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ABSTRACT

Rahman, Mahmudur PhD, Purdue University, December 2016. Graphlet Based Net-
work Analysis. Major Professor: Dr. Mohammad Al Hasan.

The majority of the existing works on network analysis, study properties that are

related to the global topology of a network. Examples of such properties include

diameter, power-law exponent, and spectra of graph Laplacians. Such works enhance

our understanding of real-life networks, or enable us to generate synthetic graphs with

real-life graph properties. However, many of the existing problems on networks require

the study of local topological structures of a network. Graphlets which are induced

small subgraphs capture the local topological structure of a network effectively. They

are becoming increasingly popular for characterizing large networks in recent years.

Graphlet based network analysis can vary based on the types of topological struc-

tures considered and the kinds of analysis tasks. For example, one of the most popu-

lar and early graphlet analyses is based on triples (triangles or paths of length two).

Graphlet analysis based on cycles and cliques are also explored in several recent works.

Another more comprehensive class of graphlet analysis methods works with graphlets

of specific sizes—graphlets with three, four or five nodes ({3,4,5}-Graphlets) are

particularly popular. For all the above analysis tasks, excessive computational cost is

a major challenge, which becomes severe for analyzing large networks with millions

of vertices. To overcome this challenge, effective methodologies are in urgent need.

Furthermore, the existence of efficient methods for graphlet analysis will encourage

more works broadening the scope of graphlet analysis.

For graphlet counting, we propose edge iteration based methods (ExactTC and

ExactGC) for efficiently computing triple and graphlet counts. The proposed meth-

ods compute local graphlet statistics in the neighborhood of each edge in the network
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and then aggregate the local statistics to give the global characterization (transitiv-

ity, graphlet frequency distribution (GFD), etc) of the network. Scalability of the

proposed methods is further improved by iterating over a sampled set of edges and

estimating the triangle count (ApproxTC) and graphlet count (Graft) by approx-

imate rescaling of the aggregated statistics. The independence of local feature vector

construction corresponding to each edge makes the methods embarrassingly paral-

lelizable. We show this by giving a parallel edge iteration method ParApproxTC

for triangle counting.

For graphlet sampling, we propose Markov Chain Monte Carlo (MCMC) sampling

based methods for triple and graphlet analysis. Proposed triple analysis methods,

Vertex-MCMC and Triple-MCMC, estimate triangle count and network transitivity.

Vertex-MCMC samples triples in two steps. First, the method selects a node (using

the MCMC method) with probability proportional to the number of triples of which

the node is a center. Then Vertex-MCMC samples uniformly from the triples centered

by the selected node. The method Triple-MCMC samples triples by performing a

MCMC walk in a triple sample space. Triple sample space consists of all the possible

triples in a network. MCMC method performs triple sampling by walking form one

triple to one of its neighboring triples in the triple space. We design the triple space

in such a way that two triples are neighbors only if they share exactly two nodes.

The proposed triple sampling algorithms Vertex-MCMC and Triple-MCMC are able

to sample triples from any arbitrary distribution, as long as the weight of each triple

is locally computable.

The proposed methods are able to sample triples without the knowledge of the

complete network structure. Information regarding only the local neighborhood struc-

ture of currently observed node or triple are enough to walk to the next node or triple.

This gives the proposed methods a significant advantage: the capability to sample

triples from networks that have restricted access, on which a direct sampling based

method is simply not applicable. The proposed methods are also suitable for dynamic

and large networks. Similar to the concept of Triple-MCMC, we propose Guise for
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sampling graphlets of sizes three, four and five ({3,4,5}-Graphlets). Guise samples

graphlets, by performing a MCMC walk on a graphlet sample space, containing all

the graphlets of sizes three, four and five in the network.

Despite the proven utility of graphlets in static network analysis, works harnessing

the ability of graphlets for dynamic network analysis are yet to come. Dynamic net-

works contain additional time information for their edges. With time, the topological

structure of a dynamic network changes—edges can appear, disappear and reappear

over time. In this direction, predicting the link state of a network at a future time,

given a collection of link states at earlier times, is an important task with many

real-life applications. In the existing literature, this task is known as link prediction

in dynamic networks. Performing this task is more difficult than its counterpart in

static networks because an effective feature representation of node-pair instances for

the case of a dynamic network is hard to obtain.

We design a novel graphlet transition based feature embedding for node-pair in-

stances of a dynamic network. Our proposed method GraTFEL, uses automatic

feature learning methodologies on such graphlet transition based features to give a

low-dimensional feature embedding of unlabeled node-pair instances. The feature

learning task is modeled as an optimal coding task where the objective is to minimize

the reconstruction error. GraTFEL solves this optimization task by using a gradient

descent method. We validate the effectiveness of the learned optimal feature embed-

ding by utilizing it for link prediction in real-life dynamic networks. Specifically,

we show that GraTFEL, which uses the extracted feature embedding of graphlet

transition events, outperforms existing methods that use well-known link prediction

features.
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1 INTRODUCTION

Graph (or network) is a form of data representation that is used to capture and rep-

resent complex relations in a wide variety of disciplines, including social science [1],

system sciences [2], and bioinformatics [3]. The relationship (derived by the under-

lying phenomena), can be modeled by analyzing the structure of network. Decades

of works in this direction led to the discovery of various non-random properties of

real life networks, such as, scale-free-ness by Barabasi et al. [4], small diameter by

Watts et al. [5], and graph densification with shrinking diameter by Leskovec et al. [6].

Besides, scientists also invented various graph generation models [7] which help the

development of synthetic graphs having metrics that are similar to those of real-life

networks; for example, Erdös-Rènyi model [8,9], Barabàsi-Albert (BA) model [4], and

Watts and Strogatz model [5].

Existing works contribute to our general understanding of the structure of a real-

life network, but most of these works do not include small substructures in their analy-

sis. Thus, they fall short in providing the sketch of the topological building blocks that

are prevalent in a network. Apparently, the knowledge of topological building blocks

can be crucial for solving some of the most important tasks involving networks—

examples include identification of anomalous nodes for detecting threat [10], discovery

of hidden groups [11], link prediction [12], and the mapping of a structural block to

a functional unit [13]. Specifically, it is well known that, in biological networks small

substructures play a unique role in carrying out the functionalities that are performed

over the networks [14].

Some works exist that attempted to model the topological context of the nodes in

a network by finding a fingerprint of the network that is based on small topological

templates. Such a fingerprint encodes the “normal behavior”, and is useful when solv-

ing tasks that aim to discover nodes or communities (a set of well-connected nodes)
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that reside in an unusual topological context. The simplest of such fingerprints can

be the local count (frequency) of triangles incident to the nodes in the network [15].

Other motivation for obtaining triangle frequency is that it can be used for comput-

ing other metrics namely, local clustering coefficient, global clustering coefficient and

transitivity ratio [5, 16]. In the social science, triangles have been used to identify

various interesting behaviors [17, 18]. Triangle counting also helps identifying the

common topics on the Web [19] and spam detection [20]. Being the simplest topo-

logical fingerprint, triangle counting has limited capability (power of expression) for

effective analysis of networks.

A more complex and powerful example of such fingerprints that goes beyond

triangle can be a frequency histogram of various topological structures that have

more than three vertices. N. Przulj et al. [21] is the first to propose such a fingerprint

for characterizing biological networks. In their works, they consider the complete set

of graph topologies with three, four and five vertices and name them as graphlet 1

(for a preview of these graphlets, see Figure 1.1). For a given network, they count

the frequencies of various graphlets in the network for designing a fingerprint that

they call graphlet frequency distribution (GFD). Since then, graphlet frequencies have

been used for comparing structures of different biological networks [3], characterizing

biological networks using graphlet degree distribution [3], obtaining a structural to

functional mapping for biological networks [13], and for relating various kinds of

graphlets with different information cascades [23]. Frequencies of various graphlets

have also been used for designing effective graph kernels [24, 25].

However, huge computation cost is typically the deterrent which prevents the

popular adoption of graphlet frequencies for analyzing large graphs in this domain. In

the few exceptions that we have, such as [23], [26] and [25], the high computation cost

is dealt with a compromise that considers graphlets that have up to four vertices. N.

Przulj’s team built a software called GraphCrunch2 [27], which counts the frequencies

of all graphlets with three, four, and five vertices. We attempt to use GraphCrunch2

1In [22], the term “graphlet” has also been used for describing wavelet decomposition of graphs,
our work is not related to this definition.
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for obtaining graphlet frequencies on some moderate-sized social network graphs; for

the majority of these graphs, the attempt was unsuccessful. For instance, we ran

GraphCrunch2 on roadNet-PA data set (1,088,092 vertices, 1,541,898 edges) and soc-

sign-Slashdot081106 data set (77,357 vertices, 468,554 edges) for nearly 80 hours on

all cores 2 of a quad-core, 2.1 GHz machine; neither of the processes finish more than

40% of the computation as reported on the software’s status bar. Typical graphs in

the social network domain have millions of vertices and millions of edges; the counting

of various graphlet frequencies in such graphs will take months, if not years.

g1 g2

3-node graphlets

g3 g4 g5 g6 g7 g8

4-node graphlets

5-node graphlets

g9 g10 g11 g12 g13 g14 g15 g16 g17 g18 g19

g20 g21 g22 g23 g24 g25 g26 g27 g28 g29

Figure 1.1.: All 3,4,5-node graphlets

1.1 Contribution of This Dissertation

In this dissertation, we propose edge iteration based algorithms for efficient count-

ing of triples and graphlets. We also propose MCMC based methods for triple and

graphlet sampling. Finally, we give a novel method for graphlet transition based

feature embedding for node-pair instances in a dynamic network. In the following

paragraphs, we give details of our contributions.

2GraphCrunch2 is a parallel library that uses all the available cores in a computer
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First, for efficient graphlet counting we give edge iterator based method Ex-

actGC3. The exact graphlet counting is obtained by aggregating the local graphlet

counts of all the edges. Local graphlet count stands for the count of graphlets for

which the edge is a part. But, estimated graphlet count is enough for many real life

applications of network analysis. Inspired by the vast applicability, we adopt edge it-

erator based algorithms to obtain efficient estimation of graphlet count—thus further

improving the scalability [28–30]. The estimation is achieved by sampling a subset of

edges in the network and aggregating the local graphlet counts of those selected edges.

The aggregated result is then appropriately normalized with respect to the relative

sample size—giving estimated frequency of graphlet. We also propose a distributed

solution for graphlet counting method using Spark [31], which further increases the

scalability of the estimation method by using the power of distributed computation.

Secondly, we propose Markov Chain Monte Carlo (MCMC) sampling based meth-

ods for triple and graphlet analysis. Proposed triple sampling methods, Vertex-

MCMC and Triple-MCMC [32], estimate triangle count and network transitivity.

Vertex-MCMC samples triples in two steps: 1) sample a node using the MCMC

method, 2) samples from the triples centered by the selected node in step 1. The

method Triple-MCMC samples triples by performing an MCMC walk in a triple sam-

ple space. Triple sample space consists of all the possible triples in the network.

MCMC method performs triple sampling by walking form one triple to one of its

neighboring triples in the triple space. We design the triple space in such a way

that two triples are neighbors only if they share exactly two nodes. Similar to the

concept of Triple-MCMC, another proposed method Guise [33,34] samples graphlets

({3,4,5}-Graphlets), by performing an MCMC walk on a graphlet sample space, con-

taining all the graphlets of sizes three, four and five in the network. The proposed

MCMC methods are able to sample graphlets without the knowledge of the complete

network structure. Information regarding only the local neighborhood structure of

currently observed graphlet are enough to walk to the next graphlet. This gives the

3Similar discussion goes for triangle counting method ExactTC
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proposed methods a significant advantage: the capability to sample graphlets from

networks that have restricted access4, on which a direct sampling based method is

simply not applicable. The proposed methods are also suitable for dynamic and large

networks.

Finally, this dissertation also investigates the potential of graphlet based analysis

for dynamic networks. In dynamic network domain, a network changes the structure

(by adding/removing nodes and/or edges) with time. We introduce the novel concept

of Graphlet Transition Events (GTE) for feature representation of edges in a dynamic

network [35]. GTE is defined as the transition of an existing graphlet of a network into

another graphlet as a result of addition of one edge into that network. Our proposed

method GraTFEL, uses automatic feature learning methodologies on GTE based

features to give a low-dimensional feature embedding of unlabeled node-pair instances.

The feature learning task is modeled as an optimal coding task where the objective

is to minimize the reconstruction error. GraTFEL solves this optimization task by

using a gradient descent method. We validate the effectiveness of the learned optimal

feature embedding by utilizing it for link prediction in real-life dynamic networks.

Specifically, we show that GraTFEL, which uses the extracted feature embedding

of GTEs, outperforms existing methods that use well-known link prediction features.

1.2 Organization of This Dissertation

The bulk of the dissertation includes several research articles that we published

over the period of my doctoral study. In Chapter 2, we discuss background mate-

rials for graphlet based network analysis. In Chapter 3, we discuss related works

in triple and graphlet analysis. We also discuss related link prediction researches

in static and dynamic network setups. Exact triangle and graphlet counting algo-

rithms are presented in Chapter 4. The discussion is continued to Chapter 5 for

4A restricted access network has an access model, where one can not arbitrarily access a network.
Beginning from an initial node, this model allows us to explore the network following the edges of
currently visible nodes. The size of the set of currently visible nodes is limited (in our case it is 5).
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presenting approximate solutions for triangle and graphlet counting. The main con-

cept of multi-core triangle counting solution is published in the proceedings of IEEE

International Conference on Big Data, 2013 [28]. Sequential graphlet counting algo-

rithm Graft is published in the proceedings of the Conference of Information and

Knowledge Management (CIKM), 2012 [30] and an extended version is published

in the journal of IEEE Transactions on Knowledge and Data Engineering (TKDE),

2014 [29]. An ongoing work on distributed graphlet counting algorithms using Spark

distributed computation framework is also presented in Chapters 4 (ExactSpark)

and 5 (AppSpark).

The main concept of MCMC based triple sampling for estimation of triple based

network metrics is published in proceedings of CIKM, 2014 [32]. It is described in

Chapter 6. The MCMC based graphlet sampling method Guise for estimation of

graphlet based metrics is presented in Chapter 7. This work is published in the

proceedings of International Conference on Data Mining (ICDM), 2012 [33]. An

extended version of Guise is also published in journal of Knowledge and Information

Systems, 2014 [34].

The novel method of link prediction using graphlet transition event (GTE) is ac-

cepted for presentation in The European Conference on Machine Learning and Prin-

ciples and Practice of Knowledge Discovery (ECML-PKDD), 2016 [35]. Application

of graphlet analysis including the link prediction method GraTFEL is presented in

Chapter 8. Future works and conclusion is discussed in Chapter 9.
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2 BACKGROUND

In this chapter, we discuss the background materials for graphlet based analysis. We

give preliminary discussion about static networks, restricted access network, triples,

triple based metric transitivity in Sections 2.1-2.4. We also discuss induced sub-

graphs, graphlet, graphlet based metric GFD in Sections 2.5-2.7. Dynamic network

is discussed in Section 2.8. We introduce graphlet transition event (GTE) in dynamic

network setup in Section 2.9. The link prediction problem in dynamic network setup

is defined in Section 2.10. Finally, we discuss Markov chain Monte Carlo (MCMC)

sampling in Section 2.11.

2.1 Networks

A Network (Graph) is a combinatorial structure that represents a set of binary

relations among a set of objects. The set of objects are called the vertices and the set

of relations are called the edges. Let G(V,E) is a graph, where V = {v1, v2, ..., vn} is
the set of vertices and E = {e1, e2, ..., em} is the set of edges. Each edge e ∈ E can be

denoted by a pair of vertices (vi, vj) where, vi, vj ∈ V . A graph without a self-loop or

multi edge is a simple graph. In this dissertation, we consider simple and undirected

graphs. We use the terms Network and Graph interchangeably. We use n to define

the number of vertices in G, d(v) to define the degree of a node v, and dmax to denote

the maximum degree value for a vertex over the entire graph.

2.2 Restricted Access Networks

A restricted access network can be explored only by following edges of the network.

Contrary to full access network, which allows to access adjacency list of an arbitrary



8

node in the network; a restricted access network allows to access adjacency list(s) of

currently observed node(s) in set W only. Which means, to check if an edge (u, v) is
existent on a restricted network, at least one of the contributing nodes must be in W
(u ∈ W or v ∈ W). The size of the observing node set ∣W∣ is limited by a restriction

parameter G.V iewSize. Restricted access network with G.V iewSize = 5 is sufficient

to perform MCMC sampling for analysis of {3,4,5}-Graphlets. The nodes in W are

normally connected and addition of a new node in the W generally means removal of

another node–thus maintaining the size restriction for W .

The motivation for a restricted network comes from real-life consideration. For

example, Web graph is too big to be stored in memory/disk. But, crawling a Web

graph is feasible by following the hyper-links (edges). Under this setting, we can

sample a set of triples (from a uniform distribution) alongside crawling so that we

can approximate the transitivity of the Web graph. Clearly, without storing the entire

network, we have no knowledge of the number of vertices, or edges in this network,

let alone the number of triples. Also, for a hidden network, access to an arbitrary

node in the network is prohibited for security reason. The desired node can only be

accessed from another node which is one-hop away from it.

2.3 Triples and Triangles

A triple (u, v,w) at a vertex v is a path of length two for which v is the center

vertex. If the other two vertices (u and w) are also connected by an edge, the triple

is called a closed triple (triangle), otherwise it is called an open triple. A triangle

actually contains three closed triples, one centered on each of its vertices.

We use the symbol Πv to represent the set of triples that are centered at the vertex

v. The set of triples in a graph G = (V,E) is Π, which is the union of the set of triples

at each of its node, i.e., Π = ⋃v∈V Πv. Based on whether the triple is open or closed

(in terms of its induced embedding in the graph G), we can partition the set Π into

Π∠ (open triples) and Π△ (closed triples). Note that, each of the nodes of a triangle



9

in a graph G contributes one distinct triple in the set Π△. To represent the set of

open and closed triples centered at a vertex v, we will use Π∠
v and Π△v , respectively.

If δ(G) is the number of triangles in the graph G, then

δ(G) = 1

3
∣Π△∣ = 1

3
∑
v∈V
∣Π△v ∣ (2.1)

1 4

2 3 5 6

Π∠: {(1,2,3), (2,3,4), (2,3,5), (3,5,6), (4, 5,6)}
Π△: {(3,4,5), (4,3,5), (3,5,4)}

Figure 2.1.: Open and closed triples in a graph

Example: Graph in Figure 2.1 has eight triples. Five of them are open and the

remaining three are closed. Also the graph has exactly one triangle. ∎
If the degree of each of the vertices in known, the total number of triples can be

computed efficiently as below:

∣Π∣ = ∑
v∈V
∣Πv ∣ = ∑

v∈V
(d(v)

2
) (2.2)

Lemma 1 Given a graph G(V,E), the total number of triples in G is equals to

∑v∈V (d(v)2 )

Proof:

A triple at a node v is a path of length two for which v is the center. For con-

structing such a path, we can select two different vertices from the adjacency list of

v. There are (d(v)
2
) such choices. Therefore, by summing the partial triples over each

v ∈ V , we get the total number of triples in G. ∎
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2.4 Transitivity

Newman, Watts and Strogatz [36] defined the transitivity of a graph G (say, γ(G))
as the fraction that represents the number of closed triples divided by the number of

all the triples over the entire network.

γ(G) = ∣Π△∣∣Π∣ =
∣Π△∣

∣Π∠∣ + ∣Π△∣ (2.3)

2.5 Induced Sub-Graphs

A graph G′ = (V ′,E′) is a subgraph of G if V ′ ⊆ V and E′ ⊆ E. A graph

G′ = (V ′,E′) is a vertex-induced subgraph of G if V ′ ⊆ V and E′ ⊆ E and

{e = (va, vb) ∶ va, vb ∈ V ′, e ∈ E,e ∉ E′} = φ. A vertex-induced subgraph is a subset

of the vertices of a graph G together with any edges whose both endpoints are in

this subset. In this dissertation we will refer to vertex-induced subgraph as “induced

subgraph”. Two graphs G and G′ are isomorphic, denoted by G ≅ G′, if there ex-

ists a structure-preserving (both adjacency and non-adjacency preserving) bijection

f ∶ VG → VG′ ; such a function f is called an isomorphism from G to G′. An embed-

ding of a graph G′ in another graph G is a subgraph S of G, such that S and G′ are

isomorphic; when the subgraph S is a vertex-induced subgraph of G, the embedding

is called an induced embedding.

Example: In Figure 2.2, graph (b) is a subgraph, but not an induced subgraph, of

the graph (a); On the other hand, graph (c) is an induced subgraph of the graph (a).
The induced-subgraph consisting with the vertices {4,5,6,7} in the graph (a) is an
induced embedding of the graph (c). ∎
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3

1 2

5

76

4

(a)

a b

dc

(b)

a b

dc

(c)

Figure 2.2.: Sub-graph and vertex induced sub-graph

2.6 Graphlets

Graphlets can be defined as small, connected, non-isomorphic, induced sub-

graphs of a large network. In this dissertation, we work with all possible graphlets hav-

ing k vertices; where, k ∈ {3,4,5}. We refer a graphlet with k vertices, as k-Graphlet;

Note that, 1-Graphlet is simply a vertex, and 2-Graphlet is simply an edge. The

frequency of a graphlet gi in a graph G is the total number of distinct embedding of

that graphlet gi in the graph G. For triple analysis we use only 3-Graphlets (g1 and

g2 in Figure 1.1)

Example: Figure 1.1 shows all the graphlets that have between 3 and 5 vertices; there

are 29 graphlets in this set. They are referred as gi or type-i, where i varies from 1 to

29. We denote the specific embedding of a k-Graphlet by a sorted arrangement of its

vertex ids, i.e. ⟨id1, id2, . . . , idk⟩, where id1 < id2 < . . . < idk. In Figure 2.2(a) vertex

ids 1, 2, 3, and 4 construct a distinct embedding of the graphlet g3 and using the

above notation we can write this embedding as ⟨1,2,3,4⟩. The frequency of graphlet

g2 (triangle) in the same graph is 3. ∎
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2.7 Graphlet Frequency Distribution (GFD)

Graphlet Frequency Distribution ( GFD) of a graph G is a vector that character-

ize the relative frequencies of various graphlets in the graph G. The frequencies of

5-Graphlet is much smaller than those of 4-Graphlets or 3-Graphlets, so, we compare

the frequencies in GFD in a logarithm scale. To construct GFD, first we compute

frequencies of all the graphlets of size 3, 4, and 5 (shown in Figure 1.1) by enumerat-

ing all their distinct induced embeddings. Let, f(gi) be the frequency of graphlet gi

where i ∈ {1 . . . 29}. Second, we calculate the normalized frequency of each f(gi) by
dividing it with ∑29

i=1 f(gi), and take logarithm (10-base) of the normalized frequency.

The resulting size 29 vector is called the GFD. It can happen that an input graph

does not contain any embedding of one or more graphlets. Since log (0) is undefined,
we use the following definition of GFD, where we add 1 to each of the frequencies;

thus each entry in the GFD becomes,

GFDi = log( f(gi) + 1
∑29

j=1 f(gj) + 29);∀1 ≤ i ≤ 29 (2.4)

Example: In the graph in Figure 2.2(a), the frequency of each type of graphlets

are ⟨11,3,5,3,0,6,2,0,1,2,0,2,1,2,0,0, 2,0,1,0,0,0,0,4,0,0,0,0,0⟩. Here, 11 is the

count of g1, 3 is the count of g2, and so on. Using the process discussed above, the

GFD of this graph is:

⟨−0.8,−1.3,−1.1,−1.3,−1.9,−1,−1.4,−1.9,−1.6,−1.4,
− 1.9,−1.4,−1.6,−1.4,−1.9,−1.9,−1.4,−1.9,−1.6,
− 1.9,−1.9,−1.9,−1.9,−1.2,−1.9,−1.9,−1.9,−1.9,−1.9⟩ ∎

2.8 Dynamic Networks

Let G(V,E) be an undirected network, where V is the set of nodes and E is

the set of edges e(u, v) such that u, v ∈ V . A dynamic network is represented as a

sequence of snapshots G = {G1,G2, . . . ,Gt}, where t is the number of time stamps



13

for which we have network snapshots and Gi(Vi,Ei) is a network snapshot at time

stamp i ∶ 1 ≤ i ≤ t (see Figure 2.3). In this dissertation, we assume that the vertex

set remains the same across different snapshots, i.e., V1 = V2 = ⋅ ⋅ ⋅ = Vt = V . However,

the edges appear and disappear over different time stamps. We also assume that, in

addition to the link information, no other attribute data for the nodes or edges are

available. We use n to denote number of nodes (∣V ∣), and m to denote all node-pairs

(∣V ∣
2
) in the network.

Figure 2.3.: A toy dynamic network with t snapshots. First two and last snapshots
are given in this figure.

Example: Figure 2.3 shows an example dynamic network with t time stamps. There

are six vertices in each time stamp but the number of edges changes across different

time stamps. Here, n = 6 and m = 15. ∎

2.9 Graphlet Transition Event (GTE)

Considering local topology around a node in a given network, the node can be a

part of many different graphlets. Adding an edge in the local neighborhood of a node

changes the neighborhood graphlet configuration of that node. To capture this we

introduce a novel concept, namely Graphlet Transition Event (GTE), which is

an atomic event of a dynamic network. GTE is defined as the transition of an existing

graphlet of a network into another graphlet as a result of addition of one edge into



14

that network. For illustration, see Figure 2.4, three different GTEs are triggered as

a result of adding the edge (2,3) into the network G1.

Figure 2.4.: A toy dynamic network. G1 and G2 are two snapshots of the network.
Three different types of graphlet events are observed.

2.10 Link Prediction in Dynamic Network

Given a sequence of snapshots G = {G1,G2, . . . ,Gt} of a network, and a pair of

nodes u and v, the link prediction task on a dynamic network predicts whether u

and v will have a link in Gt+1. Note that, we assume no link information regarding

the snapshot Gt+1 is available, except the fact that Gt+1 contains the identical set of

vertices. We use graphlet transition event as features for the link prediction task on

a dynamic network.

2.11 Markov Chains and MCMC Sampling

Markov chain Monte Carlo (MCMC) sampling [37] is a class of algorithms for

sampling from a desired probability distributions by constructing a Markov chain

such that the stationary distribution of the Markov chain is the same as the desired

distribution. The state of the chain after a suitable number of steps can be used as

a sample of the desired distribution.
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If we consider a random variable X that has a range of values (states) that are

defined in a state space S and assume that Xt denotes the value(state) of X at

time t(discrete). This random variable is called a Markov process if the transition

probabilities between a pair of states in S depends only on the current value(state) of

X. A Markov Chain is the sequence of Markov process over the state space S . The
transition probabilities can be expressed in a matrix, T , called Transition Probability

Matrix. Each state in S occupies exactly one row and one column of T , in which the

entry T (i, j) is the probability of transition from state i to state j. For all i, j ∈ S ,
we have 0 ≤ T (i, j) ≤ 1, and ∑j T (i, j) = 1.

A Markov chain is said to reach a stationary distribution π, when the probability

of being in any particular state is independent of the initial condition. This scenario

can be indicated by the condition

π = πT (2.5)

π is a row vector of size ∣T ∣. Thus, the stationary distribution is the left eigen-vector

of the matrix T with an eigenvalue of 1. We use π(i) to denote the i’th component

of this vector. A Markov chain in reversible if it satisfies the reversibility condition

below:

π(i)T (i, j) = π(j)T (j, i),∀i, j ∈ S (2.6)

The above condition is the sufficient condition for π to be a stationary distribution

of the Markov chain. A Markov chain is ergodic if it has a stationary distribution.

2.11.1 Metropolis-Hastings (MH) Algorithm

MH algorithm is a variant of MCMC algorithm; its goal is to draw samples from

some distribution π(x), called the target distribution, where, π(x) = f(x)/K; here K

is a normalizing constant which may not be known and difficult to compute. MH

algorithm can be used together with a random walk to perform Markov Chain Monte
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Carlo (MCMC) sampling. For this, the MH algorithm draws a sequence of samples

from the target distribution as follows:

i It picks an initial state (say, x) satisfying f(x) > 0.
ii From current state x, it samples a state y using a distribution q(x, y), referred

as proposal distribution.

iii Then, it calculates the acceptance probability α(x, y) (Equation 2.7) and accepts

the proposal move to y with probability α(x, y). The process continues until

the Markov chain reaches to a stationary distribution.

α(x, y) =min
⎛
⎝
π(y)q(y, x)
π(x)q(x, y) ,1

⎞
⎠ =min

⎛
⎝
f(y)q(y, x)
f(x)q(x, y) ,1

⎞
⎠ (2.7)
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3 RELATED WORKS

In this chapter, we discuss several research works that are relevant to the works

presented in this dissertation. The related works are partitioned into three different

sections: triple analysis, graphlet analysis and link prediction.

3.1 Triple Analysis

Being one of the most important building blocks of social networks, triples have

been studied in many recent works. First introduced by Holland et al. [38], transitivity

(also known as clustering coefficient) measures the degree to which nodes in a network

tend to cluster together. The importance of transitivity and its obvious connection

to the triangles in a network also contributed to the regained interest in the seem-

ingly simple task of triangle counting. Since then, multitude of applications of triple

analysis have been demonstrated. To mention a few, the distribution of triangles is

used to uncover hidden thematic structure in the World Wide Web [19]. Triangle

count is used for query plan optimization of database [39]. The distribution of the

local number of triangles can be used to create successful spam filters and the same

can also be used as features for assessing content quality in social networks [20]. Con-

trast between (degree) homogeneous triangles and heterogeneous triangles has been

shown to be quite useful in characterizing networks [40]. They also give a quantifiable

method for evaluating graph generation models.

3.1.1 Triangle Counting

The best practical algorithm for triangle counting in a network is an EdgeIter-

ator algorithm. An EdgeIterator algorithm iterates over all edges and compares
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the neighborhoods of the two incident nodes. For an edge (u,w) the nodes {u, v,w}
induce a triangle if and only if node v is present in both neighborhoods adj(u) and
adj(w). The asymptotic running time O(m3/2) is achieved by using hashed container

for the neighborhoods [41]. Here, m is the number of edges in the network.

Although the best practical algorithm has good asymptotic running time O(m3/2),
the best asymptotic solution is achieved by Alon et al. [42]. Alon et al. proposed

a fast matrix multiplication based algorithm for finding and counting simple cycles

of a given length k ≥ 3. Triangle counting is a special case of proposed algorithm

where k = 3. The time complexity of the algorithm is O(m 2γ

γ+1 ), where γ is the cost of

matrix multiplication. Asymptotic running time O(m1.41) is achieved by using best

known matrix multiplication algorithm, for which the value of γ is 2.37. However, the

methods that are based on matrix multiplication require large amount of memory,

and hence they are not suitable for counting triangles in very large networks.

Distributed solution proposed by Suri and Vassilvitskii [43] elevates the scalability

of triangle counting solution. Authors adapt any sequential triangle counting algo-

rithm to the MapReduce setting. The algorithm creates overlapping partitions of the

graphs so that each triangle is present in at least one of the partitions. The total

amount of work spent on finding all of the triangles remains same as EdgeIterator

algorithm, O(m3/2). There are simply more machines with each doing less work. The

algorithm effectively takes any triangle counting algorithm that works on a single

machine and distributes the computation. One weakness of the solution is that, the

number of partitions can be very large for a large network. And many triangles can

appear in multiple partitions; incurring redundant computational efforts.

3.1.2 Approximate Triangle Counting

In this section, we discuss approximate triangle counting algorithms. First, we dis-

cuss methods which use uniform sample of triples from a given network to estimate

transitivity and triangle count. Secondly, we shade light on triangle counting methods
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which use trace of A3 (here A is adjacency matrix). Third, we discuss network spar-

sification based triangle counting methods, which use edge sampling to construct a

sparse sample of the given network. Theses methods performs exact triangle counting

on the sparse network and normalize the count appropriately to obtain triangle count

of the original network. Finally, we discuss methods which uses streaming model of

network access to perform triangle counting in networks. Networks with streaming

access model are observed (by algorithms) as streams of edges.

For many large networks, it is often more desirable to compute approximate tri-

angle count using reasonable resources (memory and/or execution time). One of the

earliest works for uniform triple sampling was proposed by Schank et al. [44]. The

uniform distribution of sampled triples is achieved by first sampling the center vertex

(of triple) from an appropriately weighted distribution and then uniformly sampling

two neighboring vertices of the center vertex. After sampling a triple Schank et al.

determine if the triple is open (path of size 2) or closed (triangle). The sampled

triples are then used to approximate the transitivity (and triangle count) of the net-

work. Similar methods are used by a more recent work for estimating many variants

of clustering coefficients and for estimating triangle count [45, 46]

EigenTriangle, a linear algebraic method for triangle counting is proposed by

Tsourakakis [47]. The proposed method iteratively computes eigenvalues λi of the

adjacency matrix A of the given network in descending order of magnitude, and use

them to approximate the triangle count (∆ = 1
6 ∑n

i=1 λ
3
i ). The algorithm terminates

when the smallest eigenvalue contributes very little to the total number of trian-

gles. Tsourakakis extends the core idea of proposed method EigenTriangle to

give method FastSVD [48]. The method FastSVD first takes a projection A′ of

adjacency matrix A by sampling nodes with probability di
2m

where di is degree of

node i and m is the number of edges in the network. The triangle count is then

approximated using top singular values and corresponding singular vectors of matrix

A′. FastSVD increases the scalability of EigenTriangle by taking projection of

adjacency matrix of a large network.
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As explained above, EigenTriangle approximates triangle count of a network

by estimating the trace of A3. Each iteration of EigenTriangle uses Lanczos

method to find the next largest magnitude of eigenvalues. The limitations of the

proposed method includes, the hardness to determine how many eigenvalues need to

be computed and the absence of approximation guarantee. Avron [49] overcomes the

issues, by estimating trace of A3 using standard Monte-Carlo simulation for estimating

the trace of implicit matrix A3. Method proposed in [49] gives (ǫ, δ)-approximation

guarantee with O(ǫ−2log(1/δ)ρ(G)2). Here, ρ(G) a measure of the triangle sparsity

is not necessarily small. Additionally, each sample requires O(m) time.

[50] proposes DOULION , which uses a probabilistic sparsification technique to

obtain a sample of the original network (a more sparse network). The approximate

triangle counting is obtained by extrapolating the exact triangle count of the sampled

network. For a user defined p, DOULION iterates over each of the edges of the input

graph and sparsify it by removing an edge with a probability of 1−p; then it executes

any exact triangle counting algorithm on the sparse graph and divide the result by

p3 to approximate the triangle count in the original graph. Authors of this work also

offer a Hadoop (An implementation of MapReduce [51]) based solution for this work.

Another Hadoop based triangle counting algorithm is proposed by Pagh et al. [52],

which uses random coloring of nodes to sample subgraph G′ from a given network G.

The algorithm first randomly colors each node with color i ∈ {1 . . . N}, here N is an

integer. An edge is called monochromatic if both its endpoints have the same color.

G′ is constructed using only monochromatic edges. Then the algorithm executes

any exact triangle counting algorithm on G′ and multiply the result with N2 to

approximate the triangle count in the original graph. Degree-based vertex partitioning

method proposed by Kolountzakis et al. [53], extends the method DOULION . This

method partitions the set of vertices into a high degree and a low degree subsets and

treats each set appropriately. The algorithm has running time O(m + m3/2logn

tǫ2
) and

an (1 ± ǫ) approximation.
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All the triangle counting methods discussed above uses direct access networks.

Direct access allows the algorithms to query the existence of an arbitrary edge in

constant time. But, a growing set of real life networks can be accessed only as

streams of edges. Buriol et al. [54] propose a collection of streaming algorithms for

triple sampling and triangle counting approximation. Their proposed method, 3-pass-

incident-stream, is actually similar to the sampling methods of [44–46]. Buriol et al.

also consider another 3-pass method for arbitrary edge streaming; it samples triples

by first sampling an edge, and then sampling a vertex, both uniformly. A triple that

is obtained this way belongs to one of the following sets exclusively: disconnected

triples (set T1), connected open triples (set T2), or triangles (set T3). From the size of

each of these sets, the authors find an approximation of the triangle count in a graph.

Three-pass algorithm proposed by Jowhari et al. [55] gives (ǫ, δ)-approximation1

guaranty. At first pass of the algorithm a vertex u is sampled with probability (du
2
)/D.

Here, du is degree of vertex u and D = ∑i∈V (di2 ) is total number of connected triples

in network G(V,E). Then at second pass, the algorithm samples a pair of vertices

(v,w) randomly and uniformly from the neighbors of u. The final pass checks if

there exists an edge between v and w. A triple obtained this way belongs to one of

the following sets exclusively: connected open triples (set T2), or triangles (set T3).

A recent space efficient single pass algorithm proposed by Madhav et al. [56] uses

the birthday paradox. Authors prove that, their algorithm requires O(√n) space if

the transitivity is constant and there is more edges than wedges. In another work,

Madhav et al. [57] give an algorithm for estimating triangle count of multigraph

stream of edges. Multigraph stream can have repeated appearance of edges in the

stream.

None of the methods discussed in this section is applicable for restricted access

networks (Section 2.2). In Chapter 6, we introduce MCMC sampling based methods

for triangle count in restricted access networks.

1Let ǫ, δ > 0 and let ∆ be the number of triangles. With probability at least 1 − δ, the algorithm
outputs ∆

′

such that (1 − ǫ)∆ ≤∆
′

≤ (1 + ǫ)∆.
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3.2 Graphlet Analysis

The power of triple analysis is enhanced by generalizing analysis task for graphlets

of size k ∈ {3,4,5} (k = 3 for triple analysis). Introduced by Pržulj et al. [21],

graphlets have been successfully used for a multitude of applications. Pržulj et al. [21]

characterize biological graphs using graphlet frequency based distance metric. [13]

characterizes local neighborhood structures of vertices in protein-protein interaction

(PPI) network using graphlet frequency. Graphlet kernels proposed by [24] allow

efficient network comparison mechanisms. Vacic et al. [25] proposes graphlet kernels

for effective classification/clustering of nodes in protein structure networks.

3.2.1 Restricted Class of Graphlets

There exists a body of works performing graphlet analysis using only specific

classes2 of graphlets. Johnson [58] propose an algorithm to find all elementary/simple

circuits of a directed network. Edges in a directed network has direction associated

with them. A circuit is represented as an ordered list of nodes cu = (u = v1, v2, . . . , vk =
u) such that (vi, vi+1) ∈ E for 1 ≤ i < k. Note that first and last nodes of a circuit

is same u. A circuit is elementary/simple if no node but the first and last appears

twice. Work presented by Alon et al. [42] finds and counts simple cycles of given

length for both directed and undirected networks. Akkoyunlu [59] presents maximal

clique finding method on undirected networks. A clique is a completely connected

subgraph. A clique is represented as a set of nodes cl = {v1, v2, . . . , vk} such that

(u, v) ∈ E for u, v ∈ cl. Maximal clique is a clique which is not a subgraph of any

other clique.

2For example circuits, cliques, max cliques etc.
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3.2.2 {3,4}-Graphlets

In this section we discuss graphlet analysis using graphlets of sizes 3 and 4

(3-Graphlets, 4-Graphlets). Lussier et al. [23] use graphlets with three and four ver-

tices to characterize local structures of information cascades in large social networks.

An information cascade is a phenomenon by which people influence others to acquire

information or behaviors. They construct average graphlet frequency vector for each

information cascade, using frequencies of graphlets of size three and four. Authors

demonstrates the capability of such feature vector to capture evolution mechanism of

information cascades.

Vacic et al. [25] proposed graphlet kernel based method for prediction of functional

residues in protein structures. A protein structure can be represented as a network

G(V,E). Here, nodes in vertex-set V are residues (amino acid) and edges in edge-set

E connect spatially neighboring residues. The residues can be either a functional

residue or a not functional residue. Vacic et al. uses frequencies of graphlets of

size two, three and four to construct the representation vector of local structure of

a residue (node). A kernel function between two nodes is expressed as the inner

product of their respective representation vectors and is used in a supervised learning

framework to classify nodes (protein residues).

Efficient counting algorithms for 4-Graphlets is recently proposed by Marcus et al.

[60]. Authors propose separate algorithms for counting induced graphlets 4-Clique

(g8), 4-Cycle with a chord (g7), 4-Cycle (g5), Tailed triangles (g6), Claws (g4) and
Simple path of length three (g3). Authors partitions the graphlet count by the node

position in the graphlet. First they count non-induced graphlet using node position-

aware graphlet counting. Then they calculate the count of induced graphlets using

the non-induced count. A more recent work by Ahmed et al. [26], gives a parallel

algorithm for counting 3-Graphlets and 4-Graphlets. The proposed method counts

all connect and disconnected graphlets of size three and four. For each edge, authors

count a selected set of small (mostly of size 3) graphlets. Graphlet counting task of
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an edge is dependent on only neighbors of the participating nodes. Which make is

easy to parallelize the computation task. With these counts along with a number of

proposed combinatorial arguments, authors obtain the exact counts of other graphlets

in constant time.

3.2.3 5-Graphlets

Several recent works extend the graphlet analysis to incorporate graphlets of size

five (5-Graphlets). Pržulj et al. [21] design graphlet frequency based fingerprint of a

biological network. Authors use counts of all connected graphlets of size three, four

and five ({3,4,5}-Graphlets) to give network comparison metric relative graphlet

frequency distance, D(G,G′). The relative graphlet frequency distance D(G,G′), be-
tween two networks G and G′ is defined as,

D(G,G′) = 29∑
i=1
∣Fi(G) −Fi(G′)∣ (3.1)

Here, Fi(G) = −log( Ni(G)
∑29

i=1 Ni(G)), Ni(G) represents the frequency of graphlet gi in

network G. Graphlet Frequency Distribution (GFD) (see Section 2.7) of a network is

inspired by the definition of relative graphlet frequency distance.

In [13], the authors use the same set of 29 graphlets and introduce the concept of

automorphism orbits to characterize local neighborhood structure of a node. Authors

identify 73 different automorphism orbits, a node can touch. Thus, the signature

vector of a node having 73 coordinates captures local network structure. Authors,

demonstrate close relation between biological function of a node and its local network

structure in a protein-protein interaction (PPI) network. Pržulj [3] defines Graphlet

Degree Distribution (GDD) and similarity score GDD Agreement, for biological net-

work comparison. Author generalizes the edge degree distribution which measures

the number of nodes touching k edges, into distributions measuring the number of

nodes touching k graphlets.
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Shervashidze et al. [24] propose efficient graphlet kernels. The graphlet kernel

kg(G,G′) is defined as inner product of normalized graphlet count vector of two

networks G and G′,

kg(G,G′) =D(G)TD(G′) (3.2)

Here, D(G) is the normalized graphlet count vector of network G. This definition

of graphlet kernel is different form the relative graphlet frequency distance defined

by [21] (see Equation 3.1). [21] uses logarithm of the graphlet frequency to normalizes

the frequencies of different graphlets, which can differ by several orders of magnitude.

Shervashidze et al. [24] address the same issue by constructing graphlet kernels using

graphlets of a constant size k. k can be either of sizes 3, 4 or 5 (k ∈ {3,4,5}). Also

they consider both connected and disconnected graphlets while computing kg(G,G′).
GraphCrunch-2 [27] is a graphlet based network analysis tool. Kuchaiev et al.

[27] give efficient implementation of graphlet counting algorithms which parallelizes

computationally intensive tasks to fully utilize the potential of modern multi-core

CPUs.

3.3 Link Prediction

In this dissertation, we propose a novel use of graphlet analysis for performing link

prediction task in dynamic networks. Since, its formal introduction to the data mining

community by Liben-Nowell et al. [61] about a decade ago, link prediction problem

has been studied extensively by many researchers from a diverse set of disciplines.

Link prediction problems can be categorized into two classes, based on if the networks

are static or dynamic. The topological structure of a static network remains constant

across time, while the structure of a dynamic network changes with the progress of

time.
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3.3.1 Link Prediction in Static Networks

In this section, we discuss link prediction methods in static networks. First,

we discuss topological feature based link prediction methods. Secondly, we present

a nonparametric feature based method. Third, we shade light on a supervised link

prediction method which maps the link prediction problem as a two class classification

problem. Finally, we discuss a matrix factorization based link prediction method.

In their pioneering work [61] Liben-Nowell et al. introduce link prediction problem

in static network setup. Authors develop a set of link prediction methods based on

measures for analyzing the neighborhood of nodes in a network. The proposed link

prediction methods utilize correlation between future link formation tendency of a

node-pair and its topological proximity scores (like Common Neighbors, Jaccard’s

Coefficient, Adamic/Adar, Katz etc).

Miller et al. [62] propose a nonparametric latent feature model for link prediction

in static networks. Authors assume that the directed network is observed as a n × n
binary matrix A where, A(i, j) = 1 if an edge is observed from node i to node j

and A(i, j) = 0 if absence of edge is observed. The position A(i, j) is left unfilled

if on observation is available. The proposed link prediction model learns a binary

matrix Z(n × K) and a real-valued matrix W (K ×K) to give a probabilistic link

prediction model with likelihood, Pr(A∣Z,W ). Here K is the number of features.

An entry in binary matrix Z(i, k) ∈ {0,1} indicates if node i ∈ {1 . . . n} has feature

k ∈ {1 . . .K}. Weight matrix W quantifies the effect of the features in link formation.

The nonparametric method uses Indian Buffet Process (IBP) to choose appropriate

number of features K.

Lichtenwalter et al. [63] propose a new perspective for link prediction problem.

Authors categorize the topological proximity score based link prediction methods as

unsupervised link prediction methods. They suggests that, if one accepts the basic

premise that ground truth, whether a link forms or not, is available from prior in-

carnations of the network, there is no practical disadvantage to using a supervised



27

framework. Moreover, using a supervised method (training classifier) in conjunction

to a single unsupervised method can significantly improve the link prediction per-

formance. For supervised link prediction method the data has to be in the format

(!→x , y), such that !→x is a feature vector and y ∈ {0,1} is classification label. Authors

assume that edges in the network have time information associated with them. Fea-

ture vector !→x is constructed using network structure before a time tx and label y is

constructed from network structure at time after tx and before ty. The method trains

classification models using data available for edges observed in time window [tx, ty] to
predict links for unobserved node-pairs. Despite the availability of time information,

I categorize this work as link prediction in static network, because both the training

and prediction datasets are constructed from same time window.

A matrix factorization based method inspired by the success of collaborative fil-

tering [64] is proposed by Menon et al. [65]. Analogous to [62], this work [65] assumes

partial observation of the given network. Matrix factorization method effectively

learns latent features using observed entries of the network. Using the latent features

the method predicts links for unobserved node-pairs.

3.3.2 Link Prediction in Dynamic Networks

For many networks, additional temporal information, such as the time of link

creation and deletion, is available over a time interval. For example, in an on-line

social or a professional network, we may know the time when two persons have become

friends; for collaboration events, such as, a group performance or a collaborative

academic work, we can extract the time of the event from an event calendar. The

networks built from such data can be represented by a dynamic network, which is a

collection of temporal snapshots of the network. The link prediction task on such a

network is defined as follows: for a given pair of nodes, predict the link probability

between the pair at time t + 1 by training the model on the link information at times

1,2, . . . , t. We will refer this task as dynamic link prediction. Strictly speaking, this
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task should be called link forecasting as the learning model is not trained on partial

observation of link instances at time t+1 (as was the case for link prediction proposed

by Lichtenwalter et al. [63]); however, we refer it as link prediction due to the popular

usages of this term in the data mining literature.

In the following paragraphs we discuss several link prediction methods. First,

we discuss tensor factorization based link prediction methods. Secondly, we shade

light on nonparametric link prediction methods. Third, we discuss deep learning

based methods for dynamic link prediction. Finally, we discuss time series based link

prediction methods.

Dunlavy et al. [66] propose tensor factorization based link prediction methods

for dynamic networks. In this work, the dynamic network is represented as a three-

dimensional tensor Z(n × n × t). Here, t is number of discrete time stamps available

for the dynamic network. Proposed method uses CANDECOMP/PARAFAC (CP)

[67] tensor decomposition method, which decomposes the given tensor into three

component matrices. CP yields a highly interpretable factorization that includes

a time dimension. Using factorized matrices, authors predicts links in future time

stamp t + 1. The proposed method has the capability to predicts links in times

beyond immediate (t+1) future time stamp (i.e., t+2, t+3 etc). The method though

originally deigned for bipartite networks, can easily be adopted for unipartite network

setup.

A nonparametric link prediction method for dynamic network setup is proposed

by Sarkar et al. [68]. The proposed model predicts links based on the features of its

endpoints, as well as those of the local neighborhood around the endpoints. Given

a node-pair, the proposed method predicts future link using Bernoulli distribution

parameterized by local neighborhood of past snapshots of the network. For a node

pair, authors use features common neighbor and last appearance time of a link to

identify different types of neighborhood of the network. Once a neighborhood type

is selected, statistical information collected from similar neighborhoods are used to

compute the corresponding probabilistic function (Bernoulli distribution), which is
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then used for link prediction. The proposed method learns different models to predict

links in different types of neighborhood.

Kevin et al. [69], use stochastic blockmodel for dynamic link prediction. Authors

categorize nodes of a network into several groups (blocks) and generates edges with

probabilities dependent on the group membership of participant nodes.

A deep learning based solution proposed by Li et al. [70] uses a collection of Re-

stricted Boltzmann Machines with neighbor influence for link prediction in dynamic

networks. Authors train a Conditional Temporal Restricted Boltzmann Machine

(ctRBM ) for each node in the network. Input to a ctRBM contains concatenation

of adjacency lists of the corresponding node over a continuous window of past snap-

shots. This contains temporal information of past configuration of the network. Input

also contains neighbor feedback from the expectation (output) of the local neighbors’

ctRBM. The method needs to train n different ctRBM s, all of which gets input from

ctRBM s of neighboring nodes.

Güneş et al. [71] propose time series based link prediction methods, which model

history of similarity score of a node-pair as a time-series. Authors use variations of

several popular topological feature based similarity scores like, Common Neighbors,

Preferential Attachment, Adamin-Adar and Jaccard Coefficient. For a node-pair au-

thors collect the scores for past time stamps. Then a powerful time series forecasting

model ARIMA is used, in order to predict the future similarity scores. Link predic-

tion is done using the predicted scores. Authors propose 16 different link prediction

methods. The proposed methods trains separate ARIMA model for each node-pair,

which makes the proposed methods embarrassingly parallel. Good surveys [12,72] on

link prediction methods are available for interested readers.
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4 GRAPHLET COUNTING ALGORITHMS

A fundamental task in network analysis is to count the frequency of various small sub-

graphs to discover network motifs—subgraphs that are significantly more frequent in

a network relative to their occurrence in a randomized network of identical degree dis-

tribution [73]. Researchers have shown that network motifs are basic building blocks

of different networks, including social networks, molecular interaction networks, and

transportation networks [73–75]. To obtain effective algorithms for finding such mo-

tifs, researchers have developed a number of methods for counting the frequency of

small subgraphs in a large networks [27, 76, 77]. Below, we discuss two problems,

counting triangles and counting graphlets g1-g29.

Triangles

In recent years, researchers in the data mining community have shown an over-

whelming interest in the problem of triangle counting [47–50, 52, 54, 55]. Although

this is an old problem in graph theory, the renewed interest in this problem in mainly

due to the fact that gigantic networks with millions of nodes and billions of edges

are being available in recent years, on which the existing triangle counting methods

perform poorly.

In the existing literature, the best practical algorithm for counting triangles ex-

actly has a cost of O(m3/2), where m is the number of edges in the graph [41]. The

algorithm iterates over the edges of the graph, and counts the number of triangles in

which each of the edges contributes. Such an algorithm is known as EdgeIterator

method. NodeIterator, a method which is dual to the EdgeIterator, iterates

over the nodes and counts triangle in O(d2max ⋅ n) time, where n is the number of

nodes, and dmax is the maximum degree of a node in the graph. However, in Chapter
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5 we demonstrate the superiority of EdgeIterator method over NodeIterator

method for triangle counting. Most of the existing methods belong to the EdgeIt-

erator category.

The time complexity O(m3/2) of EdgeIteratormethod can be further improved

by using matrix multiplication based methods. Alon et al. [42] gave such an algorithm

that has a time complexity of O(m 2γ

γ+1 ) where γ is the matrix multiplication cost; so

the cost of this algorithm becomes O(m1.41), using the best known γ value which is

2.37 at present. In terms of time complexity, the fastest triangle counting methods are

based on fast matrix multiplication. However, the methods that are based on matrix

multiplication require large amount of memory, and hence they are not suitable for

counting triangles in very large graphs. ∎

Graphlets g1-g29

A natural generalization of triangle counting task is to consider graphlets of larger

size. In this chapter, we consider the task of counting graphlets g1-g29 in a large net-

work. The main motivation is building a fingerprint, called graphlet frequency distri-

bution (GFD). To recap, GFD is a vector used to compare the frequencies of various

graphlets for analyzing a large graph. Real-life networks are sparse, and in such

networks the frequencies of larger-sized graphlets shrink in exponential proportion;

hence, GFD uses logarithm scale for the frequency comparison so that the contribu-

tion of larger-sized graphlets are fairly accounted. Also, in constructing GFD, we limit

the counting task for graphlets that have upto five vertices (shown in Figure 4.1). For

justification of the restriction on graphlet size, we refer the reader to the Table 4.1;

data from this table show that the number of possible (undirected) graphlets grows

exponentially 1 with the number of vertices. The table also shows that there are 112

graphlets with six vertices in comparison to 21 graphlets with five vertices. With that

many choices, the frequencies of most (except the line graphlet) size-6 graphlets are,

1growth is larger than the growth of a Fibonacci sequence
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Figure 4.1.: All 3,4,5-node graphlets. Each vertex-orbit of a graphlet is represented by
drawing the vertices of the orbit with same color (black, white and gray). Discussed
in more details in Section 4.2.

Table 4.1.: Number of distinct graphlets (modulo isomorphism) with different number
of vertices

Vertex Graphlet
Count Count

2 1
3 2
4 6
5 21
6 112
7 853

often, zero for a real-life graph and hence, are too un-reliable to be used for describing

a phenomenon, or for obtaining a graph generation model. Needless to say that the

cost of counting also rises in exponential proportion if we additionally consider the

size 6 graphlets. Thus, the choice of constructing GFD using graphlets having upto

five vertices is the best considering the cost-benefit tradeoff.
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Computing graphlet frequencies of a large graph is a computationally expensive

task. However, limiting the size of the graphlets makes the counting task polynomial;

in fact, all induced embeddings of size-k graphlets in a graph G(V,E) can be enu-

merated (and counted) in O(∣V ∣k) time by a brute-force search, which is prohibitively

expensive for real-life networks having thousands of vertices, specifically for k = 4

or 5. However, in real-life large graphs are sparse, which helps designing graphlet

counting algorithms that are significantly more efficient than a O(∣V ∣5) algorithm.

The idea is to iterate over the vertices of a graph, and along that process enumerate

the graphlet embeddings that are associated to each of the vertices. In recent year,

a software named GraphCrunch [27] has been released, which follows this approach

for exact counting of graphlets in biological networks. However, exact counting using

EdgeIterator method though feasible for small graphs that arise in the domain of

bioinformatics, such an approach may not be feasible for large graphs arising in the

domains of social and information networks. For example, we ran GraphCrunch on

Enronemail data set (38,692 vertices, 367,664 edges) and slashdot data set (77,357

vertices, 516,675 edges); neither of the counting processes finish after 5 days of run-

ning on a typical desktop computer.

Counting subgraphs from a large network is known as a computationally expen-

sive task. Researchers attempted to develop algorithms for exact counting of specific

classes of subgraphs, such as cycles [42, 58], cliques [59], and triangles [78]. Przulj

et al. [21] describe how to count all induced subgraphs upto size 5 in PPI (Pro-

tein Protein Interaction) network using a nodeIterator method. They used the term

graphlet to denote such subgraphs. Recently, [26, 60] present efficient counting al-

gorithms for graphlets of size 4. Shervashidze et al. [24] provide methodology for

counting all graphlets up-to size 5 in bounded degree graphs; main motivation of

their work is to use graphlet counts to design efficient graph kernel. ∎
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Contributions

In this chapter, we propose two EdgeIterator algorithms. First method counts

triangles of a large network. The proposed EdgeIterator method iterates over each

edge of the given network. For each edge we count the number of triangles it par-

ticipates in. The global triangle count of the network is obtained by aggregating

the local triangle count of all edges. Second method follow a similar approach for

computing the frequencies of graphlets of sizes 3 − 5 in a large network. For each

edge, the computational task is more complex and computationally intensive. The

details is discussed in Section 4.3. Finally, we give a spark based distributed solu-

tion for graphlet counting. We explore the trade-offs between RDD generation and

Exploration in order to get the best distributed solution.

Our work has the following contributions:

• We discuss an EdgeIterator based triangle counting method ExactTC [28]

in Section 4.1.

• We propose an EdgeIterator based graphlet counting method ExactGC

[29, 30] in Sections 4.2 and 4.3.

• We give a spark based distributed solution for graphlet counting in Section 4.4

4.1 Triangle Counting

Assume, G(V,E) is a simple, connected, and undirected graph. We denote the

adjacency list of a vertex v ∈ V by adj(v), which contains all the vertices that are

adjacent to v. In our implementation, all the adjacent lists are sorted in the ascending

order of the vertex-id. Since the graph is undirected, for an edge (u, v) u appears

in v’s adjacency list and vice-versa. A triangle is represented by a triple of (u, v,w),
where u, v,w ∈ V and there exists an edge between every pair of vertices in the triple.

An EdgeIterator algorithm iterates over each edge e(vi, vj) ∈ E for counting

the total number of triangles for which e is a participating edge. Let’s call the number
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Algorithm 1 ExactTC

Require: Large network G(V,E)
1: count = 0
2: for each edge (vi, vj) ∈ E do

3: adj1 = {x∣x ∈ adj(vi), x >max(vi, vj)}
4: adj2 = {x∣x ∈ adj(vj), x >max(vi, vj)}
5: counte = ∣intersection(adj1, adj2)∣
6: count+ = counte
7: end for

8: return count

of triangles incident to the edge e, the partial triangle count with respect to e, and

represent it by counte. Since a triangle is composed of 3 edges, a triangle will appear

in exactly 3 of these partial counts. ExactTC can obtain the total count of triangles

in G by simply adding the partial counts of all the edges followed by a division by

3. The triple counting of a triangle in the above method can be avoided by imposing

a restriction that the third vertex of the triangle (say, vk) has an id which is larger

than the id’s of both the vertices vi and vj of the edge e; this yields a more efficient

version of ExactTC; a pseudo-code for which is shown in Algorithm 1. It computes

the counte for an edge e = (vi, vj) as follows: it takes the adjacency lists of the

contributing vertices vi (adj(vi)) and vj (adj(vj)). Then, it finds the subsets adj1 and
adj2 to ensure that the id of the possible third vertex (vk) is strictly higher than the ids

of both vi and vj, and then it finds the number of vertices that are common in both

adj1 and adj2 i.e., counte = ∣intersection(adj1, adj2)∣. More than 50% of execution

time can be saved using this method.

4.2 Graphlet Counting Preliminaries

In this section, we discuss some concepts and notations used for graphlet counting

method. To recap, graphlets can be defined as small, connected, non-isomorphic,

induced subgraphs of a large network. In this study, we work with all possible

graphlets having k vertices; where, k ∈ {3,4,5}. We refer a graphlet with k ver-
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tices, as k-Graphlet; Note that, 1-Graphlet is simply a vertex, and 2-Graphlet is

simply an edge. A k-Graphlet is called a tree graphlet if it is a tree, i.e., it has k−1
edges. A graphlet that is not a tree graphlet is called a cyclic graphlet.

Example: Figure 4.1 shows all the graphlets that have between 3 and 5 ver-

tices; there are 29 graphlets in this set. They are referred as gi, for i from 1 to

29. Among them, g1, g3, g4, g9, g10, and g11 are tree graphlets, and the remaining are

cyclic graphlets. For each graphlet, we identify each of its vertices by an English

small letter, such as, a, b, c, etc. as shown in Figure 4.1. ∎
The task of Graphlets counting over an input graph G is to find the counts

of all distinct induced embedding of each of the graphlets having upto k vertices.

To distinguish an embedding, we assign integer identifiers to each of the vertices in

G, starting from 1 to ∣VG∣. Then an induced embedding of a k-Graphlet is denoted

simply by a set of k vertex identifiers in the graph G, such that the subgraph induced

by those vertices is isomorphic to that graphlet. Due to the “induced” constraint, at

most one k-Graphlet is embedded in a given set of vertices of size k; same constrain

also imposes that, if there exist two embeddings of the same graphlet in a graph,

those embeddings should differ by at least one vertex. However, a subgraph of a

size-k embedding may contain another graphlet of size smaller than k.

Figure 4.2.: Example network.

Example: In Figure 4.2, the induced-subgraph consisting with the nodes {1,2,4,5}
of the example network is an induced embedding of g6; no other graphlet of size 4
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is embedded in the above set of vertices. Again, the vertex-set {2,4,5,6,7} embeds

only g24; it does not embed g21 because of the induced restriction; in fact, the count

of g21 is 0 in the example graph. Above example also confirms that a given set of k

vertices embeds at most one k-Graphlet. ∎
An isomorphism from a graph G to itself is called an automorphism. Thus,

an automorphism π of a graph G is a structure-preserving permutation πV on VG

along with a consistent permutation πE on EG. We may write π = (πV , πE). For

simple graphs, the permutation πE is always consistent and is uniquely defined by

πV . The total number of automorphism of a graph is defined as ∣Aut(G)∣. Also, any
permutation can be represented as a product of disjoint cycle, the vertices that belong

to the same cycle under an automorphism form an equivalence class, which are called

vertex-orbits. Similarly the equivalence classes of the edges are called edge-orbits.

Example: In Figure 4.1, each vertex-orbit of a graphlet is represented by draw-

ing the vertices of the orbit by same color. For example, graphlet g14 has three

vertex-orbits (a, b), (c), (d, e) and three edge-orbits (ab), (ac, bc), (cd, ce). Also, its

automorphism count is 4. ∎

4.3 Graphlet Counting

Proposed graphlet counting method ExactGC works as an EdgeIterator al-

gorithm; where, the counting process iterates over the edges of the input graph,

G(V,E). For an edge e ∈ EG, it finds the count of all induced embeddings of a

graphlet g with the constraint that the edge e is part of the embeddings; we call this

count a partial count of the graphlet with respect to the edge e. The partial count can

be summed over all the edges to obtain a total count of the graphlet g in the input

graph. However, in the above process, a distinct graphlet will be counted multiple

times, by being accounted in different partial counts, so the above count needs to be

corrected by dividing it with an appropriate normalization factor. Such a method

yields an exact graphlet counting algorithm.
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4.3.1 Partial Graphlet Count

We first discuss, how to obtain the partial count of a graphlet g that is associated

with an edge e of the input graph. The first step for this task is to choose an specific

edge eg in the graphlet g, which will be aligned with the edge e in the large graph G.

We will call the edge eg the first aligned edge (FAE). Though, the choice of FAE can

be arbitrary for exact counting, it is not the same for approximate counting; for the

latter, a poor choice can drop the counting accuracy significantly. We discuss more

on this in Chapter 5.

Once the FAE is chosen, the next task is to enumerate all the embeddings of a

graphlet g with the constraint that in those embeddings, eg is aligned with the edge e.

The size of the set containing all the embeddings is the partial count of the graphlet g

associated with the edge e. The enumeration process of the embeddings differs based

on whether g is a tree graphlet or a cyclic graphlet.

Tree Graphlet Enumeration

Enumeration process is simpler for a tree graphlet. From Figure 4.1, there are one

(g1), two (g3, g4), and three (g9, g10 and g11) tree graphlets with 3, 4, and 5 vertices,

respectively.
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Figure 4.3.: Embedding tree graphlets g3
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We first explain the enumeration of g3. Suppose, we are given the graph G shown

in Figure 4.3(a) and we want to enumerate the embedding of graphlet g3 in G. For

this, ExactGC chooses the edge (b, c) of graphlet g3 as FAE, and aligns it with

the edge (id1, id2) of graph G (Figure 4.3(b)). Then step by step, it embeds the

graphlet g3 on the graph G over vertices {id1, id2, id3 and id4} (From Figure 4.3(b)

to 4.3(d)). At the end, we get an induced embedding of g3 consisting with the

vertices {id1, id2, id3 and id4} (Figure 4.3(d)). By iterating over the adjacency lists

of id1 and id2, ExactGC enumerates all possible embeddings of a and d. Note that,

ExactGC only enumerates (counts) the induced embedding for g3. For example, the

embedding for g3 consisting with the vertices {id1, id2, id3 and id5} (Figure 4.3(e)) is
not an induced embedding, and ExactGC will not enumerate it while counting the

graphlet g3.

Normalization: It is easy to see that ∣Aut(g3)∣ is 2, as a chain (g3 graphlet)

can be embedded at most in two ways (forward and backward) over the same set of

vertices in G. So, if there is no constraint on the embedding of g3 we will count the

same embedding of g3 twice. To reduce duplication, ExactGC introduces restriction

whenever possible. For example, edge (b, c) is mapped to edge (idi, idj), only if

idi < idj . This constraint ensures that g3 is mapped to an embedding only once;

therefore, the normalization factor for g3 is 1.
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Figure 4.4.: Embedding tree graphlets g11
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Another example of tree graphlet enumeration, may be, the enumeration of g11.

Initially, ExactGC embeds the edge (a, c) of this graphlet with an edge (id1, id2)

of the large graph (Figure 4.4). Then, it scans the adjacency list of vertex id2 to find

all possible mappings of vertices b, d and e of g11 to vertices id4, id5 and id6 of the

large graph. Thus, we get an embedding (not necessarily induced) of g11 in the large

graph. Finally, ExactGC checks whether the embedding is induced or not. It only

enumerates (counts) the induced embedding for g11.

Normalization: The number of graph automorphism, ∣Aut(g11)∣, is 4! = 24. So,
for g11 we will have 24 repetitions of an embedding (if there is no constraint). If we

apply the constraint that, mapping of vertices b, d and e of g11 to vertices id4, id5 and

id6 of the large graph is valid if and only if id4 < id5 < id6, then we will have to deal

with only 4 repetitions of an embedding. Therefore, the normalization factor for

g11 is 4.

Other tree graphlets (g1, g4, g9 and g10) can also be enumerated by following a

similar mechanism.

Cyclic Graphlet Enumeration

For enumerating an embedding of a cyclic graphlet g, we can use one of the

spanning trees of g; the specific spanning tree that is used for the generation is called

a generation tree graphlet. A tree graphlet is it’s own generation tree graphlet.

Multiple graphlets can have the same generation tree graphlet (e.g., g5 and g6 both

have g3 as their generation tree graphlet). Also, for a cyclic graphlet, there can be

multiple generation tree graphlets (e.g., g22 can have g9, g10 and g11 as its generation

tree graphlet).

To enumerate a cyclic graphlet, ExactGC initially embeds the generation tree

graphlet (which is not induced). Then it checks explicitly whether the desired graphlet

is induced in the embedding of it’s generation tree graphlet.
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For example, the generation tree graphlet of g5 is g3. So, in order to embed the

graphlet g5 in a large graph, g3 must be embedded at the beginning. Figure 4.3(e)
shows an embedding (not induced) of g3 (consisting with the vertices {id1, id2, id3 and
id5}), which gives us the induced embedding of g5 since the edge (a, d) is induced by

the existence of the edge (id3, id5), and no other edge (excluding the edges of tree

graphlet) exists between a pair of vertices from the set {id1, id2, id3, id5}. The similar

concept of normalization as tree graphlet enumeration applies here. If we apply the

restriction to induce the edge (b, c) to edge (idi, idj) when the condition idi < idj

satisfies, then we will have 4 duplications (using 4 left-rotations to align the edge

(b, c) to different edges of the rectangle) of an embedding (normalization factor is

equal to 4).

Algorithm 2 ExactGC Algorithm

Require: Large network G(V,E), Graphlet g

1: choose an specific edge eg in g

2: count = 0
3: for each edge e ∈ E do

4: align eg with e

5: enumerate all induced embedding of g in G, where e and eg are aligned, x is the
total number of embedding found.

6: count = count + x
7: end for

8: count = count/normalization factor

9: return count

4.3.2 Pseudo-Code

The outline of ExactGC is given in Algorithm 2. It accepts a graphlet g (it can

be any of the graphlets shown in Figure 4.1) and a large graph G in which we like to

count the occurrences of g.

ExactGC iterates over each of the selected edges sequentially (the for loop in

Line 3). For an edge e ∈ E, it finds the count of all induced embedding of g in G with

the constraint that those embeddings map one of the graphlet edge eg to the edge,
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e. (Line 4 and 5). As mentioned earlier, we call this the partial count. The partial

count is accumulated sequentially as the method iterates over the edges in E (Line

6). The final count is then normalized appropriately to obtain the total count of the

graphlet g in G (Line 8);

4.3.3 Joint Enumeration of Multiple Graphlets

As explained in Section 4.3.1, for counting a cyclic graphlet (say, gx), ExactGC

embeds the corresponding generation tree graphlet gt followed by a validation to en-

sure that this embedding contributes to an induced embedding of gx. If the validation

step fails to find an induced embedding of gx, then this specific embedding (not in-

duced) of gt does not contribute to the enumeration of the graphlet gx. However,

the embedding of gt contributes to the induced embedding of some other graphlets,

whose count should be incremented with this discovery. Therefore, if we count mul-

tiple graphlets (having the same generation tree graphlet) simultaneously, we will

be able to share the workload of enumeration. Therefore, ExactGC’s process of

embedding graphlets having the same generation tree graphlet gt is as below:

• Embed the generation tree graphlet gt.

• Find the graphlet gx whose induced embedding corresponds to this embedding

of gt.

The above optimization improves the execution time significantly, as every embed-

ding of gt contributes to the enumeration (count) of exactly one induced embedding

of the graphlets.

4.4 Distributed Graphlet Counting

Recent advancement of distributed computational model has encouraged researchers

to design scalable solutions for computationally demanding problems. Graphlet
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counting is no different. Suri and Vassilvitskii [43] adapt sequential triangle counting

algorithms to MapReduce setting by partitioning the network into overlapping sub-

sets. Tsourakakis et al. [50] propose a network sparsification based method Doulion

which also uses distributed computational frame work MapReduce for triangle count-

ing. A more recent algorithm proposed by Ahmed et al. [26] counts 3-Graphlets and

4-Graphlets. The proposed algorithm is claimed to be well-suited for distributed

architecture.

In this section we propose a distributed solution of graphlet counting. The pro-

posed solution counts graphlets of sizes 3,4 and 5 ({3,4,5}-Graphlets) and can easily

be extended for graphlets beyond size 5. We use Spark distributed cluster computing

system and resilient distributed dataset (RDD) provided by Spark to design and build

an efficient distributed graphlet counting algorithm ExactSpark.

4.4.1 Spark Distributed Framework

Spark, a distributed framework technology developed by Apache foundation. Spark

provides in-memory caching in distributed file system; this mechanism helps faster

access to the data that resides in the file system. In addition to supporting four

programming languages Scala, Python, Java and R; Spark also includes access to

Machine leaning packages called MLib (Machine learning) and GraphX (for graph re-

lated problems). Spark supports the map-reduce model of programming and is built

to support iterative and interactive computations. The notion of cashing and broad-

casting in Spark enables data nodes to communicate efficiently during a computation.

Spark presents persistent Resilient Distributed Datasets (RDD), an efficient, ex-

pressive and fault tolerant abstraction for sharing the data in the cluster. RDD was

built to support efficient iterative computation. Transformations like map, union,

sample, join, groupByKey, flatMap and reduceByKey can be expressed in a few lines

of code. Failure to a node can be easily recovered by re-executing the transformations

of the failed RDD partitions.
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4.4.2 Graphlet Counting by Enumeration

A popular method for graphlet counting is by enumerating the graphlet embed-

dings. After each enumeration, the statistics of the corresponding graphlet is updated.

For ensuring the correctness and efficiency of the counting method, the enumeration

process needs to have two properties. Firstly, every embedding has to be enumerated

at least once. This ensures that all graphlet embeddings are accounted for; an al-

gorithm with this property guaranties the completeness of the enumeration process.

Second, every graphlet embedding has to be enumerated at most once. This property

makes sure that the algorithm does not do any redundant work to gather graphlet

statistics, thus enforcing better efficiency. An enumeration method with these two

properties ensures that every graphlet embedding will be enumerated exactly once.

The graphlet enumeration used by the graphlet counting method ExactGC pre-

sented in Algorithm 2, does not adhere to the second property. Most of the graphlets

are enumerated multiple times, resulting an extra step to normalize the graphlet count

(Line 8 of Algorithm 2). Both of these properties are preserved by the subgraph enu-

meration process proposed by Wernicke [77]. We adopt the method proposed by Wer-

nicke, to give a sequential graphlet embedding enumeration algorithm SeqEnum(see

Algorithm 3).

The algorithm starts by enumerating graphlets of size 1 (1-Graphlets) for all

nodes v ∈ V . For each 1-Graphlet the algorithm computes the set of neighbor nodes,

which can be added to enumerate graphlets of size 2 (2-Graphlets). The process

is repeated to enumerate (k + 1)-Graphlets from k-Graphlets. The neighbor nodes

are computed in such a way that the desirable properties (a graphlet embedding is

enumerated exactly once) of enumeration process is enforced. Details of the algorithm

is discussed bellow:

The algorithm enumerates the graphlet in set Graphlets (line 2). The enumeration

starts from each node of the network (lines 3 to 6). For each node the algorithm

constructs an extension list VExtension, using which further extension is possible. For
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Algorithm 3 Sequential Graphlet Enumeration Algorithm

1: function SeqEnum(Large network G(V,E))
2: Graphlets ← φ ▷ Graphlets, set of graphlets of size k. Initially empty.
3: for each vertex v ∈ V do
4: VExtension ← {u ∈ N({v}) ∶ u > v} ▷ N({v}) is the set of neighbors of

node-set {v}
5: ExtendEmbedding({v}, v, VExtension,Graphlets)
6: end for
7: return Graphlets

8: end function

9: function ExtendEmbedding(VGraphlet, v, VExtension, Graphlets) ▷
VGraphlet is currently explored graphlet node-set, v is the first node and VExtension

is Extension node-set
10: if ∣VGraphlet∣ ∈ {3,4,5} then
11: Graphlets ← Graphlets ∪G[VGraphlet]
12: end if
13: if ∣VGraphlet∣ == 5 then
14: return
15: end if
16: while VExtension ≠ φ do
17: Remove an arbitrarily chosen vertex w from VExtension

18: V ′Extension ← VExtension ∪ {u ∈ Nexcl(w,VGraphlet) ∶ u > v} ▷ Here,
Nexcl(w,VGraphlet) = N({w}) ∖ (VGraphlet ∪N(VGraphlet))

19: ExtendEmbedding(VGraphlet ∪ {w}, v, V ′Extension, k,Graphlets)
20: end while
21: end function

example, adding one node u from VExtension to the initial node v will give us a graphlet

of size two {u, v}. A restriction u > v imposed on the VExtension (Line 4) ensures the

graphlet {u, v} is constructed only once.

The sub functionExtendEmbedding is responsible to extent the current graphlet

embedding VGraphlet by adding the nodes from VExtension (one at a time) (see Line 19).

The function ExtendEmbedding adds the current embedding to Graphlets if it is of

sizes 3,4 or 5 (Lines 10-12). ExtendEmbedding returns if the current graphlet em-

bedding is of size 5 (Line 13-15), thus terminating further extensions. Otherwise, the

algorithm extends the current embedding VGraphlet, by adding a new node w form the
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neighborhood VExtensions (Lines 16-20). Before recursively calling itself, the function

ExtendEmbedding constructs the extension list V ′Extension for the new extended

graphlet embedding VGraphlet ∪ {w}. Note that the algorithm imposes restrictions on

the construction of V ′Extension (see Lines 17 and 18). These restrictions are enforcing

the two properties; completeness and correctness.

4.4.3 Distributing the Enumeration

The sequential graphlet enumeration algorithm SeqEnum is a NodeIterator

method. SeqEnum enumerates the graphlets in depth first search (DFS) order, i.e.,

if the initial vertex v is assigned nodeId va (v = va) in first iteration of for loop in Line

3, then all graphlets for which va is the smallest nodeId will be enumerated before

any other graphlets in the network. On the other hand, from the perspective of a

graphlet; a graphlet of size k (for k > 1) is expanded from a graphlet of size k − 1 by

adding a neighboring node and its corresponding edges. This gives us a breadth first

search (BFS) order exploration tree of graphlet enumeration (see Figure 4.5). In BFS

order, all the graphlets of size k are enumerated first before any k + 1 graphlets.

While the algorithm SeqEnum is easily parallelizable, by forking new thread for

each node in vertex set V (at Line 3). The workload distribution in each thread

will not be uniform, as nodes with higher degree will be part of exponentially more

graphlets than others. As a result some thread will work to enumerate a large number

of graphlet embeddings while others will be left idle. The BFS exploration order of

graphlet enumeration gives us an opportunity to repeatedly redistribute the workload

of CPUs; by assigning equal number of k-Graphlet embeddings to each CPU. Once

all the (k + 1)-Graphlet embeddings are enumerated by expanding k-Graphlets, we

can again redistribute the workload by assigning equal number of (k + 1)-Graphlet

embeddings to each CPU.

For distributing graphlet enumeration, we use Spark distributed computation

framework. Initially we construct an RDD containing all 1-Graphlet embeddings.
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Figure 4.5.: BFS exploration of graphlet enumeration.

Each graphlet is a record in the RDD. To maintain the completeness and correctness

of the enumeration method, we need to maintain the VExtension information for each

graphlet embedding. We define graphlet record rg, which contains all information

necessary to identify a graphlet in embedding g and generate all valid extensions. rg

can be represented as tuple of size four, rg = (V,E,Neighbors,Extensions). Here,

rg.V is the set of participating vertices of the graphlet, rg.E is the set of edges. The set

of neighbors of all participating nodes is rg.Neighbors = N(rg.V ) and rg.Extensions

is valid extensions (as VExtension used in algorithm SeqEnum).

Given a record for a graphlet of size k, the process of graphlet extension to get

graphlet embeddings of size k + 1 can be divided into two stages: extension and

completion.
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Embedding Extension

For a record of k-Graphlet embedding rg, the embedding extension stage enumer-

ates all valid extensions to give records of (k+1)-Graphlet embeddings (see Algorithm

4). Initially the function EmbeddingExtension constructs an empty container

NewEmbeddings for gathering all graphlets extended from rg (Line 2). Then in a

loop (Lines 2-8) we iteratively extract neighboring nodes v from rg.Extensions to

generate a valid extensions rg.V ∪{v} and collect them in NewEmbeddings. Finally,

we return the list of all valid extensions in Line 9. An embedding can be uniquely

identified by the corresponding set of vertices, but for graphlet type (g1 to g29) iden-

tification we need additional edge information. Records created in line 6, does not

have all necessary information to do so. Because of the newly added node v the last

three entries (E,Neighbors,Extensions) of the record nr′g needs reevaluation. The

only additional information we need to do so is the adjacency list of last node v. The

new records in NewEmbeddings contains a tuple of size two (v,nr′g).
Algorithm 4 Embedding Extension

1: function EmbeddingExtension(Graphlet Embedding rg) ▷ rg = (V, E,

Neighbors, Extensions)
2: NewEmbeddings ← emptyList()
3: while rg.Extensions.notEmpty() do
4: v ← rg.Extensions.top()
5: rg.Extensions.remove(v)
6: nr′g ← (rg.V ∪ {v}, rg.E, rg.Neighbors, rg.Extensions)
7: NewEmbeddings.append(v,nr′g)
8: end while
9: return NewEmbeddings

10: end function

Embedding Completion

Embedding Completion stage is responsible for reevaluation of all the entries of

newly created records (see Algorithm 5). At this stage all information necessary for
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graphlet type identification and further extensions of graphlet embedding are gathered

using adjacency list N({v}) of newly added node v. The function EmbeddingCom-

pletion takes the tuple of form (v,nr′g). First, we gather neighborhood information

of vertex v (Line 2-3). Adjv contains the complete adjacency list and AdjF ilteredv

is a restricted adjacency list containing all neighboring node of v whose id is larger

than the smallest node in the embedding. AdjF ilteredv is necessary to ensure that

each graphlet is embedded only once. New edges of the embedding nr′g is collected

by intersecting neighborhood of v and all current nodes nr′g.V (Line 4). The reevalu-

ated Neighbors for the new embedding accounts for the neighborhood of v (Line 5).

Finally the reevaluated Extensions for the embedding is calculated by incorporat-

ing additional valid extensions possible from the last node v (Line 6). The function

EmbeddingCompletion returns the completed graphlet embedding record (Line

7).

Algorithm 5 Embedding Completion

1: function EmbeddingCompletion(v,nr′g)
2: Adjv ← N({v})
3: AdjF ilteredv ← {x ∈ N({v}) ∶ x > nr′g.V.min}
4: E ← nr′g.E ∪ {e(v, v2) ∶ v2 ∈ (Adjv ∩ nr′g.V )}
5: Neighbors ← nr′g.Neighbors ∪Adjv
6: Externsions ← nr′g.Extensions ∪ (adjF ilteredv − (nr′g.Neighbors ∪ nr′g.V ))
7: return (nr′g.V,E,Neighbors,Extensions)
8: end function

4.4.4 RDD Generation vs Exploration

Exploring graphlet embeddings of size k+1 from graphlet embeddings of size k in

breadth first search order, generates new RDDs for different size of graphlets. While

this approach redistributes the computational burden equally to every CPU in the

cluster; generation of multiple RDDs and their maintenance can be prohibitive for

large networks. Memory requirement for multiple RDDs can be very high (specially

as the number of embedding grows exponentially with the size of graphlets) and
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redistribution of graphlet embedding records requires a lot of communication across

the cluster.

The sequential enumeration algorithm SeqEnum can be thought of as pure ex-

ploration method as no embedding is physically created, but explored in a sequential

manner. The algorithm can finish the graphlet counting with out actually collecting

the the graphlet embeddings. On the other extreme, the distributed solution pro-

posed in Section 4.4.3 generated the embedding as records in RDD. This method

makes the process distributed, but at the cost of higher memory requirement. In this

section we propose a balance between the above two approaches. We generate RDDs

for graphlets of sizes less than or equal to 3. And then we adopt the exploration

approach from graphlet records of size 3, to obtain the counts of {4,5}-Graphlets.

Since we are generating RDD for 3-Graphlets, the method retains good compatibility

with distributed computational framework. Furthermore, the exploration approach

triggered after size 3 graphlet embedding, allows graphlet counting for larger net-

works.

The exploration form graphlet embedding records of 3-Graphlet is detailed in Al-

gorithm 6. The function HybridGraphletCounting takes a graphlet embedding

record rg and returns the record glCount with counts of graphlet embeddings includ-

ing and explored from rg. First, glCount is initialized to collect statistics of graphlets

explored form the graphlet embedding rg (Line 2). In Line 3, the index glType(rg)
of glCount is increased by one, thus counting the current graphlet embedding rg.

Function glType(⋅) returns the type of graphlet the graphlet embedding induces.

Note that the information available in record rg is sufficient for identifying graphlet

types (g1 to g29). The while loop in Lines 4-21 expands current graphlet by adding

nodes from the extension list rg.Extensions. Extension done in Lines 5-7 is same

as extension step in Algorithm 4. But, rather than creating a new RDD with this

extended embeddings, we complete the records (Lines 8,9,13,14,15). If the extended

graphlet is of size 5, which means the embedding will not be further extended; we

increase its corresponding counter (Lines 10-11). Otherwise, we recursively call the
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Algorithm 6 Hybrid Graphlet Counting

1: function HybridGraphletCounting(rg)
2: glCount←map() ▷ glCount contains the counts of different graphlet

embeddings including and explored from rg
3: glCount[glType(rg)] + +
4: while rg.Extensions.notEmpty() do
5: v ← rg.Extensions.top()
6: rg.Extensions.remove(v)
7: nrg ← (rg.V ∪ {v}, rg.E, rg.Neighbors, rg.Extensions)
8: Adjv ←N({v})
9: nrg.E ← nrg.E ∪ {e(v, v2) ∶ v2 ∈ (Adjv ∩ nrg.V )}
10: if ∣nrg.V ∣ == 5 then
11: glCount[glType(nrg)] + +
12: else
13: AdjF ilteredv ← {x ∈ N({v}) ∶ x > nr′g.V.min}
14: nrg.Neighbors ← nrg.Neighbors ∪Adjv
15: nrg.Externsions ← nrg.Extensions∪(adjF ilteredv −(nrg .Neighbors∪

nrg.V ))
16: glCountPartial ←HybridGraphletCounting(nrg)
17: for gl ← glCountPartial do
18: glCount[gl] ← glCount[gl] + glCountPartial[gl]
19: end for
20: end if
21: end while
22: return glCount

23: end function

function HybridGraphletCounting with new embedding nrg (Lines 12-20). The

graphlet count statistics glCount is updated (Lines 17-19) to account for the partial

graphlet count statistics glCountPartial returned by HybridGraphletCounting

(Line 16). Finally, the function returns the record glCount.

The RDD generation for hybrid graphlet counting is illustrated in Figure 4.6. We

generate RDDs for {1,2,3}-Graphlets following procedure in Section 4.4.3. Finally,

an RDD is generated by executing HybridGraphletCounting for each records

of 3-Graphlets. Later, the RDD with glCounts is aggregated to give final graphlet

counts of the network. We call this distributed graphlet counting algorithm, Ex-

actSpark.
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Figure 4.6.: RDD generation for hybrid graphlet counting using BFS exploration

4.5 Conclusion

In this chapter, we propose the counting methods for triangles and graphlets. We

also introduce a novel distributed method of graphlet counting using Spark. All the

methods discussed in this chapter perform exact computation of graphlet statistics.

One of the most attractive properties shared by these methods is that, they can

be easily adopted to give good estimation of graphlet statistics. In Chapter 5, we

discuss the estimation methods of graphlet statistics. Additionally, we give compre-

hensive experimental evaluations and comparisons of exact and approximate graphlet

counting algorithms in Chapter 5.
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5 APPROXIMATE GRAPHLET COUNTING ALGORITHMS

For many applications, exact graphlet counting can be replaced by approximate

graphlet counting for successful graphlet analysis. Approximate graphlet counting

improves the scalability of graphlet based analysis in large networks. Several recent

works [30, 33, 79] propose approximate graphlet counting algorithms.

To deal with the excessive computational cost of exact counting of graphical struc-

tures, researchers adopt approximate counting. Duke et al. [80] developed a method

to approximate the frequencies of subgraphs in a given non-directed, labeled graph.

Itzhack et al. [81] presented approximate counting algorithm for directed graphlets

of size 3 and 4 based on node removal technique for network decomposition. Gonen

et al. [82] presented an approximate counting algorithm for k-length paths, k-cycles

and k-cycles with a chord graphlet. Another work [83] gave a sub-linear algorithm

for approximating the count of non-induced star of any size.

For today’s large network with millions of vertices and edges, all the exact meth-

ods for triangle counting can be deemed as expensive; so, the majority of the recent

efforts of triangle counting either adopt a method for approximate counting, or de-

sign a parallel or distributed framework for solving the counting task effectively. For

approximate counting, [50] proposes DOULION , which uses a probabilistic sparsifi-

cation technique to obtain a sparser graph; then, it computes the exact triangle count

on the sparse graph, from which it extrapolates an approximate triangle count of the

original graph. For a user defined p, DOULION iterates over each of the edges of the

input graph and sparsify it by removing an edge with a probability of 1−p; then it ex-

ecutes any exact triangle counting algorithm on the sparse graph and divide the result

by p3 to approximate the triangle count in the original graph. Though, DOULION

performs remarkably for counting triangles, our algorithm ApproxTC [28] gives a

higher accuracy with the cost of higher execution time. Authors of DOULION also
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offer a Hadoop (An implementation of MapReduce [51]) based solution for this work.

Hadoop is also used in an exact triangle counting which is recently proposed by Suri

and Vassilvitskii [43]. A linear algebraic method is also proposed for approximate

triangle counting [47]. To the best of our knowledge, none of the works consider

approximate counting of graphlets.

In this Chapter, we propose a variant of EdgeIterator method for approximate

triangle counting. Our method has a surprisingly high accuracy, with a generous

speedup. On large real-life graphs with millions of nodes and edges, the single pro-

cessor version of our algorithm consistently achieve a 30-fold speedup (compared to

the best exact method) with an accuracy that is around 99%. The most attractive

feature of our method is that, both the speedup, and the accuracy of our method

improve as the input graph becomes larger, so it is particularly suitable for very large

graphs.

The simplicity of our triangle counting algorithm [28] also allows a simple multi-

threaded implementation for executing on today’s multi-core architecture—this im-

proves the speedup even further without harming the counting accuracy. We indeed

found that for all the real-life graphs that we encountered, the multi-core version of

triangle counting algorithm that we propose is a better choice by a wide margin than

all the Hadoop based solutions. For a specific example, on a Wikipedia graph with

1.63 millions vertices, and 18.5 millions of edges; using 32-threads our method obtains

a whopping 837-fold speedup with an accuracy of 98.2%. None of the Hadoop based

solution reports a speedup that is as high as this work.

Since, the cost of graphlet counting is much higher than the cost of triangle count-

ing, an approximate counting algorithm for the former will be more useful from a

practical standpoint. Also for many practical usages of graphlets, such as for the

construction of GFD, approximate graphlet counting can be used in places of exact

counting without any visible loss; although counting errors prevails by adopting an

approximate counting, the effect of this error on GFD is negligible, because the latter
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compares the relative counts in a logarithm scale. Unfortunately, no algorithm exists

that performs approximate counting of graphlets.

We propose an algorithm Graft, 1 [29,30] which performs approximate counting

for {3,4,5}-graphlets. Graft samples a small number of edges uniformly and for

each of the sampled edges it obtains a partial count for a graphlet such that the

graphlet uses those sampled edges in its (induced) embedding; Graft then uses the

partial count associated with each of the edges for approximating the total count

of that graphlet. Experiments show that by sampling between 5% and 10% of the

edges, we can easily achieve more than 95% of accuracy in counting the graphlet with

a speedup factor between 20 and 10; for larger graphs, the sampling factor can be

reduced to 1% (or less) to achieve similar accuracy and even higher speedup.

Finally, we propose a Spark based distributed graphlet counting algorithm. The

proposed method uniformly samples from 3-Graphlets and for each of the sampled

triple embeddings, it obtains a partial count of graphlets explored from and including

the triple. The graphlet count is obtained by extrapolating the aggregated partial

graphlet counts. Below we list our contributions.

• We propose a simple, yet powerful, method for approximate triangle counting

in Section 5.1. It has surprisingly high accuracy and high speedup factor; both

the metrics observably improve as the graph grows larger.

• We develop two variants of thread-based multiprogramming solutions of our

approximate triangle counting algorithm in Section 5.1.1. The parallel imple-

mentation of these algorithms are simple, and effective.

• We compare the performance of our methods with those of the state-of-the-

art approximate triangle counting methods that are available at present, on a

collection of large real-life networks to validate the superiority of our methods

(see Section 5.2).

1Graft is an anagram of the bold letters in Approximate GRaphlet Frequency counTing
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• We propose Graft, a sampling based method for approximate counting of

graphlets (Section 5.3). Our experiments show that this method provides sig-

nificant speedup (in the range of 10 to 100 depending on graphs) for a counting

accuracy of 95% on various real-life networks.

• Along with Graft,’s sampling, we propose various optimization schemes that

improve the accuracy of graphlet counting (Section 5.3.2).

• We use Graft to obtain graphlet frequency distribution (GFD); our exper-

iment with a time varying network shows that the GFD histogram preserves

its shape across various temporal snapshots of the network; so GFD can be

used as a signature for characterizing large networks. The comparison of GFD

histograms between random graphs and power-law graphs also shows distinc-

tive patterns to distinguish between these graph families (see Sections 5.4.5 to

5.4.7).

• We also propose AppSpark, a distributed method for approximate counting of

graphlets (Section 5.5). We demonstrate the performance and scalability of the

method using several large real-world networks (Section 5.6).

5.1 Triangle Counting

We give approximate triangle counting methodApproxTC by extending EdgeIt-

erator based exact triangle counting method ExactTC discussed in Section 4.1.

ApproxTC computes the partial count, counte, only for a fraction of edges. For this,

ApproxTC takes an additional parameter, a sample factor p ∈ [0,1], which defines

the fraction of edges in E for which we compute the partial count. A pseudo-code is

shown in Algorithm 7. ApproxTC first chooses (Line 2) a set of p fraction of edges

from the set E uniformly. Then, it computes the partial count of each of the chosen

edges (Line 4 − 6). Finally, the sum of the partial count is divided by p to obtain an

approximate count of triangles in the graph G (Line 9).
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Algorithm 7 ApproxTC

Require: Large network G(V,E), Sample factor p

1: count = 0
2: Ep = sample p ∗ ∣E∣ edges from E uniformly
3: for each edge (vi, vj) ∈ Ep do

4: adj1 = {x∣x ∈ adj(vi), x >max(vi, vj)}
5: adj2 = {x∣x ∈ adj(vj), x >max(vi, vj)}
6: counte = ∣intersection(adj1, adj2)∣
7: count+ = counte
8: end for

9: count = count/p
10: return count

Table 5.1.: Execution time for ExactTC. Average accuracy and speedup of Ap-

proxTC and ApproxTC2. Here, p = 0.1. Speedup is with respect to ExactTC .
Statistics of the graphs are in Table 5.2.

Graph ExactTC ApproxTC ApproxTC2
time (sec) Accuracy (%) speedup Accuracy (%) speedup

Wiki-1 124 98.50 5.81 99.62 3.83
Wiki-2 273 99.57 5.12 99.86 3.33
Wiki-3 299 99.67 5.18 99.75 3.24
Wiki-4 361 99.75 4.66 99.93 3.12
Zewail 0.04 95.64 6.02 97.04 5.39
Flikr 38.92 99.57 9.54 99.76 6.02
EN 0.72 98.51 7.62 99.52 6.01
EAT RS 0.37 97.56 7.22 99.45 5.30

A second version of approximate counting algorithm can be obtained by lifting the

constraint (imposed by Line 4− 5) that the id of the third vertex (vk) of a triangle is

larger than the ids of both vi and vj. As a consequence, we may end up counting each

triangle at most thrice. So, the final count has to be normalized by 3 ∗ p (at Line 9

of Algorithm 7). We will call this version, ApproxTC2. As expected, this version is

slower than the earlier version of approximate counting algorithm as it performs more

works when computing the partial counts by intersecting a pair of unfiltered adjacency

lists. However, this version has better sampling performance, as the sampling space
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of this version is less restricted. So, ApproxTC2 typically achieves a better counting

accuracy than ApproxTC. For a comparison, see Table 5.1.

5.1.1 Parallel Algorithm, ParApproxTC

In this section, we discuss the parallel version of the ApproxTC, which we call

ParApproxTC; the idea for this is quite simple. Since, the ApproxTC algorithm

only performs read operations on the graph data structures, multiple threads can

access these data structures without requiring any exclusive access. So, ParAp-

proxTC splits the p ∗ ∣E∣ edges, and assign each part to several threads so that

each thread can compute the partial count of the edges in its part independently.

Each thread th maintains it’s own counter (say countth) which contains the sum of

all the counte processed by it. After every thread has done its share of computation,

ParApproxTC sums the partial triangle counts from each thread (countth) to get

the countpartial. Then, it divides the countpartial by appropriate normalization factor

(p for ApproxTC, and 3∗p for ApproxTC2) to get the approximate triangle count.

The process is illustrated in Figure 5.1.

Optimization of ParApproxTC

As shown in Figure 5.1, ParApproxTC provides each of the threads approxi-

mately ∣E∣ ∗ p/tc edges from the set Ep, with the expectation that all the threads are

assigned the same amount of work for parallel processing. But, most often it is not

the case. Even though all the threads have to process the same number of edges,

the computation associated with the edges can be significantly different based on the

size of the adjacency lists of the vertices incident to an edge. As a result, when we

execute ParApproxTC (as shown in Figure 5.1), most of the threads finish their

computation within a short span of time; however, there exist some of the threads

that take significantly longer time to finish their share of computation; thus, resulting

a longer overall execution time (see, Figure 5.2). This problem is also discussed in
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Ep

Ep1 Ep2 Eptc

T1 T2 Ttc

Figure 5.1.: Illustration of parallel workload distribution among tc number of threads.
Here, Ti indicates thread i. Ep is the set of edges to be processed. Epi ⊂ Ep is a disjoint
set of edges assigned to the thread i.

earlier works with the phrase “the curse of last reducer” in the context of Hadoop

based parallelization [43].
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Figure 5.2.: Thread waiting time over 32 threads of ParApproxTC. Execution with
AtomicWorkLoad = (∣Ep∣/32) for graph “Wiki-4”
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To work around the above limitation, we propose a different variant of the al-

gorithm ParApproxTC. In this variant, each thread takes a small fraction of the

total job at the beginning of the execution and upon finishing the execution, it takes

additional fractions of job in subsequent iterations, until the entire job is finished. To

ensure that different threads work on different fractions of the total job, a queue is

used for storing the list of edges that are yet to be processed; this queue mediates

the job allocation to different threads. At the beginning of every iteration of job

allocation, each thread acquires an exclusive access of this queue to request new job.

The process is explained in Figure 5.3.

Ep

Epi Epi+1
Epi+tc−1

T1 T2 Ttc

Figure 5.3.: Illustration of parallel workload distribution among tc number of threads
using queue. Here, Ti indicates thread i. Ep is the set of edges to be processed, each
small box in Ep is a packet of edges that is assigned to a thread at a given iteration.
Dark packets of Ep are the edges that have already been processed by some thread.
Gray packers are being processed, and finally the white packets will be assigned to
the next available thread.

Though the above variant of ParApproxTC distributes the total work among

different threads more evenly, it also suffers from a bottleneck caused due to the

exclusive access to the job queue. So, there is a trade-off that is based on the size of

job (edges) assigned in response to a job request. A large job assignment (the highest
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possible is, AtomicWorkLoad = (∣Ep∣/tc) edges assigned to each thread) ensures that

no time is spent for enforcing mutual exclusion but it yields larger waiting time for

finishing the last thread. On the other hand, a smaller job assignment results smaller

waiting times for finishing the last thread, but it suffers from a high waiting time

in the semaphore queue due to the large number of exclusive accesses to the job

allocation queue. In our experiments, we find that the differences in speed-up factors

vary within a range of 5% to 10% based on the choice of packet size.

Table 5.2.: Graphs used in experiments.

Graph Vertices Edges

Wikipedia 2005-11-05 (Wiki-1) 1,634k 18,540k
Wikipedia 2006-09-25 (Wiki-2) 2,983k 35,048k
Wikipedia 2006-11-04 (Wiki-3) 3,148k 37,043k
Wikipedia 2007-02-06 (Wiki-4) 3,566k 42,375k
Zewail 6k 54k
Flikr 820k 6,625k
Epinions network (EN) 75k 405k
Edinburgh Associative Thesaurus (EAT RS) 23k 305k

5.2 Triangle Counting Experiments

We perform several experiments to observe the performance of approximate tri-

angle counting. For this we use a collection of real-life networks available from

http://www.cise.ufl.edu/research/sparse/matrices/. We choose the largest

graphs used in [50]. The statistics of the graphs are shown in Table 5.2. To reflect

the performance of an approximate counting algorithm, we use two metrics: speedup

and accuracy (%). The speedup of a methodM defines the ratio of the execution time

between ExactTC and the corresponding algorithm, M and accuracy defines the

counting accuracy of the algorithm M , in percentage. All experiments are executed

on a 64 core 2.3GHz AMD machine.
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Table 5.3.: Average and variance of execution time and accuracy of ParAp-

proxTC (EI) and ParApproxNI (NI). (tc = 16,p = 0.1)
Graph Execution Time Accuracy

Average (s) Variance Average (%) Variance
EI NI EI NI EI NI EI NI

Wiki-1 3.13 11.99 0.01 79.78 96.17 96.39 0.19 8.87
Wiki-2 7.89 23.00 0.06 132.43 98.83 97.03 0.03 2.75
Wiki-3 8.60 45.90 0.03 2824.02 98.80 96.36 0.06 9.69
Wiki-4 10.68 47.98 0.08 3056.87 99.07 96.02 0.05 26.47
Zewail 0.00 0.00 0.00 0.00 99.65 95.47 0.02 12.56
Flikr 0.61 1.24 0.00 0.03 99.86 93.40 0.01 9.68
EN 0.02 0.03 0.00 0.00 99.35 92.97 0.28 60.87
EAT RS 0.01 0.01 0.00 0.00 99.39 93.52 0.54 13.28

5.2.1 EdgeIterator vs NodeIterator

In this experiment we compare the performance of ParApproxTC with that

of ParApproxNI. ParApproxNI algorithm is a NodeIterator algorithm to

approximate triangle count of a network using multiple threads. Both the ParAp-

proxTC and ParApproxNI algorithms are given same set of parameters (a net-

work G(V,E), sampling factor p, thread count tc). A NodeIterator algorithm

works by iterating over the nodes in V . For, each node v ∈ V theParApproxNI com-

putes partial count of triangles incident on node v (countv). Finally, the sum of all the

partial counts gives the total triangle count count ( count = ∑
v∈V

countv ). For approxi-

mate triangle count with sampling factor p, we sample a set Vp, where ∣Vp∣ = p∗∣V ∣ and
each node has equal probability to be selected. Then, the approximate triangle count

using ParApproxNI will be, count = ∑
v∈Vp

countv

p
. The method is very similar with

that of ParApproxTC as explained in Section 5.1.1. The most significant difference

here is the process of computing partial triangle count countv. To compute countv of

node v we need to go over all the possible pairs of nodes from adj(v) and check if the

pair represents an edge (countv = ∣{(x, y) ∶ x ≠ y and x, y ∈ adj(v) and (x, y) ∈ E}∣).
For this experiment we consider tc = 16 and p = 0.1 for both the algorithms. Each

approximation is executed 10 times. The average and variance of execution time and
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accuracy is reported in Table 5.3. From Table 5.3, we can see that, EdgeIterator

algorithm is almost always better than NodeIterator in execution time and accu-

racy. NodeIterator algorithm is also shows higher variance on execution time and

accuracy. The reason behind it is that, in many graphs node degree is exponentially

distributed (Power Law model [4]). That is, number of nodes with low degree is very

high compared to the number of nodes with high degree. In general, high degree

nodes contribute higher in triangle count. Consequently, when we are performing

uniform sampling from nodes in V , we are sampling from a very skewed distribution

of partial-count countv; as opposed to EdgeIterator which samples from a less

skewed distribution of partial-count counte. As can be observed from the Table 5.3,

execution time of NodeIterator is also higher than that of EdgeIterator.

Table 5.4.: Average accuracy with respect to sample factors and speedups with respect
to sample factors and total threads used.

Sample Variance ApproxTC ParApproxTC Speedups
Graph Factor Accuracy of speedup threads

p (%) accuracy 4 8 16 32

Wiki-1 0.10 99.21 0.40 4.49 24.23 42.84 68.57 91.68
0.01 98.20 2.36 33.54 239.94 418.75 664.37 837.74

Wiki-2 0.10 99.56 0.10 4.14 20.10 35.60 55.43 63.42
0.01 98.95 0.49 32.42 199.56 351.02 548.01 614.27

Wiki-3 0.10 99.61 0.12 4.21 19.87 35.54 54.22 60.96
0.01 98.72 1.93 32.85 198.44 341.15 515.91 592.26

Wiki-4 0.10 99.60 0.09 4.33 19.54 34.95 52.55 56.84
0.01 98.28 1.61 33.71 197.13 346.92 504.8 547.29

Zewail 0.10 98.45 0.08 4.29 11.35 12.46 10.00 6.19
0.01 92.26 12.28 9.92 40.14 30.01 15.14 10.03

Flikr 0.10 99.74 0.07 5.18 28.92 51.46 77.67 96.67
0.01 99.43 0.19 33.26 277.44 501.83 730.21 796.85

EN 0.10 99.03 0.62 4.93 22.69 33.10 40.60 38.71
0.01 97.03 5.82 18.83 147.40 164.77 143.46 97.96

EAT 0.10 98.21 1.66 4.15 17.74 24.79 27.92 23.62
RS 0.01 96.64 3.88 13.62 101.70 111.67 86.82 56.30
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5.2.2 Performance of ApproxTC and ParApproxTC

We show the performance of ApproxTC and ParApproxTC in Table 5.4. For

both the methods we show results for both p equal to 0.1 and 0.01; for these two cases,

the sampler samples 10% and 1% of edges of the original graph. For ParApproxTC

we set AtomicWorkLoad = 50edges, and thread-count tc = 4,8,16 and 32. For every

parameter setting we execute the algorithm for 5 times and show the average of the

counting accuracies and the speedups. As we can see, the speedup factor increases

as we increase the number of threads for ParApproxTC . However, the speedup

does not increase linearly (see Figure 5.4) with the number of threads, due to the

bottleneck, as explained in Section 5.1.1. In ideal case, where there is no bottleneck

for gaining mutual exclusion the speedup factor should be increased linearly with tc.

For example, in case of “Wiki-1” graph and p = 0.1, speedup with tc = 4 is 24.23.

So, for tc = 8 ideally the speedup should be close to 48.46. But, it is 42.84 for our

experiment. Similarly, for tc = 16 speedup is 68.57 instead of 85.68. The more number

of threads competing for mutual exclusion the higher the waiting time would be. As a

result, increasing the thread count indefinitely does not ensures steady speedup. For

example, the speedup of ParApproxTC decreases when we increase total threads

from 16 to 32 for graph “EAT RS” for p = 0.1 (see Table 5.4). Figure 5.4 shows this

relation graphically. The speedup increases with thread count up to certain point, but

eventually increased number of thread damages the performance. Also, important to

note that our approximate algorithm has shown better approximation accuracy for

larger graphs.

5.2.3 Comparing the Performance of ParApproxTC with Changing Values of

MutexAccessCount

For this experiment, we define an additional parameter MutexAccessCount. As-

signing MutexAccessCount = 1 ensures that, every thread will try to obtain mutual

exclusion (job assignment) only once. Where MutexAccessCount = 10 indicates that
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Figure 5.4.: Speedup vs Thread count tc for ParApproxTC

Table 5.5.: Speedup with respect to MutexAccessCount for graph “Wiki-4” using 16
threads

MutexAccessCount Speedup

1 32.50
2 31.71
4 32.40
8 33.14
16 33.53
32 33.96
64 33.99
128 34.34
256 34.20
512 34.64
1024 34.16
2048 34.20

on average every thread will try to obtain new job assignment 10 times. Increased

value of MutexAccessCount indicates smaller portion of job assigned to a thread at

single access to mutually exclusive portion of program.

AtomicWorkLoad = ∣Ep∣
MutexAccessCount ∗ tc
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In this experiment, we execute ParApproxTC (with p = 1.0) with different

MutexAccessCount for graph “Wiki-4”. For a constant number of threads tc, as we

increase the value of MutexAccessCount, the waiting time of all other threads for

last thread to finish decrease but the waiting time to get exclusive access to job queue

Ep increases. The result is presented in Table 5.5. As we can see, for a good span of

possible value of MutexAccessCount the speedup is approximately same.

5.2.4 ApproxTC vs DOULION

In this experiment we compare the performance of ApproxTC with that of

DOULION [50]. For that, we repeat the ApproxTC with p = 0.01 and DOULION

with p = 0.1 for all the graphs from Table 5.4. The speed up is with respect to

ExactTC (see Algorithm 1). The implementation delivered by the authors of [50]

performs worse than (shows less speed up) our implementation of DOULION . So in

this result we report the speed up and accuracy of our implementation ofDOULION .

The result is shown in Table 5.6. Clearly, ApproxTC (single-threaded) is better than

DOULION both in terms of speedup and accuracy for most of the graphs.

Table 5.6.: Average accuracy and speedup of our implementation of DOULION (p =
0.1) (not parallel) and ApproxTC. p = 0.01

Graph DOULION ApproxTC

Accuracy(%) Speedup Accuracy(%) Speedup

Wiki-1 55.20 19.61 98.20 33.54
Wiki-2 88.52 20.54 98.95 32.42
Wiki-3 90.13 20.72 98.72 32.85
Wiki-4 94.31 21.64 98.28 33.71
Zewail 92.41 3.61 92.26 9.92
Flikr 99.04 17.69 99.43 33.26
EN 97.40 7.16 97.03 18.83
EAT RS 53.50 4.94 96.64 13.62
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5.2.5 ParApproxTC vs GraphPartition

In this experiment we compare the performance of ParApproxTC with that

of GraphPartition(GP ) [43]. Since, GP is an exact counting method, We conduct

the exact triangle counting using ParApproxTC with p = 1 (100% sampling), and

tc = 32, and compare the execution time. The results are shown in Table 5.7. In this

table, times under GP column are taken from corresponding paper [43], which is the

time of running GP on a 1636-node Hadoop cluster. In all three cases for which we

were able to collect graph from SNAP 2, our method significantly wins over GP using

only 32 threads!

Table 5.7.: Average execution time of GraphPartition as stated by [43] and ParAp-

proxTC with p = 1 and tc = 32
Graph time(sec)

GP Parallel Exact

web-Berk-Stan 102 12.04
as-Skitter 124.8 9.75
LiveJournal 654 26.46

5.3 Graphlet Counting

We give approximate graphlet counting algorithm Graft by extending EdgeIt-

erator based exact graphlet counting method ExactGC discussed in Section 4.3.

Similar to ExactGC, Graft works as an EdgeIterator algorithm; in such an

algorithm, the counting process iterates over the edges of the input graph, G(V,E).
For an edge e ∈ EG, it finds the count of all induced embeddings of a graphlet g with

the constraint that the edge e is part of the embeddings; we call this count a partial

count (see Section 4.3) of the graphlet with respect to the edge e. The partial count

can be summed over all the edges to obtain a total count of the graphlet g in the

input network. However, in the above process, a distinct graphlet will be counted

2http://snap.stanford.edu/
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multiple times, by being accounted in different partial counts, so the above count

needs to be corrected by diving it with an appropriate normalization factor. Such a

method yields an exact graphlet counting algorithm. Graft obtains an approximate

graphlet counting algorithm by iterating over a random subset of edges instead of all

the edges of the input graph. The fraction of edges in the random subset with respect

to all the edges is called the sampling factor of Graft. The lower the sampling

factor, the faster Graft runs. On the other hand, the higher the sampling factor,

the better the accuracy of Graft. For a sampling factor of 1, Graft returns an

exact count.

5.3.1 Pseudo-Code

The outline of Graft is given in Algorithm 8. It accepts a graphlet g (it can be

any of the graphlets shown in Figure 4.1), a large graph G in which we like to count

the occurrences of g and a fraction p representing the sampling factor.

Graft first selects p fraction of edges (Ep) from the input graph G for which it

will obtain the partial count of the graphlet g (Line 4). Then it iterates over each

of the selected edges sequentially (the for loop in Line 5). For an edge e ∈ Ep, it

finds the count of all induced embedding of g in G with the constraint that those

embeddings map one of the graphlet edge eg to the edge, e. (Lines 6 and 7). As

mentioned earlier, we call this the partial count. The partial count is accumulated

sequentially as the method iterates over the edges in Ep (Line 8). The final count is

then normalized appropriately to obtain the total count of the graphlet g in G (Line

10); On line 11, Graft scales the count by dividing it with the sampling factor, p.

5.3.2 Optimization Schemes

Graft uses various optimization schemes which are crucial for its counting accu-

racy and running time. We discuss each of them in this section in the order of their

significance.
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Algorithm 8 Graft

1: function Graft(Large network G(V,E), Graphlet g, sampling factor p)
2: choose an specific edge eg in g

3: count← 0
4: Ep← sampled p fraction of edges from E (without replacement)
5: for each edge e ∈ Ep do
6: align eg with e

7: enumerate all induced embedding of g in G, where e and eg are aligned, x
is the total number of embedding found

8: count← count + x
9: end for
10: count← count/normalization factor

11: count← count/p
12: return count

13: end function

Embedding Criteria and The Choice of FAE

From Figure 4.1, we can observe that some of the graphlets have multiple genera-

tion tree graphlets. For example, g22 has three generation tree graphlets: g9, g10 and

g11. For the task of exact graphlet counting, we will obtain correct result, irrespective

of the specific generation tree graphlet that we use for counting. But, complexity

arises when Graft is used for approximate counting, which samples only a fraction

of the edges.

id1
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id4

id5

(a)

id1(a)
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Figure 5.5.: Three ways for finding g22, (b) using g11, (c) using g9 and (d) using g10.

If we embed g22 using g11 (Figure 5.5(b)), the first step is to embed g11 by

mapping the chosen FAE (b, c) to the edge (id3, id2); and, the second step is to check
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if this embedding contributes to an induced embedding of g22. Here, the mapped edge

(b, c)(of g22) belongs to an edge-orbit of size 1. Therefore, for approximate graphlet

counting, if we map edge (b, c) with edge (id3, id2), there is a high probability of

missing an embedding of g22.

Table 5.8.: Average percentage error of g22 graphlet counting (p = 0.1) using different
generation tree graphlets.

Tree Graphlets → g9 g10 g11

Network ↓ Error (%)

ca-GrQc 9.13 9.13 39.78
ca-HepTh 5.03 5.03 26.95
ca-CondMat 3.68 3.68 39.54

On the other hand, if we embed g22 using g9 or g10 (Figure 5.5(c) and 5.5(d)),
the edge (b, c) of g22 cannot be the FAE; rather, the FAE is the edge (b, e), which is

mapped to the edge (id2, id5). The edge (b, e)(of g22) belongs to an edge-orbit of size 6.

Therefore, for approximate graphlet counting, if the edge (b, e) is used as FAE and is

mapped to the edge (id2, id5) , the probability of missing an embedding of g22 is small.

Hence, g9 and g10 are more suitable generation tree graphlets for enumerating g22.

Table 5.8 shows the average error (in %) of approximate g22 counting using different

tree graphlets with p = 0.1, for various real-life graphs. Therefore, the embedding

criteria for optimizing the accuracy of approximate graphlet counting is choosing the

generation tree graphlet for which the FAE belongs to the largest edge-orbit. For

counting each graphlet, Graft chooses the best generation tree graphlet in such a

way that the FAE of the generation tree graphlet belongs to a larger edge-orbit .

Stratified Sampling of Edges

For approximate counting, Graft chooses a subset of edges from an iid distri-

bution, and then approximate the count of a graphlet in the input graph by a linear

scaling (Line 11 in Algorithm 8). This would yield an exact count if the partial
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count associated with each of the edges were uniform. Real-life graphs have power-

law distributions, that is the number of vertices having (relatively) high degree is

exponentially smaller than number of vertices having low degree. Now, edges inci-

dent to high-degree vertices have comparably higher partial counts, specifically for

the complex graphlets. On the other hand, many of the edges that are incident to

low-degree nodes have a count of 0 for many complex graphlets. And due to same

power-law distribution, the number of edges incident to high-degree vertices is ex-

ponentially smaller than number of edges incident to low-degree vertices. This high

variance yields poor sampling accuracy for counting many of the complex graphlets;

the same is also responsible for high variance of approximate count across different

runs of Graft.

Figure 5.6.: Bar plot of (a) edge vs edge-degree in sorted order of edge-degree. (b)
edge vs g3 count in sorted order of edge-degree.
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To improve the sampling quality, Graft adopts stratified sampling of edges,

where each of the homogeneous sub-populations of edges have guaranteed represen-

tation in the set of sampled edges—here, a homogeneous sub-population of edges

corresponds to a set of edges that have similar partial count for a given graphlet. To

divide the edges into such a set of sub-populations, we do the following. We calculate

the sum of degrees of two vertices of an edge and name it edge-degree; then we sort

the edges in increasing order of edge-degree; a bar plot of the edge-degree is shown in

Figure 5.6(a) for the graph ca-CondMat. We also plot the partial count of graphlet

g3 aligned with the corresponding edges in Figure 5.6(b). We observe that the partial

graphlet count of different edges have high variance, but if we consider a set of edges

that have similar edge-degree, the variance is reduced substantially, because of the

high correlation between the partial count and the edge-degree. Guided by this ob-

servation, we split the edges into different and disjoint sub-population of edges based

on a heuristic using the values of edge-degree. The heuristic is to set approximately

equal intervals on the cumulative edge degree. And all the edges whose corresponding

edge-degree participates in an interval belongs to the same sub-population. Conse-

quently, at the tail part of the distribution where the variance of partial count is low,

the interval width is relatively higher. Finally, the set of sampled edges is constructed

by selecting p fraction of edges from each sub-population.

We provide an improved version of Graft that we call GraftStratified, which

uses stratified sampling of edges that we discussed above. In such sampling, edges

are sampled from each of these sub-population in such a way that the number of

samples from each sub-population is proportional to the size of that sub-population.

t-test confirms that GraftStratified performs better than Graft. GraftStratified

reduces the sampling error by 25% with a negligible increment in the running time

for most of the datasets.

In terms of implementation, GraftStratified differs from Graft only in Line

4 of Algorithm 8, which is replaced by the pseudo-code StratifiedEdgeSample

shown in Algorithm 9. Lines 2 and 3 in this code computes the edge-degree and sort
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Algorithm 9 Stratified Edge Sampling

1: function StratifiedEdgeSample(Large network G(V,E), sampling factor p,
number of sub-populations (SP) b)

2: compute edge-degree for all the edges
3: sort the edges based on edge-degree
4: distribute the edges in b different SPs such that, e1 ∈ SP [i] and e2 ∈ SP [j] and

i < j -⇒ edge-degree(e1) <= edge-degree(e2) and the cumulative edge-degree
of the SPs are approximately equal

5: for i = 1 to b do
6: k = ∣SP [i]∣ ∗ p
7: sample k edges from SP[i] and store in Ep

8: end for
9: return Ep

10: end function

edges in an increasing order of the edge-degree. Line 4 finds the subpopulations (SP)

of the edges in such a way that edges with relatively similar edge-degree falls in the

same SP and all SPs have approximately equal cumulative edge-degree. And finally,

in lines 5 − 8 we sample the desired number of edges from each of the SPs.

5.3.3 Parameter Selection

Graft has only one parameter, the sampling factor p. The choice of p depends

on the distribution of the partial counts associated with each of the edges in the given

graph. For a degree-regular graph or for a random graph, the distribution of partial

count is fairly uniform, so a very small value (in the range of 0.001 to 0.01) of p

works well. But, real-life graphs have power-law degree distribution, so the partial

count distribution of most graphlets on such graphs are skewed. As a result, for such

graphs comparably more samples are needed. It is hard to know in advance what

sampling factor will yield what kind of accuracy. However, we found from empirical

experiments over various real-life graphs that for large power law graphs that have

more than 10,000 vertices and 100,000 edges, a p value between 0.01 and 0.05 yields

an accuracy which is around 95%. However, a simple heuristic to choose a sampling
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factor is to track the standard deviation of the partial counts along with the sampling

process, and adjust the sample size dynamically.

To obtain a good sample size statistically, we tried to fit the distribution of partial

count of different graphlets against known distributions. Since, most of the partial

count distributions are exponential-like, we tried to fit with an exponential distribu-

tion with λ = 1/x̄, where x̄ is the average over the partial count of all the edges in

the graph. We use Kolmogorov’s test [84] to confirm the statistical validity of those

fittings; the test shows strong evidence to support the hypothesis that the data are

not from a exponential distribution. Beside exponential, we also tried to fit with

power-law distributions (using some well-known exponent values); those did not fit

either over a wide range of input graphs. Typically confidence interval is used to

obtain an error bound for a given sample size, but such interval is known only for few

well known distributions. Since the partial count does not fall in those distributions,

it is hard to provide a statistical error bound for the Graft algorithm.

GraftStratified has an additional parameter (number of sub-population) besides

p; however the performance does not vary much with the choice of b as long as b is

chosen between 5 and 20. We choose a value of 5 for all our experiments.

5.3.4 Implementation

To implement Graft, we maintain two data structures of the input graph G;

the first is the adjacency list representation of G, and the second is a hash-table that

stores all the edges. The first is used for enumerating the generation tree graphlet, and

the latter is used for fast checking whether an edge exists between a pair of vertices;

the hash-table is used extensively when we want to find the induced graphlet that

is embedded with a generation tree graphlet. The largest graph that we tried has

about 1.7 millions vertices and 11 millions edges; for this graph, both the above data

structures easily coexist in the main memory of a computer with a 4 GB of RAM.
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5.4 Graphlet Counting Experiments

We perform several experiments to observe the performance of Graft. These

experiments are performed on real-life graphs obtained from the following two web

sites 3. We choose graphs that are from various domains and have different sizes.

The name and statistics of these graphs are available from Table 5.9. Note that,

though we successfully execute Graft on graphs with millions of vertices, we show

performance result on smaller graphs for which exact graphlet counting was possible.

The first set of experiments find the speedup factor and counting error(%) that

we obtain by running Graft. Speedup factor is obtained by computing the ratio of

execution times of Graft with some p less than 1 and Graft with p = 1; former is

an approximate, and the latter is an exact graphlet counting. Apparently, Graft has

a predictable value for the speedup factor. If Graft chooses p as its edge selection

probability, the average speedup is close to 1
p
. This is so because we randomly select

p fraction of total edges and then approximate the graphlet count using the partial

count obtained from the selected edges. To obtain the counting error of Graft we

first find the percentage of error in the count of each of the graphlets; then we average

the error over all different graphlets. For counting error (%) computation, we use the

following equation:

CountingError(%) = ∣ExactCount −ApproxCount∣
ExactCount

∗ 100%
The second set of experiments show the practical applications of graphlet counting

for analyzing real-life graphs. For this, we obtain the graphlet frequency distribution

(GFD) from the graphlet count and pictorially observe the GFD patterns. To obtain

GFD, we first normalize the graphlet count vector (a vector of 29 integers which

represents the count of each of the graphlets) so that the L1-norm of the vector is 1;

thus, the values in the vector represent a discrete probability distribution. Each of

the entries of this vector is then replaced by its Logarithm (10 base), which yields

3http://snap.stanford.edu/data/index.html and
http://www-personal.umich.edu/~mejn/netdata
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GFD vector of the given graph. Each of the entries in the GFD vector is called GFD

value of that graphlet in the given graph. All GFD values are negative; the more

negative the value, the rarer the graphlet. For visual comparison, we also plot the

GFD vector; when analyzing such a plot, we should remember that the Y-axis of the

plot is on logarithm scale (of normalized graphlet count).

5.4.1 Comparing the Counting Errors Among Different Graphlets

While counting with Graft, the counting error of various graphlets varies based

on the complexity and the size of the graphlet. To compare the relative counting

error among different graphlets, we use the ca-CondMat graph dataset with the edge

selection probability of 0.1. We repeat the counting process for 10 times and report

the average counting errors in Figure 5.7. Each column in this graph represents a

distinct graphlet (which is shown as labels on the x-axis). The y-axis shows the per-

centage errors in counting. To show the variance of percentage error among different

iterations, we show the results in a box-plot.
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Figure 5.7.: Box-plots for approximation errors of different graphlet frequencies in
network ca-CondMat.
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The first observation from Figure 5.7 is that, the counting error increases with

the number of vertices in the graphlets. The average counting error of 3-node (g0 −
g1), 4-node(g3 − g8), and 5-node (g9 − g29) graphlets are 1.34%, 2.63% and 4.29%,

respectively. Also, complex graphlets that have more cycles are more error-prone

than tree graphlets. One reason for this increased error is due to the fact that the

larger and/or complex graphlets have much lower exact count than other graphlets.

For example, the count of g19 is approximately 23,400 thousands, and the count for

g20 is about 21 thousands. Though, both g19 and g20 have 5 vertices, the counting of

rarer graphlet (g20) exhibits more percentage error. The explanation for this is that

the estimation by sampling is more difficult for rare objects. For the same reason,

their counting also have larger variance as we can see in the box plot.

Further study reveals that, for a given graphlet, the distribution of its partial

count associated with different edges of the input graph plays a major role in the

accuracy of approximate counting of that graphlet. We can observe, that the average

error of g10 is high (7.16%) because the normalized variance (62.6) of partial count

distribution for this graphlet is high, although this graphlet is the most frequent

with a count of (1021.1). Also, counting error can be high if the exact count of the

graphlet is low, despite the partial count distribution having a smaller normalized

variance. g25 with a higher average error (6.55%) stands for an example for this case.

In general, the accuracy of approximation using Graft depends on both the exact

graphlet count and the variance of distribution of the partial count over the edges of

the graph; however, it is more sensitive to the latter.

5.4.2 Sampling Factor vs Average Counting Error

In this experiment, we show how the counting error (averaged over all the graphlets)

of Graft varies with the sampling factor. Figure 5.8 shows our findings. As the sam-

pling factor increases, the error of our algorithm diminishes. We show these results for

three real world collaboration networks of different sizes. An important observation
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Figure 5.8.: Sampling factor vs average error measure for three real world collabora-
tion networks.

is that for the same sampling factor, the larger graph have smaller percentage error.

So, as the graph grows, we can afford to decrease the sampling factor (thus increase

the speedup factor), while keeping the counting error at the same level. For example,

5% sampling factor obtains a 12% error on ca-GrQc graph, but almost identical error

percentage is achieved with a sampling factor of 1% on ca-CondMat, as the second

graph is much larger.

Table 5.9.: Speedup and error trade-off on seven real-life networks.(⋆ marked graph’s
approximate graphlet counting was done with p=0.01.)

Network # Vertex # Edge Re/v Speed-up Error(%) Graft/
GraftStratified

ca-HepTh 9,877 51,971 5.6 10.0 5.11 /4.26
OClinks 1,899 13,838 7.3 9.90 5.93 /4.28

ca-CondMat 23,133 186,936 8.1 9.80 3.62 /2.61
Polblogs 1,224 16,717 13.6 9.80 2.81 /1.98

ca-AstroPh⋆ 18,771 198,050 10.6 89.28 4.41 /3.10
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5.4.3 Speed-Up and Percentage Error Comparison on Different Networks

In this experiment, we compare the speedup and percentage counting error of five

real worlds networks from collaboration, blogs, and web domains that are shown in

Table 5.9. For this we use p = 0.1, which gives us about 1/p = 10 times speedup

(except the case of ca-AstroPh, for which we use p = 0.01). The percentage error

values are between 2.81% and 5.93%. Our method generally performs better as the

graph becomes larger and denser. In case of network ca-AstroPh (which is much

bigger than other networks), we use p = 0.01 which gives a much higher speed-up

while maintaining the same level of accuracy. In this experiment, we also compare the

performance between Graft and GraftStratified, the latter samples edges using

stratified sampling with 5 sub-populations. The last column of the Table 5.9 shows

for all the datasets, GraftStratified obtains at least 25% better accuracy than the

Graft. The speed-up factor is almost the same, as the overhead of stratified sampling

is negligible in comparison to the time of graphlet counting.

.

5.4.4 Comparison with Existing Method

In this experiment, we compare our algorithm with competing algorithms. To

the best of our knowledge, no approximate graphlet counting algorithm is available.

However, many algorithms are available that count triangle (graphlet g2); we imple-

ment the best approximate triangle counting algorithm called DOULION [50]. Note

that, DOULION is implemented on Hadoop, we implement DOULION by following

the algorithm in the author’s paper using identical data structure as our algorithm.

We compare the performance of Graft and DOULION for counting triangle. For

comparison, we choose “as-Skitter“ dataset (with 1.7 million vertices and 11 million

edges). We run Graft and DOULION for the same sampling factor values, which

are 0.01 and 0.005 respectively. Graft obtains much better performance in terms of

counting accuracy with a higher execution time. For instance, with sampling factor
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0.01, DOULION approximates triangle count with 10.27% error in 3.8 second, while

Graft does that with 1.62% error in 13.4 second. Moreover, with sampling fac-

tor 0.005 DOULION approximates triangle count with 64.49% error in 3.2 second,

while Graft does that with 2.84% error in 7.9 second. So, for lower sampling factor,

DOULION ’s performance falls sharply, while Graft’s performance degrades only

marginally.

We did not compare our algorithm with GraphCrunch because GraphCrunch is

an exact counting algorithm. Further, it’s implementation is targeted for parallel

machines.

Figure 5.9.: GFD of 29 graphlets for different sampling factor on (a) ca-HepTh and
(b) ca-CondMat networks.
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5.4.5 Comparing GFD for Different Sampling Factors

In this experiment, we justify the utility of approximate graphlet counting al-

gorithm(Graft). One of the main objectives for graphlet counting is to obtain the

graphlet frequency distribution (GFD) for large graph analysis. We like to show that,

although counting errors prevails by adopting sampling in Graft, the effect of this

error on GFD is negligible, because the latter compares the relative counts in a loga-

rithm scale (log scale is used for GFD because the frequency of different graphs varies

in exponential proportion). For this, we obtain graphlet count by running Graft

for different sampling factors (10%,7.5%,5% and 1%) on various networks that we

used in experiments discussed in Section 5.4.2. For these networks, We also obtain

the exact graphlet count using Graft algorithm with p=1. We then find GFD from

each of the results, and compare the GFD plots of a graph for different sampling

factor. In Figure 5.9, we show this comparison for only two networks because the

trend is similar for all the other networks. It is easy to see that the GFD histogram

preserve its shape across different sampling factors, even for a sampling factor of 1%

(which provides a 100-fold speedup).

5.4.6 GFD Over Time Variant Graphs

Does GFD signature holds for time varying networks? To answer this question,

we use the citation network used for 2003 KDD cup. We collect citation data ranging

from the year 1992 to 2003, and consider the citation graph incrementally for every

two years, and plot the GFDs associated with each of these graphs in Figure 5.10(c).

As we can see in this figure, the overall trend of the GFD remains almost the same

as the graph evolves over the time. The dominant graphlet is g11, the star network,

for all temporal snapshots of the network. Star-centers in such graphs represent the

heavily cited papers and they contribute to many star like graphlets. This experiment

demonstrate that, GFD shows consistent behavior for a dynamic(time variant) graph

over a period of time. That is GFD has a potential use in expressing the construction
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mechanism of a graph, instead an instance of it (the graph). Which gives us moti-

vation to use GFD as clustering or classification criteria (see Section 8.1) for graphs

generated following different mechanismsd.
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Figure 5.10.: GFD of 29 graphlets for (a) synthetic Power-law network and (b) syn-
thetic Erdos-Renyi network (c) time variant citation networks
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5.4.7 GFD of Different Types of Graphs

This experiment demonstrates GFD’s usability in analyzing large graphs. Here,

we compare GFD plots of graphs from different families; Figure 5.10(a) and Fig-

ure 5.10(b) shows such a comparison. The graph corresponds to the plot-(a) is a

Power-Law network and the graph corresponds to the plot-(b) is an Erdos-Renyi

(ER) random graph—both are generated synthetically with identical counts of ver-

tices and edges. As we can see, GFDs are very different for these two graphs; in

power-law network the dominant graphlet is g11 (see Figure 4.1) which is a star of 5

nodes; on the other hand, in random network the dominant graphlet is g9. The reason

is fairly obvious; in power law network there exists a few vertices with extremely high

degree. These vertices will be part of numerous star like graphlets, where they are

at the center of the star. The same reason holds for the size 4 graphlets. On the

other hand, in random network the dominant graphlet is g9, a path of size 4; since we

introduce edge randomly in random network, the likelihood of existence of a simple

structure like a path of size k is higher than any structure with a complex formation.

Another observation is that in power law network, there exists a significant number

of cyclic graphlets, whereas in random network this count is almost zero—this obser-

vation is consistent with the known knowledge on random graphs [85]. While it may

be easy to justify the above findings, however, our aim is to demonstrate that GFD

distribution is a promising tool for building signature for characterizing graphs from

different families.

5.5 Distributed Graphlet Counting

We give an approximate graphlet counting algorithm AppSpark by extending

distributed graphlet counting algorithm ExactSpark discussed in Section 4.4.3.

Similar to ExactSpark, AppSpark generates RDDs for {1,2,3}-Graphlets. Then

for each record in 3-Graphlet RDD, it finds the counts of graphlet embeddings ex-

plored from and including the record. However, instead of computing partial graphlet
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count glCount for all records in 3-Graphlet RDD, AppSpark samples a fraction (p)

of records for which it computes glCounts. Finally the aggregated (summation) result

of glCount RDD is scaled by dividing the counts with the sampling factor p. The

method is illustrated in Figure 5.11.

Figure 5.11.: RDD generation for approximate graphlet counting algorithm
AppSpark using BFS exploration

5.6 Distributed Graphlet Counting Experiments

We perform several experiments to demonstrate the performance of AppSpark.

These experiments are performed on real-life graphs obtained from publicly available

source4. We choose networks that are from various domains and have different sizes

4http://networkrepository.com/
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and densities. The name and statistics of these networks are available from Table

5.10.

The experiments compare the performance of AppSpark with Graft. For com-

parison, we use execution time and speedup factor. Speedup factor is obtained by

computing the ratio of execution time of AppSpark with that of Graft (both with

p = 1). We also compare the approximation performance of AppSpark with Graft

using counting error(%) as defined in Section 5.4.

CountingError(%) = ∣ExactCount −ApproxCount∣
ExactCount

∗ 100%
Finally, we demonstrate the scalability of the proposed distributed solution by

comparing the execution time with varying number of CPUs in Spark cluster.

5.6.1 Comparing Execution Time of AppSpark and Graft

In this experiment, we compare the execution time of AppSpark with that of

Graft. While Graft is a sequential algorithm for graphlet counting, AppSpark

utilizes a cluster of 10 nodes with 4 CPUs on each node (40 total CPUs). We demon-

strate the performance of AppSpark with respect to Graft in Table 5.10. First

six columns of Table 5.10 represents the statistics of the networks. Columns titled

Nodes, Edges and Max degree represents the number of nodes, edges and maximum

degree of any node in the network respectively. Fifth column in the table represents

the number of 3-Graphlets in the network; this also represents the number of records

in 3-Graphlet RDD. Note that we list the networks in increasing order of graphlet

counts (Column six). Column six contains the total number of {3,4,5}-Graphlets in

the network.
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We observe that the execution time of the algorithm generally increases with

the increased number of graphlets. For example, the execution time of AppSpark

(see Column 8) on inf-road-usa (880 seconds) is negligible compared to socfb-CMU

(228,347 seconds), despite the fact that the first network is enormous (with 23M

nodes and 28M edges) compared to the second network. This is because the network

socfb-CMU is more densely connected network with exponentially more graphlet em-

beddings (approximately 1.4 trillion) to enumerate. We also observe that, for net-

works with more graphlets, AppSpark finishes much faster than Graft. We can

attribute the improved performance of AppSpark, to the distribution of workload

across 40 CPUs by the Spark distributed frameworks. AppSpark is outperformed

by Graft for several small networks (see Columns 7 and 8); this is because the dis-

tribution overload (effort to distribute the task) for those networks is more than that

of the computation workload (effort to actually perform the task) for the counting

problem. But for lager networks with many graphlet embeddings AppSpark scales

better than Graft. Column 9 gives the speedup = Graft ET

AppSpark ET
.

5.6.2 Execution Time and Counting Error on Large Networks

In this experiment, we compare the execution times and counting errors of four

real-world networks shown in Table 5.10. For this we use p = 0.1 for three networks

and p = 0.01 for socfb-CMU (see Table 5.11). We run each method five times and

report both the execution time and counting error in mean ± STD format. We

observe that the execution time ofAppSpark using 40 CPUs is better than sequential

Graft method. More importantly, for all the networks the percentage counting

error by AppSpark is less than by Graft. This is because the distributed method

AppSpark samples records from 3-Graphlets and then performs partial graphlet

counting for all sampled 3-Graphlets. On the other hand, Graft samples from

the edges of the network and performs partial graphlet counting for all the sampled

edges. For a network socfb-CMU, the total number of {3,4,5}-Graphlets is fixed (1.4
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trillion). But for Graft the 1.4 trillion embedding is distributed as partial graphlet

count among 249,959 edges. On the other hand for AppSpark the same 1.4 trillion

embedding is distributed as partial graphlet count among 32M 3-graphlets. Which

means AppSpark approximates graphlet count by sampling from a larger and more

uniform distribution of partial graphlet count. Hence, the better counting error.

Table 5.11.: Execution time and counting error comparison of AppSpark with
Graft. The results are in mean ± STD format

Network Sample AppSpark AppSpark Graft Graft

Factor (p) ET (sec) Error(%) ET (sec) Error(%)

ca-dblp-2012 0.10 651±72 .59±.10 12,710±184 1.78±0.38
ca-HepPh 0.10 2,074±36 .40±.15 182,199 ±861 1.32±0.20
soc-brightkite 0.10 5,672±130 .32±.06 68,953±3,549 2.07±0.94
socfb-CMU 0.01 2,193±76 .60±.20 31,947±1,951 2.98±1.95

5.6.3 Performance of AppSpark with Different Number of CPUs

In this experiment, we demonstrate the performance of AppSpark with varying

number of available CPUs in Spark cluster. We use real-world network ca-dblp-2012

and p = 1 for exact graphlet counting (see Figure 5.12). Starting from 4 CPUs, we

gradually increase the number of available CPUs by 4. Maximum number of CPUs

available is 40. The X-axis represents the number of CPUs used, Y-axis represents the

the execution time in seconds. The blue bars represents the execution time achieved

by AppSpark, the green bars represents the execution times if the performance of

AppSpark would change linearly with number of available CPUs (ideal case). For

example, the execution time of AppSpark using 4 CPUs is 45,807 seconds. In deal

case the execution time with 8 CPUs should be 45,807/2 = 22,903.5 seconds, with 12

CPUs 45,807/3 = 15269 seconds, etc. As expected, the execution time decreases with

increased number of available CPUs. We can also observe that, the performance of

the proposed method AppSpark scales linearly (blue bars are very close to the green
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Figure 5.12.: Change in execution time with increased number of CPUs. Blue bars
represent the execution times achieved by AppSpark. Green bars represent the
execution times expected in ideal scenario. The network used in the experiment is
ca-dblp-2012. p = 1 used for exact graphlet counting.

bars). This result proves that the proposed method is able to uniformly distribute the

workload over a large number of processing units, thus making the proposed method

perfect for distributed framework.

5.7 Conclusion

In this chapter we present an approximate triangle counting algorithm which is

built on an EdgeIterator algorithm. Our method is simple, yet it achieves a

surprisingly high accuracy and speedup. We also present a multi-threaded version of

our algorithm which is suitable for multi-core machines. We show experimental results

that validate that our approximate counting method is better compared to the state-

of-the-art approximate triangle counting algorithm. Also, for exact triangle counting,
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our thread based implementation is significantly faster than an exact triangle counting

method built on Hadoop cluster. Distributed computing paradigm is probably a

better choice for graphs that are too large to fit in the main memory. However, we

found that real-life graphs with as many as 6 millions nodes and 20 millions of edges

easily fits in the memory of a typical desktop PC with 4GB of RAM, and for such

graphs, our method is obviously a better alternative.

We also present Graft, an effective method for approximate graphlet counting

for large graphs. The algorithm offers significant speedup with a negligible error in the

count. For the same speedup factor, the counting accuracy of the algorithm improves

with the size of the graph, so it is particularly suitable for counting graphlets in large

real-life networks. We show that the graphlet frequency distribution is temporally

invariant in real-life time varying networks, so it can be used to study graph evolution

in a more holistic manner.

Finally, we present AppSpark, a distributed graphlet counting algorithm, us-

ing Spark distributed computation framework. This method harnesses the power

of distributed computing paradigm to give a scalable graphlet counting algorithm.

We compare the performance of AppSpark and Graft–for same sampling factor p,

AppSpark can achieve better counting accuracy.
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6 ESTIMATING TRIPLE BASED NETWORK METRICS

In large networks, the connected triples are found to be useful for solving various tasks

including link prediction, community detection, and spam filtering. Existing works

in this direction concern mostly with the exact or approximate counting of connected

triples that are closed (aka, triangles). Evidently, the task of triple sampling has not

been explored in depth, although sampling is a more fundamental task than count-

ing, and the former is useful for solving various other tasks, including counting. In

recent years, some works on triple sampling have been proposed that are based on

direct sampling, solely for the purpose of triangle count approximation. They sample

only from a uniform distribution, and are not effective for sampling triples from an

arbitrary user-defined distribution. In this chapter we propose two indirect triple

sampling methods that are based on Markov Chain Monte Carlo (MCMC) sampling

strategy. Both of the above methods are highly efficient (several magnitudes faster on

large datasets) compared to a direct sampling-based method, specifically for the task

of sampling from a non-uniform probability distribution. Another significant advan-

tage of the proposed methods is that they can sample triples from networks that have

restricted access, on which a direct sampling based method is simply not applicable.

The proposed methods are very effective for estimating triple based network Metrics

(e.g., Transitivity) from large and restricted networks; where exact and approximate

triple counting is computationally prohibitive.

6.1 Objective and Motivation

Our objective is to obtain an efficient method for sampling triples from an arbi-

trary (user defined) probability distribution (say, f) defined over the set of triples in a

network. The distribution f need not be defined explicitly; for instance, one can only
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define a weighting function w(⋅) over the set of triples, and f is simply the probabil-

ity vector obtained from the weights of each of the triples. Any locally computable

weight function should be admissible. Such a function can be formed by the topolog-

ical properties of the vertices in the triples, or in case, the graph contains vertex or

edge labels, the weight function can be designed based on the label composition of

the vertices or edges of the triples. In a social network, one may want to find triples

in a dense community, where a triple may have many other neighboring triples that

are triangles. In the same network, if the vertices are labeled with the set of skills

of the corresponding person, one may want to sample triples such that the labels of

its vertices are similar or complementary. In both the above cases, a suitable weight

function can be defined over the triples that is computable from the information that

is stored locally at a node.

To obtain a direct method for the sampling task that is defined in the above

paragraph, we first need to compute f (probability mass function) from the weight

function, and then obtain the cmf (cumulative mass function) of f . Obviously, this

requires the knowledge of the entire sampling space (total number of vertices, edges,

and triples). For a restricted graph, which can only be crawled by following the edges

of the network, such information is not available, so direct sampling is infeasible for

solving the above sampling task on a restricted network.

The motivation for considering a restricted network comes from real-life consider-

ation. Say, an analyst is using a crawler for crawling a Web graph, and he does not

have the resources to store the entire graph in memory/disk. Under this setting, he

may want to sample a set of triples (from a uniform distribution) alongside crawling

so that he can approximate the transitivity of the Web graph. Clearly, without stor-

ing the entire network, he has no knowledge of the number of vertices, or edges in this

network, let alone the number of triples. Also, for a hidden network, a user may not

have access to an arbitrary node in the network for security reason, rather the desired

node can only be accessed from another node which is one-hop away from it; such

scenarios are common in real-life and are considered in some of the recent works that



93

compute various network properties by random walk over real-life networks, such as,

Facebook [86].

Even if a network is not restricted, an indirect sampling method can be more

desirable than a direct sampling method, both from viability and efficiency consid-

eration. For example, if the network is highly dynamic (say, a Gnutella file sharing

network), computing f (and the exact number of triples) is an infeasible task, because

the vertices and the edges in such networks appear or disappear abruptly. So, indi-

rect (MCMC) sampling is the only option for such networks. Finally, as we will show

in this chapter, an MCMC based method can be significantly more efficient than a

direct sampling method, for non-uniform (weighted) sampling where the probability

distribution vector (f) is not readily available, because in such a case, computation

of f and cmf(f) (cumulative mass function of f) are required for direct sampling

(see Section 6.4.2 for details); this fixed cost can be very expensive, as the number of

triples in large networks are, typically, in the order of billions.

In this chapter, we propose two methods for indirect triple sampling using Markov

Chain Monte Carlo (MCMC) strategy. MCMC performs a random walk over the

sample space such that the desired probability distribution (in this case, f) aligns

with the stationary distribution of the random walk. Since MCMC computes the

transition probability matrix of the random walk locally (on demand), it does not

compute f explicitly; consequently, it does not need any information regarding the

size of the sample space. As long as a state of the random walk can be visited from one

of the neighboring states, an MCMC-based sampling works, which makes it an ideal

candidate for sampling from a restricted network. Also, an MCMC-based method

computes the transition probability matrix on-line, so it can accommodate addition

or deletion of vertices (or edges) that happens in a dynamic network, even when the

sampling process is running.

The sampling methods that we propose are called Vertex-MCMC, and Triple-

MCMC: the former is more accurate and the latter is more versatile. Both the

methods can sample from an arbitrary distribution, yet Vertex-MCMC is particu-
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larly suitable (both efficient and accurate) for sampling from a uniform distribution.

So, we use it for approximating triangle count in a large network. In experiment

section, we show that the performance of Vertex-MCMC is almost as good as a direct

sampling based method. On the other hand, Triple-MCMC method is more suitable

for sampling from non-uniform distribution; our experiments with one of the real-life

graph show that it is 170 times faster than a direct sampling method with a better

sampling quality.

6.2 Related Works

The popularity of sampling based techniques has grown in recent years for ana-

lyzing large graphs. For example, sampling has been used for finding high centrality

nodes [87], interesting subgraphs [88], communities [89] representative subgraphs [90],

and graphlet frequency distribution [34].

Triple sampling is considered in the context of approximate counting of triangles

(or computing transitivity) in the following works [44, 45, 54]. Both [44] and [45]

obtain uniform sampling of triples using a direct sampling method, which we will

discuss in Section 6.4.2. Buriol et al. [54] propose a collection of streaming algorithms

for triple sampling, also with the intention of triangle approximation. One of their

methods, named, 3-pass-incident-stream, is actually similar to the direct sampling

method of [44, 45]. Buriol et al. also consider another 3-pass method for arbitrary

edge streaming; it samples triples by first sampling an edge, and then sampling a

vertex, both uniformly. A triple that is obtained this way belongs to one of the

following sets exclusively: disconnected triples (set T1), connected open triples (set

T2), or triangles (set T3). From the size of each of these sets, the authors find an

approximation of the triangle count in a graph. To the best of our knowledge, no

works exist that consider sampling of triples from a user-defined arbitrary sampling

distribution.
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Besides the above work on approximate triangle counting, there exist a few other

works [50,53] that approximate the triangle counts in a network. DOULION [50] uses

probabilistic graph stratification, [47] uses a linear algebraic method, and Kolountza-

kis et al. [53] uses sampling along with degree based vertex partitioning. DOULION

is most likely the fastest among these methods; however, Seshadri et al. [45] have

shown that the uniform triple sampling based method is cheaper in running time,

and achieve as good or better accuracy than DOULION.

A set of recent works [86, 91] considers the task of sampling from restricted net-

works that can only be crawled. The most notable among these is the work by

Leskovec and Faloutsos [91] which used a collection of random walk methods, namely,

BFS (breadth-first search), forest-fire, simple random walk (SRW), and snowball sam-

pling for obtaining a representative sample of the restricted network. One can apply

the above random walk methods for sampling a representative networks of appropri-

ate size and return all the triples from that network as the sampled triples. However,

such a sampling of triples does not guaranty uniform sampling of triples; furthermore,

the user has no control over the probability distribution by which the triples would

be sampled in the above approach. On the other hand, the MCMC method that we

propose in this chapter can sample from any arbitrary user-defined distribution.

There are other recent works that adopt MCMC sampling strategy. Hubler et

al. [90] use it for finding representative subgraphs, Bhuiyan et al. [33] use it for

sampling graphlets, Maiya et al. [89] use it for sampling community structure, and

Gjoka.Kurant.ea:10 [86] use it for finding the approximate degree distribution of the

Facebook network. However, each of these works have a different objective and they

sample from different population. Besides, none of these works consider sampling

from from an arbitrary user-defined distribution.
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6.3 Background

Newman, Watts and Strogatz [36] defined the transitivity of a graph G (say, γ(G))
as the fraction that represents the number of closed triples divided by the number of

all the triples over the entire network.

γ(G) = ∣Π△∣∣Π∣ =
∣Π△∣

∣Π∠∣ + ∣Π△∣ (6.1)

Using Equation 2.1 and Equation 6.1, the triangle count (δ(G)) of a network can

be obtained from the transitivity of the network as below:

δ(G) = 1

3
⋅ γ(G) ⋅ ∣Π∣ (6.2)

Following Equation 6.1, the transitivity of a graph, γ(G), is the probability that

an arbitrary triple in G is closed. To compute this probability exactly, we can simply

count the closed triples (Π△) and the total number of triples (Π). There exist many

algorithms for counting triangles exactly; however, for large networks they can be

costly and one may be happy with a close approximation. If we compute the exact

value of ∣Π∣ (using Equation 6.2), we can approximate the triangle count with the

identical approximation ratio of that of transitivity.

A uniform triple sampler can be used for approximating the transitivity of a graph

G. For this, we sample a set of triples Ω (⊂ Π) from G using a uniform distribution,

and count the number of closed tripled in that set (say, Ω△). Then, we define a

random variable γa(G) = ∣Ω△∣∣Ω∣ . The following lemma holds:

Lemma 2 E[γa(G)] = γ(G)

Proof: form the uniformity assumption, E [∣Ω△∣] = γ(G) ⋅ ∣Ω∣. Then, E[γa(G)] =
E [ ∣Ω△∣∣Ω∣ ] = E[∣Ω△∣]

∣Ω∣ = γ(G)⋅∣Ω∣
∣Ω∣ = γ(G).

∎
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Thus, the expectation of the variable γa(G) provides an unbiased estimate of the

transitivity, which can subsequently be used in Equation 6.2 for finding an approxi-

mate triangle count in the graph G.

6.4 Methods

In this section, we discuss the proposed methods for MCMC based triple sampling.

6.4.1 Problem Formulation

Assume, Π is the set of triples in a large network G. Now, for a user defined non-

negative weight function, w ∶ Π → R+, we can define a probability distribution over the

set of triples (Π) by normalizing the weights, i.e, for a triple t ∈ Π, its probability is

assigned as w(t)
∑x∈Π w(x) . The task of triple sampling is to sample triples from Π using the

above probability distribution. We can represent the probability distribution using

a probability mass function, f , which simply assigns a probability value to each of

the triples in Π. If the weight function is a constant function, i.e, weights of all the

triples are the same, then the above sampling becomes a uniform sampling of triples.

For triple sampling, we also consider the scenario that the given network is restricted

such that it is not explicitly visible, but can be crawled. More formally, in a restricted

network, we can perform a random walk over the network, where at any given state

of the walk, the currently visiting vertex, along with its adjacency list is visible to us.

In this chapter, we propose, explain and compare two MCMC based algorithms

for solving the sampling problem that we define in the previous paragraph. The first

among these two is Vertex-MCMC which we discuss in Section 6.4.3, and the second

among these two is Triple-MCMC, which we discuss in Section 6.4.4. In the following

we will discuss a direct sampling approach first to prove that for a restricted graph

direct sampling is not feasible.
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6.4.2 Direct Sampling

A direct sampling method for sampling a triple from Π first constructs the proba-

bility mass function (f) over the sample space (if not given) using the weight function,

and from that it constructs the cumulative mass function (say, F ) of f . Then it uses

the inverse-transform method to sample an object from the sample space. More for-

mally, if the sampled object is x, then x = F −1(U) where U ∼ Uni(0,1). For computer

implementation, we can simply store the function F in a vector of size ∣Π∣ consider-
ing an arbitrary (but constant) ordering of triples, and then choose an index from

the vector uniformly using binary search, and return the triple corresponding to that

index. For a restricted network, construction of F is impossible, so direct sampling

method is not applicable for such a network.

Authors of [44] and [45] use a slightly modified version of direct sampling for

sampling triples. Theirs’ is a two-step sampling process. The first step samples a

vertex v from a multinomial distribution, ζ , which is constructed by summing f(⋅) of
each of the triples at the vertex v. Mathematically, ζ(v) = ∑t∈Πv

f(t). It is easy to see

that ∑v∈V Pζ(v) = 1. The second step samples a triple from the set of triples at vertex

v (Πv) using another multinomial distribution, τv. If t ∈ Πv, then Pτv(t) = f(t)
ζ(v) . Thus,

the probability of sampling a triple, P (t) = P (t∣v) ⋅P (v) = Pτv(t) ⋅Pζ(v) = f(t)
ζ(v) ⋅ ζ(v) =

f(t), as desired. As there are O(n2) triples in a graph, the cost of construction of

cmfs of ζ and τv’s is O(n2), and the cost of sampling by inverse-transform is logarithm

of the sample space (cost of binary search). Overall complexity of sampling k triples

is O(n2 + k(lgn + lg dmax)), where n is the number of vertices, and dmax is the largest

degree value for a vertex in the graph. Clearly, such a method is very inefficient.

However, note that the authors of [44] and [45] considered uniform distribution

only. For this, Pζ(v) = ∣Πv ∣
∣Π∣ . Also, each of the τv’s is trivially a uniform distribution.

So, Z (cmf of ζ) can be computed in O(n) time using equation 2.2 considering that

the degree of a vertex is available in O(1) time; we simply need to add the terms

(d(v)
2
) in the above equation cumulatively for each of the vertices. Overall complexity
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of sampling k triples is then O(n + k lgn). Thus, the direct sampling of triples is

efficient for uniform sampling, but not for arbitrary sampling.

Example: For uniform triple sampling of the graph presented in Figure 2.1, we

choose a vertex with the distribution ζ . Under this, the vertex 3 is selected with

probability 3/8, as there are three triples for which vertex 3 is the center. If vertex 3

is selected, we randomly choose two vertices from the adjacency list of 3 (2,4,5) and
construct one of the three possible triples and return. Consequently, the probability

of triple (3,4,5) being selected is (3/8×1/3 = 1/8), which is equal to 1/∣Π∣, as desired.
∎

6.4.3 MCMC Walk Over Vertices for Triple Sampling

We have seen in previous section that sampling a triple from an arbitrary distri-

bution requires the construction of the cmf of ζ . For a restricted graph this is an

infeasible task due to the lack of information. Besides, this construction takes O(n2)
time. If we consider a graph which is unrestricted but dynamic, a direct sampling

method can be used on this graph, but it will be very inefficient; every change (addi-

tion or deletion of vertices, or edges, or modification of weight values) in the network

enforces the reconstruction of ζ (and also τv for some of the vertices) which has a

quadratic complexity.

Our first indirect method to address the above limitation is to use an MCMC

sampling method that does not construct ζ explicitly. We call it Vertex-MCMC; the

justification of this name will be clear in short time. Vertex-MCMC sampling uses a

similar approach as the two-step direct sampling, but unlike the latter, it replaces the

first-step (sampling a vertex from ζ) with an indirect sampling via MCMC. The second

step of Vertex-MCMC sampling remains unchanged from the two-step direct sampling

method. The motivation of such an indirect method from dynamic graph point of

view is that, in a dynamic graph in between two sampling iterations, only a few edges

will be added or deleted, so we need to reconstruct the τv distributions only for a
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few vertices that are incident to the modified edges. Nevertheless, the construction

of ζ is completely avoided. Also, construction of τv only requires O(d(v)2) time,

which is much better than constructing ζ which takes O(n2) time. More details of

Vertex-MCMC is given below.

For any MCMC algorithm, we need to define the states, the state transition pro-

cess, the transition probability matrix, and the desired probability distribution. For

Vertex-MCMC, the set of states are the vertex-set V and the transition over the states

happens along the edges (E). So the MCMC process is simply a random walk on the

graph G. However, we want the stationary distribution of this walk to be identical to

the desired distribution, which is ζ—identical to the desired distribution of vertices

for a two-step sampling. To achieve the desired sampling distribution we will use

Metropolis-Hastings (MH) algorithm.

Assume that MCMC random walk of a Vertex-MCMC based triple sampler is

visiting a vertex v. As was discussed in Section 2.11.1, MH algorithm uses a proposal

distribution (q) to make a trial move; Vertex-MCMC chooses q to be uniform over

the neighborhood of v, in other word, it chooses one of the vertices (say, u) from the

adjacency list of v uniformly. Therefore, the proposal distribution q(v, u) = 1/d(v);
here d(v) is the number of nodes adjacent to node v. q(v, u) represents the probability
of an adjacency node u to be selected from current node v. Similarly, q(u, v) = 1/d(u).
Now, using Equation 2.7, the acceptance probability of the proposal move is as shown

in Equation 6.3.

α(v, u) = min

⎧⎪⎪⎨⎪⎪⎩1,
Pζ(u) ⋅ 1

d(u)
Pζ(v) ⋅ 1

d(v)

⎫⎪⎪⎬⎪⎪⎭
= min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1,

∑
t∈Πu

f(t) ⋅ d(v)
∑
t∈Πv

f(t) ⋅ d(u)
⎫⎪⎪⎪⎬⎪⎪⎪⎭
= min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1,

∑
t∈Πu

w(t) ⋅ d(v)
∑

t∈Πv

w(t) ⋅ d(u)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

(6.3)

Algorithm 10 illustrates the verex-MCMC algorithm. To sample a vertex from

ζ , the algorithm calls the subroutine shown in Algorithm 11, which is simply an

implementation of MH algorithm, where the sample space is the vertex set, and the
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Algorithm 10 Triple sampling Vertex-MCMC

1: procedure tripleSampling2(G,k,{w(i)}i∈Π)▷ Graph G is given as vectors of adjacency vector, k is number of triples to be
sampled, w(⋅) is user-defined weights of the triples.

2: S ← φ

3: u = Uniform from the vertex-set V .
4: while ∣S∣ /= s do
5: v ← SelectNodeMCMC(u,{w(i)}i∈Π) ▷ see Algorithm 11
6: Select a triple t ∈ Πv using t ∼ τv
7: S.add(t)
8: end while
9: return S ▷ Return a set of s triples.
10: end procedure

Algorithm 11 MCMC node sampling

1: procedure SelectNodeMCMC(current,{w(i)}i∈Π) ▷ current is the
currently visiting node, w(⋅) is user-defined weights of the triples.

2: Wcurrent = ∑x∈Πcurrent
w(x), ▷ compute if not available from earlier iterations

3: next = Uniform from adj(current) ▷ Proposal step
4: Wnext = ∑x∈Πnext

w(x) ▷ compute if not available from earlier iterations

5: acceptance ← Wnext∗d(current)
Wcurrent∗d(next) ▷ See Equation 6.3

6: if uniform(0,1) ≤ acceptance then
7: return next

8: end if
9: return current

10: end procedure

target distribution is ζ . Once a vertex is selected on Line 5, Vertex-MCMC computes

the cmf of τv, and uses the direct sampling method to sample a triple using τv (Line

6). It is important to note that, in Line 2 and Line 4 of Algorithm 11, we compute the

sum of weights associated to only the triples of u and v, which can be accomplished

in a restricted graph. Thus this method works for a restricted graph. Besides it

is efficient; the complexity of Vertex-MCMC for sampling k triples is O(kdmax), as
weight computations, and neighbor selection in Algorithm 11 can be performed in

O(dmax) time.
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Lemma 3 Algorithm 10 samples each triple t with a probability w(t)
W

.

Proof: The first step of the algorithm uses MH algorithm for sampling a vertex

from the ζ distribution. This will be successful if the Markov chain converges to the

desired stationary distribution. To obtain a stationary distribution the random walk

needs to be finite, irreducible and aperiodic [92]. The state space is finite with size

∣V ∣, because the number of vertices is finite. We also assume that the input graph G

is connected, so in this random walk any state u is reachable from any state v with

a positive probability and vice versa, so the random walk is irreducible. Finally the

walk can be made aperiodic by allocating a self-loop probability at every node 1.

Once we know that MCMC sampling chooses a vertex from the ζ distribution, the

remaining part of the proof follows from the correctness of the two-step direct sampling

method. ∎

Uniform sampling using Vertex-MCMC:, Pζ(v) = (d(v)2 ) = d(v)(d(v)−1)
2

, The Equa-

tion 6.3 then changes as follows:

α(v, u) = min{d(u)(d(u) − 1)/2 ⋅ 1/d(u)
d(v)(d(v) − 1)/2 ⋅ 1/d(v) }

=min{d(u) − 1
d(v) − 1}

(6.4)

We do not show the pseudo-code of uniform triple sampling using Vertex-MCMC.

But, it is easy to obtain by making minor changes in Algorithm 10 and Algorithm 11.

In Line 2 and Line 4 of Algorithm 11, we can compute the vertex weights in O(1) time

using the degree value of the corresponding vertex; the acceptance probability (Line

5) changes as shown in Equation 6.4. Finally, the Line 6 in Algorithm 10 requires to

sample a triple from a uniform distribution instead of τv, which also takes O(1) time.

Due to the above changes, Vertex-MCMC is faster in uniform sampling setting than

1This is required only from a theoretical standpoint; in our experiment we do not allocate any
self-loop probability explicitly.
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weighted sampling setting. However, the theoretical complexity of the uniform triple

sampling is still O(kdmax); although the weight computation cost is constant, we still

need to find a neighbor of the currently visiting vertex, which in the worst case can

take O(dmax) time.

6.4.4 MCMC Walk Over Triples

Our second indirect sampling method is named Triple-MCMC, which performs

MCMC walk over the triples. Triple-MCMC avoids computing cmf for both the

distributions (ζ and {τv}v∈V ). In fact, Triple-MCMC is completely oblivious about

the total number of triples in the graph. The set of states for this sampling algorithm

is the set of all the triples, Π. Thus the random walk proceeds over the set of triples

along a neighborhood graph which is defined below.

The neighbor of a triple is another triple with two common vertices. Thus, the

Triple-MCMC sampling obtains a sequence of dependent samples, where a sampled

triple shares two vertices with the previous sampled triple. To compute the neighbor-

set of a triple t, we need to find the other triples that can be obtained by replacing

exactly one of the vertices of t.

Example: Suppose we are performing an MCMC walk on the graph shown in

Figure 6.1 (a). Let ⟨v2, v3, v8⟩ be the currently visiting triple (triangle that is shown

in bold line). In Figure 6.1 (b) we show the information of all its neighbors. The

list labeled by v2 contains the vertices that can be used to replace vertex v2 to get a

valid neighboring triple and similarly for the list labeled by v3 and v8. If the MCMC

random walk chooses to go to the neighboring triple by replacing the vertex v8 with v1,

the next sampled triple becomes a path ⟨v1, v2, v3⟩. On the other hand, if the vertex

v3 is replaced by v7, we get the closed triple ⟨v2, v7, v8⟩ where the center of the triple

is taken as v7, which is the lastly added vertex of the triple. The transition between

triples happens only between the neighboring triples. For example, the transition
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probability between ⟨v2, v3, v8⟩, and ⟨v4, v5, v6⟩ is zero, as they are not neighbors of

each other according to our neighborhood definition. ∎

v1
v2 v3 v4 v5

v7 v8
v6

v9

(a)
v2− > v4, v7, v9
v3− > v1, v7, v9
v8− > v1, v4, v7

(b)

Figure 6.1.: Induced triple and neighbors

Let’s assume that the random walk of Triple-MCMC is visiting a triple t. For

proposal distribution (say q), we choose one of the triples from t’s neighborhood (say,

s) uniformly. So, q(t, s) = 1
∣N (t)∣ . Here, N(t) is the set of neighbors of triple t. Using

Equation 2.7, the acceptance probability of the proposal move is obtained as below:

α(t, s) = min

⎧⎪⎪⎨⎪⎪⎩1,
f(s) ⋅ 1

∣N ∣(s)∣
f(t) ⋅ 1

∣N (t)∣

⎫⎪⎪⎬⎪⎪⎭ =min{1, w(s) ⋅ ∣N (t)∣
w(t) ⋅ ∣N (s)∣} (6.5)

We show a pseudo-code in Algorithm 12. Since, the random walk is performed

over the triple space, we initialize the walk with an arbitrary triple tp, any path

of length 2 suffices (Line 3). Now, for the currently visiting triple, tp, we want to

find the next triple using MH algorithm. For this, we first find all the neighboring

triples of tp (Line 5). Reader may review the Figure 6.1 to refresh the notion of the

neighboring triples. This computation requires finding unions or intersections of the

adjacency lists of the current triple’s vertices, and its complexity is O(dmax). Then a

neighboring triple (say, tq) is selected uniformly from all the neighbors, and accepted

with the probability computed on Line 8. If the move is rejected, the currently
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sampled triple is sampled again. The process continues until k samples are obtained.

The overall cost of obtaining k samples is O(kdmax).
Algorithm 12 Triple sampling Triple-MCMC

1: procedure tripleSampling3(G,k,{w(i)}i∈Π)▷ Graph G is given as vectors of adjacency vector, k is number of triples to be
sampled, w(⋅) is user-defined weights of the triples.

2: S ← φ

3: tp ← a random triple ▷ Any length 2 path is sufficient
4: while ∣S∣ /= s do
5: tq ← RandomNeighborTriple(tp)
6: np ← NeighborCount(tp)
7: nq ←NeighborCount(tq)
8: acceptance ← w(tq)∗np

w(tp)∗nq

9: if uniform(0,1) ≤ acceptance then
10: S.add(tq)
11: tp ← tq
12: else
13: S.add(tp)
14: end if
15: end while
16: return S ▷ Return a set of s triples.
17: end procedure

Lemma 4 Algorithm 12 samples each triple t with a probability proportional to w(t)
Proof: Algorithm 12 performs a random walk over the triple space (Π) with a

stationary distribution, which is proportional to w. So, we only need to show that the

walk converges to a stationary distribution. The state space Π is finite, because the

number of triples is finite. We also assume that the input graph G is connected, so

in this random walk any triple y is reachable from another triple x with a positive

probability and vice versa, so the random walk is irreducible. Finally the walk can be

made aperiodic by allocating a self-loop probability at every node. Thus the random

walk reaches a stationary distribution, which is proportional to w. Thus the lemma

is proved. ∎
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Uniform Triple Sampling

For uniform sampling, the weight of all the triples are equal i.e, if we set w(s) =
w(t) = 1 in Equation 6.5, we can make it a uniform sampler. The acceptance prob-

ability changes as below: α(s, t) = min {1, ∣N (t)∣/∣N (s)∣}. MH algorithm guaranties

that the Algorithm 12 using the above acceptance probability yields a uniform triple

sampler.

6.4.5 Selection of Initial State

In our implementation we randomly select the initial state. Consequently, different

execution of our algorithms will start from different initial states. However, for a

rapidly mixing MCMC walk, the influence of initial state disappears after a few

iterations; the number of iterations for mixing is called the mixing time or burn-in

time of the MCMC walk, which can be computed using Geweke diagnostics [93] (see

Section 6.5.5).

6.5 Experiments and Results

The triple sampling algorithms that we propose can sample triples from arbitrary

distribution. In our experiments we first show the performance of uniform triple

sampling. Then we show the performance of triple sampling from a nonuniform

distribution. Finally, we demonstrate that, uniform sampling of triples can be applied

for approximating triangle count, which provides an application driven method for

measuring sampling effectiveness.
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Table 6.1.: Small real-life networks used in sampling quality experiments.

Name Nodes Edges Triple Count (∣Π∣)
ca-Hepth 8,638 24,806 297,397
ca-Grqc 4,158 13,422 227,919
ca-Cond 21,363 91,286 1,959,920

Table 6.2.: Large real-life networks used in approximate triangle count experiments.

Name Nodes Edges Triangle Count

AS-Skitter 1,694,616 11,094,209 28,769,842
flickr 1,624,992 15,476,835 548,646,525

livejournal 5,189,809 48,688,097 310,784,143
orkut 3,072,441 117,185,083 627,584,181

Soc-LiveJournal 4,843,953 42,845,684 285,688,896
Wikipedia 2005/11 1,596,970 18,539,720 44,667,088
Wikipedia 2006/9 2,935,762 35,046,792 84,018,181
Wikipedia 2006/11 3,099,074 37,042,065 88,823,813
Wikipedia 2007/2 3,512,462 42,374,383 102,434,914

6.5.1 Datasets

All the graphs 2 listed in Table 6.1 and 6.2, are undirected, unweighted, simple

and connected. We preprocess them to ensure these properties. The specification

of the graphs (vertex count and edge count) may not match with the source, as in

source, for some networks an undirected edge is represented by two directed edges in

opposite directions; in our representation, for such edges we discard one edge of the

edge-pairs. Additionally, we ensure that the graph is connected as MCMC algorithms

perform a random walk over the graph. However, for all the experimental graphs,

their connected part retain more than 90% of the edges.

2obtained from http://snap.stanford.edu, http://socialnetworks.mpi-sws.org/,
http://www.cise.ufl.edu/research/sparse
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6.5.2 Uniform Sampling Performance

It can be easily demonstrated that for uniform sampling Vertex-MCMC is more

efficient than Triple-MCMC. Vertex-MCMC sampling requires weight of each vertex

to construct cmf(ζ); however, the weight computation cost for each node is constant.

On the other hand, Triple-MCMC needs to generate the list of neighbors of the

current triple t, represented as N(t); which it uses to select the next triple s. For

a newly sampled triple, construction of N(t) requires three set operations (union or

intersection) over the adjacency list of t’s vertices, whose cost is linear with respect to

the length of the adjacency lists of t. As a result, Vertex-MCMC sampling is better

than Triple-MCMC method for uniform triple sampling.

Our first experiment shows the performance of Vertex-MCMC for sampling triples

uniformly. For this we compare Vertex-MCMC with the direct sampling method

discussed in Section 6.4.2. We use ca-Hepth, ca-Grqc, and ca-Cond as input graphs;

their statistics are shown in Table 6.1. For each of these graphs, we run the sampler

for ∣Π∣×50 iterations, where Π is the set of distinct triples in that graph (see, Column 4

in Table 6.1). For example, in “ca-Hepth”, there are in total 297,397 distinct triples.

Hence, using each of the sampling algorithms, we sample a total of 297,397×50 triples.
As the sampling proceeds, we keep track of the sample count for each of the triples.

Now, for a perfect uniform sampler, sample count of each triple will be 50, which is

impossible for a random process. To analyze the distribution of sample count, we

create the frequency histogram of sample counts for the ca-Hepth network (shown

in Figure 6.2); in this plot, x-axis shows different sample count values, and y-axis

represents the number of distinct triples that achieves that value for its sample count.

The shape of the histogram is a perfect normal graph, which is expected (explained

below) from an ideal iid distribution.

We also show the statistics of sample counts in Table 6.3 indicating variance

for both of the sampling algorithms. In the same table, we also report the value of

variance for the ideal case. For a graph with ∣Π∣ triples, we perform a uniform sampling
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Figure 6.2.: Frequency histogram of the visit counts on ca-Hepth network using (a)
Direct triple sampling (b) Vertex-MCMC triple sampling.

Table 6.3.: Comparison of variances among Direct sampling, Vertex-MCMC sampling,
and ideal sampling on different graphs (Median is 50 for all the cases).

Graph Ideal Direct Vertex
-MCMC

ca-Hepth 49.99 49.93 59.37
ca-Grqc 49.99 49.96 58.15
ca-Cond 49.99 50.09 52.05

for ∣Π∣.i times. The random number that denotes the count by which a triple is

sampled (sample count) can be described by a binomial distribution B(k,m,p), where
m = ∣Π∣.i and p = 1

∣Π∣ . For this distribution, the median sample count will be identical

to the mean, which is m.p = ∣Π∣.i. 1
∣Π∣ = i and the variance is m ∗ p(1 − p) = i(∣Π∣−1)

∣Π∣ .

If we set the m value sufficiently large, this binomial distribution would resemble a

normal distribution (as is shown in Figure 6.2). For ca-Hepth graph, x = 297,397,

by setting i = 50, we expect that the median of sample count will be 50 with the

variance 50∗(297,397−1)
297,397

= 49.99. Using Vertex-MCMC uniform sampler, the median of

sample count is 50; the variance is 59.37 (variance is 49.93 for Direct triple sampler)
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as shown in Table 6.3. Direct method’s performance is almost identical to an ideal

sampler; for Vertex-MCMC method, variance of sample count is slightly bigger. We

also show similar results for “ca-Grqc”, and “ca-Cond” graphs in Table 6.3; for these

graphs the histograms are not shown, as they are almost identical to the one for the

“ca-Hepth” graph. Note that, We do not perform this experiment for large graphs,

because for this experiment we need to store the visit count of all the triples in the

memory, and the number of such triples is in the order of billions for large graphs.

6.5.3 Verification of Nonuniform Sampling

In this experiment we verify the quality of sampling when the triples to be sampled

follow a nonuniform distribution. We compare Direct sampling with both Vertex-

MCMC and Triple-MCMC algorithms. In this experiment we use the dataset listed

in Table 6.1 for the reason discussed in Section 6.5.2. Here, our objective is to sample

triple t in proportion to w(t). For this experiment, we consider w(t) = ∣N(t)∣, i.e.,
a triple is sampled with the probability proportional to the size of its neighborhood.

One motivation of choosing such a sampling distribution can be to sample triples

from a community or a dense region of a graph; in such a neighborhood, a triple

will be surrounded by many triples, so ∣N (t)∣ will be high for a triple t in a dense

neighborhood. For the above choice of target distribution, the acceptance probability

of Vertex-MCMC is,

α(v, u) = min{1, ∑t∈Πu
N(t) ⋅ d(v)

∑t∈Πv
N(t) ⋅ d(u)}

and the acceptance probability of Triple-MCMC is α(t, s) = 1.
For a network with ∣Π∣ triples, the desired distribution over Π can be expressed as

a vector f of size ∣Π∣, here, f(t) = w(t)
W

. For each of the graphs, we run each sampler for

∣Π∣ ⋅ i times (we choose i = 10 for our experiment). The distribution f can be approx-

imated by the sample frequency of each of the triples, Therefore, f̂(t) = count(t)
∣Π∣⋅i ; here,

count(t) is the number of times the triple t was sampled and f̂ is the approximation
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Table 6.4.: Correlation between target distribution and achieved distribution by dif-
ferent sampling algorithms.

Graph Direct MCMC
vertex triple

ca-Hepth 0.86 0.86 0.87
ca-Grqc 0.87 0.87 0.92
ca-Cond 0.93 0.93 0.94

of f that is obtained by the sampling algorithm. The performance of a sampling

method can be measured by the correlation between f and f̂ . Table 6.4 shows that

all the three methods achieves excellent value for the correlation (more than 0.85).

Interestingly, direct method sometimes perform worse than the other methods, our in-

vestigation shows that this is because of the precision issue of the floating-point while

handling very small probabilities. More precisely, Ca-Hepth network has 227,919

triples, and the cumulative mass probablities (which sums to 1) is stored in a vector

of that size; in this vector the difference between successive cells are somethimes as

small as 10−8, and to perform well a uniform random number generator’s precision

has to be good for that many decimal points, which apparently is not true for exist-

ing random number generators. In all our experiments we use Boost random number

generator library that has much better performance that those available in standard

C++ library. In Figure 6.3, we compare f vs f̂ distributions for all the three methods

using scatter plots for one of the graphs (ca-Grqc). The superiority of Triple-MCMC

over other sampling methods is easily visible in this figure.

Table 6.5 shows the execution time for sampling 1k and 10k triples from the

networks using different sampling algorithms. As the table shows, Triple-MCMC

is much better than Vertex-MCMC and the direct method. For example, Triple-

MCMC takes only 0.08 second to sample 1k triples from ca-Cond network, whereas

Direct method and Vertex-MCMC takes 145.5 and 82.65 seconds respectively. This

is because, Triple-MCMC does not need to compute the cmf ζ and τv explicitly.

Computing ζ is a fixed cost for the direct sampling method. Vertex-MCMC distribute
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Figure 6.3.: Target distribution vs achieved distribution plot for ca-Grqc network (a)
Direct triple sampling (Corr. 0.87) (b) Vertex-MCMC triple sampling (Corr. 0.87)
(c) Triple-MCMC triple sampling (Corr. 0.92).

this fixed cost over the iterations because it computes the ζ of each vertex only on

demand. On the other hand, Triple-MCMC computes w(t) of a specific triple only

on demand. If we take more samples, the difference between the direct sampling and

Vertex-MCMC slowly diminishes, as with many iterations, both the methods can

amortize the fixed cost over those iterations. Here, it should be noted that, cmf τv

is not explicitly stored in memory. Storing τv will require memory in the order of

O(∣Π∣), which is same as enumerating the whole set of triples. And if enumeration is

possible, then we do not need to sample triples in the first place.

Table 6.5.: Execution times of the algorithms for sampling 1k triples and 10k triples.

Graph Direct Vertex-MCMC Triple-MCMC
Time(s) Time(s) Time(s)/1k /10k /1k /10k /1k /10k

ca-Hepth 5.07 27.46 3.87 27.66 0.03 0.33
ca-Grqc 10 78.83 8.83 80.51 0.05 0.47
ca-Cond 145.5 1225.05 82.65 1075.79 0.08 0.81
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6.5.4 Approximate Triangle Counting

In this experiment, we compare the performance of Vertex-MCMC algorithm with

direct triple sampling [44,45], and one of the sampling method by Buriol et al. [54] 3.

Note that, recent works [45] have shown that the direct sampling method is the best

among the existing methods for approximate triangle counting; so we do not include

other triangle counting methods such as DOULION [50] in this experiment. However,

we do include Buriol et al.’s method in this comparison, because it is also a triple

sampling method like Vertex-MCMC. We exclude Triple-MCMC in this comparison

as when performing uniform sampling its execution time is not competitive with these

methods (although it is the best choice for weighted sampling). The task assigned to

each sampling method is to approximate the triangle count by sampling triples from

uniform distribution. Here, we use the sampled set of triples to approximate triangle

count using the idea that was explained in Section 2.3. For our experiment, we use 9

large real-life networks; name and statistics of these networks are shown in Table 6.2.
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Figure 6.4.: Comparison (of running time and approximation accuracy of transitivity)
among the sampling algorithms (a) as-skitter (b) wikipedia 2006/09 (c) wikipedia
2006/11. Exact triangle counting times are 3.8s, 66.6s and 72.57s respectively. Results
on other graphs are similar, hence not shown.

The performance of approximate triangle counting is measured by two metrics:

execution time and accuracy. Typically, the method that wins in accuracy loses in

running time. So, to make the comparison easy, we compare the accuracy (plotted

on y axis) of different methods against different running time (plotted on x-axis).

3this method is actually proposed for arbitrary edge stream setting, but for fair comparison we
implement it as a non-stream in memory method.
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However, do note that for a given value for time, the number of triples that the

methods sample differ. We show the results in Figure 6.4(a-c). We fitted the data with

Bezier curve to show the trend of the algorithms. All the accuracy and execution times

are average value that are computed from 10 runs of the algorithms. We can see that

the direct sampling method performs the best, even for a small number of samples, and

its performance improvement remains almost flat as the sample count increases; on the

other hand, Vertex-MCMC improves sharply as the number of samples increases, and

for some graphs its performance even surpasses the performance of direct sampling.

So, Vertex-MCMC is particularly suitable for large graphs, where a sampling method

can afford to take many sample, and yet can be competitive with an exact algorithm.

For instance, in wiki20060925 graph, both direct sampling and Vertex-MCMC obtain

90% counting accuracy for a 6 seconds execution time, but the exact method that

uses an efficient edge iterator algorithm takes 67 seconds to execute. The charts in

this figure also confirm that Buriol et el.’s method is not competitive with either of

these methods.

The accuracy of a direct sampling-based method is better than that of a Vertex-

MCMC based method. This is because the latter performs indirect sampling in which

a pair of consecutive samples are dependent. So, it’s result has high variances and it

requires more samples in order to ensure uniformity of sampled set of triples. However,

MCMC based methods can work perfectly on restricted or dynamic networks, whereas

direct sampling based methods are not applicable to those.

6.5.5 Convergence Analysis

Convergence analysis is important for any MCMC sampling because through such

analysis we can estimate the mixing (or burn-in) time (number of walks to overcome

the influence of the starting state) of a Markov chain. Mixing time depends on (i)

the neighborhood structure of the space on which the walk is performed, and (ii)

the desired target distribution. In this experiment, we study the mixing time of the
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Vertex-MCMC method while sampling from a uniform target distribution. The result

of Triple-MCMC is similar, hence is not included. This experiment is not shown for

user-defined distribution, as depending on the choice of distribution, the conclusion

can be very different.

For this experiment we consider X to be a single sequence of samples. Also let,

Xi = 1 if ith sample of the sequence is a triangle and Xi = 0 otherwise. Consequently,

our metric of interest for this experiment is transitivity γ(G) (See Equation 6.1),

which can be estimated from uniform sampling of triples. In fact, the expected value

of the random variables in the sequence X gives as unbiased estimate of transitivity,

i.e., E(X) = γ(G). Now, we compute burn-in using Geweke diagnostics [93].

Geweke considers two subsequences of samples, Xa form the beginning part of X

(typically first 10%) and Xb from the last part of X (typically last 50%). From these

two subsequence he computes z-statistic: z = E(Xa)−E(Xb)√
V ar(Xa)+V ar(Xb)

. Xa ansXb goes further

apart as the number of samples is increased. Consequently, the correlation between

the subsequences decreases. After convergence, there is no correlation between Xa

and Xb, and z becomes normally distributed with mean 0 (E[Xa] = E[Xb] = γ(G),
so, E[Xa]−E[Xb] = 0) and variance 1. The number of iterations that it takes for the

z-score to fall between [-1, 1] is called the burn-in time. However, one should run the

experiment for at least a few distinct walks, and declare convergence when z-scores

from all the walks fall within the [−1,1] range.
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Figure 6.5.: Geweke z score of transitivity for iterations 100 − 100k (a) orkut (b)
wikipedia 2006/11 (c) wikipedia 2007/2.
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For each dataset, We use 10 distinct walks. For each walk, we compute z-score

starting from 100 upto 100k. We declare convergence when all 10 z-scores fall in the

range [−1,1]. The convergence of z-score is shown in Figure 6.5 for 3 graphs; the

others are similar, hence not shown.

6.6 Conclusion

In this chapter, we propose two MCMC based algorithms for sampling triples

form a large network. We show experimental results that demonstrate that both the

algorithms achieve excellent performance while sampling triples from a large network

using a given distribution. Direct sampling method’s performance is almost identical

to an ideal sampler, but it is costly, specifically while sampling from a weighted

distribution. On the other hand, the MCMC sampling methods that we propose is

faster as it does not compute the cmf of the desired distribution. More importantly,

MCMC sampling methods can sample triples from networks that are restricted or

dynamic, for which direct sampling methods fail.
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7 ESTIMATING GRAPHLET BASED NETWORK METRICS

In this chapter we propose a graphlet sampling algorithm Guise. For building the

GFD fingerprint of a network the relative frequencies among various graphlets suffices.

Also note, if a frequency distribution among various graphlets is available, we can

easily reconstruct the count of all the graphlets from the count of only one of the

graphlets. For instance, if a GFD considers all three, four, and five size graphlets,

from the information of triangle count 1, the count of all other graphlets can be

recovered very easily. In reality, exact count is only a reflection of the size of the input

graph, so an analysis should only use relative frequencies among various graphlets,

so that the metric can be used across different graphs. Earlier works [21] construct

GFD after computing the frequencies of each of the graphlets; in this chapter, we

show a sampling-based method that approximates (almost identically) the GFD of a

network with millions of nodes in a minute, for which the exact counting of graphlet

frequencies takes more than three days!

7.1 Related Works

The problem of designing a fast approximation algorithm for computing the fre-

quencies of sub graphs in a given graph was targeted by R. Duke et al. [80] back in

1993 where given a labelled graph G of n vertices and a list of all labelled graphs on

k vertices, they attempted to provide for each graph H of this list an approximation

to the number of induced copies of H in G keeping the approximation error small.

The main tool in designing their algorithm is a variant of the regularity lemma of

Szemeredi.

1A triangle is a size-3 graphlet which is shown as g2 in Figure 1.1; scalable algorithms are available
for counting triangles in graphs with millions of vertices and edges.
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No work exists that sample graphlets from a large graph. The closest to our

work is probably the work by N. Kashtan et al. [79], who use sampling algorithm

for estimating subgraph concentrations to detect network motifs. They also build

a software tool, named MFinder which is highly popular. However, this work finds

motifs that have unusual high concentrations, on the other hand GFD construction

requires the relative frequencies of all the graphlets (both frequent and infrequent).

FANMOD [94] uses the technique of node-sampling to detect network motifs, their

search is also targeted for finding frequent motifs. More recently, the work proposed

in this chapter [33,34] has inspired several improvements and generalizations [95,96],

for efficient estimation of motif statistics in large networks.

Among other available tools for network motif detection in a biological network

MAVisto [97], NeMoFinder [98] and Kavosh [99] are based on network centric algo-

rithm depending on pattern growth tree. All these three algorithms does exact census

of the sub graphs in a network. Apart from these, there are motif centric algorithms

like Grochow [100] and MODA [101] specially for PPI networks. Unfortunately per-

formances of all these algorithms are heavily domain specific and strictly defined by

the network size and the size of the motif. Other than these, a work of N. Przulj and

her team [102] have described two heuristics: Targeted Node Processing (TNP) and

Neighborhood Local Search (NLS) for graphlet frequency estimation that work well

for high-confidence PPI and geometric random networks. But neither of them work

well for ER-DD and SF networks in terms of the error estimates and running times.

7.2 Research Contribution

We proposeGuise 2, an algorithm for constructing graphlet frequency distribution

(GFD) that samples graphlets without enumerating the occurrences of each of the

graphlets. Guise uses a Markov Chain Monte Carlo (MCMC) sampling strategy

to sample the embedding occurrences of each of the graphlets, such that each such

2Guise is an anagram of the bold letters in UnIform Sampling of GaphlEts
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embeddings 3 is sampled with a uniform probability—this enables Guise to build a

frequency histogram of various graphlets by accumulating the respective counts of

each of the graphlets from the obtained samples. We prove both theoretically and

empirically that Guise can build the GFD of a network which is all but identical

with the one that we can achieve by enumerating (thus counting) the occurrences of

all the graphlets. The key difference is that on a graph with millions of vertices and

edges, Guise takes minutes, whereas a counting based approach may takes months,

or even years.

The contributions of this work are summarized as below:

• We propose Guise, a sampling algorithm that samples embedding occurrences

of various graphlets in a large network from a uniform distribution; Guise uses

an MCMC sampling algorithm that is theoretically sound.

• We show that Guise can be used for building GFD, a fingerprint for analyzing

large networks using local topological templates. Without counting the fre-

quencies of various graphlets, Guise builds an approximate GFD in minutes,

for which the counting based method may take several months.

• We show experimental results on large real-life networks to validate sampling

effectiveness, convergence, and efficiency of Guise for constructing GFD.

• We provide spectral-gap analysis and variation distance analysis to show the

effectiveness of MCMC walk in sampling graphlets.

7.3 Method

As explained earlier, a naive approach to generate GFD is to count the frequencies

of each graphlet, which requires enumeration of all distinct induced embeddings. This

task becomes infeasible when the input graph is large. We propose an efficient method

3 We sometimes use graphlet to mean a specific embedding of a graphlet, if it is clear from the
context of the discussion.
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that utilizes uniform sampling to approximate the GFD. Below, we discuss the method

in details.

7.3.1 Uniform Sampling of Graphlets for GFD Construction

Given a graph G, assume the set S contains all the (induced) embeddings of all

the graphlets in the graph G. Then, ∣S∣ = ∑29
i=1 f(i), where f(i) is the frequency of

graphlet i in the graph G. Then, the task of uniform sampling of graphlets is to

sample one of the graphlet embeddings in S uniformly at random; i.e., the selection

probability of each of the graphlet embeddings is exactly 1/∣S∣. The task is no harder

than the enumeration of all the graphlets in S . In fact, after enumerating all the

graphlet embeddings, we only need a random number generator to sample one of

those embeddings from an iid distribution. But, enumerating all the graphlets is not

practical, so we want to sample a graphlet uniformly without explicitly enumerating

all the embeddings of all the graphlets, which is a challenging task. Fortunately,

the problems of above characteristics have been efficiently managed by Monte Carlo

Markov Chain (MCMC) algorithms for years. MCMC algorithms perform a random

walk on the sample space with a locally computable transition probability matrix in

such a manner that the stationary distribution of the random walk aligns with the

desired probability distribution. Once the random walk mixes, any object that the

walk visits in the sample space is considered to be a sample taken using the desired

probability distribution. For our task, the sample space is the set S , and the desired

probability distribution is the iid distribution.

Before we discuss the details of the MCMC method for iid sampling of a graphlet

embedding, we discuss, given a uniform sampler how Guise constructs the graphlet

frequency distribution (GFD) effectively. The process is quite simple, for this Guise

keeps one counter for each of the graphlets, a total of 29 counters all initialized to 1 4

Then Guise calls the sampler repeatedly for a large number of iterations. For each

4In GFD, graphlet counts are compared in a logarithm scale; since, log 0 is undefined, we initialize
the graphlet count with 1.
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iteration, if the sampled embeddings is an embedding of graphlet i, the algorithm

increments the counter for i. Guise constructs GFD by normalizing the values of

each of the counters, and taking the logarithm of those values in a vector in the

correct order. The following Lemma holds.

Lemma 5 When the size of the sample set, C approaches to infinity, Guise returns

the correct GFD for a graph.

Proof: Since, each sample returns one of the 29 graphlets using a uniform distri-

bution, the random variable (say, X) that defines the type of graphlet returned in an

iteration follows a categorical distribution, with Pr(X = gi) = pi = f(i)
∑29

i=1 f(i)
, where f(i)

is the frequency of gi in G. Also note that the i’th entry of GFD is log pi.

In set C, the expected count for graphlet gi is ∣C∣ ⋅ pi. Now, if c(i) is the actual

count of gi in C, using strong law of large numbers Pr (lim∣C∣→∞ c(i) = ∣C∣ ⋅ pi) = 1
So, As ∣C∣ approaches to infinity, the i’th entry of GFD using Guise is equal to

log c(i)
∣C∣ = log ∣C∣⋅pi∣C∣ = log pi Therefore, for the limiting case, Guise returns the correct

GFD for a graph. ∎

7.3.2 MCMC Algorithm for Uniform Sampling of a Graphlet

For any MCMC algorithm, we need to define the sample space, the state transition

process, the transition probability matrix, and the desired probability distribution.

As mentioned earlier, the set of states are the embeddings of any of the 3-, 4-, or

5-Graphlets, on which Guise performs the random walk. Let’s call this S . At any

time of the random walk, the Guise visits a specific object in S . It then walks to

one of the neighboring states with the probability that is defined by an appropriate

state transition probability matrix, T .



122

Neighboring graphlets

For a k-Graphlet, all the (k−1)-graphlets, k-graphlets, and (k+1)-graphlets that
have k−1, k−1 and k nodes in common respectively, are its neighboring graphlets. In

our case, k + 1 cannot be higher than 5 and k − 1 cannot be lower than max(3, k − 1),
which means a 3-Graphlet can have a 3-Graphlet or a 4-Graphlet as one of its neigh-

bors; a 4-Graphlet can have a 3-Graphlet or a 4-Graphlet or a 5-Graphlet as one

of its neighbors, and a 5-Graphlet can have a 4-Graphlet or a 5-Graphlet as one of

its neighbors. To obtain a same-size neighboring graphlet of a graphlet embedding,

e, Guise simply replaces one of the existing vertex of e with another vertex which is

not part of e, after ensuring the connectedness of the new embedding. For obtaining

a k-Graphlet from a (k − 1)-Graphlet Guise adds one embedding vertex, and for

the reverse it deletes one embedding vertex, again ensuring the connectivity of the

embeddings for both the actions. Note that, during the random walk process, Guise

populates the neighborhood of currently visiting embedding on-line by using the ad-

jacency list information of the constituting vertices.

Example: Suppose Guise is performing an MCMC walk on the graph shown in

Figure 7.1(a). Let ⟨1,2,3,4⟩ is the currently visiting graphlet (which is a g5 graphlet)

of size 4. One of it’s neighboring graphlet is ⟨1,2,3,8⟩, which is a graphlet g3 that can

be obtained by replacing the vertex 4 by the vertex 8 (see Figure 7.2(a)). Another

neighbor can be ⟨1,2,3,4,8⟩ (g21, a size-5 graphlet), which can be obtained by simply

adding the vertex 8. In Figure 7.1(b) we show the information of all the neighbors

of graphlet ⟨1,2,3,4⟩. The box labeled by 0 contains the vertices that can be deleted

to get all valid 3-Graphlet neighbors. Box labeled by 1 contains all the vertices

that can be used as a replacement of vertex 1 to get valid neighboring 4-Graphlets.

Same is true for the box labeled by 2,3 and 4. The box labeled by 5 contains all

the vertices that can be added with the current graphlet to get all valid neighboring

5-Graphlets. Note that, by adding the number of elements in each box labeled from
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0 to 5 we can obtain the neighbor-count of currently visiting graphlet; for instance,

the neighbor-count of ⟨1,2,3,4⟩ is 31. ∎

1 2

3 4

5 7

6

9

8 10

11

12

(a)

0 1,2,3,4

1 5,6,7,8,9,10

2 5,6,7,8,10

3 5,6,7,8,9,10

4 5,6,8,9

5 5,6,7,8,9,10

(b)

Figure 7.1.: (a) A toy graph (b) neighborhood population of currently visiting
graphlet (1,2,3,4)
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(a)

1 4,9

2 4,5,6,9,12

3 4,9

8 4,5,6,9

(b)

Figure 7.2.: (a) Toy graph (b) neighborhood population of graphlet (1,2,3,8)
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Transition Probability Matrix

The transition probability matrix, T defines the state transition probability be-

tween a pair of neighboring graphlets p and q. The transition probability between

two graphlets that are not neighbors of each other is zero. For example, in the graph

in Figure 7.1, the transition probability between ⟨1,2,3,4⟩, and ⟨1,3,5,6⟩ is zero, as
they are not neighbors of each other according to the neighborhood definition in the

previous paragraph.

Note that if the random walk achieves a stationary distribution π, then the Equa-

tion 2.5 holds. For our case, the stationary distribution is ⟨ 1
m
, 1
m
,⋯, 1

m
⟩, wherem = ∣S∣,

which is a uniform vector of size m. One way to ensure the uniformity in π is to de-

sign a symmetric Markov chain, i.e. the probability of moving from the state i to the

state j and the probability of moving from the state j to the state i are equal. Guise

adopts this strategy, i.e., it uses a symmetric transition probability matrix T , i.e. T

= TT.

For a graphlet i, its degree is defined as d(i), which is the number of its total

neighbors in the random walk space. The usage of the term degree has an intuitive

meaning. If we consider each of the graphlet embeddings as a vertex of a graph, and

represent the neighbor relationship between two graphlet embeddings as an edge,

then the degree of that embedding is exactly equal to its degree in the above graph.

In that case, the random walk can be viewed as a walk along the edges of the graph.

Now, consider two neighboring graphlets, p and q; By setting T (p, q) and T (q, p)
equal to min( 1

d(p) ,
1

d(q)) makes T a symmetric matrix (note if, if p and q are not

neighbors, T (p, q) = T (q, p) = 0, thus maintains the symmetry). By definition, the

row entries of T requires to sum to 1; the above probability setting ensures that the

sum of row entries of all the rows are equal or less than 1. In case, it is less than 1, we

allocate the remaining probability as a self-loop to the resident state. This symmetric

transition probability matrix is also called doubly stochastic, as the sum of both the

rows and the columns of such matrix equal to 1. Now the following Lemma (Exercise
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6.9 of [92]) is sufficient to prove that the above Markov chain achieves a uniform

stationary distribution.

Lemma 6 An ergodic random walk achieves a uniform stationary distribution if and

only if its transition probability matrix is doubly stochastic.

Proof:According to the Equation 2.5 we have

π = πT (7.1)

Here, π a row vector of size m defines the uniform probability distribution of a random

walk with m states. T is the transition probability matrix. The above equation can be

written as:

(π1, . . . πm) = (π1, . . . πm)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

T (1,1) ⋯ T (1,m)
T (2,1) ⋯ T (2,m)
⋮ ⋱ ⋮

T (m,1) ⋯ T (m,m)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7.2)

For any state i,

πi = πi ∗ m∑
j=1

T (j, i)
Since each state has equal probability in the stationary distribution, πi = 1

m
. so,

1

m
= 1

m
∗ m∑

j=1
T (j, i) ⇒ m∑

j=1
T (j, i) = 1

Which means the sum of the column vectors of T is equal to 1 for each column of the

matrix, i.e. T is column stochastic. Moreover, T is a transition probability matrix

and is row stochastic, thus, T is doubly stochastic. Since an ergodic random walk has

an exclusive stationary distribution, both the necessary and sufficient condition for

the proof is met. ∎
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Nevertheless, we still need to prove the following:

Lemma 7 The random walk that Guise uses is ergodic.

Proof: A Markov Chain is ergodic if it converges to a stationary distribution.

To obtain a stationary distribution the random walk needs to be finite, irreducible and

aperiodic [92]. The state space S is finite with size m, because the number of graphlets

is finite. We also assume that the input graph G is connected, so in this random walk

any state y can be reachable from any state x with a positive probability and vice

versa, so the random walk is irreducible. Finally the walk can be made aperiodic by

allocating a self-loop probability at every node 5. Thus the lemma is proved. ∎
Example: Continuing from the example in Figure 7.1(a), where ⟨1,2,3,4⟩ is

the current visiting graphlet of the MCMC walk. To determine the next jump

site (graphlet) in the space, Guise remove node 4 from the current graphlet and

randomly select a node from a set build by merging nodes from box – labeled

1,2 and 3 (figure 7.1(b)). Suppose Guise pick node 8 and form a size 4 graphlet

⟨1,2,3,8⟩. Figure 7.2(a) and (b) illustrate the newly formed graphlet and its neigh-

boring graphlets information. MCMC walk will make this transition with probability

min( ∣d⟨1,2,3,4⟩ ∣∣d⟨1,2,3,8⟩ ∣ ,1), which is min(31
20
,1) = 1. Here 31 and 20 are the neighbor-count

(degree) of the node representing graphlet ⟨1,2,3,4⟩ and ⟨1,2,3,8⟩ respectively in the

graphlet space. ∎

Mixing Rate of Random Walk

One important aspect of any MCMC algorithm (including MH, which is essen-

tially a special kind of MCMC algorithm) is the rate at which the initial distribution

converges to the desired distribution. The mixing rate of a random walk has been

studied extensively in spectral graph theory [103], since it plays an important role in

5This is required only from a theoretical standpoint; in our experiment we do not allocate any
self-loop probability, unless needed.
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obtaining efficient MCMC algorithms. A Markov chain is called rapidly mixing if it

is close to stationary after only a polynomial number of simulation steps, i. e., after

poly(lgm), where m is the number of states in the Markov chain. Note that, m can

be exponentially large with respect to the input size of the algorithm. An algorithm

that is rapidly mixing is considered efficient.

A method to measure the mixing rate is to find the spectral gap of the transition

probability matrix T . T has m real eigenvalues 1 = λ0 > λ1 ≥ λ2 ≥ ... ≥ λm−1 ≥ −1.
Then, the spectral gap is defined as λ = 1−max{λ1, ∣λm−1∣}. Since the absolute values
of all the eigenvalues are less than one with the largest eigenvalue λ0 be exactly one,

the spectral gap is always between 0 and 1. The higher the spectral gap, the faster the

convergence [104]. For this task, the entire T is not available to us, so it is generally

difficult to measure the spectral gap. However in experiment section, we will show

results involving spectral gap of smaller datasets for which computing T is feasible.

Mixing time is also studied by analyzing the convergence of total variation dis-

tance. Let x be the state at time t = 0 and denoted by P t(x, .) the distribution of

the state at time t. The total variation distance at time t with initial state x can be

denoted as,

∆x(t) = 1

2
∑
y∈Ω
∣P t(x, y) − π(y)∣ (7.3)

Here π(.) is the target distribution. Using this, if the initial state of a Markov chain

is x, and ptx = Pr[Xt = y∣X0 = x], then the mixing time of a Markov chain is defined

as below:

τmix =min
t
{∥ptx − π∥tv ≤ ǫ,∀x} (7.4)

In other words, it is the minimum time needed for the chain to come to within ǫ of π

in total variation distance, considering over all possible initial states. Typically, 1
2e

or

1
4
is used for ǫ values to claim that a Markov chain mixes rapidly. For Guise, Ω is the

set of all 3-,4- and 5-Graphlets, and π is equal to 1
∣Ω∣1. Finding an analytical bound

on total variation distance is not possible, unless we consider very specialized graph.

However, we will show in the experiment section that the mixing time of Guise is
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less than 100 walks for some of the graphs that we experiment with. We believe that

the result should be similar for other graphs as well, because the quality of sampling

on larger graphs are also very close to the results for the ideal cases (see Table 7.2).

In real-life applications, we run the sampler for millions of iterations; we can simply

ignore a few hundreds initial steps in our computation to ensure that the random

walk mixes before the sampling starts.

Algorithm 13 Uniform graphlet sampling, Guise

1: procedure Guise(G,SCount,STrial)
2: gx = get a initial graphlet(G)
3: dgx = populate neighborhood(gx)
4: sampled = 0
5: while true do
6: choose a neighbor gy, uniformly from, all possible neighbors
7: dgy = populate neighborhood(gy)

8: acceptance probability = min ( ∣dgx ∣∣dgy ∣ ,1)
9: if uniform(0,1) ≤ acceptance probability then
10: gx = gy
11: dgx = dgy
12: end if
13: if sampled < STrial then
14: sampled+ = 1
15: else
16: sampled+ = 1
17: get graphlet type(gx)+=1
18: end if
19: if sampled > SCount + STrial then
20: return
21: end if
22: end while
23: end procedure
24: procedure populate neighborhood(gx)
25: neighbor list = generate all potential neighboring graphlets
26: return neighbor list

27: end procedure
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7.3.3 Pseudo-Code

The pseudo-code of Guise is given in Algorithm 13. It takes three parameters, an

input graph G, the total number of samples (SCount) and mixing period (STrial).

Guise starts by picking (Line 2) any initial graphlet (gx). In Line 3 it populates

the neighborhood of gx according to the technique discussed in subsection 7.4.1 and

save the set of neighbors in a graphlet data structure (dgx). Then in an iterative

way, it chooses a graphlet gy from gx’s neighbors with uniform distribution. To

compute whether the move to the neighbor gy is accepted or not, it also computes the

neighbor-count of gy (Line 7). After computing the acceptance probability on Line

8, if the move is accepted, Guise replaces the current graphlet gx by gy (line 10 and

11), otherwise gx is kept unchanged. It also increments the number of embedding

sampled (sampled) and visit count of the current graphlet type by one (line 16 and

17) after the end of mixing period of the walk; in this way the sampling statistics

of the mixing period is ignored. Guise terminates when the sampled count exceeds

SCount + STrial.
In the above pseudo-code, Line 6 chooses a neighbor gy of gx with probability

1/∣dgx∣ and Line 9 accepts that choice with a probability min(∣dgx ∣/∣dgy ∣,1). So, the

overall transition probability is T (gx, gy) = min(1/∣dgx ∣,1/∣dgy ∣), which is desired.

7.4 Implementation Details

Guise accepts a connected graph G for which it computes the GFD. It starts

from a random graphlet embedding (say gt) —it can simply be an embedding of a g1

graphlet which is easy to get. Then it computes the transitional probability matrix

T locally, which requires the knowledge of degree of gt; it is also important to know

the graphlet-type of gt, so that the correct counter can be incremented.
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7.4.1 Populating The Neighborhood of a Graphlet

Populating the neighborhood of a graphlet is the most time-consuming task. In

the following we will explain how Guise populates the neighborhood of a 4-Graphlet

gt.

To obtain a 3-Graphlet, Guise first deletes one of the vertices from gt and checks

whether the remaining 3 vertices are still connected in the input graph. If yes, a

3-Graphlet neighbor of gt is obtained. Note that, gt can have (at most) 4 such

neighboring graphlets. To obtain all neighboring 4-Graphlet of gt⟨x, y, zw⟩, Guise

first removes one of the vertices from gt (say x) and checks whether the remaining 3

vertices (y, z, and w) are still connected. If the check succeeds, it finds the union of

the adjacent vertices of these 3 vertices. If they are not connected it considers the

subset of the union-set of adjacent vertices

Each vertex of the resultant set of vertices along with the 3 undeleted vertices (of

gt) represents a neighbor of gt. The process of removing and combining is repeated

for all the vertices of gt. Finally, to get all neighboring 5-Graphlets of gt, Guise takes

the union of adjacency lists of all 4 of its vertices and pick a vertex from the union

set and combine with gt.

Following the above techniques, Guise can populates neighborhood of size 3, 4

and 5 graphlets.

7.4.2 Identifying Graphlet Type

To identify the type of a graphlet gt, Guise first treats gt as a graph g(v, e) where
cardinality of v and e is between 3 to 5 and 2 to 10, respectively. First of all, graphlets

can be categorized based on the cardinality of v. To distinguish graphlets in each

category we introduce a signature of each graphlet based on the degree count of each

vertex in g(v, e). We denote this signature as degree-signature. We first compute the

degree of each vertices of graph g(v, e) and save it in a vector of size ∣v∣. Then we sort

the vector and use this sorted vector as a signature of each graphlet. Guise finds
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this signature and based on the signature it identifies which type of graphlet gt is.

It is possible that two distinct type of graphlets have the same degree-signature; in

that case Guise checks additional criteria to make them distinguishable. Please note

that, above scenario occur only for two pairs of graphlets, (g13, g16) and (g20, g21).

Example: Lets take three graphlets, g12, g22 and g26. These are all size 5

graphlets. For g12 we can easily compute the degree of all vertices, save it in a vector

and after sorting the vector we get degree-signature of g12 which is (1,1,2,3,3). In

a similar fashion we can get degree-signature of g22 and g26, which are (2,2,2,4,4)
and (2,3,3,4,4), respectively. As we can see, degree-signatures are unique for all

three graphlets. Similar trend holds for other graphlets except two pairs of graphlets

we mention above. For g13 and g16, both of them have (1,2,2,2,3) as their degree-

signature. We can easily make them distinguishable if we hop in to their structural

level. Note that, for g13 minimum degree count node has only neighboring node with

degree count 2 but for g16 it has neighboring node with degree count 3. Using the

similar trick, we can make g20 and g21 distinguishable.

7.4.3 Complexity Analysis

Most expensive part of Guise is neighborhood computation. For neighborhood

computation we need to perform union operations on adjacency lists of current

graphlet. Our assumption that the adjacency lists are stored in sorted order al-

lows us to perform union operation in linear time with respect to the length of the

participating sets (adjacency list). For example, the cost for performing union over

two adjacency lists of size m and n is O(m + n).
The worst case time for finding the neighbors of a 3-Graphlet is O(9p) (3∗O(2p)+

O(3p)); where, p is the average length of adjacency lists. Similarly, for 4-Graphlet

and 5-Graphlet the time complexities are O(24p) (4∗O(2p)+4∗O(3p)+2∗O(2p)) and
O(30p) (5∗O(2p)+5∗O(4p)) respectively. The total execution time for all iterations
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is (O(9p)∗ ∣3-Graphlets∣ +O(24p)∗ ∣4-Graphlets∣ +O(30p)∗ ∣5-Graphlets∣)). Where,

∣k-Graphlets∣ represents the number of k-Graphlet embeddings sampled.

7.4.4 Choice of Parameters

Apart from the input graph, Guise has two additional parameter, which are

SCount, and STrial; the former defines the number of iterations that Guise should

run and the latter defines the required number of iterations for the mixing of the

random walk.

Since, the frequency of various graphlets varies in several order of magnitude, the

SCount value should be at least as high as few millions for a moderately large graph;

otherwise the frequency of the least frequent graphlets may turn out to be simply

zero. Since, the iterations of Guise are cheap, it can be run for as many iterations as

is desired. From the law of large numbers in Statistics, the more sample we takes, the

more Guise converges to the true GFD. As we discussed earlier that the mixing time

of the random walk of Guise is small, so a few hundred walks should be sufficient for

the STrial value.

We also attempted to find methods to automatically set the value of SCount by

adopting some heuristics. The first heuristic is that, we choose SCount in such a

way that the visit count of each type of graphlets is higher than a threshold c where

c > 0. This heuristic works fine for all real-life graphs, as in real-life graphs, all the

graphlets have a non-zero count. Nevertheless, It is possible that an input graph does

not have any distinct embedding for a graphlet at all. In that case, we will never find

a suitable SCount for which the count of all types of graphlets is higher than c. To

combat such a scenario we design another heuristic. According to this, We construct

approximated-GFD along with sampling process and compute the difference between

current approximated-GFD with a previously computed approximated-GFD using

L1-distance measure. If the difference falls below a pre-defined threshold diff , and

does not change much for specified number of steps then Guise will stop sampling.
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Since we are computing L1-distance within the sampling task, this heuristic results

in slightly higher running time of Guise.
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Figure 7.3.: Choosing parameter SCount in (a)Ca-GrQc (b) Ca-Hepth graph

In Figure 7.3(a) and (b) we show that the second heuristic works fine in choosing

SCount in two real-life graphs. In this experiment, on every 1000th iteration we

measure the L1-distance between the current approximated-GFD with the previously

computed one. As we can see for both the cases, L1-distance measure does not change

much after 30K iterations. Note that, for both of these datasets, we choose SCount

to be 40K, and the same SCount value is also used to generate empirical results on

these datasets in Figure 7.6(a)(b) and Table 7.3.

7.5 Experiments and Results

In this section, we evaluate the run-time performance and sampling performance

of Guise. First we experimentally show how the sampling distribution of Guise

matches with the desired uniform distribution. Then we present empirical results

on the convergence of the sampler. Finally we exhibit the timing performance of

Guise with the brute-force approach that computes GFD after counting all the

graphlets. We also show some results on the spectral-gap, and variational distance

that analyze the mixing time of Guise’s random walk. For the first two experiments,
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we choose input graphs for which we know the exact frequency count of all 3, 4, and 5

node Graphlets. If the total number of such graphlets is m, we take sufficiently large

number of samples, say i ×m, so that the sampling distribution can be constructed.

For comparison purpose, we get the exact frequency count using an existing graphlet

counting algorithm GraphCrunch2 [27], and use them to assess the sampling quality

that we obtain using Guise.

Table 7.1.: Datasets details (we could not get exact frequency count of the graphlets
for the graphs marked with ⋆)

Graph Vertex Edge Total Number of
3,4,5-Node
Graphlets

Football 115 613 3,74,023
Dolphin 62 159 24,879
ca-GrQc 5,241 14,484 38,778,801
ca-HepTh 9,877 25,998 91,773,466
Yeast 2,361 7,182 52,496,900
Jazz 198 2,742 55,062,209
ca-AstroPh 18,771 198,110 1.0978E11
soc-sign-Slashdot081106⋆ 77,357 468,554 -
roadNet-PA⋆ 1,088,092 1,541,898 -
amazon0302⋆ 262,111 899,792 -
Email-enron ⋆ 36,692 183,831 -
cit-Patents⋆ 3774768 16,518,948 -

7.5.1 Datasets

We use graphs of different sizes from different domains. Table 7.1 lists the

graphs/networks we use for our experiments, with vertex and edge counts. The

graphs were collected from the following two web sites 6. All input graphs used in our

experiments are made undirected (if necessary) during the preprocessing step. In the

same table, we also report the total count of all 3-,4-, and 5-Graphlets in the third

6http://snap.stanford.edu/data/index.html and
http://www-personal.umich.edu/~mejn/netdata
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column as was obtained from GraphCrunch2; for the first four graphs the process

finishes within a reasonable amount of time. For ca-AstroPh dataset, GraphCrunch2

returns the exact count after 3 whole days of running. For the remaining graphs

(marked with ⋆ in Table 7.1), GraphCrunch2 fails to return the graphlet frequencies

even after 3 days of running.

7.5.2 Uniform Sampling of Graphlets

In this experiment we empirically showGuise’s performance on sampling graphlets

uniformly. For this, given a graph with m graphlet embeddings, we perform a uniform

sampling for m ⋅ i times (i is a positive integer). The random variable that represents

the number of times a specific embedding is sampled then follows a binomial distri-

bution B(m ⋅ i, p), where p = 1
m
. For this distribution, the median visit count will be

identical to the mean, which ism.i. 1
m
= i and the variance ism⋅i⋅p(1−p) = i(m−1)

m
. This

binomial distribution resembles a normal distribution, because the success probability

is very small.

We show results for four input graphs, ca-GrQc, ca-Hepth, Jazz and Yeast. For

example, in “ca-GrQc”, there are in total 38,778,801 distinct graphlets embeddings.

We runGuise for a total 387,788,010 samples (i = 10). For an ideal uniform case, each

of the graphlet embeddings will be visited 10 times. Throughout theGuise’s running,

we keep track of the visit counts of each embedding of graphlets. In Figure 7.4(a)

we show the frequency histogram of visit counts, where the x-axis shows various

frequency values, and the y-axis represents the number of distinct embeddings that

are visited with that frequency. The shape of the histogram is very close to a normal

graph, as we have expected. Normal graphs are also obtained for the other three

input graphs as can be seen in Figure 7.4(b-d).

We also show the statistics of visit counts in Table 7.2 indicating maximum,

minimum, mean, median and variance and compare those with the values for the

ideal cases. For ca-GrQc graph, m = 38,778,801, by setting i = 10, we expect that the
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Histogram on ca−GrQc graph
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Histogram on ca−Hepth graph
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Histogram on Yeast graph
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Histogram on Jazz graph
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Figure 7.4.: Frequency histogram of the visit counts on (a) ca-GrQc (b) ca-Hepth (c)
Yeast (d) Jazz graph

median of visit count will be 10 with the variance 10∗(38,778,801−1)
38,778,801

= 9.9. For Guise,

the median of visit count is 10 with variance 11.96; the median is exactly equal, and
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Table 7.2.: Statistics of uniform sampling on ca-GrQc, ca-Hepth, Yeast and Jazz
graphs and comparison with ideal case.

Graph Uniform-Sampling Ideal
Max Min Median Variance Median Variance

ca-Grqc 33 1 10 11.96 10 9.9
ca-Hepth 33 1 10 12.13 10 9.9
Yeast 35 1 10 13.03 10 9.9
Jazz 34 1 10 12.22 10 9.9

the variance is very close to its ideal value. We also obtain similar results for the

other three graphs (see, Table 7.2). We do not perform this experiment for very large

graphs, because for this experiment we need to store the visit count of all the graphlet

embeddings in the main memory, and the number of such embeddings is more than

billions for those large graphs.

7.5.3 Convergence to Uniform Distribution

In this experiment, we show that through uniform sampling, we can obtain a GFD,

that converges to the true GFD. To show this convergence we use L1-norm distance

measure. We use GraphCrunch2 [27] to construct the true GFD and run Guise for

300 thousands iterations. Next we compute the L1-Norm distance between the actual

GFD vector and the Guise GFD vector and plot the measure against the iterations

count (SCount). Figure 7.5 exhibits the results for four of the datasets. We can see

that for each of the datasets, after 200K iterations L1-distance remains unchanged,

which is the indication of the convergence of Guise. We also exhibit the visual

similarity (GFD using line plot) between the actual GFD and the approximate-GFD

for all these four graphs and also for an additional graph (ca-AstroPh) in Figure 7.6(a-

e). The SCount values that we use to get the Guise GFDs are mentioned in the

second column of Table 7.3 within parentheses. Note that, in Figure 7.6(f-h) we show

the GFD that we obtain from Guise for an additional three large graphs. For these

graphs, actual GFD was not available so no comparison is shown. But, the theoretical
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Figure 7.5.: Convergence of uniform sampler on (a) ca-GrQc (b) ca-Hepth (c) Yeast
(d) Jazz graph

and empirical proof of Guise makes us confident to claim that these are the actual

GFD signature of those graphs.

7.5.4 Timing Analysis

In Table 7.3, we show Guise’s running time for sufficiently large number of itera-

tions. We also show the time (when available) that GraphCrunch2 takes for obtaining

the frequencies of each of these graphlets. For large graph, GraphCrunch2 is clearly

not usable due to its large computation time, but Guise returns the GFD in few

minutes. For one large graph (ca-AstroPh), for which GraphCrunch2 was able to

finish in 3 days, Guise returns the GFD in 1 minutes and 20 seconds. If we compare
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Figure 7.6.: Comparison with actual and approximated GFD for (a) ca-GrQc (b)
ca-hepth (c) yeast (d) Jazz (e) ca-AstroPh and approximated GFD for (f) Slashdot
(g)roadNet-PA (h)cit-Patents graphs
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Table 7.3.: Timing performance of Guise and comparison with naive algorithm

Graph Guise (SCount) brute force
ca-GrQc 3.8 sec(100,000) 1.3 min
ca-HepTh 3.6 sec(100,000) 34 sec
Yeast 3.4 sec (100,000) 17 sec
Jazz 1.84 sec (50,000) 48 sec
ca-AstroPh 78.6 sec(1,000,000) 3 day
soc-sign-Slashdot081106 527.62 sec (4,000,000) > 3day
roadNet-PA 313.2 sec(10,000,000) > 3day
amazon0302 46.6 sec (1000000) > 1day
Email-Enron 184.2 sec (2000000) > 3day
cit-Patents 125.28 sec (2000000) > 1day

the GFD of ca-AstroPh from Guise with that of the actual one in Figure 7.6(e), they

are simply indistinguishable.
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Figure 7.7.: (a) Relation between running time and SCount (b) how L1-Norm changes
with SCount for ca-AstroPh graph

We also perform an experiment where we show how the running time of Guise in-

creases with SCount values. We use “ca-AstroPh” in this experiment. we also show

how the L1-norm distance changes. Running time increases linearly with SCount

and L1-norm gets better with the increment of SCount. In Figure 7.7 we show our

findings.
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7.5.5 Spectral-Gap Analysis

For spectral gap analysis we pick “Dolphin” dataset where total number of graphlets

of size 3 to 5 reported is 24,879. In order to compute spectral gap, we generate

24,879X24,879 symmetric transition probability matrix that contains 1,206,644 non

zero entries in the upper triangle of the matrix (excluding diagonals entry). Table 7.4

shows that the spectral gap value for this dataset is 0.0117. Note that we could not

use larger dataset for this experiment, because they have too many graphlets, and

finding a square matrix of that size is simply not feasible.

As we mentioned earlier that the spectral gap of a random walk can be between 0

and 1, and the larger the spectral gap, the better the mixing time of a random walk.

Considering a range between 0 and 1, a spectral gap value of 0.0117 may seems to be

poor. However, this value is in-fact much better compared to the spectral gap of an

identical random walk on a power-law graph. To show this, we build two synthetic

graphs, of which one is random graph and the other is a power-law graph. The

number of nodes and edges in both of these graphs are 24,879 (number of graphlets in

dolphin dataset) and 1,206,644 (number of transitions in dolphin dataset). We then

compute the spectral gap of the two random walks on these graphs to obtain uniform

sampling of vertices. The spectral gap values are 0.6414, and 0.0003 respectively. For

the random graph the spectral gap is high because it is easy to perform a uniform

sampling on such a graph due to the uniformity in its degree distribution. On the

other hand, the spectral gap on the power law graph is very small because the degree

distribution of such a graph is highly non-uniform. In a real-life network, the graphlet

space is more like a power-law graph, where the neighbor-count distribution of various

graphlets are highly non-uniform, so a low spectral gap, such as, 0.0117, is expected;

nevertheless, it does not affect the performance at all, as the mixing time is still less

than a few hundred walks. This can be shown from the fact that the inverse of spectral

gap of a reversible Markov chain captures the mixing time of that walk [105], As we
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Table 7.4.: Comparative Spectral-gap analysis for MCMC-walk of Guise

Graph Spectral gap
Dolphin 0.0117
Random Graph 0.6414
Power Law Graph 0.0003

compute the spectral gap of Guise’s random walk over dolphin dataset is 0.0117,

thus the mixing time of this walk is 1/0.0117=85.47 unit.
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Figure 7.8.: Total variational distance (a) dolphin (b) football network

7.5.6 Variation Distance Analysis

Mixing time of a random walk can also be analyzed by variation distance analysis,

which is our objective in this experiment. For this, we use equation 7.3. For this

experiment also, we choose small datasets, such as, dolphin and football because of

their reasonable size to carry out computation that includes handling very large sparse

matrix (Transition probability matrix). From the total variational distance, we also

compute the mixing time using equation 7.4. As we discussed in section 7.3.2, we set

the value of ǫ to 1
4
. In Figure 7.8(a) and (b) we plot the value of total variational

distance with respect to t. As we can see that for both dolphin and football dataset,

random walk converges very fast, i.e. variational distance for these datasets fall bellow
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ǫ after t = 20 and t = 29 steps respectively. The mixing time bound through total

variation distance is even sharper than the one that we found by using spectral gap.

7.6 Conclusion

In this chapter, we present Guise, an efficient method for approximating the

graphlet frequency distribution (GFD) in a principled manner that offers significant

speed up in comparison with the existing time consuming ways of brute force counting.

Our experiments with many real-life networks show that GFD that Guise obtains is

all but identical to the actual GFD that one can obtain from the exhaustive counting

of graphlets.
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8 APPLICATIONS

In this chapter we discuss the application of graphlet analysis. Graphlets, are increas-

ingly being used for large-scale graph analysis. For example, frequencies of various

graphlets are used for classifying networks from various domains [26, 29]. They are

also used for designing effective graph kernels [24]. In biological domain, graphlet

frequencies are used for comparing structures of different biological networks [3]. In

all these works, graphlets are used as a topological building block of a static network.

Contrary to static networks; a dynamic network’s structure changes with time. In

a dynamic network the vertices and/or edges are added or removed at different time

stamps. In this dissertation we consider dynamic network with constant vertex-set

and evolving edge-set (see Section 2.8). In this chapter, we focus on applications of

graphlet based network analysis in both static (Section 8.1) and dynamic network

setups (Sections 8.2- 8.4).

8.1 Clustering Static Networks Using GFD

In this section we demonstrate the usability of GFD in clustering static-networks.

Networks can be generated from many sources e.g., citation networks, collaboration

networks etc. Our objective is to do graph clustering on some of the graphs using

GFD as a 29 dimensional metric. We use agglomerative hierarchical clustering with

Euclidean distance as the distance metric.

For this experiment, we consider several sources of graphs (Table 8.1). Three

graphs from road networks of California, nine graphs from Internet peer-to-peer file

sharing networks, five collaboration networks and five graphs constructed from cita-

tion network for 2003 KDD cup (Same data as Figure 5.10(c)).
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Table 8.1.: Graphs used for agglomerative hierarchical graph-clustering

Network Type # Vertex # Edge Re/v p time (sec)
Gnutella04

p2p

10,876 39,994 3.68 1 310
Gnutella05 8,846 31,839 3.60 1 449
Gnutella06 8,717 31,525 3.62 1 373
Gnutella08 6,301 20,777 3.30 1 594
Gnutella09 8,114 26,013 3.21 1 680
Gnutella24 26,518 65,369 2.47 1 1,498
Gnutella25 22,687 54,705 2.41 1 136
Gnutella30 36,682 88,328 2.41 1 335
Gnutella31 62,586 147,892 2.36 1 615
HepTh

collaboration

9,875 25,973 2.63 0.1 22.8
GrQ 5,241 14,484 2.76 0.1 47.9
CondMat 23,133 93,439 4.04 0.1 755
AstroPh 18,771 198,050 10.55 0.01 3,000
HepPh 12,006 118,489 9.87 0.01 18,496
TX

RoadNet
1,379,917 1,921,660 1.39 1 54

PA 1,088,092 1,541,898 1.42 1 46
CA 1,965,206 2,766,607 1.41 1 82
kdd92-94

Citation

4,244 12,371 2.91 .001 0.16
kdd92-96 9,131 52,768 5.78 .001 22.8
kdd92-98 14,484 124,632 8.60 .001 452
kdd92-00 20,334 216,748 10.66 .001 1,663
kdd92-03 27,769 352,285 12.69 .001 5,442

We first calculate GFD of all the graphs using Graft. For smaller graphs we did

exact graphlet counting and for larger graphs approximate graphlet counting . This

can be done easily by changing the value of parameter p in Graft (See Column 6 of

Table 8.1). GFD of the graphs are presented in Figure 8.1. We can see from Figure

8.1, that graphs from same source has correlated GFDs while GFDs of graphs from

different sources are relatively different. Then we use the values of GFD to compute

the Euclidean distance between two clusters. Initially, we assume that each graph is

it’s own cluster. Now, we compute the distance between all possible pairs of clusters

and merge the pair of cluster with smallest distance. GFD of a cluster is the mean

GFD of member graphs in the cluster. We repeat the process until the number of

cluster equals to a user specified value C (assuming we know the number of clusters)
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Figure 8.1.: GFD of 29 graphlets for (a) road networks and (b) P2P networks (c)
collaboration networks (d) time variant citation networks

Table 8.2.: Result of agglomerative hierarchical graph-clustering (citation graphs ex-
cluded). Purity = 5+4+5+3

22
= 0.77

Real Graph-Groups
P2P Collaboration RoadNet Citation

Graph
cluster

P2P 5 0 0 0
Collaboration 0 5 0 4

RoadNet 0 0 3 0
P2P 4 0 0 1

Table 8.3.: Result of agglomerative hierarchical graph-clustering (citation graphs ex-
cluded). Purity = 9+5+3

9+5+3 = 1
Real Graph-Groups

P2P Collaboration RoadNet

Graph
cluster

P2P 9 0 0
Collaboration 0 5 0

RoadNet 0 0 3

We repeated this experiment twice; once with all the graphs in Table 8.1 and

C = 4 and once with all graphs in Table 8.1 excluding five citation graphs and C = 3.
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A graph cluster is assigned to the class which is most frequent in the cluster. Purity

(accuracy) of the clustering is measured by dividing the total number of correctly

assigned graphs by total number of graphs. As we can see in Table 8.2, inclusion

of citation graphs results in bad clustering (Purity = 0.77); where as exclusion of

citation graphs results in perfect (Purity = 1) clustering in this experiment (see

Table 8.3). The reason behind this may be that, GFDs of citation graphs fails to

represent a distinct cluster and moreover it shrinks cluster boundaries of other cluster

who were sufficiently well separated otherwise. These results shows that, GFD is a

good clustering metric.

8.2 Link Prediction in Dynamic Networks Using Graphlet Transitions

Understanding the dynamics of an evolving network is an important research prob-

lem with numerous applications in various fields, including social network analysis,

information retrieval, recommendation systems, epidemiology, security, and bioinfor-

matics. A key task towards this understanding is to predict the likelihood of a future

association between a pair of nodes, given the existing state of the network. This

task is commonly known as the link prediction problem. Since, its formal introduc-

tion to the data mining community by Liben-Nowell et al. [106] about a decade ago,

this problem has been studied extensively by many researchers from a diverse set of

disciplines. Comprehensive surveys [12, 72] on link prediction methods are available

for interested readers.

The majority of the existing works on link prediction consider a static snapshot of

the given network, which is the state of the network at a given time [62, 63, 65, 106].

Nevertheless, for many networks, additional temporal information, such as the time of

link creation and deletion, is available over a time interval. For example, in an on-line

social or a professional network, we may know the time when two persons have become

friends; for collaboration events, such as, a group performance or a collaborative

academic work, we can extract the time of the event from an event calendar. The
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networks built from such data can be represented by a dynamic network, which is a

collection of temporal snapshots of the network. The link prediction task on such a

network is defined as follows: for a given pair of nodes, predict the link probability

between the pair at time t + 1 by training the model on the link information at times

1,2,⋯, t. We will refer this task as dynamic link prediction1.

A key challenge of dynamic link prediction is finding a suitable feature represen-

tation of the node-pair instances which are used for training the prediction model.

For the static setting, various topological metrics (common neighbors, Adamic-Adar,

Jaccard’s coefficient, etc) are used as features, but they cannot be extended easily

for the dynamic setting having multiple snapshots of the network. In fact, when

multiple (say t) temporal snapshots of a network are provided, each of these scalar

features becomes a t-size sequence (see Figure 8.2). Flattening the sequence into a

t-size vector distorts the inherent temporal order of the features. Authors of [71] over-

come this issue by modeling a collection of time series, each for one of the topological

features; but such a model fails to capture signals from the neighborhood topology

of the edges. There exist a few other works on dynamic link prediction, which use

probabilistic (nonparametric) and matrix factorization based models. These works

consider a feature representation of the nodes and assume that having a link from

one node to another is determined by the combined effect of all pairwise node feature

interactions [66, 68, 69]. While this is a reasonable assumption, the accuracy of such

models are highly dependent on the quality of the node features, as well as the validity

of the above assumption.

Graphlets, which are collection of small induced subgraphs, are increasingly be-

ing used for large-scale graph analysis in static network setup. In all these works,

graphlets are used as a topological building block of a static network. Nevertheless, as

new edges are added or existing edges are removed from the given dynamic network,

the graphlets which are aligned with the affected edge transition to different graphlets.

1Strictly speaking, this task should be called link forecasting as the learning model is not trained
on partial observation of link instances at time t + 1; however, we refer it as link prediction due to
the popular usages of this term in the data mining literature.
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Figure 8.2.: Example of t-size feature sequence for a dynamic network with 3 time
stamps.

For illustration, let us consider a dynamic network with two temporal snapshots G1

and G2 (Figure 8.3). In this example, G2 has one more edge (2,3) than G1. We

observe three different types of transition events, where a type of graphlet is changed

into another type in the subsequent snapshot (see the table in Figure 8.3). Here, all

the events are triggered by the edge (2,3). In this work, we use the frequency of

graphlet transition events associated with a node-pair for predicting link between the

node-pairs in a future snapshot of the dynamic network.

A key challenge of using graphlet transition event for dynamic link prediction is to

obtain a good feature representation for this task. This is necessary because graphlet

transition event matrix is sparse, and on such dataset, low dimensional feature rep-

resentation effectively captures the latent dependency among different dimensions of

the data. There exist a growing list of recent works which use unsupervised method-

ologies for finding features from raw data representations of various complex objects,

including images [107] and audio [108]. For graph data, we are aware of only one such

work, namely DeepWalk [109], which obtains the feature representation of nodes for
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Figure 8.3.: A toy dynamic network. G1 and G2 are two snapshots of the network.
Three different types of graphlet events are observed.

solving a node classification task. However, no such work exists for finding feature

representation of node-pair instances for the purpose of link prediction in a dynamic

network.

In this work, we propose a novel learning methodGraTFEL (GraphletTransition

and Feature Extraction for Link Prediction) for obtaining feature representation of

node-pair instances from graphlet transition events in the observed snapshots of the

given network. GraTFEL considers the feature learning task as an optimal coding

problem such that the optimal code of a node-pair is the desired feature represen-

tation. The learning can be considered as a two-step process (compression and re-

construction), where the first step compresses the input representation of a node-pair

into a code by a non-linear transformation, and the second step reconstructs the input

representation from the code by a reverse process and the optimal code is the one

which yields the least amount of reconstruction error. The input representation of a

node-pair is given as a vector of graphlet transition events (GTEs) associated with

the corresponding node-pair. After obtaining an appropriate feature representation of

the node-pairs, a traditional supervised learning technique is used (we use SVM and

AdaBoost) for predicting link states at future times in the given dynamic network.

Below we summarize our contributions in this work:
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• We use graphlet transition events (GTEs) for preforming link prediction in a

dynamic network. To the best of our knowledge we are the first to use GTEs

for solving a prediction task over a dynamic network.

• We propose a learning model (GraTFEL) for unsupervised feature extraction

of node-pairs for the purpose of link prediction over a dynamic network.

• We compare the performance ofGraTFEL with multiple state-of-the-art meth-

ods on three real-life dynamic networks. This comparison results show that our

method is significantly superior than all the competing methods.

8.3 Problem Definition and Methods

To recap, link prediction task on a dynamic network predicts whether two ver-

tices u and v will have a link in snapshot Gt+1, given a sequence of snapshots

G = {G1,G2, . . . ,Gt} of a network. Note that, we assume no link information regard-

ing the snapshot Gt+1 is available, except the fact that Gt+1 contains the identical set

of vertices. We use graphlet transition event as features for the link prediction task

on a dynamic network.

A key challenge for dynamic link prediction is choosing an effective feature set for

this task. Earlier works choose features by adapting topological features for static link

prediction or by considering the feature values of different snapshots as a time series.

GraTFEL uses graphlet transition events (GTEs) as features for link prediction.

For a given node-pair, the value of a specific GTE feature is a normalized count of

the observed GTE involving those node-pairs over the training data. The strength

of GTEs as feature for dynamic link prediction comes from the fact that for a given

node-pair, GTEs involving those nodes capture both the local topology and their

transition over the temporal snapshots. We consider graphlets up to five vertices, so

GTEs also involve only those graphlets. This restriction is inspired by the fact that

more than 95% new links in a dynamic network happen between vertices that are

at most 3 distances apart in all three real-life dynamic networks that we use in this
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work. So, for a given node, GTE of a five vertex graphlet in the neighborhood of that

node covers a prospective link formation event as a graphlet transition event. Another

reason for limiting the graphlet size is the consideration of computation burden, which

increases exponentially with the size of graphlets. There are 30 different graphlets of

size up to 5 and the number of possible transition event (GTE) is O(302). Increasing
the size of graphlets to 6 increases the number of GTE to O(1422)! Finally, all the

existing works on graphlets also limit their analysis for graphlets up to size five [21,29].

Feature representation for a node-pair in a dynamic network is constructed by

concatenating GTE features from a continuous set of graph snapshots. Concatena-

tion, being the simplest form of feature aggregation across a set of graph snapshots is

not essentially the best feature representation to capture temporal characteristics of a

node-pair. So, GraTFEL uses Unsupervised Feature Learning (UFL) to get optimal

feature representation from GTE features. The motivation for using Unsupervised

Feature Learning (UFL) comes from the benefit of Representation Learning (RL), as

the proposed UFL is an example of RL for dynamic link prediction. The motivation of

RL is discussed in a review article by Bengio et al. [110]. UFL provides better feature

representation by discovering dependency among different data dimensions, which

cannot be achieved by simple aggregation. It also reduces the data dimension and

overcomes the sparsity issue in GTE features. Finally, GraTFEL uses the learned

optimal features to solve the link prediction task using a supervised classification

model.

The discussion of the proposed methodGraTFEL can be divided into three steps:

(1) graphlet transition event based feature extraction (Section 8.3.1), (2) unsupervised

(optimal) feature learning (Section 8.3.2), and (3) supervised learning for obtaining

the link prediction model (Section 8.3.3).
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8.3.1 Graphlet Transition Based Feature Extraction

Say, we are given a dynamic network G = {G1,G2, . . . ,Gt}, and we are computing

the feature vector for a node-pair (u, v), which constitute a row in our training data

matrix. We use each of Gi ∶ 1 ≤ i ≤ t − 1 (time window [1, t − 1]) for computing the

feature vector and Gt for computing the target value (1 if edge exist between u and v,

0 otherwise). We use euv
[1,t−1] to represent this vector. It has two components: graphlet

transition event (GTE) and link history (LH).

The first component, Graphlet Transition Event (GTE), guv
[1,t−1] is constructed

by concatenating GTE feature-set of (u, v) for each time stamp. i.e., guv
[1,t−1] =

guv
1 ∣∣ guv

2 ∣∣ . . . ∣∣ guv
t−1. Here, the symbol ∣∣ represents concatenation of two hori-

zontal vectors ( e.g., 0 1 0 ∣∣ 0.5 0 1 = 0 1 0 0.5 0 1 ) and guv
i represents (u, v)’s GTE

feature-set for time stamp i, and it captures the impact of edge (u, v) at its neighbor-
hood structure at time stamp i. We construct guv

i by enumerating all graphlet based

dynamic events, that are triggered when edge (u, v) is added with Gi.

Figure 8.4.: A toy dynamic network with t snapshots. First two and last snapshots
are given in this figure.

For example, consider the toy dynamic network in Figure 8.4. We want to con-

struct the GTE feature vector g36
1 , which is the GTE feature representation of node-

pair (3,6) at G1. We illustrate the construction process in Figure 8.5. In this figure,

we show all the graphlet transitions triggered by edge (3,6) when it is added in G1.

These transition events are listed in center table of Figure 8.5. Column titled Nodes
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Figure 8.5.: Construction of graphlet transition based feature representation g36
1 of

node-pair (3,6) at 1st snapshot of the toy network.

lists the sets of nodes where the graphlet transitions are observed and Column Cur-

rent Graphlet shows the current graphlet structure induced by these nodes. Column

Transformed Graphlet shows the graphlet structure after (3,6) is added. The last

column Graphlet Event is a visual representation of the transition events, where the

transition is reflected by the red edges. Once all the transition events are enumer-

ated, we count the frequencies of these events (Table on the right side of Figure 8.5).

Graphlet transition frequencies can be substantially different for different edges, so

the GTE vector is normalized by the largest value of graphlet transition frequencies

associated with this edge. Also note that, all possible graphlet transition events are

not observed for a given edge. So, among all the possible types of GTE, those that

are observed in at least one node-pair in the training dataset are considered in GTE

feature-set.

The second component of node-pair feature vector is Link History (LH) of node-

pair, which is not captured by GTE feature-set, guv
[1,t−1]. Link History, lhuv

[1,t−1] of

a node-pair (u, v) is a vector of size t − 1, denoting the edge occurrences between

the participating nodes over the time window [1, t − 1]. It is defined as, lhuv
[1,t−1] =

G1(u, v) ∣∣ G2(u, v) ∣∣ . . . ∣∣ Gt−1(u, v). Here, Gi(u, v) is 1 if edge (u, v) is present
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in snapshot Gi and 0 otherwise. An appearance of an edge in recent time indicates

a higher chance of the edge to reappear in near future. So, we Consider weighted

link history, wlhuv
[1,t−1] = w1 ⋅G1(u, v) ∣∣ w2 ⋅G2(u, v) ∣∣ . . . ∣∣ wt−1 ⋅Gt−1(u, v). here,

wi = i/(t − 1) (a time decay function) represents the weight of link history for time

stamp i. Finally, a frequent appearance of an edge over time indicates a strong

tendency of the edge to reincarnate in the future. This motivates us to reward such

events by considering cumulative sum. We define Weighted Cumulative Link History,

wclhuv
[1,t−1] = CumSum(wlhuv

[1,t−1])
Finally, the feature vector of a node-pair (u, v), euv[1,t−1], is the concatenation of

GTE feature-set and LH feature-set ; i.e., euv[1,t−1] = guv
[1,t−1] ∣∣ wclhuv

[1,t−1]. For predicting

dynamic links in time stamp t + 1, we right-shift the time window by one. In other

words, we construct graphlet feature representation euv[2,t] by using snapshots from

time window [2, t]. Final feature representation for all node-pairs,

Ê = {euv[1,t−1]}u,v∈V
Ē = {euv[2,t]}u,v∈V

(8.1)

Here, Ê is the training dataset and Ē is the prediction dataset. Both Ê and Ē can

be represented as matrices of dimensions (m×k). k = ∣euv[1,t−1]∣ = c∗(t−1)+ t−1 is the

feature size, where c is the total number of distinct GTE that we consider as feature.

GTE enumeration

We compute GTEs by using a local growth algorithm. For computing guv
i , we

first enumerate all graphlets of Gi having both the nodes, u and v. Starting from

node-pair (edge graphlet) gl = {u, v}, in each iteration of growth we add a new vertex

w from the immediate neighborhood of the graphlet gl to obtain a larger graphlet

gl = gl∪{w}. Growth is terminated when ∣gl∣ = 5. The enumeration process is identical

to the work of Rahman et al. [29]. After enumeration, GTE is easily obtained from

graphlet embedding by marking the edge (u, v) as the transition trigger (see Figure
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8.5). The computation of GTEs of different node-pairs are not dependent on each

other, this makes GTE enumeration task embarrassingly parallel.

8.3.2 Unsupervised Feature Learning

GraTFEL performs the task of unsupervised feature extraction as learning an

optimal coding function h. Lets consider, e is a feature vector from either Ê or Ē

(e ∈ Ê∪Ē). Now, the coding function h compresses e to a code vector α of dimension

l, such that l < k. Here l is a user-defined parameter which represents the code

length and k is the size of feature vector. Many different coding functions exist in

the dimensionality reduction literature, but GraTFEL chooses the coding function

which incurs the minimum loss in the sense that from the code α we can reconstruct

e with the minimum error over all possible e ∈ Ê∪Ē. We frame the learning of h as an

optimization problem, which we discuss below through two operations: Compression

and Reconstruction.

Compression: It obtains α from e. This transformation can be expressed as a

nonlinear function of linear weighted sum of the graphlet transition features.

α = f(W (c)e + b(c)) (8.2)

W (c) is a (k× l) dimensional matrix. It represents the weight matrix for compression

and b(c) represents biases. f(⋅) is the Sigmoid function, f(x) = 1
1+e−x .

Reconstruction: It performs the reverse operation of compression, i.e., it obtains the

graphlet transition features e from α which was constructed during the compression

operation.

β = f(W (r)α + b(r)) (8.3)

W (r) is a matrix of dimensions (l × k) representing the weight matrix for reconstruc-

tion, and b(r) represents biases.
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The optimal coding function h constituted by the compression and reconstruc-

tion operations is defined by the parameters (W ,b) = (W (c),b(c),W (r),b(r)). The

objective is to minimize the reconstruction error. Reconstruction error for a graphlet

transition feature vector (e) is defined as, J(W,b,e) = 1
2
∥ β − e ∥2. Over all possi-

ble feature vectors, the average reconstruction error augmented with a regularization

term yields the final objective function J(W ,b):
J(W ,b) = 1

2m
∑

e∈Ê∪Ē
(1
2
∥ β − e ∥2)

+λ
2
(∥W (c) ∥2F + ∥W (r) ∥2F )

(8.4)

Here, λ is a user assigned regularization parameter, responsible for preventing

over-fitting. ∥ ⋅ ∥F represents the Frobenius norm of a matrix. In this work we use

λ = 0.1.

Optimization:

The training of optimal coding defined by parameters (W,b) begins with random

initialization of the parameters. Since the cost function J(W ,b) defined in Equation

(8.4) is non-convex in nature, we obtain a local optimal solution using the gradient

descent approach. Such approach usually provides practically useful results (as shown

in the Section 8.4). The parameter updates of the gradient descent are similar to the

parameter updates for optimizing Auto-encoder in machine learning. One iteration

of gradient descent updates the parameters using following equations:
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Now, from Equation (8.4), the partial derivative terms in equations (8.5) can be

written as,

∂

∂W
(c)
ij

J(W,b) = 1

2m
∑
e∈Ê

∂

∂W
(c)
ij

J(W,b,e) + λW (c)
ij

∂
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(r)
ij
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∂
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ij

J(W,b,e) + λW (r)
ij

∂
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i
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∂
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i
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∂

∂b
(r)
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2m
∑
e∈Ê

∂

∂b
(r)
i

J(W,b,e)

(8.6)

The optimization problem is solved by computing partial derivative of cost func-

tion J(W,b,e) using the back propagation approach [111]. Once the optimization is

done, the unsupervised feature representation of any node-pair (u, v) can be obtained

by taking the outputs of compression stage (Equation (8.2)) of the trained optimal

coding (W,b).

αuv
[1,t−1] = f(W (c)euv

[1,t−1] + b(c)) = h(euv
[1,t−1])

αuv
[2,t] = f(W (c)euv

[2,t] + b(c)) = h(euv
[2,t])

(8.7)
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Computational Cost

We use Matlab implementation of optimization algorithm L-BFGS (Limited mem-

ory Broyden-Fletcher-Goldfarb-Shanno) for learning optimal coding. Non-convex na-

ture of cost function allows us to converge to local optimum. We execute the algorithm

for a limited number of iterations to obtain unsupervised features within a reason-

able period of time. Each iteration of L-BFGS executes two tasks for each node-pair:

back-propagation to compute partial differentiation of cost function, change the pa-

rameters (W,b). For each node-pair the time complexity is O(kl); here, k is the

length of Graphlet Transition Event based feature representation, l is length of un-

supervised feature representation. Therefore, the time complexity of one iteration is

O(n2kl), as the number of all node-pairs is O(n2).

8.3.3 Supervised Link Prediction Model

Training dataset, Ê is feature representation for time snapshots [1, t − 1], The
ground truth (ŷ) is constructed from Gt. After training the supervised classification

model using α̂=h(Ê) and ŷ, prediction dataset Ē is used to predict links at Gt+1. For

this supervised prediction task, we experiment with several classification algorithms.

Among them SVM (support vector machine) and AdaBoost perform the best.

Algorithm 14 GraTFEL

1: function GraTFEL(G: Dynamic Network, t: Time steps) ▷ Output: ȳ:
Forecasted links at time step t + 1

2: Ê=GraphletTransitionFeature(G,1,t − 1)
3: ŷ=Connectivity(Gt)
4: Ē=GraphletTransitionFeature(G,2,t)
5: h=LearningOptimalCoding(Ê ∪ Ē)
6: α̂=h(Ê)
7: ᾱ=h(Ē)
8: C=TrainClassifier(α̂, ŷ)
9: ȳ=LinkForecasting(C, ᾱ)
10: return ȳ
11: end function
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The pseudo-code of GraTFEL is given in Algorithm 14. For training link pre-

diction model, we split the available network snapshots into two overlapping time

windows, [1, t − 1] and [2, t]. GTE features Ê and Ē are constructed in Lines 2 and

4, respectively. Then we learn optimal coding for node-pairs using graphlet transition

features (Ê∪Ē) in Line 5. Unsupervised feature representations are constructed using

learned optimal coding (Lines 6 and 7) using output of compression stage (Equation

8.7). Finally, a classification model C is learned (Line 8), which is used for predicting

link in Gt+1(Line 9).

8.4 Experimental Results

In this section we demonstrate the performance of GraTFEL using three real

world dynamic network datasets: Enron, Collaboration and Facebook. We also

show performance comparison between GraTFEL, and existing state-of-the-art dy-

namic link prediction methodologies. Experimental results also discuss the contri-

bution of Unsupervised Feature Learning on GraTFEL’s performance. Bellow, we

discuss the datasets, evaluation metrics, competing methods, implementation details

and results.

Table 8.4.: Basic statistics of the datasets used.

Characteristics Enron Collaboration Facebook1

# Snapshots 11 10 9
# Nodes (n) 184 315 663
Avg.# Edge (ae) 217 255 1,299
#Node-Pairs(m) 16,836 49,455 219,453
Avg. Graph Density (ae/m) .013 .005 .006

8.4.1 Dataset Descriptions

Here we discuss the construction and characteristics of the datasets used for ex-

periments. Detail statistics of the datasets is presented in Table 8.4. Although the
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number of vertices in these networks are in hundreds, these are large datasets consid-

ering the possible node-pairs and multiple temporal snapshots.

Enron email corpus [112] consists of email exchanges between 184 Enron employees.

The Enron dataset has 11 time stamps; the task is to use first 10 snapshots for

predicting links in the 11th snapshot. Following [69], we aggregate data into time

steps of 1 week. We use the data from weeks 147 to 157 of the data trace for the

experiments. The reason for choosing that window is that the snapshot of the graph

at week 157 has the highest number of edges.

Collaboration dataset has 10 time stamps with collaboration between 315 authors.

The Collaboration dataset is constructed from citation data containing 1.4 million

papers [113]. We process the data to construct a network of authors with edges

between them if they co-author a paper. Considering each year as a time stamp, the

data of years 2000-2009 (10 time stamps) is used for this experiment, where the data

from the first nine time stamps is used for training and the last for prediction. Since

this data is very sparse, we pre-process the data to retain only the active authors,

who have last published papers on or after year 2010; moreover, the selected authors

participate in at least two edges in seven or more time stamps.

Facebook is a network of Facebook wall posts [114]. Each vertex is a Facebook

user account and an edge represents the event that one user posts a message on the

wall of another user. Facebook has 9 time stamps and 663 nodes. For pre-processing

Facebook we follow the same setup as is discussed in [115]; wall posts of 90 days are

aggregated in one time step. We filter out all people who are active for less than 6

of the 9 time steps, along with the people who have degree less than 30, leaving 663

remaining people (nodes).
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8.4.2 Evaluation Metrics

For evaluating the proposed method we use two metrics, namely, area under

Precision-Recall (PR) curve (PRAUC) [116] and an information retrieval metric, Nor-

malized Discounted Cumulative Gain (NDCG).

PRAUC is best suited for evaluating two class classification performance when

class membership is skewed towards one of the classes. This is exactly the case for

link prediction; the number of edges (∣E∣) is very small compared to the number of

possible node-pairs m (see average graph density in Table 8.4). In such scenarios,

area under the Precision-Recall curve (PRAUC) gives a more informative assessment

of the algorithm’s performance than other metrics such as, accuracy. The reason

why PRAUC is more suitable for the skewed problem is that it does not factor in the

count of true negatives in its calculation. In skewed data where the number of negative

examples is huge compared to the number of positive examples, true negatives are

not that meaningful.

We also use NDCG, an information retrieval metric (widely used by the recom-

mender systems community) to evaluate the proposed method. NDCG measures the

performance of link prediction system based on the graded relevance of the recom-

mended links. NDCGp varies from 0.0 to 1.0, with 1.0 representing ideal ranking of

edges. Here, p is a parameter chosen by user representing the number of links ranked

by the method. We use p = 50 in our experiments. NDCGp is defined as below:

DCGp = p∑
i=1

2reli − 1
log2(i + 1)

NDCGp = DCGp

IDCGp

Here, reli is 1 if the ranked link is an edge at future time stamp t+1 or 0 otherwise.

IDCGp is the maximum possible value of DCGp; its appearance in the denominator

of NDCGp definition normalizes the value between 0 and 1.
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Some of the earlier works on link prediction have used area under the ROC curve

(AUC) to evaluate link prediction works [71,117]. But recent works [118] have demon-

strated the limitations of AUC and argued in favor of PRAUC over AUC for evaluation

of link prediction. So we have not used AUC in this work.

8.4.3 Competing Methods for Comparison

We compare the performance of GraTFEL with link prediction methods from

four categories: (1) topological feature based methods, (2) feature time series based

methods [71], (3) a tensor factorization based method CANDECOMP/PARAFAC

(CP) [66], and (4) node representation based methods DeepWalk [109] and Node2Vec

[119].

Besides these four works, there are two other existing works for link prediction

in dynamic network setting; one is based on deep Learning [70] and the other is

based on a nonparametric method [68]. We cannot compare with these models as

we were unsuccessful in obtaining the implementations of these methods from their

corresponding authors. Besides, both the methods have numerous parameters and

their implementation is complex.

For topological feature based methods, we consider four prominent topolog-

ical features: Common Neighbors (CN), Adamic-Adar (AA), Jaccard’s Coefficient

(J) and Katz measure (Katz). However, in existing works, these features are defined

for static networks only; so we adapt these features for the dynamic network setting

by computing the feature values over the collapsed2 dynamic network. We also com-

bine the above four features to construct a combined feature vector of length four

(Jaccard’s Coefficient, Adamic-Adar, Common Neighbors and Katz), which we call

JACK and use it with a classifier to build a supervised link prediction method, and

include this model in our comparison.

2Collapsed network is constructed by superimposing all network snapshots.
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Second, we compareGraTFEL with time-series based neighborhood similarity

scores proposed in [71]. In this work, the authors consider several neighborhood-

based node similarity scores combined with connectivity information (historical edge

information). Authors use time-series of similarities to model the change of node

similarities over time. Among 16 proposed methods, we consider 4 that are relevant to

the link prediction task on unweighted networks and also have the best performance.

TS-CN -Adj represents time-series on normalized score of Common Neighbors and

connectivity values at time stamps [1, t]. Similarly, we get time-series based scores

for Adamic-Adar (TS-AA-Adj), Jaccard’s Coefficient (TS-J-Adj) and Preferential

Attachment (TS-PA-Adj).

Third, we compare GraTFEL with a tensor factorization based method, called

CANDECOMP/PARAFAC (CP) [66]. In this method, the dynamic network is

represented as a three-dimensional tensor Z(n × n × t). Using CP decomposition Z
is factorized into three factor matrices. The link prediction score is computed by

using the factor matrices. We adapted the CP link prediction method for unipartite

networks; which has originally been developed for bipartite networks.

Finally, we compare GraTFEL with latent node representation based methods

DeepWalk [109] and Node2Vec [119]. We use DeepWalk to construct latent rep-

resentation of nodes from the collapsed dynamic network. Then we construct latent

representation of node-pairs by computing cross product of latent representation of

the participating nodes. For example, if the node representations in a network are

vectors of size l, then the representation of a node-pair (u, v) will be of size l2, con-

structed from the cross product of u and v’s representation. The DeepWalk based

node-pair representation is then used with a classifier to build a supervised link pre-

diction method. We choose node representation size l = 2,4,6,8,10 and report the

best performance. Similarly, we use Node2Vec to construct latent representation

of nodes for the collapsed dynamic network. Node-pair features are constructed by

using binary operators suggested by Grover et al. [119]. Authors suggest four op-

erators, namely Average, Hadamard, Weighted-L1 and Weighted-L2 ; all of which
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give us node-pair representations of size l (contrary to the cross product which gives

node-pair representations of size l2). The parameters are chosen as suggested by the

authors, specially for return parameter p and in-out parameter q (which controls the

walk strategy for Node2Vec) we perform grid search over p, q ∈ {0.25,0.50,1,2,4} and
report the best result.

8.4.4 Implementation Details

For implementation of GraTFEL we use a combination of Python and Mat-

lab version R2014b. Graphlet transition is enumerated using a python implementa-

tion. Feature vector construction and unsupervised feature learning are done us-

ing Matlab. The unsupervised feature learning method runs for a maximum of

50 iterations or until it converges to a local optimal solution. We use coding size

l = 200 for all three datasets 3. For supervised link prediction step we use several

Matlab provided classification algorithms, namely, AdaBoostM1, RobustBoost, and

Support Vector Machine (SVM). We use Matlab for computing the feature values

(CN, AA, J, Katz) that we use in other competing methods. Time-series meth-

ods are implemented using Python. We use the ARIMA (autoregressive integrated

moving average) time series model implemented in Python module statsmodels.

Tensor factorization based method CP was implemented using Matlab Tensor Tool-

box. The DeepWalk implementation is provided by the authors of [109]. We use

it to extract node features and extend it for link prediction (using Matlab). Sim-

ilarly, the Node2Vec implementation is made available by the authors [119]. We

use the extracted features form Node2Vec to construct node-pair representations

for link prediction (using Matlab). The Source-Code of GraTFEL is available at

https://github.com/DMGroup-IUPUI/GraTFEL-Source.

3We experiment with different coding sizes ranging from 100 to 800. The change in link prediction
performance is not very sensitive to the coding size. At most 2.9% change in PRAUC was observed
for different coding sizes.
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8.4.5 Performance Comparison Results with Competing Methods

In Figure 8.6 we present the performance comparison results of GraTFEL with

the three kinds of competing methods that we have discussed earlier. The figure have

six bar charts. The bar charts from the left to the right columns display the results for

Enron, Collaboration and Facebook datasets, respectively. The bar charts in a column

show comparison results using PRAUC (top), and NDCG50 (bottom) metrics. Each

chart has eleven bars, each representing a link prediction method, where the height of

a bar is indicative of the performance metric value of the corresponding method. In

each chart, from left to right, the first five bars (blue) correspond to the topological

feature based methods, the next four (green) represent time series based methods,

the tenth bar (black) represents tensor factorization based method CP, and the final

bar (brown) represents the proposed method GraTFEL.

GraTFEL vs. Topological

We first analyze the performance comparison between GraTFEL and topologi-

cal feature based methods (first five bars). The best of the topological feature based

methods have a PRAUC value of 0.30, 0.22 and 0.137 in Enron, Collaboration, and

Facebook dataset (see Figures 8.6(a), 8.6(b) and 8.6(c)), whereas the corresponding

PRAUC values for GraTFEL are 0.54, 0.37 and 0.265, which translates to 80%, 68%

and 93.4% improvement of PRAUC by GraTFEL for these datasets. Superiority of

GraTFEL over all the topological feature based baseline methods can be attributed

to the capability of graphlet transition based feature representation to capture tem-

poral characteristics of local neighborhood. Similar trend is observed using NDCG50

metric, see Figures 8.6(d), 8.6(e) and 8.6(f).
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Figure 8.6.: Comparison with competing link prediction methods. Each bar represents
a method and the height of the bar represents the value of the performance metric.
Results for Enron network are presented in charts (a,d), results of Collaboration data
are presented in charts (b,e), and results of Facebook data are presented in charts
(c,f). The group of bars in a chart are distinguished by color, so the figure is best
viewed on a computer screen or color print.

GraTFEL vs. Time-Series

The performance of time-series based method (four green bars) is generally better

than the topological feature based methods. The best of the time-series based method

has a PRAUC value of 0.503, 0.28 and 0.19 on these datasets, and GraTFEL’s

PRAUC values are better than these values by 7.3%, 32.1% and 39.5% respectively.

Time-series based methods, though model the temporal behavior well, probably fail

to capture signals from the neighborhood topology of the node-pairs. Superiority

of GraTFEL over Time-Series methods is also similarly indicated by information

retrieval metric NDCG50.
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GraTFEL vs. CANDECOMP/PARAFAC (CP)

Finally, the tensor factorization based method CP performs marginally better

(by around 3.2% in PRAUC, and 0.84% in NDCG50) than GraTFEL in small

and simple networks, such as Enron (see Figure 8.6(a, d)). But its performance

degrades on comparatively large and complex networks, such as Collaboration and

Facebook. On Facebook network, the performance of CP is even worse than the

time-series based methods (see Figure 8.6(c)). GraTFEL comfortably outperforms

CP on larger graphs, see Figures 8.6(b, c, e, f). In terms of PRAUC, GraTFEL’s

performance is 31.6% better in Collaboration and 67.6% better in Facebook than CP.

This demonstrates the superiority of GraTFEL over one of the best state-of-the-art

dynamic link prediction. A reason for CP’s bad performance on large graphs can

be its inability to capture network structure and dynamics using high-dimensional

tensors representation.

8.4.6 Comparison with Node Representation Methods

In Figure 8.7 we present the performance comparison results of GraTFEL with

the two node representation methods. The figure have six bar charts. The bar charts

from the left to the right columns display the results for Enron, Collaboration and

Facebook datasets, respectively. The bar charts in a column show comparison results

using PRAUC (top), and NDCG50 (bottom) metrics. Each chart has six bars, each

representing a link prediction method, where the height of a bar is indicative of the

performance metric value of the corresponding method. In each chart, from left to

right, the first bar (black) is for DeepWalk, the next four bars (blue) correspond to the

Node2Vec feature representation of node-pairs, and the final bar (brown) represents

the proposed method GraTFEL.
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Figure 8.7.: Comparison with node representation based link prediction methods.
Each bar represents a method and the height of the bar represents the value of the
performance metric. Results for Enron, Collaboration and Facebook networks are
presented in charts (a,d), (b,e) and (c,f) respectively. The group of bars in a chart
are distinguished by color, so the figure is best viewed on a computer screen or color
print.

GraTFEL vs. DeepWalk

The DeepWalk based method (black bars in Figure 8.7) performs much poorly in

terms of both PRAUC and NDCG50—even poorer than the topological based method

in all four datasets. Possible reason could be the following: the latent encoding of

nodes by DeepWalk is good for node classification, but the cross-product of those

codes fails to encode the information needed for effective link prediction.
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GraTFEL vs. Node2Vec

The Node2Vec node-pair representations (blue bars in Figure 8.7) also performs

poorly in terms of both PRAUC and NDCG50. Feature representation of node-pairs

are constructed using Node2Vec representations of participating nodes using binary

operations (Average, Hadamard, Weighted-L1 and Weighted-L2 ) proposed by [119].

Each blue bar represents a binary operation used. Link prediction performance is

poor for all Node2Vec based methods. This demonstrates, the absence of a suitable

mechanism for constructing effective node-pair representations from node representa-

tions. Contrary to DeepWalk and Node2Vec, the proposed method GraTFEL gives

effective node-pair representations using Graphlet Transition Events.

Performance Across Datasets

When we compare the performance of all the methods across different datasets,

we observe varying performance. For example, for both the metrics, the performance

of dynamic link prediction on Facebook graph is lower than the performance on

Collaboration graph, which, subsequently, is lower than the performance on Enron

graph, indicating that link prediction in Facebook data is a harder problem to solve.

In these harder networks, GraTFEL perform substantially better than all the other

competing methods that we consider in this experiment.

8.4.7 Contribution of Unsupervised Feature Learning

GraTFEL has two novel aspects: first, utilization of Graphlet Transition Events

(GTEs) as features, and the second is Unsupervised Feature Learning (UFL) by

optimal coding. In this section, we compare the relative contribution of these two

aspects in the performance of GraTFEL. For this comparison, we build a version

of GraTFEL which we call GTLiP. GTLiP uses GTEs just like GraTFEL, but

it does not use optimal coding, rather it uses the GTEs directly as features. In
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Figure 8.8, we show the comparison between GraTFEL, and GTLiP using NDCGp

for different p values for all the datasets. The superiority of GraTFEL over GTLiP

for all the datasets over a range of p values is clearly evident from the three charts.

UFL improves the classifier’s performance by learning optimal feature encoding.
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Figure 8.8.: Performance comparison between link prediction methods with (GraT-

FEL) and without (GTLiP) unsupervised feature learning. Y-axis represents the
NDCGp score and X-axis represents the value of p.

8.5 Conclusion

In this Chapter, we present two applications of graphlet analysis. Firstly, cat-

egorization/classification of networks using GFD characterization. We show that,

graphlet frequency distributions (GFDs) are potent structural characterization of

static networks, by successfully clustering networks of various domains. Second, we

present GraTFEL a supervised approach for link prediction in dynamic networks,

which uses unsupervised coding of graphlet transition events (GTEs). GraTFEL

uses an unsupervised feature extraction method for learning effective feature vector

for a node-pair over multiple temporal snapshots of a given network. Then it uses

supervised machine learning methodologies for predicting future links. The proposed

method outperforms several existing methods that are based on topological features,

time series, tensor analysis and representation learning. In the future, this work can

be extended using several other unsupervised feature learning models where each one
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builds models using node-pair representations of similar topological neighborhood or

past linkage history.
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9 FUTURE WORK AND CONCLUSION

Graphlet based network analysis, uses counts of graphlets to capture local network

structures to characterize a network. Generally it’s computationally expensive to

gather graphlet based statistics for real life networks. Multitude of techniques have

been developed for achieving better scalability for graphlet analysis. Restricted set of

graphlets (cliques, paths, cycles etc) have been considered, which enables researcher

to develop efficient algorithms by taking advantages provided by the imposed restric-

tions. Parallel and distributed computational paradigms are also explored by many

researchers. Several recent works use sampling based techniques for efficient graphlet

analysis. Triple analysis methods designed for streaming and semi-streaming access

models, allow efficient triple analysis for large networks using limited memory. In this

dissertation, we propose efficient sampling based methods for both triple and graphlet

analysis. This dissertation also coins a category of algorithms (MCMC based sam-

pling) which are able to estimate graphlet based network metrics without observing

the whole network.

Graphlet analysis has been demonstrated to be useful in many applications. For

example, triangle counting and triple analysis techniques are used in social network

characterization. Furthermore, biological network fingerprints are developed using

frequencies of graphlets. Graphlet frequencies are also used to characterize structural

similarities of nodes in biological networks and to design effective graph kernels. De-

spite being a very successful tool for capturing network characteristics, graphlets have

not been very popular in solving many exciting network based problems (like link pre-

diction, link forecasting etc.). This dissertation is a forerunner in this endeavor and

it has tremendous opportunity to grow in terms of scope, methods, algorithms and

applications.
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The first direction of future works is to make Graphlet Transition Event (GTE)

more efficient, so that the link prediction method GraTFEL is scalable for large

dynamic networks. As discussed in Chapter 8, computation of GTEs of node-pairs

are inherently parallel. In future works, we intend to look into parallel and distributed

computational paradigm to design efficient GTE analysis techniques.

The second direction of future works is to increase the scope of GTE based anal-

ysis. The scope of GTE can be extended by defining GTE with respect to a node

instead of a node-pair. GTE corresponding to a node has the potential to capture the

dynamics of the node and its local structure. This will make the analysis techniques

more scalable, as the number of node is O(n). The number of node-pairs used for

GraTFEL is O(n2).
In conclusion, we like to reiterate the main contributions of this dissertation. We

propose sample based triangle and graphlet counting algorithms. These algorithms

reduce the required computational effort by sampling edges of the given network and

counting triangles/graphlets incident on the sampled edges only. We also propose

MCMC walk based sampling methods; which walk on graphlet space and are obliv-

ious of the network structure. For triple sampling, we propose two MCMC based

algorithms. MCMC sampling methods can sample triples from networks that are

restricted or dynamic, for which direct sampling methods fail. Similarly for larger

graphlets, we present Guise, an efficient method for approximating the graphlet fre-

quency distribution (GFD) in a principled manner that offers significant speed up in

comparison with the existing time consuming ways of brute force counting. Finally,

we propose a network analysis paradigm named Graphlet Transition Event (GTE),

which uses the transition of graphlets in a dynamic network to capture temporal

dynamics of local network structure. We present GraTFEL a supervised approach

for link prediction in dynamic networks, which uses unsupervised coding of graphlet

transition events (GTEs).
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