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Abstract: Light can boost ozone efficiency in advanced oxidation processes (AOPs), either by direct
ozone photolysis with UV light or by using a photocatalyst that can be excited with UV-Vis or solar
light. The present review summarizes literature data on the combination of ozone and the g-C3N4

photocatalyst for the degradation of probe molecules in water, including oxalic, p-hydroxybenzoic and
oxamic acids as well as ciprofloxacin and parabens. g-C3N4 is a metal-free visible-light photocatalyst
based on abundant elements that establishes a synergistic effect with ozone, the efficiency of the
combination of the photocatalysis and ozonation being higher than the sum of the two treatments
independently. Available data indicate that this synergy derives from the higher efficiency in the
generation of hydroxyl radicals due to the efficient electron quenching by O3 of photogenerated
conduction band electrons in the g-C3N4 photocatalyst. Given the wide use of ozonizers in water
treatment, it is proposed that their implementation with g-C3N4 photocatalysis could also boost
ozone efficiency in the AOPs of real waste waters.

Keywords: carbon nitride; organic pollutants; ozone; photocatalysis; visible light

1. Introduction

Advanced oxidation processes (AOPs) are well established treatments for wastewater
remediation [1–10]. In the AOP, reactive oxygen species (ROS) are generated from oxygen
or oxidizing agents by chemical, photophysical, electrochemical or any other means [11–13].
One of the most powerful AOP treatments uses ozone (O3) as a precursor of ROS and light
to promote O3 conversion [14–16]. Since O3 absorbs in the UV region [17–19], the direct
irradiation of O3 requires artificial light from lamps, thus making the whole process more
costly. One improvement of this AOP based on O3 is the use of a photocatalyst that opens
the possibility to use visible and even natural sunlight [20–23].

Although g-C3N4 possesses similar structure to graphite, g-C3N4 exhibits a stacked
2D structure of sheets ideally consisting of s-tris triazine units condensed by tertiary
nitrogen atoms. These layers interact by van der Waals forces, thus imparting this material
with high thermal and chemical stability. The electronic structure of this material has a
band gap of about Eg~2.7 eV, thus finding applications in various fields, including the
heterogeneous catalysis and photodegradation of organic pollutants [24–29]. The energy
values of the conduction band and valence band are −1.1 and +1.6 eV, respectively, which
are suitable to perform various redox reactions (Scheme 1). Some of the interesting features
of g-C3N4 compared to other conventional photocatalysts are that g-C3N4 is a metal-free
solid possessing solely carbon and nitrogen, which are highly abundant in earth, cost-
effective, environmentally benign and highly safe, visible-light photoresponse and suitable
band energy alignment. These interesting factors encouraged researchers to develop
photocatalysts based on g-C3N4 for the degradation of organic pollutants without the use
of transition metals.
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Scheme 1. Conduction and valence band energy values of different types of g-C3N4 samples.
Reproduced with permission from Ref. [30]. Copyright 2017 Elsevier.

Preparation of g-C3N4 is always a challenging process and many synthetic methods
have been reported in the literature [31–33]. A variety of g-C3N4 structures have been
prepared by employing liquid-based approaches through shaping and casting to obtain
large surface-area solid; however, these approaches employ toxic chemicals [34,35]. One of
the common strategies to prepare g-C3N4 is through the solid-state reaction from cyanuric
chloride and/or, calcium cyanide, lithium azide, or melamine [36–38]. In recent years, the
thermal decomposition of single precursors such as cyanamide [39], dicyanamide [40],
melamine [41], thiourea [42], or urea [43] has also resulted in high-quality and low-defect
density g-C3N4 materials (Scheme 2).
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Scheme 2. Schematic illustration of main routes for synthesis of g-C3N4 by condensation of
cyanamide, dicyandiamide, melamine, thiourea, and urea. Reproduced with permission from
Ref. [44]. Copyright 2015 Wiley.

The morphology of pristine g-C3N4 can significantly be altered due to the presence of
acidic and C−N bond in its structure. Thinner nanosheets of g-C3N4 can also be prepared
retaining their characteristic structural features by exfoliation and treatment with inorganic
acids. Transition metal carbides can also be used to prepare thin g-C3N4 nanosheets, but
these metal carbides can also be an active site in the photocatalytic reaction. Porosity
has been tried to introduce in g-C3N4 by making use of the bubble effect, but it is still a
challenge to regulate pore size. Overall, the morphology of g-C3N4 can easily be designed
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and controlled for a required application with the advantages of easy recovery, high
mechanical resistance, and good photocatalytic performance.

As it will be discussed in different examples, the generation of •OH is highly prominent
upon visible-light irradiation of g-C3N4 in the presence of O3 due to the synergistic effect
summarized in Equations (1)–(4). In the Vis/O3/g-C3N4 photocatalyst, g-C3N4 can absorb
the photons under the visible-light irritation to generate e- upon CB and holes (h+) on the
VB (Equation (1)). The CB potential of g-C3N4 can be as low as −0.78 V (versus SCE at pH
7), which significantly facilitates CB electron capture by O3. As a result, an ozonide radical
(•O3

−) is produced (Equation (2)), and it quickly protonated in the medium to generate a
HO3

• radical (Equation (3)). This trioxide radical easily decomposes into •OH (Equation
(4)). The operation of these equations requires the combination of g-C3N4 and O3 and
would not take place in the absence of one of these reagents.

g-C3N4 + Vis→ e− + h+ (1)

O3 + e− → ·O−3 (2)

·O−3 + H+ → HO·3 (3)

HO·3 → O2 + HO· (4)

Considering the recent progress made on wastewater treatment through the AOP [45,46],
the present review focuses on the AOP combining O3 as the oxidizing reagent and graphitic
carbon nitride (g-C3N4) without any metal as the photocatalyst. However, readers are
directed to refer the catalytic activity of metal-doped TiO2 or Ag-ZnO photocatalysts for
the degradation of pollutants [47,48]. The purpose of this review is to show that g-C3N4,
in the absence of any precious metal or even any other transition metal, is a very efficient
visible-light photocatalyst to activate O3 generating ROS. Among the various possible ROS,
hydroxyl radicals (•OH) are the most powerful and aggressive species [49–52], since they
have a high oxidation potential. They are also a strong electrophilic species and are able to
abstract a hydrogen from virtually any C-H bond, generating carbon-centered radicals [53].
It will be shown in this review that the combination of O3 and a photocatalyst such as
g-C3N4 is a general method to produce high fluxes of •OH and, therefore, is a very powerful
AOP treatment.

In many cases, model molecules have been used to evaluate and demonstrate the
advantage of combining the g-C3N4 photocatalyst with visible light and O3. The present
review is organized according to the probe used to demonstrate the efficiency of combining
the g-C3N4 photocatalyst and O3. Oxalic acid (OA) as well as other reluctant organic
pollutants that are selectively degraded by •OH are the favorite probes to show the syn-
ergy between the g-C3N4 photocatalyst and O3. The last section summarizes the main
achievement reached so far with the g-C3N4 photocatalyst and ozonation and provides our
prospects for future developments in this field.

2. Oxalic Acid (OA)

In one of the studies showing the activity to generate •OH radicals, bulk g-C3N4
was synthesized either from thiourea (GCN-T) or dicyandiamide (GCN-D), respectively.
Figure 1 provides SEM images of the two GCN samples. The photocatalytic performance
of these solids was tested in the mineralization of OA and p-hydroxybenzoic acid (PHBA,
Figure 2) under UV and visible-light irradiation [54]. A synergy between photocatalysis
by g-C3N4 under visible light and ozonation was found. Under the optimized reaction
conditions, the rate constant observed for OA removal using Vis/O3/GCN-D was 20.6 times
higher than the sum of that in Vis/GCN-D and ozonation. On the other hand, TOC removal
of PHBA with Vis/O3/GCN-D was 98%, which is about 39.3% higher compared to the sum
of the value observed with Vis/GCN-D and ozonation. Interestingly, the Vis/O3/GCN-D
photocatalytic system showed stronger oxidizing capacity than UV/O3/GCN-D for OA
degradation with the same light intensity. The inferior activity of UV/O3/GCN-D was
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proposed to be due to the partial direct irradiation of ozone that competes with ozone
quenching of the photoinduced electrons on GCN that is the only operating process under
visible-light irradiation. Consequently, the amount of produced •OH decreased with UV in
comparison to visible light.
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Figure 2. TOC removal of PHBA degradation under ozonation or irradiation under various conditions
(gas flow rate: 100 mL/min; O3 concentration: 30 mg/L; light intensity: 365 mW/cm2; initial volume
of solution: 400 mL; initial PHBA concentration: 40 mg/L; catalyst dosage: 1 g/L). Reproduced with
permission from Ref. [54]. Copyright 2016 Elsevier.

Recently, the photocatalytic generation of charge separation with the appearance of
electrons and holes in C3N4 and their trapping by dissolved O2 and O3, as well as ROS
evolution, was experimentally determined by spin-trapping upon feeding O3 into the
Vis/O2/C3N4 photocatalytic system in aqueous media [55]. EPR measurements showed
that a gas mixture of O3 (2.1 mol %)−O2 (97.9 mol %) can facilely trap about double to
triple the amount of conduction band (CB)-e− in an aqueous C3N4 suspension irradiated
by visible light compared to pure O2. This is mainly due to the much higher redox potential
and water solubility of O3 in comparison to O2. The capture of CB-e− by O2 forms •O2

−,
which later converted to •OH through the H2O2-mediated consecutive three-electron-
reduction pathway. Quantification of the EPR signal has shown a 17-fold enhancement in
the formation of •OH (characterized by the DMPO-OH adduct) and an 84-fold increase in
the rate of OA mineralization when 2.1 mol % O3 is introduced in the Vis/O2(O3)/bulk
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C3N4 photocatalytic system (Figure 3). Interestingly, the rate constant was further increased
by a factor of 41 when bulk C3N4 is exfoliated to the nanosheet (NS) C3N4 form (Figure 4).
These results indicate that the use of NS C3N4 exhibits superior performance compared to
bulk C3N4 due to its high surface area and upshifted CB edge, which favors more CB-e− to
be trapped by dissolved O3 and O2 and the formation of higher •OH yield in photocatalytic
ozonation compared to bulk C3N4.
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In another report, systematic studies were performed with a series of dimension-
structured nanocarbons as the visible-light photocatalysts in the presence of O3 as the metal-
free AOP catalyst for water disinfection [56]. Single-walled carbon nanotube (SWCNT),
multi-walled carbon nanotube (MWCNT), reduced graphene oxide (rGO) and fullerene
(C60) exhibited superior catalytic performance in catalytic ozonation, while g-C3N4 and
C60 outperformed in the visible light-O3 coupled photocatalytic process. The results are
presented in Figure 5. The coupling coefficient of visible light with ozone on g-C3N4
measuring the synergy arising from the combination of ozonation and photocatalysis in
comparison with the sum of the separate treatments was found to be as 95.8. Both g-C3N4
and C60 promoted the synergism between the visible-light photocatalysis and O3 in the
generation of •OH radicals for the efficient removal of OA compared to O3/nanocarbon
(SWCNT, MWCNT and rGO) or even benchmark photocatalysts such as Vis/O3/metal
oxides (WO3 and TiO2). Among these carbon materials, the superior activity of g-C3N4
is due to the narrow bandgap and upshifted CB minimum of g-C3N4 for the visible-light
photocatalytic ozonation.
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In another study, the coupling of g-C3N4 or chlorine modified g-C3N4 (Cl/g-C3N4)
photocatalysts with ozonation was employed as an effective strategy for the mineralization
of OA under a visible-light irradiation condition [57]. The use of g-C3N4 and Cl/g-C3N4
was able to trigger a synergy between photocatalysis and ozonation with a coupling
coefficient of 17.8 and 9.9, respectively, compared to the sum of the OA degradation by
the two treatments separately (Figure 6). Further, the combination of CB electrons and
ozone effectively promoted surface-charge separation of g-C3N4 and self-decomposition of
ozone to •OH in a much higher selectivity. The experimental results indicated that •OH is
primarily responsible for the mineralization of OA in Vis/O3/g-C3N4, while in comparison
•O2

− and other ROS are more important than •OH radicals in the g-C3N4 photocatalytic
mineralization of OA. The removal efficiency of OA was 28% with Cl/g-C3N4 after 120 min
under visible-light irradiation, which is 10% higher compared to g-C3N4. Further, the
photocatalytic efficiency of Cl/g-C3N4 was 1.55 times higher than pure g-C3N4, a fact that
has been attributed to the higher active surface area upon chlorination of g-C3N4.
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In one of the earliest reports, g-C3N4 prepared from thiourea in air at 550 ◦C was
reported as an active photocatalyst for the removal of OA (Figure 7) and bisphenol A
(Figure 8) coupling photocatalysis and ozonation.[58] Experimental data showed that OA
degradation using g-C3N4/Vis/O3 was 65.2%, which is higher than the sum of the OA
degradation values reached by g-C3N4/Vis and O3 separately. The C/C0 of g-C3N4+O3
is higher than with g-C3N4+Vis due to the generation of a high flux of •OH radicals. On
the other hand, the TOC removal of bisphenol A with g-C3N4/Vis/O3 was 2.17 times
higher than the sum of the ratio with g-C3N4/Vis and O3. This superior performance of the
g-C3N4/Vis/O3 system was attributed to the synergistic effect between photocatalysis and
ozonation by g-C3N4. This synergistic effect results in the generation of higher •OH yields,
which are the species responsible for the enhanced degradation of organic pollutants.
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As commented earlier, C3N4 has been effectively employed as heterogeneous photo-
catalysts for water disinfection under visible-light irradiation [59]. However, one of the
issues that needs to be addressed is the stability of C3N4 under photocatalytic conditions
since the reaction process generates ROS and other reactive radical species. In this aspect,
Cao and coworkers have reported the chemical stability of C3N4 under exposure to ROS
during photocatalytic water treatment (Figure 9). The experimental results indicated that
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•OH can attack the photocatalyst removing the heptazine unit from the C3N4 sheets, gener-
ating secondary pollutants in the aqueous environment. In contrast, C3N4 is chemically
stable toward •O2

− and O3. Interestingly, the decomposition of C3N4 was fully or partially
inhibited in the presence of organic pollutants due to their competition for •OH. Hence,
the photocatalyst exhibited high activity and stability under these conditions. This work
provides useful information about the chemical instability of C3N4-based materials in those
processes where •OH is the major involved ROS in various applications such as water
treatment and organic synthesis.
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3. p-Hydroxybenzoic Acid (PHBA)
Porous g-C3N4 (PGCN) has recently received wide attention due to the easy access

to the interior of the nanoporous framework [60,61]. In this aspect, a one-pot template-
free approach was employed to obtain honeycomb-like PGCN by the reaction between
ammonium chloride and the precursor of g-C3N4, followed by calcination. The photocat-
alytic activity of PGCN was examined in the photocatalytic activity for PHBA degradation
upon visible-light irradiation (Figure 10) [62]. However, PHBA was difficult to mineralize
by PGCN as a photocatalyst; an unfavorable factor was the larger band gap of PGCN
compared to g-C3N4. To overcome these difficulties, the photocatalytic activity of PGCN
was coupled with ozonation in a Vis/PGCN/O3 AOP. The photoactivity data show that
photocatalysis by PGCN and O3 establish a synergistic effect. Under optimized AOP
conditions, Vis/O3/PGCN promotes quantitative PHBA mineralization with the dosage of
O3 as 1.5 mg/min. The process is further accelerated by increasing the O3 dosage. This
synergism derives from the enhanced generation of •OH. These generated •OH radicals
spontaneously react with PHBA and its O3-recalcitrant intermediates, such as carboxylic
acids, leading to complete mineralization to CO2 and H2O (Figure 11). This is a nice
example illustrating the possible integration of sunlight/PGCN with O3 as a metal-free
photocatalyst for the AOP in water disinfection.
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3. Ciprofloxacin

In another report, the photocatalytic degradation of a ciprofloxacin (CIP) antibiotic in
water was performed using nanosheets of g-C3N4 as catalysts under visible-light irradiation
using white light LEDs. [63] The degradation of CIP was around 90% in 60 min using g-
C3N4 under ozonation conditions using visible-light irradiation. Further, the other objective
of this work was the identification of the intermediate byproducts formed upon degradation
and to establish the sequential pathway for CIP degradation with possible experimental
evidence from liquid chromatography coupled to high-resolution mass spectrometry using
a Q-TOF instrument. Seven intermediates were proposed, three of them reported for
the first time. Kinetic studies showed that CIP degradation proceeds through a pseudo-
first order kinetics with a rate constant of 0.035 min−1. The addition of triethanolamine
significantly decreased the rate constant to 0.00072 min−1, suggesting that CIP degradation
is initiated by the holes generated in the catalyst. In addition, the main pathway for CIP
degradation was the attack to the piperazine ring by •OH radicals, followed by the rupture
of the heterocyclic ring and a suite of consecutive reactions, including the loss of two carbon
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atoms as CO2, defluorination, oxidation and cleavage of the cycles of this intermediate.
Figure 12 summarizes the proposed CIP degradation sequence.
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4. Oxamic Acid (OMA)

Recently, g-C3N4 has been reported as a heterogeneous photocatalyst for the photo-
catalytic ozonation of OMA in aqueous solution. The bulk g-C3N4 material was thermally
post-treated at 500 ◦C to obtain g-C3N4-500 that exhibits an increased surface area respect to
the bulk material [64]. Experimental data show that the photocatalytic ozonation by C3N4
was highly effective in the removal of OMA, reaching complete OMA degradation with
C3N4-500 after 120 min of irradiation (Figure 13). The high activity of C3N4-500 is due to the
combination of photoinduced charge separation along with ozonation to produce a higher
number of •OH radicals. On the other hand, the decrease in the rate of OMA removal in
the presence of scavengers is compatible with photogenerated holes on the catalyst surface,
playing a dominant role in OMA degradation in comparison to •OH radicals. Although the
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solid was reused for three cycles without much change in its physicochemical properties, a
slight decay in the degradation performance was observed and attributed to modifications
in the C3N4-500 exposed structure occurring in the course of the photocatalytic reaction.
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5. Parabens

Besides the above discussed examples with visible-light irradiation, g-C3N4 was re-
ported as a cost-effective and efficient photocatalyst for the degradation of a mixture of
parabens through photo-assisted processes [65]. Control experiments indicated that the
use of UV-A radiation exhibited higher activation of g-C3N4 compared to visible light.
The photocatalytic ozonation process showed higher degradation rates of parabens with a
ozone dosage lower than the corresponding dark ozonation process. Optimization studies
revealed that the medium with basic and neutral conditions (pH = 7–11) provides a better
interaction between catalysts and contaminants as well as the highest generation of radicals.
Under the optimized reaction conditions of a 500 mg L−1 catalyst concentration and a
paraben concentration of 1 mg L−1, >95% removal was achieved for the three parabens
(methyl-, ethyl- and propylparaben) in less than 15 min (Figure 14). Further, these condi-
tions were also effective for the degradation of Allivibrio fischeri bacteria by a significant
decrease in its luminescence inhibition, providing a non-toxic, disinfected solution.

The Table 1 summarizes the evidence for the generation of •OH formation and their
quantification methods for the various catalysts that have been discussed in this review.

Table 1. Summary of the of detection of •OH radicals and their quantification by g-C3N4 catalysts
under visible-light irradiation with O3.

Catalyst Detection Method Quantification Ref.

Vis/O3/GCN-D Trapping experiments with N2, t-butanol and
p-benzoquinone - [54]

Vis/O2/C3N4 DMPO-OH signal evidenced by EPR 17-fold enhancement of •OH
formation [55]

Vis/O3/g-C3N4
Trapping experiment with t-butanol and the
detection of DMPO-OH by EPR - [56]
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Table 1. Cont.

Catalyst Detection Method Quantification Ref.

Vis/O3/Cl/g-C3N4
Trapping experiments with N2, t-butanol and
p-benzoquinone - [57]

g-C3N4/Vis/O3
Trapping experiments with t-butanol and
triethanolamine - [58]

Vis/O3/C3N4 DMPO-OH signal evidenced by EPR Vis/O3/g-C3N4 generates 6–18
times more •OH [59]

Vis/O3/PGCN DMPO-OH signal evidenced by EPR - [62]

Vis/O3/C3N4 nanosheets Trapping experiments with t-butanol and
triethanolamine - [63]

Vis/O3/C3N4-500 Trapping experiments with t-butanol and
ethylenediaminetetraacetic acid - [64]

O3/g-C3N4/UV-A - - [65]Nanomaterials 2022, 12, x 13 of 16 
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6. Conclusions and Prospects

The examples discussed above refer to the degradation of probe molecules by com-
bining photocatalysis by g-C3N4 and O3. Activity data have shown the involvement of
synergistic effects by this combination as the AOP, resulting in a degradation level that is
much higher than the sum of the degradation degree reached independently by any of the
two components. The available mechanistic data indicate that this synergy derives from the
higher efficiency of •OH formation with the combined g-C3N4 photocatalysis/ozonation
process due to the capture of the photogenerated electrons in the g-C3N4 semiconductor
by O3 as electron acceptor. It has also been commented that, although g-C3N4 undergoes
self-attack by photogenerated •OH, releasing some additional pollutant in water, self-
degradation is a minor process when there are some organic molecules present competing
for •OH attack. In that way, together with the absence of any transition metal, the com-
bination of the g-C3N4 photocatalyst and ozonation appears as a practical method, easy
to implement for wastewater treatment. Feasibility of implementation also derives from
the commercially available large-scale ozonizers that have been already deployed in many
plants for wastewater treatment and, thus, a burst in the efficiency can be easily anticipated
just by complementing these ozonizers with natural sunlight photocatalysis. The target in
this field will be just to confirm laboratory data with probe molecules in real wastewater
treatment plants.
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