
GraphLab: A New Framework For Parallel Machine Learning

Yucheng Low

Carnegie Mellon University

ylow@cs.cmu.edu

Joseph Gonzalez

Carnegie Mellon University

jegonzal@cs.cmu.edu

Aapo Kyrola

Carnegie Mellon University

akyrola@cs.cmu.edu

Danny Bickson

Carnegie Mellon University

bickson@cs.cmu.edu

Carlos Guestrin

Carnegie Mellon University

guestrin@cs.cmu.edu

Joseph M. Hellerstein

UC Berkeley

hellerstein@cs.berkeley.edu

Abstract

Designing and implementing efficient, provably

correct parallel machine learning (ML) algo-

rithms is challenging. Existing high-level par-

allel abstractions like MapReduce are insuf-

ficiently expressive while low-level tools like

MPI and Pthreads leave ML experts repeatedly

solving the same design challenges. By tar-

geting common patterns in ML, we developed

GraphLab, which improves upon abstractions

like MapReduce by compactly expressing asyn-

chronous iterative algorithms with sparse com-

putational dependencies while ensuring data con-

sistency and achieving a high degree of parallel

performance. We demonstrate the expressiveness

of the GraphLab framework by designing and

implementing parallel versions of belief propaga-

tion, Gibbs sampling, Co-EM, Lasso and Com-

pressed Sensing. We show that using GraphLab

we can achieve excellent parallel performance on

large scale real-world problems.

1 INTRODUCTION

Exponential gains in hardware technology have enabled so-

phisticated machine learning (ML) techniques to be applied

to increasingly challenging real-world problems. However,

recent developments in computer architecture have shifted

the focus away from frequency scaling and towards paral-

lel scaling, threatening the future of sequential ML algo-

rithms. In order to benefit from future trends in processor

technology and to be able to apply rich structured models

to rapidly scaling real-world problems, the ML community

must directly confront the challenges of parallelism.

However, designing and implementing efficient and prov-

ably correct parallel algorithms is extremely challenging.

While low level abstractions like MPI and Pthreads pro-

vide powerful, expressive primitives, they force the user

to address hardware issues and the challenges of parallel

data representation. Consequently, many ML experts have

turned to high-level abstractions, which dramatically sim-

plify the design and implementation of a restricted class of

parallel algorithms. For example, the MapReduce abstrac-

tion [Dean and Ghemawat, 2004] has been successfully ap-

plied to a broad range of ML applications [Chu et al., 2006,

Wolfe et al., 2008, Panda et al., 2009, Ye et al., 2009].

However, by restricting our focus to ML algorithms that

are naturally expressed in MapReduce, we are often forced

to make overly simplifying assumptions. Alternatively, by

coercing efficient sequential ML algorithms to satisfy the

restrictions imposed by MapReduce, we often produce in-

efficient parallel algorithms that require many processors

to be competitive with comparable sequential methods.

In this paper we propose GraphLab, a new parallel frame-

work for ML which exploits the sparse structure and com-

mon computational patterns of ML algorithms. GraphLab

enables ML experts to easily design and implement effi-

cient scalable parallel algorithms by composing problem

specific computation, data-dependencies, and scheduling.

We provide an efficient shared-memory implementation1

of GraphLab and use it to build parallel versions of four

popular ML algorithms. We focus on the shared-memory

multiprocessor setting because it is both ubiquitous and has

few effective high-level abstractions. We evaluate the algo-

rithms on a 16-processor system and demonstrate state-of-

the-art performance. Our main contributions include:

• A graph-based data model which simultaneously rep-

resents data and computational dependencies.

• A set of concurrent access models which provide a

range of sequential-consistency guarantees.

• A sophisticated modular scheduling mechanism.

• An aggregation framework to manage global state.

• GraphLab implementations and experimental evalua-

tions of parameter learning and inference in graphi-

cal models, Gibbs sampling, CoEM, Lasso and com-

pressed sensing on real-world problems.

1The C++ reference implementation of the GraphLab is avail-
able at http://select.cs.cmu.edu/code.

2 EXISTING FRAMEWORKS

There are several existing frameworks for designing and

implementing parallel ML algorithms. Because GraphLab

generalizes these ideas and addresses several of their criti-

cal limitations we briefly review these frameworks.

2.1 MAP-REDUCE ABSTRACTION

A program implemented in the MapReduce framework

consists of a Map operation and a Reduce operation. The

Map operation is a function which is applied independently

and in parallel to each datum (e.g., webpage) in a large data

set (e.g., computing the word-count). The Reduce oper-

ation is an aggregation function which combines the Map

outputs (e.g., computing the total word count). MapReduce

performs optimally only when the algorithm is embarrass-

ingly parallel and can be decomposed into a large num-

ber of independent computations. The MapReduce frame-

work expresses the class of ML algorithms which fit the

Statistical-Query model [Chu et al., 2006] as well as prob-

lems where feature extraction dominates the run-time.

The MapReduce abstraction fails when there are computa-

tional dependencies in the data. For example, MapReduce

can be used to extract features from a massive collection of

images but cannot represent computation that depends on

small overlapping subsets of images. This critical limita-

tion makes it difficult to represent algorithms that operate

on structured models. As a consequence, when confronted

with large scale problems, we often abandon rich struc-

tured models in favor of overly simplistic methods that are

amenable to the MapReduce abstraction.

Many ML algorithms iteratively transform parameters dur-

ing both learning and inference. For example, algorithms

like Belief Propagation (BP), EM, gradient descent, and

even Gibbs sampling, iteratively refine a set of parameters

until some termination condition is achieved. While the

MapReduce abstraction can be invoked iteratively, it does

not provide a mechanism to directly encode iterative com-

putation. As a consequence, it is not possible to express

sophisticated scheduling, automatically assess termination,

or even leverage basic data persistence.

The popular implementations of the MapReduce abstrac-

tion are targeted at large data-center applications and there-

fore optimized to address node-failure and disk-centric par-

allelism. The overhead associated with the fault-tolerant,

disk-centric approach is unnecessarily costly when applied

to the typical cluster and multi-core settings encountered

in ML research. Nonetheless, MapReduce is used in small

clusters and even multi-core settings [Chu et al., 2006]. The

GraphLab implementation2 described in this paper does not

address fault-tolerance or parallel disk access and instead

2The GraphLab abstraction is intended for both the multicore
and cluster settings and a distributed, fault-tolerant implementa-
tion is ongoing research.

assumes that processors do not fail and all data is stored in

shared-memory. As a consequence, GraphLab does not in-

cur the unnecessary disk overhead associated with MapRe-

duce in the multi-core setting.

2.2 DAG ABSTRACTION

In the DAG abstraction, parallel computation is represented

as a directed acyclic graph with data flowing along edges

between vertices. Vertices correspond to functions which

receive information on inbound edges and output results

to outbound edges. Implementations of this abstraction in-

clude Dryad [Isard et al., 2007] and Pig Latin [Olston et al.,

2008].

While the DAG abstraction permits rich computational de-

pendencies it does not naturally express iterative algo-

rithms since the structure of the dataflow graph depends on

the number of iterations (which must therefore be known

prior to running the program). The DAG abstraction also

cannot express dynamically prioritized computation.

2.3 SYSTOLIC ABSTRACTION

The Systolic abstraction [Kung and Leiserson, 1980] (and

the closely related Dataflow abstraction) extends the DAG

framework to the iterative setting. Just as in the DAG Ab-

straction, the Systolic abstraction forces the computation to

be decomposed into small atomic components with limited

communication between the components. The Systolic ab-

straction uses a directed graph G = (V,E) which is not

necessarily acyclic) where each vertex represents a proces-

sor, and each edge represents a communication link. In

a single iteration, each processor reads all incoming mes-

sages from the in-edges, performs some computation, and

writes messages to the out-edges. A barrier synchroniza-

tion is performed between each iteration, ensuring all pro-

cessors compute and communicate in lockstep.

While the Systolic framework can express iterative com-

putation, it is unable to express the wide variety of update

schedules used in ML algorithms. For example, while gra-

dient descent may be run within the Systolic abstraction us-

ing a Jacobi schedule it is not possible to implement coor-

dinate descent which requires the more sequential Gauss-

Seidel schedule. The Systolic abstraction also cannot

express the dynamic and specialized structured schedules

which were shown by Gonzalez et al. [2009a,b] to dramat-

ically improve the performance of algorithms like BP.

3 THE GRAPHLAB ABSTRACTION

By targeting common patterns in ML, like sparse data

dependencies and asynchronous iterative computation,

GraphLab achieves a balance between low-level and

high-level abstractions. Unlike many low-level abstrac-

tions (e.g., MPI, PThreads), GraphLab insulates users

from the complexities of synchronization, data races and

deadlocks by providing a high level data representation

through the data graph and automatically maintained data-

consistency guarantees through configurable consistency

models. Unlike many high-level abstractions (i.e., MapRe-

duce), GraphLab can express complex computational de-

pendencies using the data graph and provides sophisti-

cated scheduling primitives which can express iterative

parallel algorithms with dynamic scheduling.

To aid in the presentation of the GraphLab framework we

use Loopy Belief Propagation (BP) [Pearl, 1988] on pair-

wise Markov Random Fields (MRF) as a running example.

A pairwise MRF is an undirected graph over random vari-

ables where edges represent interactions between variables.

Loopy BP is an approximate inference algorithm which es-

timates the marginal distributions by iteratively recomput-

ing parameters (messages) associated with each edge until

some convergence condition is achieved.

3.1 DATA MODEL

The GraphLab data model consists of two parts: a directed

data graph and a shared data table. The data graph

G = (V,E) encodes both the problem specific sparse com-

putational structure and directly modifiable program state.

The user can associate arbitrary blocks of data (or param-

eters) with each vertex and directed edge in G. We denote

the data associated with vertex v by Dv , and the data asso-

ciated with edge (u → v) by Du→v . In addition, we use

(u → ∗) to represent the set of all outbound edges from

u and (∗ → v) for inbound edges at v. To support glob-

ally shared state, GraphLab provides a shared data table

(SDT) which is an associative map, T [Key] → Value, be-

tween keys and arbitrary blocks of data.

In the Loopy BP, the data graph is the pairwise MRF, with

the vertex data Dv to storing the node potentials and the

directed edge data Du→v storing the BP messages. If

the MRF is sparse then the data graph is also sparse and

GraphLab will achieve a high degree of parallelism. The

SDT can be used to store shared hyper-parameters and the

global convergence progress.

3.2 USER DEFINED COMPUTATION

Computation in GraphLab can be performed either through

an update function which defines the local computation,

or through the sync mechanism which defines global ag-

gregation. The Update Function is analogous to the Map in

MapReduce, but unlike in MapReduce, update unctions are

permitted to access and modify overlapping contexts in the

graph. The sync mechanism is analogous to the Reduce

operation, but unlike in MapReduce, the sync mechanism

runs concurrently with the update functions.

3.2.1 Update Functions

A GraphLab update function is a stateless user-defined

function which operates on the data associated with small

neighborhoods in the graph and represents the core element

Algorithm 1: Sync Algorithm on k

t← r
(0)
k

foreach v ∈ V do
t← Foldk(Dv, t)

T [k]← Apply
k
(t)

of computation. For every vertex v, we define Sv as the

neighborhood of v which consists of v, its adjacent edges

(both inbound and outbound) and its neighboring vertices

as shown in Fig. 1(a). We define DSv
as the data cor-

responding to the neighborhood Sv . In addition to DSv
,

update functions also have read-only access, to the shared

data table T. We define the application of the update func-

tion f to the vertex v as the state mutating computation:

DSv
← f(DSv

,T).

We refer to the neighborhood Sv as the scope of v because

Sv defines the extent of the graph that can be accessed by

f when applied to v. For notational simplicity, we denote

f(DSv
,T) as f(v). A GraphLab program may consist of

multiple update functions and it is up to the scheduling

model (see Sec. 3.4) to determine which update functions

are applied to which vertices and in which parallel order.

3.2.2 Sync Mechanism

The sync mechanism aggregates data across all vertices in

the graph in a manner analogous to the Fold and Reduce

operations in functional programming. The result of the

sync operation is associated with a particular entry in the

Shared Data Table (SDT). The user provides a key k, a fold

function (Eq. (3.1)), an apply function (Eq. (3.3)) as well

as an initial value r
(0)
k to the SDT and an optional merge

function used to construct parallel tree reductions.

r
(i+1)
k ← Foldk

(

Dv, r
(i)
k

)

(3.1)

rl
k ← Mergek

(

ri
k, r

j
k

)

(3.2)

T [k] ← Applyk(r
(|V |)
k) (3.3)

When the sync mechanism is invoked, the algorithm in

Alg. 1 uses the Foldk function to sequentially aggregate

data across all vertices. The Foldk function obeys the same

consistency rules (described in Sec. 3.3) as update func-

tions and is therefore able to modify the vertex data. If

the Mergek function is provided a parallel tree reduction is

used to combine the results of multiple parallel folds. The

Applyk then finalizes the resulting value (e.g., rescaling)

before it is written back to the SDT with key k.

The sync mechanism can be set to run periodically in the

background while the GraphLab engine is actively apply-

ing update functions or on demand triggered by update

functions or user code. If the sync mechanism is executed

Scope
v

v
DataData

DataData DataData

DataDataDataDataDataData

DataData

DataData

DataData

DataDataDataData

DataData

DataData

(a) Scope

DataData

DataData DataData

DataDataDataDataDataData

DataData

DataData

DataData

DataDataDataData

DataData

DataData

(b) Consistency Models

Figure 1: (a) The scope, Sv , of vertex v consists of all the data at
the vertex v, its inbound and outbound edges, and its neighboring
vertices. The update function f when applied to the vertex v can
read and modify any data within Sv . (b). We illustrate the 3
data consistency models by drawing their exclusion sets as a ring
where no two update functions may be executed simultaneously
if their exclusions sets (rings) overlap.

in the background, the resulting aggregated value may not

be globally consistent. Nonetheless, many ML applications

are robust to approximate global statistics.

In the context of the Loopy BP example, the update func-

tion is the BP message update in which each vertex recom-

putes its outbound messages by integrating the inbound

messages. The sync mechanism is used to monitor the

global convergence criterion (for instance, average change

or residual in the beliefs). The Foldk function accumulates

the residual at the vertex, and the Applyk function divides

the final answer by the number of vertices. To monitor

progress, we let GraphLab run the sync mechanism as a

periodic background process.

3.3 DATA CONSISTENCY

Since scopes may overlap, the simultaneous execution of

two update functions can lead to race-conditions resulting

in data inconsistency and even corruption. For example,

two function applications to neighboring vertices could si-

multaneously try to modify data on a shared edge resulting

in a corrupted value. Alternatively, a function trying to nor-

malize the parameters on a set of edges may compute the

sum only to find that the edge values have changed.

GraphLab provides a choice of three data consistency mod-

els which enable the user to balance performance and data

consistency. The choice of data consistency model deter-

mines the extent to which overlapping scopes can be exe-

cuted simultaneously. We illustrate each of these models

in Fig. 1(b) by drawing their corresponding exclusion sets.

GraphLab guarantees that update functions never simulta-

neously share overlapping exclusion sets. Therefore larger

exclusion sets lead to reduced parallelism by delaying the

execution of update functions on nearby vertices.

The full consistency model ensures that during the exe-

cution of f(v) no other function will read or modify data

within Sv . Therefore, parallel execution may only occur on

vertices that do not share a common neighbor. The slightly

weaker edge consistency model ensures that during the ex-

ecution of f(v) no other function will read or modify any

of the data on v or any of the edges adjacent to v. Under

the edge consistency model, parallel execution may only

occur on non-adjacent vertices. Finally, the weakest vertex

consistency model only ensures that during the execution

of f(v) no other function will be applied to v. The vertex

consistency model is therefore prone to race conditions and

should only be used when reads and writes to adjacent data

can be done safely (In particular repeated reads may return

different results). However, by permitting update functions

to be applied simultaneously to neighboring vertices, the

vertex consistency model permits maximum parallelism.

Choosing the right consistency model has direct implica-

tions to program correctness. One method to prove correct-

ness of a parallel algorithm is to show that it is equivalent

to a correct sequential algorithm. To capture the relation

between sequential and parallel execution of a program we

introduce the concept of sequential consistency:

Definition 3.1 (Sequential Consistency). A GraphLab pro-

gram is sequentially consistent if for every parallel execu-

tion, there exists a sequential execution of update functions

that produces an equivalent result.

The sequential consistency property is typically a sufficient

condition to extend algorithmic correctness from the se-

quential setting to the parallel setting. In particular, if the

algorithm is correct under any sequential execution of up-

date functions, then the parallel algorithm is also correct if

sequential consistency is satisfied.

Proposition 3.1. GraphLab guarantees sequential consis-

tency under the following three conditions:

1. The full consistency model is used

2. The edge consistency model is used and update func-

tions do not modify data in adjacent vertices.

3. The vertex consistency model is used and update func-

tions only access local vertex data.

In the Loopy BP example the update function only needs to

read and modify data on the adjacent edges. Therefore the

edge consistency model ensures sequential consistency.

3.4 SCHEDULING

The GraphLab update schedule describes the order in

which update functions are applied to vertices and is rep-

resented by a parallel data-structure called the scheduler.

The scheduler abstractly represents a dynamic list of tasks

(vertex-function pairs) which are to be executed by the

GraphLab engine.

Because constructing a scheduler requires reasoning

about the complexities of parallel algorithm design, the

GraphLab framework provides a collection of base sched-

ules. To represent Jacobi style algorithms (e.g., gradi-

ent descent) GraphLab provides a synchronous sched-

uler which ensures that all vertices are updated simulta-

neously. To represent Gauss-Seidel style algorithms (e.g.,

Gibbs sampling, coordinate descent), GraphLab provides a

round-robin scheduler which updates all vertices sequen-

tially using the most recently available data.

Many ML algorithms (e.g., Lasso, CoEM, Residual BP) re-

quire more control over the tasks that are created and the

order in which they are executed. Therefore, GraphLab

provides a collection of task schedulers which permit up-

date functions to add and reorder tasks. GraphLab pro-

vides two classes of task schedulers. The FIFO sched-

ulers only permit task creation but do not permit task re-

ordering. The prioritized schedules permit task reordering

at the cost of increased overhead. For both types of task

scheduler GraphLab also provide relaxed versions which

increase performance at the expense of reduced control:

Strict Order Relaxed Order

FIFO Single Queue Multi Queue / Partitioned
Prioritized Priority Queue Approx. Priority Queue

In addition GraphLab provides the splash scheduler based

on the loopy BP schedule proposed by Gonzalez et al.

[2009a] which executes tasks along spanning trees.

In the Loopy BP example, different choices of scheduling

leads to different BP algorithms. Using the Synchronous

scheduler corresponds to the classical implementation of

BP and using priority scheduler corresponds to Residual

BP [Elidan et al., 2006].

3.4.1 Set Scheduler

Because scheduling is important to parallel algorithm de-

sign, GraphLab provides a scheduler construction frame-

work called the set scheduler which enables users to safely

and easily compose custom update schedules. To use the

set scheduler the user specifies a sequence of vertex set

and update function pairs ((S1, f1), (S2, f2) · · · (Sk, fk)),
where Si ⊆ V and fi is an update function. This sequence

implies the following execution semantics:

for i = 1 · · · k do
Execute fi on all vertices in Si in parallel.

Wait for all updates to complete

The amount of parallelism depends on the size of each set;

the procedure is highly sequential if the set sizes are small.

Executing the schedule in the manner described above can

lead to the majority of the processors waiting for a few pro-

cessors to complete the current set. However, by leveraging

the causal data dependencies encoded in the graph structure

we are able to construct an execution plan which identifies

tasks in future sets that can be executed early while still

producing an equivalent result.

vv1

Update1

vv2

vv5

vv3

Update2

vv4

Desired Execution Sequence

vv1

Update1

vv2

vv5

vv3

Update2

vv4

Execution Plan

vv1

vv3

vv5

vv4

vv2

Data Graph

Figure 2: A simple example of the set scheduler planning pro-
cess. Given the data graph, and a desired sequence of execution
where v1, v2 and v5 are first run in parallel, then followed by v3

and v4. If the edge consistency model is used, we observe that the
execution of v3 depends on the state of v1, v2 and v5, but the v4

only depends on the state of v5. The dependencies are encoded in
the execution plan on the right. The resulting plan allows v4 to be
immediately executed after v5 without waiting for v1 and v2.

Data

DataData DataData

Data

DataDataDataDataDataData

DataData

DataData

Data

1

DataData

2

DataData

3

DataData

4

DataData

Data Dependency Graph

Shared Data Table

CPU 1

CPU 2

CPU 3

Update1(v1)

Update2(v5)

Update1(v3)

Update1(v9)
…

Execute Update

Scheduler

Figure 3: A summary of the GraphLab framework. The user pro-
vides a graph representing the computational data dependencies,
as well as a SDT containing read only data. The user also picks a
scheduling method or defines a custom schedule, which provides
a stream of update tasks in the form of (vertex, function) pairs to
the processors.

The set scheduler compiles an execution plan by rewrit-

ing the execution sequence as a Directed Acyclic Graph

(DAG), where each vertex in the DAG represents an update

task in the execution sequence and edges represent execu-

tion dependencies. Fig. 2 provides an example of this pro-

cess. The DAG imposes a partial ordering over tasks which

can be compiled into a parallel execution schedule using

the greedy algorithm described by Graham [1966].

3.5 TERMINATION ASSESSMENT

Efficient parallel termination assessment can be challeng-

ing. The standard termination conditions used in many it-

erative ML algorithms require reasoning about the global

state. The GraphLab framework provides two methods

for termination assessment. The first method relies on

the scheduler which signals termination when there are no

remaining tasks. This method works for algorithms like

Residual BP, which use task schedulers and stop produc-

ing new tasks when they converge. The second termination

method relies on user provided termination functions which

examine the SDT and signal when the algorithm has con-

verged. Algorithms, like parameter learning, which rely on

global statistics use this method.

3.6 SUMMARY AND IMPLEMENTATION

A GraphLab program is composed of the following parts:

1. A data graph which represents the data and compu-

tational dependencies.

2. Update functions which describe local computation

3. A Sync mechanism for aggregating global state.

4. A data consistency model (i.e., Fully Consistent,

Edge Consistent or Vertex Consistent), which deter-

mines the extent to which computation can overlap.

5. Scheduling primitives which express the order of

computation and may depend dynamically on the data.

We implemented an optimized version of the GraphLab

framework in C++ using PThreads. The resulting

GraphLab API is available under the LGPL license at

http://select.cs.cmu.edu/code. The data con-

sistency models were implemented using race-free and

deadlock-free ordered locking protocols. To attain max-

imum performance we addressed issues related to paral-

lel memory allocation, concurrent random number gener-

ation, and cache efficiency. Since mutex collisions can be

costly, lock-free data structures and atomic operations were

used whenever possible. To achieve the same level of per-

formance for parallel learning system, the ML community

would have to repeatedly overcome many of the same time

consuming systems challenges needed to build GraphLab.

The GraphLab API has the opportunity to be an interface

between the ML and systems communities. Parallel ML

algorithms built around the GraphLab API automatically

benefit from developments in parallel data structures. As

new locking protocols and parallel scheduling primitives

are incorporated into the GraphLab API, they become im-

mediately available to the ML community. Systems experts

can more easily port ML algorithms to new parallel hard-

ware by porting the GraphLab API.

4 CASE STUDIES

To demonstrate the expressiveness of the GraphLab ab-

straction and illustrate the parallel performance gains it

provides, we implement four popular ML algorithms and

evaluate these algorithms on large real-world problems us-

ing a 16-core computer with 4 AMD Opteron 8384 proces-

sors and 64GB of RAM.

4.1 MRF PARAMETER LEARNING

To demonstrate how the various components of the

GraphLab framework can be assembled to build a com-

plete ML “pipeline,” we use GraphLab to solve a novel

three-dimensional retinal image denoising task. In this task

we begin with raw three-dimensional laser density esti-

mates, then use GraphLab to generate composite statistics,

learn parameters for a large three-dimensional grid pair-

wise MRF, and then finally compute expectations for each

voxel using Loopy BP. Each of these tasks requires both

Algorithm 2: BP update function

BPUpdate(Dv, D∗→v, Dv→∗ ∈ Sv) begin
Compute the local belief b(xv) using {D∗→vDv}
foreach (v → t) ∈ (v → ∗) do

Update mv→t(xt) using {D∗→v, Dv} and λaxis(vt)

from the SDT.
residual←

˛

˛

˛

˛mv→t(xt)−mold
v→t(xt)

˛

˛

˛

˛

1

if residual > Termination Bound then
AddTask(t, residual)

end

end

end

Algorithm 3: Parameter Learning Sync

Fold(acc, vertex) begin
Return acc + image statistics on vertex

end
Apply(acc) begin

Apply gradient step to λ using acc and return λ
end

local iterative computation and global aggregation as well

as several different computation schedules.

We begin by using the GraphLab data-graph to build a large

(256x64x64) three dimensional MRF in which each ver-

tex corresponds to a voxel in the original image. We con-

nect neighboring voxels in the 6 axis aligned directions.

We store the density observations and beliefs in the vertex

data and the BP messages in the directed edge data. As

shared data we store three global edge parameters which

determine the smoothing (accomplished using a Laplace

similarity potentials) in each dimension. Prior to learn-

ing the model parameters, we first use the GraphLab sync

mechanism to compute axis-aligned averages as a proxy

for “ground-truth” smoothed images along each dimension.

We then performed simultaneous learning and inference

in GraphLab by using the background sync mechanism

(Alg. 3) to aggregate inferred model statistics and apply a

gradient descent procedure. To the best of our knowledge,

this is the first time graphical model parameter learning and

BP inference have been done concurrently.

Results: In Fig. 4(a) we plot the speedup of the parame-

ter learning algorithm, executing inference and learning se-

quentially. We found that the Splash scheduler outperforms

other scheduling techniques enabling a factor 15 speedup

on 16 cores. We then evaluated simultaneous parameter

learning and inference by allowing the sync mechanism to

run concurrently with inference (Fig. 4(b) and Fig. 4(c)).

By running a background sync at the right frequency, we

found that we can further accelerate parameter learning

while only marginally affecting the learned parameters. In

Fig. 4(d) and Fig. 4(e) we plot examples of noisy and de-

noised cross sections respectively.

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Number of Processors

S
pe

ed
up Priority Schedule

Approx. Priority Schedule

Linear

Splash Schedule

(a) Speedup

15 30 45 60 75 90 105 120
0

500

1000

1500

2000

Sync Frequency (Seconds)

T
ot

al
 R

un
tim

e
(S

ec
on

ds
)

Total Learning Runtime

(b) Bkgnd Sync. Runtime

0 15 30 45 60 75 90 105 120
0

0.5

1

1.5

2

2.5

3

3.5

4

Sync Frequency (Seconds)

A
ve

ra
ge

 %
 d

ev
ia

tio
n

Average % deviation

(c) Bkgnd Sync. Error (d) Original (e) Denoised

Figure 4: Retinal Scan Denoising (a) Speedup relative to the best single processor runtime of parameter learning using priority, approx
priority, and Splash schedules. (b) The total runtime in seconds of parameter learning and (c) the average percent deviation in learned
parameters plotted against the time between gradient steps using the Splash schedule on 16 processors. (d,e) A slice of the original noisy
image and the corresponding expected pixel values after parameter learning and denoising.

4.2 GIBBS SAMPLING

The Gibbs sampling algorithm is inherently sequential and

has frustrated efforts to build asymptotically consistent par-

allel samplers. However, a standard result in parallel al-

gorithms [Bertsekas and Tsitsiklis, 1989] is that for any

fixed length Gauss-Seidel schedule there exists an equiv-

alent parallel execution which can be derived from a col-

oring of the dependency graph. We can extract this form

of parallelism using the GraphLab framework. We first use

GraphLab to construct a greedy graph coloring on the MRF

and then to execute an exact parallel Gibbs sampler.

We implement the standard greedy graph coloring algo-

rithm in GraphLab by writing an update function which

examines the colors of the neighboring vertices of v, and

sets v to the first unused color. We use the edge consis-

tency model with the parallel coloring algorithm to ensure

that the parallel execution retains the same guarantees as

the sequential version. The parallel Gauss-Seidel schedule

is then built using the GraphLab set scheduler (Sec. 3.4.1)

and the coloring of the MRF. The resulting schedule con-

sists of a sequence of vertex sets S1 to SC such that Si

contains all the vertices with color i. The vertex consis-

tency model is sufficient since the coloring ensures full se-

quential consistency.

To evaluate the GraphLab parallel Gibbs sampler we con-

sider the challenging task of marginal estimation on a fac-

tor graph representing a protein-protein interaction network

obtained from Elidan et al. [2006] by generating 10, 000
samples. The resulting MRF has roughly 100K edges and

14K vertices. As a baseline for comparison we also ran

a GraphLab version of the highly optimized Splash Loopy

BP [Gonzalez et al., 2009b] algorithm.

Results: In Fig. 5 we present the speedup and efficiency

results for Gibbs sampling and Loopy BP. Using the set

schedule in conjunction with the planning optimization en-

ables the Gibbs sampler to achieve a factor of 10 speedup

on 16 processors. The execution plan takes 0.05 seconds

to compute, an immaterial fraction of the 16 processor run-

ning time. Because of the structure of the MRF, a large

number of colors (20) is needed and the vertex distribu-

tion over colors is heavily skewed. Consequently there is

a strong sequential component to running the Gibbs sam-

pler on this model. In contrast the Loopy BP speedup

demonstrates considerably better scaling with factor of 15

speedup on 16 processor. The larger cost per BP update

in conjunction with the ability to run a fully asynchronous

schedule enables Loopy BP to achieve relatively uniform

update efficiency compared to Gibbs sampling.

4.3 CO-EM

To illustrate how GraphLab scales in settings with large

structured models we designed and implemented a parallel

version of Co-EM [Jones, Nigam and Ghani, 2000], a semi-

supervised learning algorithm for named entity recognition

(NER). Given a list of noun phrases (NP) (e.g., “big ap-

ple”), contexts (CT) (e.g., “citizen of ”), and co-occurence

counts for each NP-CT pair in a training corpus, CoEM

tries to estimate the probability (belief) that each entity (NP

or CT) belongs to a particular class (e.g., “country” or “per-

son”). The CoEM update function is relatively fast, requir-

ing only a few floating operations, and therefore stresses

the GraphLab implementation by requiring GraphLab to

manage massive amounts of fine-grained parallelism.

The GraphLab graph for the CoEM algorithm is a bipar-

tite graph with each NP and CT represented as a vertex,

connected by edges with weights corresponding to the co-

occurence counts. Each vertex stores the current estimate

of the belief for the corresponding entity. The update func-

tion for CoEM recomputes the local belief by taking a

weighted average of the adjacent vertex beliefs. The adja-

cent vertices are rescheduled if the belief changes by more

than some predefined threshold (10−5).

We experimented with the following two NER datasets ob-

tained from web-crawling data.

Name Classes Verts. Edges 1 CPU Runtime

small 1 0.2 mil. 20 mil. 40 min
large 135 2 mil. 200 mil. 8 hours

We plot in Fig. 6(a) and Fig. 6(b) the speedup obtained by

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Number of Processors

S
pe

ed
up

Linear

Planned Set Schedule

Round Robin Schedule

Set Schedule

(a) Gibbs Speedup

0 5 10 15 20
0

1000

2000

3000

4000

5000

6000

7000

8000

Color

V

er
tic

es

(b) Gibbs Color

2 4 6 8 10 12 14 16
2

4

6

8

10

12

14

16

x 10
4

Number of Processors

S
am

pl
es

 /
(C

P
U

 *
 S

ec
on

d)

Planned Set Schedule

Round Robin Schedule

Set Schedule

(c) Gibbs Eff.

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Number of Processors

S
pe

ed
up

Linear

Splash Schedule

Residual Schedule

(d) BP Speedup

2 4 6 8 10 12 14 16

1.9

2

2.1

2.2

2.3

2.4

2.5

x 10
4

Number of Processors

U
pd

at
es

 /
(C

P
U

 *
 S

ec
on

d)

Splash Schedule

Residual Schedule

(e) BP Eff.

Figure 5: MRF Inference (a) The speedup of the Gibbs sampler using three different schedules. The planned set schedule enables
processors to safely execute more than one color simultaneously. The round robin schedule executes updates in a fixed order and relies
on the edge consistency model to maintain sequential consistency. The plan set scheduler does not apply optimization and therefore
suffers from substantial synchronization overhead. (b) The distribution of vertices over the 20 colors is strongly skewed resulting in a
high sequential set schedule. (c) The sampling rate per processor plotted against the number of processor provides measure of parallel
overhead which is substantially reduced by the plan optimization in the set scheduler. (d) The speedup for Loopy BP is improved
substantially by the Splash. (e) The efficiency of the GraphLab framework as function of the number of processors.

the Partitioned Scheduler and the MultiQueue FIFO sched-

uler, on both small and large datasets respectively. We ob-

serve that both schedulers perform similarly and achieve

nearly linear scaling. In addition, both schedulers obtain

similar belief estimates suggesting that the update schedule

may not affect convergence in this application.

With 16 parallel processors, we could complete three full

Round-robin iterations on the large dataset in less than

30 minutes. As a comparison, a comparable Hadoop im-

plementation took approximately 7.5 hours to complete

the exact same task, executing on an average of 95 cpus.

[Personal communication with Justin Betteridge and Tom

Mitchell, Mar 12, 2010]. Our large performance gain can

be attributed to data persistence in the GraphLab frame-

work. Data persistence allows us to avoid the extensive

data copying and synchronization required by the Hadoop

implementation of MapReduce.

Using the flexibility of the GraphLab framework we were

able to study the benefits of dynamic (Multiqueue FIFO)

scheduling versus a regular round-robin scheduling in

CoEM. Fig. 6(c) compares the number of updates required

by both schedules to obtain a result of comparable quality

on the larger dataset. Here we measure quality by L1 pa-

rameter distance to an empirical estimate of the fixed point

x∗, obtained by running a large number of synchronous it-

erations. For this application we do not find a substantial

benefit from dynamic scheduling.

We also investigated how GraphLab scales with problem

size. Figure 6(d) shows the maximum speedup on 16

cpus attained with varying graph sizes, generated by sub-

sampling a fraction of vertices from the large dataset. We

find that parallel scaling improves with problem size and

that even on smaller problems GraphLab is still able to

achieve a factor of 12 speedup on 16 cores.

4.4 LASSO

The Lasso [Tibshirani, 1996] is a popular feature selection

and shrinkage method for linear regression which mini-

mizes the objective L(w) =
∑n

j=1(w
T xj−yj)

2+λ ||w||1.

Unfortunately, there does not exist, to the best of our

knowledge, a parallel algorithm for fitting a Lasso model.

In this section we implement 2 different parallel algorithms

for solving the Lasso.

4.4.1 Shooting Algorithm

We use GraphLab to implement the Shooting Algorithm

[Fu, 1998], a popular Lasso solver, and demonstrate that

GraphLab is able to automatically obtain parallelism by

identifying operations that can execute concurrently while

retaining sequential consistency.

The shooting algorithm works by iteratively minimizing

the objective with respect to each dimension in w, cor-

responding to coordinate descent. We can formulate the

Shooting Algorithm in the GraphLab framework as a bi-

partite graph with a vertex for each weight wi and a vertex

for each observation yj . An edge is created between wi

and yj with weight Xi,j if and only if Xi,j is non-zero. We

also define an update function (Alg. 4) which operates only

on the weight vertices, and corresponds exactly to a single

minimization step in the shooting algorithm. A round-robin

scheduling of Alg. 4 on all weight vertices corresponds ex-

actly to the sequential shooting algorithm. We automati-

cally obtain an equivalent parallel algorithm by select the

full consistency model. Hence, by encoding the shooting

algorithm in GraphLab we are able to discover a sequen-

tially consistent automatic parallelization.

We evaluate the performance of the GraphLab implemen-

tation on a financial data set obtained from Kogan et al.

[2009]. The task is to use word counts of a financial report

to predict stock volatility of the issuing company for the

consequent 12 months. Data set consists of word counts

for 30K reports with the related stock volatility metrics.

To demonstrate the scaling properties of the full consis-

tency model, we create two datasets by deleting common

words. The sparser dataset contains 209K features and

1.2M non-zero entries, and the denser dataset contains

217K features and 3.5M non-zero entries. The speedup

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Number of Processors

S
pe

ed
up

Linear

MultiQueue FIFO

Partitioned

(a) CoEM Speedup Small

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Number of Processors

S
pe

ed
up

Linear
MultiQueue FIFO

Partitioned

(b) CoEM Speedup Large

0 2 4 6
x 10

6

−12

−11

−10

−9

−8

−7

−6

Number of updates

Lo
g(

|x
−

x*
| 1) Round robin

MultiQueue FIFO

(c) Convergence

0 20 40 60 80 100
6

8

10

12

14

16

Single Processor Runtime (Seconds)

S
pe

ed
up

 w
ith

 1
6

cp
us

(d) Speedup with Problem Size

Figure 6: CoEM Results (a,b) Speedup of MultiQueue FIFO and Partitioned Scheduler on both datasets. Speedup is measured relative
to fastest running time on a single cpu. The large dataset achieves better scaling because the update function is slower. (c) Speed of
convergence measured in number of updates for MultiQueue FIFO and Round Robin (equivalent to synchronized Jacobi schedule), (d)
Speedup achieved with 16 cpus as the graph size is varied.

Algorithm 4: Shooting Algorithm

ShootingUpdate(Dwi
, D∗→wi

, Dwi→∗) begin
Minimize the loss function with respect to wi

if wi changed by > ǫ then

Revise the residuals on all y′s connected to wi

Schedule all w′s connected to neighboring y′s
end

end

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Number of Processors

R
el

at
iv

e
S

pe
ed

up

Linear

Full Consistency

Vertex Consistency

(a) Sparser Dataset Speedup

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Number of Processors

R
el

at
iv

e
S

pe
ed

up

Full Consistency

Vertex Consistency

Linear

(b) Denser Dataset Speedup

Figure 7: Shooting Algorithm (a) Speedup on the sparser dataset
using vertex consistency and full consistency relative to the fastest
single processor runtime. (b) Speedup on the denser dataset using
vertex consistency and full consistency relative to the fastest single
processor runtime.

curves are plotted in Fig. 7. We observed better scaling

(4x at 16 CPUs) on the sparser dataset than on the denser

dataset (2x at 16 CPUs). This demonstrates that ensuring

full consistency on denser graphs inevitably increases con-

tention resulting in reduced performance.

Additionally, we experimented with relaxing the consis-

tency model, and we discovered that the shooting algorithm

still converges under the weakest vertex consistency guar-

antees; obtaining solutions with only 0.5% higher loss on

the same termination criterion. The vertex consistent model

is much more parallel and we can achieve significantly bet-

ter speedup, especially on the denser dataset. It remains an

open question why the Shooting algorithm still functions

under such weak guarantees.

Algorithm 5: Compressed Sensing Outer Loop

while duality gap ≥ ǫ do
Update edge and node data of the data graph.
Use GraphLab to run GaBP on the graph
Use Sync to compute duality gap
Take a newton step

end

4.5 Compressed Sensing

To show how GraphLab can be used as a subcomponent of

a larger sequential algorithm, we implement a variation of

the interior point algorithm proposed by Kim et al. [2007]

for the purposes of compressed sensing. The aim is to use

a sparse linear combination of basis functions to represent

the image, while minimizing the reconstruction error. Spar-

sity is achieved through the use of elastic net regularization.

The interior point method is a double loop algorithm where

the sequential outer loop (Alg. 5) implements a Newton

method while the inner loop computes the Newton step by

solving a sparse linear system using GraphLab. We used

Gaussian BP (GaBP) as a linear solver [Bickson, 2008]

since it has a natural GraphLab representation. The GaBP

GraphLab construction follows closely the BP example in

Sec. 4.1, but represents potentials and messages analyti-

cally as Gaussian distributions. In addition, the outer loop

uses a Sync operation on the data graph to compute the du-

ality gap and to terminate the algorithm when the gap falls

below a predefined threshold. Because the graph structure

is fixed across iterations, we can leverage data persistency

in GraphLab, avoid both costly set up and tear down oper-

ations and resume from the converged state of the previous

iteration.

We evaluate the performance of this algorithm on a syn-

thetic compressed sensing dataset constructed by apply-

ing a random projection matrix to a wavelet transform of

a 256 × 256 Lenna image (Fig. 8). Experimentally, we

achieved a factor of 8 speedup using 16 processors using

the round-robin scheduling.

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Number of Processors

S
pe

ed
up

Linear

L1 Interior Point

(a) Speedup (b) Lenna (c) Lenna 50%

Figure 8: (a) Speedup of the Interior Point algorithm on the
compressed sensing dataset, (b) Original 256x256 test image with
65,536 pixels, (c) Output of compressed sensing algorithm using
32,768 random projections.

5 CONCLUSIONS AND FUTURE WORK

We identified several limitations in applying existing paral-

lel abstractions like MapReduce to Machine Learning (ML)

problems. By targeting common patterns in ML, we devel-

oped GraphLab, a new parallel abstraction which achieves

a high level of usability, expressiveness and performance.

Unlike existing parallel abstractions, GraphLab supports

the representation of structured data dependencies, iterative

computation, and flexible scheduling.

The GraphLab abstraction uses a data graph to encode

the computational structure and data dependencies of the

problem. GraphLab represents local computation in the

form of update functions which transform the data on the

data graph. Because update functions can modify over-

lapping state, the GraphLab framework provides a set of

data consistency models which enable the user to specify

the minimal consistency requirements of their application

without having to build their own complex locking proto-

cols. To manage sharing and aggregation of global state,

GraphLab provides a powerful sync mechanism.

To manage the scheduling of dynamic iterative parallel

computation, the GraphLab abstraction provides a rich col-

lection of parallel schedulers encompassing a wide range

of ML algorithms. GraphLab also provides a scheduler

construction framework built around a sequence of vertex

sets which can be used to compose custom schedules.

We developed an optimized shared memory implementa-

tion GraphLab and we demonstrated its performance and

flexibility through a series of case studies. In each case

study we designed and implemented a popular ML algo-

rithm and applied it to a large real-world dataset achieving

state-of-the-art performance.

Our ongoing research includes extending the GraphLab

framework to the distributed setting allowing for compu-

tation on even larger datasets. While we believe GraphLab

naturally extend to the distributed setting we face numer-

ous new challenges including efficient graph partitioning,

load balancing, distributed locking, and fault tolerance.

Acknowledgements

We thank Guy Blelloch and David O’Hallaron for their

guidance designing and implementing GraphLab. This

work is supported by ONR Young Investigator Pro-

gram grant N00014-08-1-0752, the ARO under MURI

W911NF0810242, DARPA IPTO FA8750-09-1-0141, and

the NSF under grants IIS-0803333 and NeTS-NBD CNS-

0721591. Joseph Gonzalez is supported by the AT&T Labs

Fellowship Program.

References

J. Dean and S. Ghemawat. MapReduce: simplified data process-
ing on large clusters. Commun. ACM, 51(1), 2004.

C.T. Chu, S.K. Kim, Y.A. Lin, Y. Yu, G.R. Bradski, A.Y. Ng, and
K. Olukotun. Map-reduce for machine learning on multicore.
In NIPS, 2006.

J. Wolfe, A. Haghighi, and D. Klein. Fully distributed EM for
very large datasets. In ICML. ACM, 2008.

B. Panda, J.S. Herbach, S. Basu, and R.J. Bayardo. Planet:
massively parallel learning of tree ensembles with mapreduce.
Proc. VLDB Endow., 2(2), 2009.

J. Ye, J. Chow, J. Chen, and Z. Zheng. Stochastic gradient boosted
distributed decision trees. In CIKM. ACM, 2009.

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
distributed data-parallel programs from sequential building
blocks. SIGOPS Oper. Syst. Rev., 41(3), 2007.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins.
Pig latin: A not-so-foreign language for data processing. SIG-
MOD, 2008.

H. T. Kung and C. E. Leiserson. Algorithms for VLSI processor
arrays. Addison-Wesley, 1980.

J. Gonzalez, Y. Low, and C. Guestrin. Residual splash for opti-
mally parallelizing belief propagation. In AISTATS, 2009a.

J. Gonzalez, Y. Low, C. Guestrin, and D. O’Hallaron. Distributed
parallel inference on large factor graphs. In UAI, July 2009b.

J. Pearl. Probabilistic reasoning in intelligent systems: networks
of plausible inference. 1988.

G. Elidan, I. Mcgraw, and D. Koller. Residual belief propagation:
Informed scheduling for asynchronous message passing. In
UAI, 2006.

R. L. Graham. Bounds for certain multiprocessing anomalies.
Bell System Technical Journal (BSTJ), 45:1563–1581, 1966.

D. Bertsekas and J. Tsitsiklis. Parallel and Distributed Computa-
tion: Numerical Methods. Prentice-Hall, 1989.

R. Jones. Learning to Extract Entities from Labeled and Unla-
beled Text. PhD thesis, Carnegie Mellon University.

K. Nigam and R. Ghani. Analyzing the effectiveness and applica-
bility of co-training. In CIKM, 2000.

R. Tibshirani. Regression shrinkage and selection via the lasso. J
ROY STAT SOC B, 58:267–288, 1996.

Wenjiang J. Fu. Penalized regressions: The bridge versus the
lasso. J COMPUT GRAPH STAT, pages 397–416, 1998.

S. Kogan, D. Levin, B.R. Routledge, J.S. Sagi, and N. A. Smith.
Predicting risk from financial reports with regression. In
HLT/NAACL, 2009.

Seung-Jean Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky.
An interior-point method for large-scale ℓ1-regularized least
squares. IEEE J SEL TOP SIGNAL PROC, 1, 2007.

D. Bickson. Gaussian Belief Propagation: Theory and Applica-
tion. PhD thesis, The Hebrew University of Jerusalem, 2008.

