ray diffraction 

(XRD, Rigaku D/max-2500B2+/PC system with Cu Kα radiation) were used to characterize 

the crystal structures. Nitrogen adsorption−desorption measurements were performed at 77 K 

on a Micromeritics ASAP2046 to evaluate the Brunauer-Emmett-Teller (BET) specific surface 

area and pore volume. The samples were degassed at 300°C for 10 h under vacuum before 

sorption measurements. 

Electrochemical measurements. Coin-type cell (CR2032) were assembled in an argon-filled 

glove box with electrodes and a glass fiber separator. The working electrodes were prepared by 

coating the slurry onto copper foil and then drying it under vacuum at 120°C for 12 h. The slurry 

of CNC was prepared by mixing 91 wt.% active materials with 9 wt.% binder (3 wt.% sodium 

carboxymethyl cellulose (CMC) and 6 wt.% poly(acrylic acid) (PAA)) in deionized water. The 

MG slurry was prepared by mixing 81 wt.% active materials, 10 wt.% conducting agent (Super 

P), and 9 wt.% binder (3 wt.% CMC and 6 wt.% PAA) in deionized water. The active material 

loading was ~0.8-1 mg cm-2. The electrolyte solutions used in this study were 1 M KN(SO2F)2 

(KFSI) in ethylene carbonate: propylene carbonate (EC: PC, 1:1 by volume))and 1 M LiPF6 in 

EC: dimethyl carbonate: ethyl methyl carbonate (EC: DMC: EMC, 1:1:1 by volume). The half-

cells were fabricated in the following order: the carbon electrode, the glass fiber separator, and 

a piece of alkali metal foil (K or Li) as the counter and reference electrode with the 

corresponding electrolyte. Symmetric cells were prepared with same electrodes on the anode 

and cathode side, such as potassium/potassium or CNC/CNC, glass fiber separator and 

corresponding electrolyte. The galvanostatic discharge/charge cycling and depotassiation 

capability of CNC were measured between 0.01 and 3.0 V vs. K+/K by using Neware and Arbin 

battery testers. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) 

were carried out on a VMP-3 electrochemical workstation. EIS was carried out with an 

amplitude of 5.0 mV in the frequency range of 200 kHz to 10 mHz with the open circuit 

potential depending on the type of cell (above 2 V for uncycled half-cells, 0 V for symmetric 
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cells). The galvanostatic intermittent titration technique (GITT) testing was performed using 

current pulses with a duration (0.1 C) of 0.5 h and a relaxation process over 5 h. 

 

 

Figure S1. HRTEM images of original Ketjen carbon black (a-c), Ketjen carbon black-1600 
(heat treated at 1600°C) (d-f) and CNC (g-i). Schematic illustration of the structural 
transformation from Ketjenblack to CNC during heat-treatment (j). 
 

As seen in HRTEM images in Figure S1a-c, although Ketjen carbon black has an amorphous 

structure, its small basic structural carbon units (BSCU) are arranged concentrically and thus 
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exhibit the characteristic of short range order. After heat-treatment at 1600 °C, the BSCU in 

Ketjen carbon black-1600 (Figure S1d-f) has a relatively larger crystal size than that in the 

original Ketjen carbon black, which is ascribed to the growth of and connections among 

different BSCU. Meanwhile, the hollow structure of Ketjen carbon black-1600 can be clearly 

observed. Finally, after heat-treatment in 2800°C, the CNC with a developed layered structure 

and hollow cage-like structure is formed. The different CNCs are interconnected into a complex 

net structure. The structural transformation from Ketjen carbon black to highly graphitic CNC 

is briefly illustrated in Figure S1j. 

 

 

 
Figure S2. SEM image (a) and HRTEM images (b and c) of MG.  
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Figure S3. CV curves for the initial 4 cycles at the scan rate of 0.1 mV s-1 (a) and voltage 
profiles for selected cycles (b) at 0.2 C (1 C = 279 mA g-1) of MG. Voltage profiles (c) of CNC 
and MG show the voltage hysteresis between the charge and discharge curves at 0.2 C. 
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Figure S4. HRTEM image of CNC electrode after 140 cycles at 0.2 C (a) and the cyclability 

after 100 cycles (b). 
 

CNC electrode in potassium half-cell exhibits obvious capacity fading after ~140 cycles, and 
then the electrode was characterized by HRTEM (shown in Figure S4a). It can be seen that the 
structure of CNC after 140 cycles remains the same as that of the CNC electrodes after 100 
cycles (Figure 2d). Moreover, structural degradation or exfoliation were not found. If we 
replace the potassium metal and add new electrolyte to the cell after 140 cycles, the cell can 
cycle again (Figure S4b). Therefore, the capacity fading after 140 cycles can be ascribed to the 
degradation of the potassium metal electrode or the drying out of electrolyte. Potassium has 
high chemical activity and can react with the organic electrolyte to generate a thick solid-
electrolyte interphase layer (the thick purple layer shown in Figure S8d), thus consuming the 
limited amount of electrolyte. Long-term cycling is another challenge in PIBs in half-cell 
configurations. Since CNC could maintain its structural integrity over 100 cycles, CNC should 
have a good long term cycling performance due its high structural stability. 

 
 
 
 
 
 
 
 

 
Figure S5. SAED patterns of initial CNC (a) and CNC after 1 cycle (b) and 100 cycles (c). 

 
 
 
 

  



     

28 
 

 

 
 

Figure S6. Nyquist plots of CNC and MG electrodes after selected cycles in symmetric cells. 
 
 
Potassium half-cells usually have high impedance properties,[1] which should be ascribed to the 

high activity of potassium metal.[2,3] Potassium metal can react with organic electrolyte and 

generate a thick solid-electrolyte interphase layer, as shown in Figure S8. The impedance 

properties of the working electrode in a potassium half-cell would be masked by the large 

impedance of potassium metal electrode. Therefore, symmetric cells would be a good choice 

for EIS testing, as it can avoid the interference from the large impedance of potassium metal 

electrode. After different cycles, the electrodes were charged to 3 V in a potassium half-cell to 

ensure the full depotassiation state, and then the half-cells were disassembled for assembly in 

symmetric cells. As shown in Figure S6, the Nyquist plots typically consist of semicircles and 

a nearly vertical line with respect to the Z`-axis. The semicircle mainly reflects the interfacial 

impedance features of fresh electrodes and cycled electrodes. The nearly vertical line 

corresponds to the capacitive reactance,[4] as typical electrical blocking behavior, rather than 

the ion diffusion because the carbon matrix is highly de-intercalated. 
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Figure S7. Rate performance of CNC and MG with charge/discharge at the same rates. 
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Figure S8. Electrochemical impedance properties. Nyquist plots of CNC and MG electrodes in 
potassium half-cell (a) and lithium half-cell (b) after aging for 24 h. (c) Nyquist plots of 
potassium metal symmetric cell (K/K) after different aging times. (d) Digital images of 
potassium metal electrode in the initial state and after aging 48 h. (e) Nyquist plots of lithium 
metal symmetric cell (Li/Li) after different aging times. (f) Digital images of lithium metal 
electrode in the initial state and after aging for 48 h. (g) Nyquist plots of CNC symmetric cell 
(C/C) after different aging times. 
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Figure S8a shows the Nyquist plots of the fresh electrodes of CNC and MG in potassium half-

cells with aging for 24 h after assembly. Both CNC and MG show a semicircle with a large 

diameter, suggesting high impedance properties. However, the Nyquist plots of CNC and MG 

electrodes in lithium metal half-cells show a much smaller semicircle (Figure S8b). In order to 

reveal the large impedance in potassium metal half-cells, potassium metal (K/K), lithium metal 

(Li/Li) and CNC (C/C) symmetric cells were assembled and characterized by EIS.[5] As shown 

in Figure S8c, e and g, symmetric cells show a semicircle that should be ascribed to the 

electrode/electrolyte interface.[6] The diameter of the semicircle in the K/K cell increased 

quickly in the first 12 h and remained almost stable after 24 h. The high impedance of the 

interface between the potassium and the electrolyte was ascribed to the high activity of 

potassium metal because potassium metal can react with organic electrolyte and generate a thick 

solid-electrolyte interphase layer (shown in Figure S8d with a thick purple layer), thus resulting 

in large impedance.[2,3] In comparison, the impedance arc of the C/C cell was almost unchanged 

after different aging times (Figure S8g), indicating carbon electrodes are stable in organic 

electrolyte. These results are consistent with earlier reports.[1,7] Moreover, the Nyquist plots of 

the lithium metal symmetric cell (Li/Li cell) show a small semicircle, and its diameter did not 

increase significantly with aging time (Figure S8e and f). Therefore, the high impedance of the 

potassium half-cell should be ascribed to potassium metal due to its high chemical activity. 

Considering that the impedance in the potassium half-cell is the total impedance of the working 

electrode and the potassium metal electrode at the same frequencies,[5,6] the impedance 

properties of the working electrode would be masked by the large impedance of the potassium 

metal electrode. 
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Figure S9. CV curves of CNC electrode in potassium half-cells with potential window of 0-
3.0 V (a) and 0.7-3.0 V (b) at the scan rate of 0.3 mV s-1. CV curves at scan rate of 0.1 mV s-1 
for CNC electrode (c) and MG electrode (d) in lithium half-cells. 
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If the cell voltage is linearly proportional to √𝜏 (Figure S10), the diffusion coefficient (D) in 

CNC electrodes can be calculated from the GITT potential profiles by Fick’s second law with 

the following equation:  

 D = 4𝜋𝜏 (𝑚𝐵𝑉𝑀𝑀𝐵𝑆 )2(∆𝐸𝑠∆𝐸𝜏)2 , (Equation S1) 

where 𝜏 is the duration of the current pulse; mB is the electrode active material mass; S is the 

geometric area of the electrode; ∆𝐸𝑠  is the quasi-thermodynamic equilibrium potential 

difference before and after the current pulse; ∆𝐸𝜏  is the potential difference during current 

pulse; VM is the molar volume of the CNC; MB is the molar mass of carbon. The value of MB/VM 

can be obtained from the density of CNC. 

The density of CNC was calculated according to the following equation: 

 𝜌 = 1𝑉𝑡𝑜𝑡𝑎𝑙+ 1𝜌𝐶𝑎𝑟𝑏𝑜𝑛 , (Equation S2) 

where ρ (g cm-3) is the density of CNC, 𝑉𝑡𝑜𝑡𝑎𝑙 (cm3 g-1) is the total pore volume measured from 

the N2 isotherm, ρ𝐶𝑎𝑟𝑏𝑜𝑛 is the true density of carbon (2 g cm-3). Since the 𝑉𝑡𝑜𝑡𝑎𝑙 of CNC is 

0.71 cm3 g-1, the ρ of CNC is calculated to be 0.83 g cm-3. 

 

Figure S10. Linear behavior of the potential vs. τ1/2 in GITT at 1.287 V vs. K+/K of CNC. 
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Figure S11. GITT potential profiles for CNC (a) and MG (b). Diffusion coefficients calculated 
from GITT potential profiles as a function of potential (c for potassiation and d for 
depotassiation). 
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Table S1 Summary of the electrochemical performance of CNC and reported state-of-art 
carbon anodes for PIBs. 
 

Material 
Main 

electrochemic
al behavior 

Potassium 
storage 

potential 
Cyclability 

Rate 
performance 

Reference 

CNC 
intercalation/de-

intercalation 
low 

195 mAh g-1 with a high 
capacity retention of 92% after 

100 cycles at 0.2 C 
 

205 mAh g-1 with a high 
capacity retention of 97% after 
200 cycles at 0.2 C (Replacing 
K metal and electrolyte after 

140 cycles) 

175 mAh g-1 at 
an ultrahigh rate 

of 35 C 
(potassiated at 

0.1 C and 
depotassiated at 

35 C) 
 

40 mAh g-1 at 5 
C 

(charge/discharg
e at the same 

current density) 

This work 

Synthetic graphite 
(TIMCAL 

TIMREX SLP50) 

intercalation/de-
intercalation 

low 
100 mAh g-1 with a capacity 

retention of 51% after 50 
cycles at 0.5C 

~10 mAh g-1 at 5 
C 

[8] 

Natural graphite 
powder 

intercalation/de-
intercalation 

low 
~250 mAh g-1 with no capacity 
degradation after 50 cycles at 

25 mA g-1 

~240 mAh g-1 at 
an high rate of 15 
C (potassiated at 

0.1 C and 
depotassiated at 

15 C) 

[31] 

KS4 conducting 
agent 

intercalation/de-
intercalation 

low 
220 mAh g-1 with a capacity 
retention of 89% after 200 

cycles at 20 mA g-1 

60 mAh g-1 at 
200 mA g-1 

[1] 

Graphite 
intercalation/de-

intercalation 
low 

34 mAh g-1 with a capacity 
retention of 14% after 50 

cycles at 1.5 mA g-1 
- [9] 

Few layered 
graphene 

intercalation/de-
intercalation 

low 
140 mAhg-1 with a capacity 
retention of 67% after 100 

cycles at 100 mA g-1 

~ 5 mAh g-1 at 
200 mA g-1 

[10] 

Nitrogen-doped 
graphene 

intercalation/de-
intercalation 

low 
210 mAhg-1 with a capacity 
retention of 78% after 100 

cycles at 100 mA g-1 

~ 50 mAh g-1 at 
200 mA g-1 

[11] 

Polynanocrystalline 
Graphite 

insertion/deinsert
ion 

medium 
~ 60 mAh g-1 with a capacity 

retention of 50% after 300 
cycles at 100 mA g-1 

~ 50 mAh g-1 at 
500 mA g-1 

[12] 

Carbon nanofiber 
paper 

insertion/deinsert
ion 

medium 
270 mAh g-1 with no capacity 

decay after 80 cycles at 20 mA 
g-1 

~ 100 mAh g-1 at 
7.7 A g-1 

[13] 

PTCDA derived 
soft carbon 

insertion/deinsert
ion 

high 
~ 154.66 mAh g-1 with a 

capacity retention of 81% after 
50 cycles at 2C 

140 mAh g-1 at 5 
C 

[8] 

Carbon black 
insertion/deinsert

ion 
high 

~ 210 mAh g-1 with a capacity 
retention of 75% after 350 

cycles at 400 mA g-1 

~ 15 mAh g-1 at 
1 A g-1 

[14] 

Nitrogen-rich hard 
carbon 

insertion/deinsert
ion 

high 
205 mAh g-1 with no capacity 
decay after 200 cycles at 0.12 

C 

156 mAh g-1 at 
18 C 

[15] 

Hard-soft 
composite carbon 

insertion/deinsert
ion 

high 
200 mAh g-1 with a capacity 
retention of 93% after 200 

cycles at 0.2C 

81 mAh g-1 at 10 
C 

[16] 

Waste-Tire Rubber 
derived hard 

carbon (TC1600) 

insertion/deinsert
ion 

high 
141 mAh g-1 with a capacity 
retention of 78 %after 200 

cycles at 0.5C 

72 mAh g-1 at 2 
C 

[17] 

Ordered 
mesoporous carbon 

insertion/deinsert
ion 

high 
257.4 mAh g-1 with a capacity 

retention of ~83% after 100 
cycles at 50 mA g-1 

146.5 mAh g-1 at 
1 A g-1 

[18] 

Hard Carbon 
Microspheres 

insertion/deinsert
ion 

high 
216 mAh g-1 with a capacity 
retention of 83% after 100 

cycles at 0.1 C 

136 mAh g-1 at 
5C 

[19] 

Carbon nanofibers 
insertion/deinsert

ion 
high 

60 mAh g-1 with a capacity 
retention of ~20% after 20 

cycles at 50 mA g-1 
- [20] 

Phosphorus and 
oxygen dual-doped 

graphene 

insertion/deinsert
ion 

high 
474 mAh g-1 with a capacity 

retention of 84% after 50 
cycles at 50 mA g-1 

165 mAh g-1 at 2 
A g-1 

[21] 

N- and O‑Rich 
carbon nanofiber 
（CNF-O） 

insertion/deinsert
ion 

high 
160 mAh g-1 with a capacity 
retention of 80% after 300 

cycles at 1 C 

70 mAh g-1 at 10 
C 

[22] 
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Ultra-high 
pyridinic N-doped 

porous carbon 
monolith 

insertion/deinsert
ion 

high 
322 mAh g-1 with a capacity 
retention of 77% after 120 

cycles at 150 mA g-1 

199 mAh g-1 at 2 
A g-1 

[23] 

Nitrogen- and 
phosphorous co-

doped carbon 
microspheres 

(NPCM) 

insertion/deinsert
ion 

high 
270 mAh g-1 with a capacity 
retention of ~90% after 90 

cycles at 100 mA g-1 

189 mAh g-1 at 5 
A g-1 

[24] 

Few-layer F‑doped 
graphene foam 

insertion/deinsert
ion 

high 
165.9 mAh g-1 with a capacity 

retention of 52% after 200 
cycles at 500 mA g-1 

212.6 mAh g-1 at 
500 mA g-1 

[25] 

Nitrogen-doped 
carbon nanofibers 

insertion/deinsert
ion 

high 
215.2 mAh g-1 with a capacity 

retention of ~92% after 200 
cycles at 0.2 C 

84.7 mAh g-1 at 5 
C 

[26] 

Sulfur/Oxygen 
Codoped Porous 

Hard Carbon 
Microspheres 

insertion/deinsert
ion 

high 
226.6 mAh g-1 with a capacity 

retention of ~98% after 100 
cycles at 0.18 C 

158 mAh g-1 at 1 
A g-1 

[27] 

Nitrogen-Doped 
Carbon Nanotubes 

insertion/deinsert
ion 

medium 
254.7 mAh g-1 with a capacity 

retention of 86% after 300 
cycles at 50 mA g-1 

102 mAh g-1 at 2 
A g-1 

[28] 

Nitrogen/Oxygen 
Dual-Doped Hard 

Carbon 

insertion/deinsert
ion 

high 
230.6 mAh g-1 with a capacity 

retention of 76% after 100 
cycles at 50 mA g-1 

118 mAh g-1 at 3 
A g-1 

[29] 

N-doped 
hierarchically 
porous carbon 

insertion/deinsert
ion 

high 
296.8 mAh g-1 with a capacity 

retention of ~82% after 100 
cycles at 50 mA g-1 

193.1 mAh g-1 at 
500 mA g-1 

[30] 

 
 ‘-’ stands for unknown value. 
1 C = 279 mA g-1. 
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