
Open access to the Proceedings of the

17th USENIX Conference on File and

Storage Technologies (FAST ’19)

is sponsored by

GRAPHONE: A Data Store for Real-time Analytics on
Evolving Graphs

Pradeep Kumar and H. Howie Huang, George Washington University

https://www.usenix.org/conference/fast19/presentation/kumar

This paper is included in the Proceedings of the

17th USENIX Conference on File and Storage Technologies (FAST ’19).

February 25–28, 2019 • Boston, MA, USA

978-1-939133-09-0

GRAPHONE: A Data Store for Real-time Analytics on Evolving Graphs

Pradeep Kumar H. Howie Huang

The George Washington University

Abstract

There is a growing need to perform real-time analytics on

evolving graphs in order to deliver the values of big data to

users. The key requirement from such applications is to have

a data store to support their diverse data access efficiently,

while concurrently ingesting fine-grained updates at a high

velocity. Unfortunately, current graph systems, either graph

databases or analytics engines, are not designed to achieve

high performance for both operations. To address this chal-

lenge, we have designed and developed GRAPHONE, a graph

data store that combines two complementary graph storage

formats (edge list and adjacency list), and uses dual ver-

sioning to decouple graph computations from updates. Im-

portantly, it presents a new data abstraction, GraphView, to

enable data access at two different granularities with only a

small data duplication. Experimental results show that GRA-

PHONE achieves an ingestion rate of two to three orders of

magnitude higher than graph databases, while delivering al-

gorithmic performance comparable to a static graph system.

GRAPHONE is able to deliver 5.36× higher update rate and

over 3× better analytics performance compared to a state-of-

the-art dynamic graph system.

1 Introduction

We live in a world where information networks have become

an indivisible part of our daily lives. A large body of re-

search has studied the relationships in such networks, e.g.,

biological networks [33], social networks [20, 41, 46], and

web [9, 31]. In these applications, graph queries and ana-

lytics are being used to gain valuable insights from the data,

which can be classified into two broad categories: batch an-

alytics (e.g. PageRank [61], graph traversal [11, 49, 51]) that

analyzes a static snapshot of the data, and stream analytics

(e. g. anomaly detection [8], topic detection [64]) that stud-

ies the incoming data over a time window of interest. Gen-

erally speaking, batch analytics prefers a base (data) store

that can provide indexed access on the non-temporal prop-

erty of the graph such as the source vertex of an edge, and on

the other hand, stream analytics needs a stream (data) store

where data can be stored quickly and can be indexed by their

arrival order for temporal analysis.

Increasingly, one needs to perform batch and stream pro-

cessing together on evolving graphs [78, 68, 10, 69]. The key

requirement here is to sustain a large volume of fine-grained

updates at a high velocity, and simultaneously provide high-

performance real-time analytics and query support.

This trend poses a number of challenges to the underly-

ing storage and data management system. First, batch and

stream analytics perform different kinds of data access, that

is, the former visits the whole graph while the latter focuses

on the data within a time window. Second, each analytic

has a different notion of real time, that is, data is visible to

the analytics at different granularity of data ingestion (up-

dates). For example, an iterative algorithm such as PageR-

ank can run on a graph that is updated at a coarse granularity,

but a graph query to output the latest shortest path requires

data visibility at a much finer granularity. Third, such a sys-

tem should also be able to handle a high arrival rate of up-

dates, and maintain data consistency while running concur-

rent batch and stream processing tasks.

Unfortunately, current graph systems can neither provide

diverse data access nor at the right granularity in the pres-

ence of a high data arrival rate. Many dynamic graph sys-

tems [47, 54] only support batched updates, and a few oth-

ers [21, 70] offer data visibility at fine granularity of updates

but with a weak consistency guarantee, which as a result

may cause an analytic iteration to run on different data ver-

sions and produce undesired results. Relational and graph

databases such as Neo4j [59] can handle fine-grained up-

dates, but suffer from poor ingestion rate for the sake of

strong consistency guarantee [56]. Also, such systems are

not designed to support high-performance streaming data ac-

cess over a time window. On the other hand, graph stream

engines [58, 17, 32, 72, 75, 67] interleave incremental com-

putation with data ingestion, i.e., graph updates are batched

and not applied until the end of an iteration. In short, the ex-

isting systems manage a private data store in a way to favor

their specialized analytics.

In principle, one can utilize these specialized graph sys-

tems side-by-side to provide data management functions for

dynamic graphs and support a wide spectrum of analytics

and queries. However, such an approach would be subop-

timal [78], as it is only as good as the weakest component,

in many cases the graph database with poor performance for

streaming data. Worse, this approach could also lead to ex-

cessive data duplication, as each subsystem would store a

replica of the same underlying data in their own format.

In this work, we have designed GRAPHONE, a unified

graph data store offering diverse data access at various gran-

ularity levels while supporting data ingestion at a high ar-

USENIX Association 17th USENIX Conference on File and Storage Technologies 249

Graph Data
Updates

Static View

Archiving

Adjacency Store

Stream View

New log Old log

GraphView
Abstraction

Circular Edge Log

Stream Analytics Batch Analytics

Hybrid
Representation

Logging Data
Management

Operations

Data
Ingestion

Data
Durability NVMe

Fig. 1: High-level architecture of GRAPHONE. Solid and dotted

arrows show the data management and access flow respectively.

rival rate. Fig. 1 provides a high-level overview. It leverages

a hybrid graph store to combine a small circular edge log

(henceforth edge log) and an adjacency store for their com-

plementary advantages. Specifically, the edge log keeps the

latest updates in the edge list format, and is designed to ac-

celerate data ingestion. At the same time, the adjacency store

holds the snapshots of the older data in the adjacency list

format that is moved periodically from the edge log, and is

optimized for batch and streaming analytics. It is important

to note that the graph data is not duplicated in two formats,

although a small amount of overlapping is allowed to keep

the original composition of the versions intact.

GRAPHONE enforces data ordering using the temporal na-

ture of the edge log, and keeps the per-vertex edge arrival or-

der intact in the adjacency store. A dual versioning technique

then exploits the fine-grained versioning of the edge list for-

mat and the coarse-grained versioning of the adjacency list

format to create real-time versions. Further, GRAPHONE al-

lows independent execution of analytics that run parallel to

data management, and can fetch a new version at the end

of its own incremental computation step. Additionally, we

provide two optimization techniques, cacheline sized mem-

ory allocation and special handling of high degree vertices

of power-law graphs, to reduce the memory requirement of

versioned adjacency store.

GRAPHONE simplifies the diverse data access by present-

ing a new data abstraction, GraphView, on top of the hybrid

store. Two types of GraphView are supported as shown in

Fig. 1 : (1) the static view offers real-time versioning of the

latest data for batch analytics; and (2) the stream view sup-

ports stream analytics with the most recent updates. These

views offers visibility of data updates to analytics at two lev-

els of granularity where the edge log is used to offer it at the

edge level, while the adjacency store provides the same at

coarse granularity of updates. As a result, GRAPHONE pro-

vides high-level applications with the flexibility to trade-off

the granularity of data visibility for a desired performance.

In other words, the edge log can be accessed if fine-grained

data visibility is required, which can be tuned (§7.3).

We have implemented GRAPHONE as an in-memory

graph datastore with a durability guarantee on external non-

volatile memory express solid-state drives (NVMe SSD). For

comparison, we have evaluated it against three types of in-

memory graph systems: Neo4j and SQLite, two graph data

management systems; Stinger [21], a dynamic graph sys-

tem; and Galois [60], a static graph system, as well as GRA-

PHONE itself working with static graphs. The experimental

results show that GRAPHONE can support a high data inges-

tion rate, specifically it achieves two to three orders of mag-

nitude higher ingestion rate than graph databases, and 5.36×

higher ingestion rate than Stinger. In addition, GRAPHONE

outperforms Stinger by more than 3× on different analytics,

and delivers equivalent algorithmic performance compared

to Galois. The stream processing in GRAPHONE runs par-

allel to data ingestion which offers 26.22% higher ingestion

rate compared to the current practice of interleaving the two.

To summarize, GRAPHONE makes three contributions:

• Unifies stream and base stores to manage the graph data

in a dynamic environment;

• Provides batch and stream analytics through dual ver-

sioning, smart data management, and memory opti-

mization techniques;

• Supports diverse data access of various usecases with

GraphView and data visibility abstractions.

The rest of the paper is organized as follows. We present

a usecase in §2, opportunities and GRAPHONE overview in

§3, the hybrid store in §4, data management internals and

optimizations in §5, GraphView data abstraction in §6, eval-

uations in §7, related work in §8, and conclusion in §9.

2 Use Case: Network Analysis

Graph analytics is a natural choice for data analysis on an en-

terprise network. Fig. 2(a) shows a graph representation of a

simple computer network. Such a network can be analyzed

in its entirety by calculating the diameter [48], and between-

ness centrality [13] to identify the articulation points. This

kind of batch analysis is very useful for network infrastruc-

ture management. In the meantime, as the dynamic data flow

within the network captures the real-time behaviors of the

users and machines, the stream analytics is used to identify

security risks, e.g., denial of service, and lateral movement,

which can be expressed in the form of path queries, parallel

paths and tree queries on a streaming graph [38, 18].

Los Alamos Nation Laboratory (LANL) recently released

a comprehensive data set [37] that captures a wide range of

network information, including authentication events, pro-

cess events, DNS lookups, and network flows. The LANL

data covers over 1.5 billion events, 12,000 users, and 17,000

computers, and spans 58 consecutive days. For example, the

network authentication data captures the login information

that a user logs in to a network machine, and also from that

machine to other machines. When the network defense sys-

tem identifies a malicious user and node, it needs to find all

the nodes that may have been infected. Instead of analyzing

every node of the network, one can quickly run a path traver-

250 17th USENIX Conference on File and Storage Technologies USENIX Association

(a) A Computer Network showing
articulation points

(b) A traversal query that finds
the infected machines

t0 = t - δ

t2= t + δ

t1= t2 + δ

t3= t2 - δ

t5= t2+ δ

t3= t - δ

t
Articulation

Points

Fig. 2: Graph traversal can locate possible infected nodes using

real-time authentication graph if infected user and node are known

sal query on the real-time authentication graph to identify the

possible infected nodes, that is, find all the nodes whose lo-

gin has originated from the chain of nodes that are logged in

from the first infected machine [38] as shown in Fig. 2(b).

In summary, a high-performance graph store that captures

dynamic data in the network, combined with user, machine

information and network topology, is advantageous in un-

derstanding the health of the network, accelerating network

service, and protecting it against various attacks. This work

presents a graph storage and APIs for such usecases.

3 Opportunities and Overview

A graph can be defined as G = (V, E, W), where V is the

vertex set, and E is the edge set, and W is the set of edge

weights. Each vertex may also have a label. In this section,

graph formats and their traits are described as relevant for

GRAPHONE, and then we present its high-level overview.

3.1 Graph Representation: Opportunities

Fig. 3 shows three most popular data formats for a sample

graph. First, the edge list is a collection of edges, a pair of

vertices, and captures the incoming data in their arrival order.

Second, the compressed sparse row (CSR) groups the edges

of a vertex in an edge array. There is a metadata structure,

vertex array, that contains the index of the first edge of each

vertex. Third, the adjacency list manages the neighbors of

each vertex in separate per-vertex edge arrays, and the vertex

array stores a count (called degree) and pointer to indicate

the length and the location of the corresponding edge arrays

respectively. This format is better than the CSR for ingesting

graph updates as it affects only one edge array at a time.

In the edge list, the neighbors of each vertex are scattered

across, thus is not the optimal choice for many graph queries

and batch analytics who prefer to get the neighboring edges

of a vertex quickly [34, 29, 30, 12] etc . On the other hand,

the adjacency list format loses the temporal ordering as the

incoming updates get scattered over the edge arrays, thus not

suited for stream analytics. Given their advantages and dis-

advantages, neither format is ideally suited for supporting

both batch and stream analytics on its own. We now identify

two opportunities for this work:

Opportunity #1: Utilize both the edge list and the adja-

cency list within a hybrid store. The edge list format pre-

serves the data arrival order and offers a good support for fast

updates as each update is simply appended to the end of the

list. On the other hand, the adjacency list keeps all the neigh-

(a) Example graph
(b) Edge List Format

(d) Adjacency List Format(c) CSR Format

1,w01/p0

3/p1

2/p2

1/p3

4/p4

2/p5

0
1
2
3
4
5

0,w0 4,w22,w4

1,w4 4,w3

4,w1

3,w1 2,w31,w2 5,w5

4,w5

vertex
array

0,1,w0 3,4, w1 1,4,w2 2,4,w3 1,2,w4 4,5,w5

vertex
array

0,w0 2,w4 4,w2 1,w4 4,w3 4,w1 3,w1 2,w31,w0 5,w51,w2 4,w5

0 1 2 3 4 5
4 6 7 110 1

edge array

edge
arrays

2

3

1

54

0 w0 w4

w2 w3

w1 w5

Fig. 3: Sample graph and its various storage format

bors of a vertex indexed by the source vertex, which pro-

vides efficient data access for graph analytics. Thus it allows

GRAPHONE to achieve high-performance graph computa-

tion while simultaneously supporting fine-grained updates.

Opportunity #2: Fine-grained snapshot creation with the

edge list format. Graph analytics and queries require an

immutable snapshot of the latest data for the duration of their

execution. The edge list format provides a natural support

for fine-grained snapshot creation without creating a physical

snapshot due to its temporal nature, as tracking a snapshot

is just remembering an offset in the edge list. Meanwhile,

the adjacency list format through its coarse-grained snapshot

capability [54, 26] is used to complement the edge list.

3.2 Overview

GRAPHONE utilizes a hybrid graph data store (discussed in

§4) that consists of a small circular edge log and the adja-

cency store. Fig. 4 shows an high-level overview of GRA-

PHONE architecture. The hybrid store is managed in sev-

eral phases (presented in §5). Specifically, during the log-

ging phase, the edge log records the incoming updates in the

edge list format in their arrival order, and supports a high in-

gestion rate. We define non-archived edges as the edges in

the edge log that are yet to be moved to the adjacency store.

When their number crosses the archiving threshold, a par-

allel archiving phase begins, which merges the latest edges

to the adjacency store to create a new adjacency list snap-

shot. This duration is referred to as an epoch. In the durable

phase, the edge log is written to a disk.

To efficiently create and manage immutable versions for

data analytics in presence of the incoming updates, we pro-

vide a set of GraphView APIs (discussed in §6). Specifically,

static view API is for batch processing, while stream view

API is for stream processing. Internally, the views utilize

dual versioning technique where the versioning capability of

both formats are exploited. For example, a real-time static

view can be composed by using the latest coarse-grained ver-

sion of the adjacency store, and the latest fine-grained ver-

sion of non-archived edges.

It is important to note that the GraphView also provides

analytics with the flexibility to trade-off the granularity of

data visibility for better performance, e.g., the analytics that

prefer running only on the latest adjacency list store will

avoid the cost associated with the access of the latest edges

from the non-archived edges.

USENIX Association 17th USENIX Conference on File and Storage Technologies 251

For Each Affected Vertex

Compute
Degree

Alloc
Edge Array

Fill
Edge Array

Adjacency list

Global
Snapshot List

Add Adjacency List
Snapshot Entry

Client Threads

Alloc/Fill/Chain
Degree Array

Archiving PhaseLogging Phase

Fill Circular
edge log

Circular
Edge log

Durable
Edge Log

Make durable

Archive Worker Threads
For Each Update

Edge
Sharding

NVMe
SSD

Fig. 4: Architecture of GRAPHONE. Operations related to same

data structures have been grayed out in archiving phase. Com-

paction Phase is not shown.

4 Hybrid Store

The hybrid store design presented in Fig. 5 consists of a

small circular edge log that is used to record the latest up-

dates in the edge list format. For deletion cases, we use

tombstones, specifically the edge log also adds a new entry

but the most significant bit (MSB) of the source vertex ID of

the edge is set to denote its deletion as shown in Fig 5 for

deleted edge (2,4) at time t7.

The adjacency store keeps the older data in the adjacency

list format. The adjacency store is composed of vertex array,

per-vertex edge arrays, and multi-versioned degree array.

The vertex array contains a per-vertex flag and pointers to

the first and last block of the edge arrays. Addition of a new

vertex is done by setting a special bit in the per-vertex flag.

Vertex deletion sets another bit in the same flag, and adds all

of its edges as deleted edges to the edge log. These bits help

GRAPHONE in garbage collecting the deleted vertex ID.

The edge array contains per-vertex edges of the adjacency

list. It may contain many small edge blocks, each of which

contains a count of the edges in the block and a memory

pointer to the next block. The connection of edge blocks are

referred to as chaining. An edge addition always happens

at the end of the edge array of each vertex, which may re-

quire the allocation of a new edge block and linked to the

last block. Fig. 5 shows chained edge arrays for the vertices

with ID 1 to 4 for data updates that arrive in between t4 to

t7. The adjacency list treats an edge deletion as an addition

but the deleted edge entry in the edge array keeps the nega-

tive position of the original edge, while the actual data is not

modified at all, as shown for edge (2,4). As a result, deletion

never breaks the convergence of a previous computation as it

does not modify the dataset of the computation.

The degree array contains the count of neighboring edges

of each vertex. Thus, a degree array from an older adjacency

store snapshot can identify the edges to be accessed even

from the latest edge arrays due to the latter’s append-only

property. Hence, the degree array in GRAPHONE is multi-

versioned to support adjacency store snapshots. It keeps the

total added and deleted edge counts of each vertex. Both

counts help in efficiently getting the valid neighboring edges,

as a client can do the exact memory allocation (refer to the

S1, 8

S0, 4

Circular Edge Log

Global
Snapshot

List

5,6 1,2 3,4 2,4 0,1 0,3 1,3 -2,4 2,5 3,6
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

2

3

1

54

0

6

Edge Deletion

t4 t1

t2

t3

t0

t5
t6

at t7

t8

t9 Non-archived
edges

3 2

6

5

4

1 4

2

1

Chained
edge arrays

0

1

2
3

4

5

6

3

0

0 1

Vertex
array

Multi-version
Degree array

2,S10
1
2
3
4
5
6

3,S1

3,S1

2,S0

1,S0

1,S0

2,S0

1,S0

1,S0

-1

-13,S1

3,S1

Adjacency List

3

Fig. 5: The hybrid store for the data arrived from time t0 to t9:

The vertex array contains pointers to the first and the last block of

each edge array, while degree array contains deleted and added edge

counts. However, only the pointer to the first block in the vertex

array, and total count in the degree array are shown for brevity.

get-nebrs-*() API in Table 2). When an edge is added or

deleted for a vertex, a new entry is added for this vertex in

the degree array in each epoch. Two different versions S0

and S1 of the degree array are shown in Fig. 5 for two epochs

t0− t3 and t4− t7.

One can note that degree nodes are shared across epochs

if there is no later activity in a vertex. For example, the same

degree nodes for vertices with ID 5 and 6 are valid for both

epochs in Fig. 5. The degree array nodes of an older ver-

sions may be garbage collected when the corresponding ad-

jacency store snapshot retires, i.e., not being used actively by

any analytics, and is tracked using reference counting mech-

anism through the global snapshot list, which will be dis-

cussed shortly. For example, if snapshot S0 is retired, then

the degree nodes of snapshot S0 for vertices with ID 1− 4

can be reused by later snapshots (e.g. S2).

The global snapshot list is a linked list of snapshot ob-

jects to manage the relationship between the edge log and

adjacency store at each epoch. Each node contains an abso-

lute offset to the edge log where the adjacency list snapshot

is created, and a reference count to capture the number of

views using this adjacency list snapshot. A new entry in the

global snapshot list is created after each epoch, and it implies

that the edge log data of the last epoch has been moved to the

adjacency store atomically, and is now visible to the world.

Weighted Graphs. Edge weights are generally embedded in

the edge arrays along with the destination vertex ID. Some

graphs have static weights, e.g., an edge weight in an enter-

prise network can represent the network speed between the

two nodes. A weight change is then treated internally as an

edge deletion followed by an edge addition. On the other

hand, if edge weights are dynamic, such as network data

flow, then such weights are suited for various analytics if

kept for a configurable time window, e.g., anomaly detection

in the network flow. In this case GRAPHONE is configured

to treat weight changes as a new edge to aid such analytics.

Dual Versioning and Data Overlap GRAPHONE uses dual

versioning to create the instantaneous read-only graph views

(snapshot isolation) for data analytics. It exploits both the

fine-grained versioning property of the edge log, and the

252 17th USENIX Conference on File and Storage Technologies USENIX Association

Archive Marker
(tail)

Head

Archive Marker
(head)

Current Archiving

Available Space
Rewind to

the beginning

Occupied Edge Log Space

Fig. 6: Circular Edge log design showing various offset or markers.

Markers for durable phase are similar to archiving and are omitted.

coarse-grained versioning capability of the adjacency list

format. It should be noted that the adjacency list provides

one version per epoch, while the edge log supports multiple

versions per epoch, as many as the number of edges arrived

during the epoch. So the dual versioning provides many ver-

sions within an epoch which is the basis for static views, and

should not be confused with the adjacency list snapshots. In

Fig. 5, static view at the time t6 would be adjacency list snap-

shot S0 plus the edges from t4− t6.

A small amount of data overlap between the two stores

keeps the composition of the view intact. This makes the

view accessible even when the edge log data is moved to the

adjacency store to create a new adjacency list version. Thus

both stores have the copy of a few epochs of the same data.

For one or more long running iterative analytics, we may

use the durable edge log or a private copy of non-archived

edges to provide data overlap, so that analytics can avoid

interfering with data management operations of the edge log.

5 Data Management and Optimizations

Data management faces the key issues of minimizing the size

of non-archived edges, providing atomic updates, data order-

ing, and cleaning of older snapshots. Addition and deletion

of vertices and edges, and edge weight modification are all

considered as an atomic update.

5.1 Data Management Phases

Fig. 4 depicts the internals of the data management opera-

tions. It consists of four phases: logging, archiving, durable

and compaction. Client threads send updates, and the log-

ging to the edge log happens in the same thread context syn-

chronously. The archiving phase moves the non-archived

edges to the adjacency store using many worker threads, and

one of them assumes the role of the master, called the archive

thread. The durable phase happens in a separate thread,

while compaction is multi-threaded but happens much later.

A client thread wakes up the archive thread and durable

thread to start the archiving and durable phases when the

number of non-archived edges crosses a threshold, called

archiving threshold. The logging phase continues as usual in

parallel to them. Also, the archive thread and durable thread

check if any non-archived edges are there at the end of each

phase to repeat their process, or wait for work with a timeout.

The edge log has a distinct offset or marker, head, for log-

ging, which is incremented every time an edge is ingested

as shown in Fig. 6. For archiving, GRAPHONE manages a

pair of markers, i.e. the archiving operation happens from

Tail Archive Marker

edges with source
vertex range [v0, v1)

Adjacency list Data

edges with source
vertex range [v1, v2)

v0

v1

v2
Edge Log

Edge
Sharding

Non-atomic
Archiving

Non-atomic
Archiving

Local Buffers

Local Buffers

Fig. 7: Edge sharding separates the non-archived edges into many

buffers based on their source vertex ID, so that the per-vertex edge

arrays can keep the edge log arrival order, and enables non-atomic

archiving.

the tail archive marker to the head archive marker, because

the head will keep moving due to new updates. The durable

phase also has a pair of markers to work with. Markers are

always incremented and used with the modulo operator.

5.1.1 Logging Phase

The incoming update is converted to numerical identifiers,

and acquires an edge list format. The mapping between ver-

tex label to vertex ID and vice-versa manages this transla-

tion. Then a unique spot is claimed within the edge log by

the atomic increment of the head, and the edge is written to

a spot calculated using the modulo operation on the head,

that also stores the operator (§4), addition or deletion, along

with the edges. The atomicity of updates is ensured by the

atomic increment of the head. The edge log is automatically

reused in the logging phase due to its circular nature, and

thus is overwritten by newer updates. Hence the logging may

get blocked occasionally if the whole buffer is filled as the

archiving or durable phases may not be able to catch up. We

keep sufficiently large edge log to avoid frequent blocking.

In case of blocked client threads, they are woken up when

the archiving or durable phases complete.

5.1.2 Archiving Phase

This phase moves the non-archived edges from the edge log

to the adjacency store. A naive multi-threaded archiving,

where each worker can directly work on a portion of non-

archived edges, may not keep the data ordering intact. If a

deletion comes after the addition of an edge within the same

epoch, the edge may become alive or dead in the edge arrays

depending on the archiving order of the two data points.

An edge sharding stage in the archiving phase (Fig. 7)

maintains per-vertex edges as per the edge log arrival to ad-

dress the ordering problem. It shards the non-archived edges

to multiple local buffers based on the range of their source

vertex ID. For undirected graphs, the total edge count in

the local buffer is twice of the non-archived edge count, as

the ordering of reverse edges is also managed. For directed

edges, both directions have their own local buffers.

The edges in each local buffer are then archived in par-

allel without using any atomic instructions. A heuristic is

required for workload distribution, as the equal division is

not possible among threads, thereby the last thread may get

USENIX Association 17th USENIX Conference on File and Storage Technologies 253

more work assigned. To handle the workload imbalance

among worker threads, we create a larger number of local

buffers with smaller vertex range than the available threads,

and assign different numbers of local buffers to each thread

so that each gets an approximately equal number of edges to

archive. The idea here is to assign slightly more than equal

work to each thread, so that all the threads are balanced while

the last thread is either balanced or lightly loaded.

This stage allocates new degree nodes or can reuse the

same from the older degree array versions if they are not

being used by any analytics. We follow these rules for

reusing the degree array from older versions. We track the

degree array usage by analytics using reference counting

per epoch [40], and can be reused if all static views cre-

ated within that epoch have expired, i.e., the references are

dropped to zero (not being used by any running analytics). It

also ensures that a newly created view uses the latest adja-

cency list snapshot that should never be freed.

The stage then populates the degree array, and allocates

memory for edge blocks that are chained before filling those

blocks. We then create a new snapshot object, fill it up with

relevant details, and add it atomically to the global snapshot

list. At the end of the archiving phase, the archive thread sets

the tail archive marker atomically to the value of the head

archive marker, and wakes up any the blocked client threads.

5.1.3 Durable Phase and Recovery

The edge log data is periodically appended to a durable file in

a separate thread context instead of logging immediately to

the disk to avoid the overhead of IO system calls during each

edge arrival. Also this will not guarantee durability unless

fsync() is called. The logging uses buffered sequential write,

and allows the buffer cache to work as spillover buffer for the

access of non-archived edges if the edge log is over-written.

The durable edge log is a prefix of the whole ingested

data, so GRAPHONE may lose some recent data in the case

of an unplanned shutdown. The recovery depends on up-

stream backup that keep the latest data for some time, such as

kafka [42], and replays it for the lost data, and creates the ad-

jacency list on the whole data. Recovery is faster than build-

ing the data structures at an edge level, as only the archiving

phase is involved working on bulk of data. Alternatively,

persistent memory may be used for the edge log to provide

durability at each update [45].

The durable phase also performs an incremental check-

pointing of the adjacency store data from an old time-

window, and frees the memory associated with it. This is

useful for streaming data such as LANL network flow, where

the old adjacency data can be checkpointed in disk, as the

in-memory adjacency store within the latest time window is

sufficient for stream analytics. By default, it is not enabled.

During checkpointing the adjacency store, the vertex ID and

length of the edge array are persisted along with edge arrays

so that data can be read easily later, if required.

5.1.4 Compaction Phase

The compaction of the edge arrays removes deleted data

from per-vertex edge array blocks up to the latest retired

snapshot identified via the reference counting scheme dis-

cussed in §5.1.2. The compaction needs a similar reference

counting for the private static views (§6.1). For each vertex,

it allocates new edge array block and copies valid data up

to the latest retired snapshot from the edge arrays, and cre-

ates a link to the rest of the original edge array blocks. The

newly created edge array block is then atomically replaced

in the vertex array, while freeing happens later to ensure that

cached references of the older data are dropped. This phase

is generally clubbed with archiving phase where the degree

array is updated to reflect the new combination.

5.2 Memory Overhead and Optimizations

The edge log and degree array are responsible for version-

ing. The edge log size is relatively small as it contains only

the latest updates which moves quickly to the base store, e.g,

the archiving threshold of 216 edges translates to only 1MB

for a plain graph assuming 8 byte vertex ID. Thus the edge

log is only several MBs. The memory in degree arrays are

also reused (§5.1.2). This leaves us to memory analysis of

edge arrays which may consume a lot of memory due to ex-

cessive chaining in their edge blocks. For example, GRA-

PHONE runs archiving phase for 216 times for Kron-28 graph

if the archiving threshold is 216. In this case, the edge arrays

would consume 148.73GB memory and have average 29.18

chain per-vertex. We will discuss the graph datasets used

in this paper shortly. If all the edges were to be ingested in

one archiving phase, this static system needs only an aver-

age 0.45 chain and 33.80GB memory. The chain count is

less than one as 55% vertices do not have any neighbor.

GRAPHONE uses two memory allocation techniques, as

we discuss next, to reduce the level of chaining to make the

memory overhead of edge arrays modest compared to a static

engine. The techniques work proactively, and do not affect

the adjacency list versioning. Compaction further reduces

the memory overhead to bring GRAPHONE at par with static

analytics engine, but is performed less frequently.

Optimization #1: Cacheline Sized Memory Allocation.

Multiples of cacheline sized memory is allocated for the edge

blocks. One cacheline (64 bytes) can store up to 12 neigh-

bors for the plain graph of 32bit type, leaving the rest of the

space for storing a count to track space usage in the block and

a link to the next block. In this allocation method, the ma-

Table 1: Impact of two optimizations on the chain count and mem-

ory consumption on the kronecker graph.

Optimizations Chain Count Memory

Average Maximum Needed (GB)

Baseline System 29.18 65,536 148.73

+Cacheline memory 2.96 65,536 47.42

+Hub Vertex Handling 2.47 3,998 45.79

Static System 0.45 1 33.81

254 17th USENIX Conference on File and Storage Technologies USENIX Association

Table 2: Basic GraphView APIs

Static View APIs

snap-handle create-static-view(global-data, simple, private, stale)

status delete-static-view(snap-handle)

count get-nebr-length-{in/out}(snap-handle, vertex-id)

count get-nebrs-{in/out}(snap-handle, vertex-id, ptr)

count get-nebrs-archived-{in/out}(snap-handle, vertex-id, ptr)

count get-non-archived-edges(snap-handle, ptr)

Stateless Stream View APIs

stream-handle reg-stream-view(global-data, window-sz, batch-sz)

status update-stream-view(stream-handle)

status unreg-stream-view(stream-handle)

count get-new-edges-length(stream-handle)

count get-new-edges(stream-handle, ptr)

Stateful Stream View APIs

sstream-handle reg-sstream-view(global-data, window-sz,

v-or-e-centric, simple, private, stale)

status update-sstream-view(sstream-handle)

status unreg-sstream-view(sstream-handle)

bool has-vertex-changed(sstream-handle, vertex-id)

count get-nebr-length-{in/out}(sstream-handle, vertex-id)

count get-nebrs-{in/out}(sstream-handle, vertex-id, ptr)

count get-nebrs-archived-{in/out}(sstream-handle, vertex-id, ptr)

count get-non-archived-edges(sstream-handle, ptr)

Historic View APIs

count get-prior-edges(global-data, start, end, ptr)

jority of the vertices will need only a few levels of chaining.

For example, in a Twitter graph, 88.43% of the vertices will

need at most 3 cachelines only, and so do 92.49% for Kron-

28 graph. This optimization reduces the average chain count

by 9.88×, and memory consumption by 3.14× in compari-

son to a baseline system as shown in Table 1. The baseline

system uses a dynamic block size which is equivalent to the

number of edges arrived during each epoch for each vertex.

Optimization #2: Hub Vertex Handling. A few vertices,

called hub-vertices, have very high degree in a graph that fol-

lows power-law distribution [22]. They are very common in

real-life graphs, such as for the twitter follower graph whose

degree distribution we analyze. Such vertices are likely to

participate in each archiving phase. Hence they will have a

lot of chaining in their edge arrays, and the aforementioned

memory management technique alone is not enough. In this

case, we allocate in multiples of 4KB page-aligned memory

for vertices that already have 8,192 edges or if the number of

neighbors in any archiving phase crosses 256. The average

chain count is further reduced to 2.47, leading to reduction in

memory utilization by 1.63GB as listed in Table 1. One can

vary the threshold to identify a hub vertex but performance

remains similar to the cacheline sized memory (Fig. 15).

6 GraphView Abstraction

GraphView data abstraction hides the complexity of the hy-

brid store by providing simple data access APIs as shown

in Table 2. The static view is suited for batch analytics and

queries, while the stream view for stream processing. Both

offer diverse data access at two granularities of data visibil-

ity of updates. At any time, a number of views may co-exist

without incurring much memory overhead, as the view data

Circular Edge Log

Update Unit

Time

Adjacency Store
Snapshot S0

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

Adjacency Store
Snapshot S1

Data Ingestion

Static View

Stream View
Overlapped Data Non-archived Edges

Fig. 8: GRAPHONE hybrid store illustrating various views with two

adjacency store versions, S0 and S1, with a small edge log

is composed of the same adjacency store and non-archived

edges as shown in Fig. 8. The access of non-archived edges

provides data visibility at the edge level granularity.

Due to the cost of indexing the non-archived edges,

GraphView provides an option to trade-off the granularity

of data visibility to gain performance. Further, one can use

vertex-centric compute model [73] on the adjacency list plus

edge-centric compute model [81, 43, 66] on non-archived

edges, so there is no need to index the latter as plotted later

to find its optimal minimum size (Fig. 13).

6.1 Static View

Batch analytics and queries prefer snapshots for computa-

tion, which can be created in real-time using create-static-

view() API. It is represented by an opaque handle that iden-

tifies the view composition, i.e., the non-archived edges and

the latest adjacency list snapshot, and serves as input to other

static view APIs. A created handle should be destroyed using

delete-static-view(). Based on the input supplied to create-

static-view() API, many types of static view are defined.

Basic Static View. This view is very useful for advanced

users and higher level library development which prefer

more control and performance. The main low-level API are:

get-nebrs-archived-*() that returns the reference to the per-

vertex edge array; and get-non-archived-edges() that returns

the non-archived edges. On the other hand, it also provides

a high-level API, get-nebrs-*(), that returns the neighbor list

of a vertex by combining the adjacency store and the non-

archived edges in a user supplied memory buffer. It may be

preferable by queries with high selectivity that only need to

scan the non-archived edges for one or a few vertex, e.g. 1-

hop query, and is not apt for long running analytics.

The implementation of get-nebrs() for the non-deletion

case is a simple two step process: copy the per-vertex edge

array to the user supplied buffer, followed by a scan of the

non-archived edges to find and add the rest of the edges of

the vertex to the buffer. For the deletion case, both the steps

track the deleted positions in the edge arrays, and the last

few edges from edge arrays and/or non-archived edge log

are copied into those indexes of the buffer.

Private Static View. For long running analytics, keeping

basic static views accessible have some undesirable impacts:

(1) all the static views may have to use the durable edge log

if the corresponding non-archived edges in the edge log has

been overwritten; (2) the degree array cannot be reused in

USENIX Association 17th USENIX Conference on File and Storage Technologies 255

Algorithm 1 Traditional BFS using static view APIs

1: handle← create-static-view(global-data, private=true, simple=true)

2: level = 1; active-vertex = 1; status-array[root-vertex] = level;

3: while active-vertex do

4: active-vertex = 0;

5: for vertex-type v = 0; v < vertex-count; v++ do

6: if status-array[v] == level then

7: degree← get-nebrs-out(handle, v, nebr-list);

8: for j=0; j < degree; j++ do

9: w← nebr-list[j];

10: if status-array[w] == 0 then

11: status-array[w]← level + 1; ++active-vertex;

12: ++level;

13: delete-static-view(handle)

the archiving phase as it is still in use. To solve this, one can

create a private static view by passing private=true in the

create-static-view() API. In this case, a private copy of the

non-archived edges and the degree array are kept inside the

view handle with their global references dropped to make it

independent from archiving. One can pass simple=true in

the create-static-view() to create a temporary in-memory ad-

jacency list from the non-archived edges for optimizing get-

nebr-*() API, as shown in Algorithm 1 for a simplified BFS

(push model) implementation. This approach is more flex-

ible than static analytics engine which converts the whole

data, or dynamic graph system that disallows the user to

choose fine-grained control on snapshot creation.

Creation to many private static views may introduce mem-

ory overhead. To avoid this, a reference of the private degree

array is kept in the snapshot object and is shared by other

static views created within that epoch, and are locally refer-

ence counted for freeing. Thus, creating many private views

within an epoch has overhead of just one degree array. How-

ever, creating many private static views across epochs may

still cause the memory overhead, if older views are still be-

ing accessed by long running analytics. This also means that

the machine is overloaded with computations, and they are

not real-time in nature. In such a case, a user may prefer to

copy the data to another machine to execute them.

Stale Static View. Many analytics are fine with data visi-

bility at coarse-grained ingestions, thus some stale but con-

sistent view of the data may be better for their performance.

In this case, passing stale=true returns the snapshot of the

latest adjacency list only. This view can be combined with

private static view where degree array will be copied.

6.2 Stream View

Stream computations follow a pull method in GRAPHONE,

i.e., the analytics pulls new data at the end of incremental

compute to perform the next phase of incremental compute.

The stream view APIs around the handle simplify the data

access and its granularity in presence of the data ingestion.

Also, checkpointing the computation results and the associ-

ated data offset is the responsibility of the stream engine, so

that the long running computation can be resumed from that

point onwards in case of a fault.

Algorithm 2 A stateless stream compute skeleton

1: handle← reg-stream-view(global-data, batch-sz=10s)

2: init-stream-compute(handle) ⊲ Application specific

3: while true do ⊲ Or application specific criteria

4: if update-stream-view(handle) then

5: count = get-new-edges(handle, new-edges)

6: for j=0; j < count; j++ do

7: do-stream-compute(handle, new-edges[j]) ⊲ Or any method

8: unreg-sstream-view(handle)

Stateless Stream Processing. A stateless computation, e.g.

counting incoming edges (aggregation), only needs a batch

of new edges. It can be registered using the reg-stream-

view() API, and the returned handle contains the batch of

new edges. Algorithm 2 shows how one can use the API to

do stateless stream computation. The handle also allows a

pointer to point to analytics results to be maintained by the

stream compute implementation. The implementation also

needs to checkpoint only the edge log offset and the compu-

tation results as GRAPHONE keeps the edge log durable.

An extension of the model is to process on a data window

instead on the whole arrived data. For sliding window im-

plementation, GRAPHONE manages a cached batch of edge

data around the start marker of the data window in addition to

the batch of new edges. The old cached data can be accessed

by the analytics for updating the compute results, e.g., sub-

tracting the value in aggregation over the data window. The

cached data is fetched from the durable edge log, and shows

sequential read due to the sliding nature of the window. A

tumbling window implementation is also possible where the

batch size of new edges is equal to the window size, and

hence does not require older data to be cached. Additional

checkpointing of the starting edge offset is required along

with the edge log offset and computation results.

Stateful Stream Processing. A complex computation, such

as graph coloring [67], is stateful that needs the streaming

data and complete base store to access the computational

state of the neighbors of each vertex. A variant of static view

is better suited for it because its per-vertex neighbor informa-

tion eases the access of the computational state of neighbors.

It is registered using reg-sstream-view(), and returns sstream-

handle. For edge-centric computation, the handle also con-

tains a batch of edges to identify the changed edges. For

vertex-centric computation, the handle contains per-vertex

one-bit status to denote the vertex with edge updates that can

be identifies using the has-vertex-changed() API. This is up-

dated during update-sstream-view() call that also updates the

degree array. Algorithm 3 shows an example code snippet.

As the degree array plays an important role for a stateful

computation due to its association with the static view, us-

ing an additional degree array at the start marker of the data

window eases the access of the data within the window from

the adjacency store. The sstream-handle manages the degree

array on behalf of the stream engine, and internally keeps a

batch of cached edges around the start marker of the window

256 17th USENIX Conference on File and Storage Technologies USENIX Association

Algorithm 3 A stateful stream compute (vertex-centric) skeleton

1: handle← reg-sstream-view(global-data, v-centric, stale=true)

2: init-sstream-compute(handle) ⊲ Application specific

3: while true do ⊲ Or application specific criteria

4: if update-sstream-view(handle) then

5: for v=0; v < vertex-count; v++ do

6: if has-vertex-changed(handle, v) then

7: do-sstream-compute(handle, v) ⊲ Application specific

8: unreg-sstream-view(handle)

to update the old degree array. The get-nebrs-*() function

returns the required neighbors only. Checkpointing the com-

putational results, the edge log offset at the point of compu-

tation, and window information is sufficient for recovery.

6.3 Historic Views

GRAPHONE provides many views from recent past, but it

is not designed for getting arbitrary historic views from the

adjacency store. However, durable edge log can provide

the same using get-prior-edges() API in edge list format

as it keeps deleted data, behaving similar to existing data

stores [14, 23]. Moreover, in case of no deletion, one can

create a degree array at a durable edge log offset by scanning

the durable edge log, and the degree array will serve older

static or stream view from the adjacency store to gain in-

sights from the historical data. For data access from a histor-

ical time-window in this case, one need to build two degrees

arrays at both the offsets of the durable edge log.

7 Evaluations

GRAPHONE is implemented in around 16,000 lines of C++

code including various analytics. It supports plain graphs

and weighted graphs with either 4 byte or 8 byte vertex sizes.

We store the fixed weights along with the edges, variable

length weights in a separate weight store using indirection.

Any type of value can be stored in place of weight such

as integers, float/double, timestamps, edge-id or any custom

weight as the code is written using C++ templates. So one

can write a small plug-in describing the weight structures and

other functions, and GRAPHONE would be ready to serve a

custom weight. All experiments are run on a machine with 2

Intel Xeon CPU E5-2683 sockets, each having 14 cores with

hyper-threading enabled. It has 512GB memory, Samsung

NVMe 950 Pro 512GB, and CentOS 7.2. Prior results have

also been performed on the same machine.

We choose data ingestion, BFS, PageRank and 1-Hop

query to simulate the various real-time usecases to demon-

strate the impact of GRAPHONE on analytics. BFS and

PageRank are selected because many real-time analytics are

iterative in nature, e.g. shortest path, and many prior graph

systems readily implement them for comparison. 1-Hop

query accesses the edges of random 512 non-zero degree

vertices and sums them up to make sure we access them all.

1-Hop query simulates many small query usecases, such as

listing one’s friends, or triangle completion to get friend sug-

gestions in a social graph, etc. During the ingestion, vertex

name to vertex ID conversion was not needed as we directly

used the vertex ID supplied with these datasets as followed

by other graph systems. All the edges will be stored twice

in the adjacency list: in-edges and out-edges for directed

graphs, and symmetric edges for undirected graphs. No com-

paction was running in any experiments unless mentioned.

Datasets. Table 3 lists the graph datasets. Twitter [3],

Friendster [1] and Subdomain [4] are real-world graphs,

while Kron-28 and Kron-21 are synthetic kronecker graphs

generated using graph500 generator [25], all with 4 byte

vertex size and without any weights. LANL network flow

dataset [74] is a weighted graph where vertex and weight

sizes are 4 bytes and 32 bytes respectively, and weight

changes are treated as new streaming data. We run ex-

periment on first 10 days of data. We test deletions on a

weighted RMAT graph [15] generated with [56] where ver-

tex and weight sizes are 8 bytes. It contains 4 million ver-

tices, and 64 million edges, and a update file containing 40

million edges out of which 2,501,937 edges are for deletions.

7.1 Data Ingestion Performance

Logging and Archiving Rate. Logging to edge log is nat-

urally faster, while archiving rate depends upon the archiv-

ing threshold. Table 3 lists the logging rate of a thread, and

archiving rate at the archiving threshold of 216 edges for our

graph dataset. A thread can log close to 80 million edges per

second, while archiving rate is only around 45 million edges

second at the archiving threshold for most of the graphs.

Both the rates are lower for LANL graph, as the weight size

is 32 bytes, while others have no weights.

Ingestion Rate. It is defined as single threaded ingestion to

the edge log at one edge at a time, and leaving the archive

thread and durable phase to automatically change with the

arrival rate. The number is reported when all the data are

in the adjacency store, and persisted in the NVMe ext4 file.

GRAPHONE achieves an ingestion rate of more than 45 mil-

lion edges per second, except LANL graph. The ingestion

rate is higher than archiving rate (at the archiving threshold)

except in Kron-21, as edges more than the archiving thresh-

old are archived in each epoch due to higher logging rate.

This indicates that GRAPHONE can support a higher arrival

rate as archiving rate can dynamically boost with increased

arrival velocity. The Kron-21 graph is very small graph, and

the thread communication cost affects the ingestion rate.

Compaction Rate. We run compaction as a separate bench-

mark after all the data has been ingested. The graph com-

paction rate is 345.53 million edges per second for the

RMAT graph which has more than 2.5 million deleted edges

out of total 104 million edges. Results for other graphs are

shown in Table 3. The poor rate for LANL graph is due

to long tail for compacting edge arrays of few vertices. As

shown later in Fig. 12, the compaction improves the analytics

performance where the static GRAPHONE serves compacted

adjacency list as it had no link in its edge arrays.

USENIX Association 17th USENIX Conference on File and Storage Technologies 257

Table 3: Graph datasets showing vertex and edge counts in millions (M), and different rates in millions edges/s (M/s). The results show that

the ingestion rate would be upper and lower bounded by the logging and archiving rate. D = Directed, U = Undirected. For deletions see §7.2.

Graph Vertex Edge Individual Phases (M/s) In-Memory Rate (M/s) Ext-Memory Rate (M/s) Compaction

Name Type Count (M) Count (M) Logging Archiving Ingestion Recovery Ingestion Recovery Rate (M)

LANL D 0.16 1,521.19 35.98 28.91 26.99 30.23 25.26 29.48 41.85

Twitter D 52.58 1,963.26 82.62 47.98 66.39 71.28 61.13 71.87 541.71

Friendster D 68.35 2,586.15 82.85 49.32 60.40 95.78 58.35 95.44 520.65

Subdomain D 101.72 2,043.20 82.86 43.43 68.25 180.75 61.54 151.96 444.84

Kron-28 U 256 4,096 79.23 43.68 52.39 116.18 49.70 107.61 798.91

Kron-21 U 2 32 78.91 78.40 58.31 90.44 57.02 66.66 1011.68

Durability. The durable phase has less than 10% impact on

the ingestion rate. Table 3 shows the in-memory ingestion

rate and can be compared against that of GRAPHONE, which

uses NVMe SSD for durability. This is because durable

phase runs in a separate thread context, and exhibits only se-

quential write. The NVMe SSD can support up to 1500MB/s

sequential write and that is sufficient for GRAPHONE as it

only needs smaller write IO throughput, as shown in Fig. 9

for Friendster graph. This indicates that a higher logging rate

can easily be supported by using a NVMe SSD.

0
500

1000
1500
2000

0 5 10 15 20 25 30 35 40 45

W
rit

e
Th

ro
ug

hp
ut

(M

B/
s)

Time (in Sec)

Write Throuput Max Write Throughput Avg Write Throughput

Fig. 9: Write throughput for friendster in GRAPHONE comparing

against average requirement and maximum available in an NVMe

Recovery. Recovery only needs to perform archiving phase

at bulk of data. As we will show later in Fig. 13, the archiving

is fastest when around 227–231 edges are cleaned together.

Hence we take the minimum of this size as recovery thresh-

old to minimize the memory requirement of IO buffer and

the recovery time, and also gets an opportunity to pipeline

the IO read time of the data with recovery. Table 3 shows the

total recovery time, including data read from NVMe SSD af-

ter dropping the buffer cache. Clearly, GRAPHONE hides the

IO time when compared against in-memory recovery. The

recovery rate varies a lot for different graph due to different

distribution of the batch of graph data that has profound im-

pact on parallelism and hence locality access of edge arrays.

7.2 Graph Systems Performance

We choose different classes of graph systems to compare

against GRAPHONE. Stinger is a dynamic graph system,

Neo4j and SQLite are graph databases, and Galois and static

version of GRAPHONE are static graph systems. Except

stream computations, all the analytics in this section are per-

formed on private static view containing no non-archived

edges as it is created at the end of the ingestion.

Dynamic Graph System. Stinger is an in-memory graph

system that uses atomic instructions to support fine-grained

updates. So it cannot provide semantically correct analytics

if updates and computations are scheduled at the same time,

as different iteration of the analytics will run on the differ-

ent versions of the data. We used the benchmark developed

in [56] to compare the results on the RMAT graph.

Stinger is able to support 3.49 million updates/sec on the

same weighted RMAT graph, whereas GRAPHONE ingests

18.67 million edges/sec, achieving 5.36× higher ingestion

rate. Part of the reason for poor update rate of Stinger is that

unlike GRAPHONE, it directly updates the adjacency store

using atomic constructs. We have implemented PageRank

and BFS in a similar approach as Stinger. The compari-

son is plotted in Fig. 10. Clearly, GRAPHONE is able to

provide a better support for BFS and PageRank achieving

12.76× and 3.18× speedup respectively. The reason behind

the speedup is explicit optimization to reduce the chaining

which removes a lot of pointer chasing, and better cache ac-

cess locality due to cacheline sized edge blocks.

0
4
8

12
16

Updates BFS PageRank

Sp
ee

du
p

Stinger GraphOne

Fig. 10: Comparison against Stinger for in-memory setup

Databases. We compare against SQLite 3.7.15.2, a rela-

tional database, Neo4j 3.2.3, a graph database for ingestion

test. SQLite and Neo4j support ACID transaction, and do

not provide native support for graph analytics. It is known

that higher update rate is possible by trading off the strict se-

rializability of databases, however to measure the magnitude

of improvement, it is necessary to conduct experiment.

The in-memory configuration of SQLite can ingest

12.46K edges per second, while GRAPHONE is able to sup-

port 18.67 million edges per second in the same configura-

tion for above dataset. Neo4j could not finish the benchmark

after more than 12 hours, which is along the same line as

observed in [56]. Hence we have tested on a smaller graph

with 32K vertices, 256K edges, and 100K updates. Neo4j

is configured to use disk to make it durable. Neo4j and

GRAPHONE both use the buffer cache while persisting the

graph data. Neo4j can ingest only 14.81K edges per second,

whereas GRAPHONE ingests at 3.63M edges per second.

Static Graph System. We compare against Galois, a rep-

resentative in-memory static graph engine based on CSR

format. It does not provide the data management capabil-

258 17th USENIX Conference on File and Storage Technologies USENIX Association

0
1
2
3
4
5

Twitter Friendster Subdomain Kron-21-16

Sp
ee

du
p

BFS PageRank

Fig. 11: Speedup comparison of GRAPHONE with Galois (pre-

processing cost not included).

ity, so the whole graph is constructed in one time, called

pre-processing time, which takes a significant amount of

time [55]. In contrast, GRAPHONE can start the analytics

without any pre-processing. Fig. 11 shows the speed up

of GRAPHONE for PageRank and BFS over Galois (with-

out pre-processing cost) for all the graphs except Kron-28 as

Galois had a memory error. The PageRank results are almost

same as it is compute intensive, thus effect of chaining is not

observed. For Kron-21-16 which is very small, the perfor-

mance of Galois is bad. We suspect that the cost of manual

workload division in Galois for small graphs affects its per-

formance, while we use dynamic scheduling of OpenMP.

For BFS, GRAPHONE performs better than Galois with an

exception in the Subdomain graph. Both systems have same

BFS implementation (direction-optimized BFS [11]) with a

minor implementation difference. Our BFS is implemented

using the status array metadata where the level of each ver-

tex is maintained as one byte word, and tracking the active

vertices requires revisiting whole status array. Galois uses

the frontier queue where active vertices are kept in a sep-

arate work queue. Based on our experience with graph sys-

tems, status array implementation is faster for small diameter

graphs, otherwise frontier queue approach is better. The Sub-

domain graph has 140 BFS levels (the highest of all graphs)

hence we perform poorly, but Kron-21 has only 7 levels (the

least of all the graphs) so the speedup is the highest.

Static GRAPHONE. GRAPHONE is expected to perform

slightly worse than the static graph engine without including

the pre-processing cost, but much better if including. There-

fore to demonstrate the performance overhead of data man-

agement and chaining without any specific algorithm differ-

ences, we compare GRAPHONE against the static configura-

tion of itself where maximum chain count is just one.

Fig. 12 shows this performance drop (without including

pre-processing cost), specifically trading off just 17% av-

erage performance for real-world graphs (26% for all the

graphs plotted) from the static system, one can support high

arrival velocity of fine-grained updates. However, the per-

formance drop is only temporary as the compaction process

will remove the chaining in the background. Moreover, when

adding the pre-processing cost to the static system, GRA-

PHONE is able to perform better. For example, the pre-

processing cost for Kron-28 graph is 32.73s, one or multiple

orders of magnitude longer than the runtime of these algo-

rithms, e.g. 34.12× more than the run-time of BFS.

Stream Graph Engines. The logging and archiving opera-

tions are examples of different categories of stream analyt-

0
0.25

0.5
0.75

1
1.25

Twitter Friendster Subdomain Kron-28-16 Kron-21-16

Sp
ee

du
p

(C
om

pa
re

d
to

St

at
ic

Gr
ap

hO
ne

) BFS PageRank 1-Hop

Fig. 12: Graph analytics performance in GRAPHONE compared to

its static version that have no chaining requirement.

ics: logging is a proxy to continuous stateless stream ana-

lytics, while archiving is same to the discrete stateful stream

analytics. Thus, Table 3 is also an indication of their per-

formance. We have also implemented a streaming weakly

connected components using ideas from COST [57] using

stateless stream view APIs and it can process 33.60 million

stream edges/s on Kron-28 graph.

GRAPHONE runs stream computation and data ingestion

concurrently, while prior stream processing systems inter-

leave them that results into lower ingestion rate. To demon-

strate the advantage of this design decision, we have im-

plemented a streaming PageRank using stateful stream view

APIs that runs in parallel to data ingestion in GRAPHONE.

To simulate the prior stream processing we interleave the

two. The execution shows that GRAPHONE improves the

data ingestion by 26.22% for Kron-28 graph. We leave the

comparison against other stream processing engine as future

work as the focus of this work is on graph data-store.

7.3 System Design Parameters

Performance Trade-off in Hybrid Store. We first charac-

terize the behavior of the hybrid store for different number

of non-archived edges. Fig. 13 shows the performance vari-

ation of archiving rate, BFS, PageRank, and 1-hop query for

Kron-28 graph when the non-archived edge counts are in-

creased, while the rest of the edges are kept in the adjacency

store for Kron-28. The figure shows that up to 217 non-

archived edges in the edge log brings negligible drop in the

analytics performance. Hence, we recommend the value of

archiving threshold as 216 edges as the logging overlaps with

the archiving. GRAPHONE is able to sustain an archiving

rate 43.68 million edges per second at this threshold. The 1-

Hop query latency of all 512 queries together is only 53.766

ms, i.e. 0.105 ms for each query.

The archiving threshold of 216 edges is not unexpected as

it is small compared to total edge count (233) in Kron-28, and

0
20
40
60
80
100
120
140

0

0.25

0.5

0.75

1

1.25

Ar
ch

iv
in

g R
at

e
(E

dg
e/

s)

M
ill

io
ns

Al
go

rit
hm

 R
un

 ti
m

e
(N

or
m

al
ize

d)

Non-archived Edge Count (Log axis with base 2)

PageRank BFS 1 Hop Archiving Rate

210 212 214 216 218 220 222 224 226 228 230 232

Fig. 13: Algorithmic performance and archiving rate variation for

different non-archived edge count

USENIX Association 17th USENIX Conference on File and Storage Technologies 259

0
10
20
30
40

1 2 4 8 16 32 56

Ar
ch

iv
in

g
Ra

te M
ill

io
ns

Thread Count
Fig. 14: Archiving rate scaling with thread count

the analytics on non-archived edges are parallelized. Further,

the parallelization cost dominates when the number of non-

archived edges are small (210). Thus the analytics cost drops

only when the number of non-archived edges becomes large.

Fig. 13 also shows that higher archiving threshold leads to

better archiving rate, e.g., a archiving threshold of 1,048,576

(220) edges can sustain a archiving rate of 56.99 million

edges/second. The drawback is that the analytics perfor-

mance will be reduced as it will find more number of non-

archived edges. On the contrary, archiving works contin-

uously and tries to minimize the number of non-archived

edges, so a smaller arrival rate will lead to frequent archiv-

ing, and thus fewer non-archived edges will be observed at

any time. The drop in archiving rate at the tail is due to the

impact of large working set size that leads to more last-level-

cache transactions and misses while filling the edge arrays.

Scalability. The edge sharding stage removes the need

of atomic instruction or locks completely in the archiving

phase, which results into better scaling of archiving rate with

increasing number of threads as plotted in Fig. 14. There is

some super-linear behavior when thread count is increased

from 16 to 32. This is due to the second socket coming

into picture with its own hardware caches, and non-atomic

behavior makes it to scale super-linear. This observation is

confirmed by running the archiving using 16 threads spread

equally across two sockets, and achieves higher archiving

rate compared to the case when the majority of threads be-

long to one socket.

0
2
4
6
8

10

Archiving Rate BFS PageRank 1-Hop

Sp
ee

du
p

Baseline +Cacheline Sized +Hub Vertex

Fig. 15: Caheline sized memory allocation brings huge perfor-

mance gain, while hub vertex handling on top of cacheline size

memory allocation improves the query performance only.

Memory Allocation. Fig. 15 shows that the cacheline sized

memory allocation and special handling of hub-vertices im-

prove the performance of the archiving and analytics. The

cacheline sized memory optimization improves the archiving

rate at the archiving threshold by 2.20× for Kron-28 graph,

while speeding up BFS, PageRank and 1-Hop query perfor-

mance by 1.37×, 3.11× and 8.82×. Hub vertices handling

additionally improves the query performance (by 7.5%).

Edge Log Size. Fig. 16 shows the effect of edge log size on

overall ingestion rate on Kron-28 graph. Clearly, an edge log

0
0.25

0.5
0.75

1
1.25

1 2 4 8 16 32 64 128

In
ge

st
io

n
Ra

te

(N
or

am
al

ize
d)

Edge Log Size (in Million Edges)
Fig. 16: Showing Ingestion rate when edge log size increases.

size greater than 4 million edges (32 MB) does not have any

impact on overall ingestion rate.

8 Related Work

Static graph analytics systems [66, 50, 43, 60, 52, 79, 16,

36, 53, 65, 27, 44, 81, 28, 76, 7, 80] support only batch ana-

lytics where pre-processing consumes much more time than

the computation itself [55]. Grapchi [47] and other snap-

shot based systems [35, 54, 62, 39, 26] support bulk up-

dates only. Naiad [58], a timely dataflow framework, sup-

ports iterative and incremental compute but does not offer

the data window on the graph data. Other stream analyt-

ics systems [17, 32, 58, 72] support stream processing and

snapshot creation, some offering data window but all at bulk

updates only. Stream databases [5, 6] provide only stream

processing. TIDE [77] introduces probabilistic edge decay

that samples data from base store.

Prior works [24, 69] follow integrated graph system model

that manage online updates and queries in the database, and

replicate data in an offline analytics engines for long run-

ning graph analytics tasks. As we have identified in §1, they

suffers from excessive data duplication and weakest compo-

nent problem. Zhang et al [78] also argue that such com-

posite design is not optimal. GraPU [71] proposes to pre-

processes the buffered updates instead of making them avail-

able to compute as in GRAPHONE. Trading-off granularity

of data visibility is similar to Lazybase [19], but we addition-

ally tune the access of non-archived edges to reduce perfor-

mance drop in our setup and offer diverse data views.

The in-memory adjacency list in Neo4j [59] is optimized

for read-only workloads, and new updates generally require

invalidating and rebuilding those structures [63]. Titan [2],

an open source graph analytics framework, is built on top of

other storage engines such as HBase and BerkeleyDB, and

thus does not offer adjacency list at the storage layer.

9 Conclusion

We have presented GRAPHONE, a unified graph data store

abstraction that offers diverse data access at different gran-

ularity for various real-time analytics and queries at high-

performance, while simultaneously supporting high arrival

velocity of fine-grained updates.

Acknowledgments

The authors thank the USENIX FAST’19 reviewers and our

shepherd Ashvin Goel for their suggestions. This work was

supported in part by National Science Foundation CAREER

award 1350766 and grants 1618706 and 1717774.

260 17th USENIX Conference on File and Storage Technologies USENIX Association

References
[1] Friendster Network Dataset – KONECT. http://konect.

uni-koblenz.de/networks/friendster.

[2] Titan Graph Database. https://github.com/

thinkaurelius/titan.

[3] Twitter (MPI) Network Dataset – KONECT. http://

konect.uni-koblenz.de/networks/twitter_mpi.

[4] Web Graphs. http://webdatacommons.org/

hyperlinkgraph/2012-08/download.html.

[5] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,

M. Cherniack, J.-H. Hwang, W. Lindner, A. Maskey,

A. Rasin, E. Ryvkina, et al. The Design of the Borealis Stream

Processing Engine. In Cidr, volume 5, pages 277–289, 2005.

[6] D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Con-

vey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora:

A New Model and Architecture for Data Stream Management.

VLDB Journal, 12(2):12039, 2007.

[7] Z. Ai, M. Zhang, Y. Wu, X. Qian, K. Chen, and W. Zheng.

Squeezing out All the Value of Loaded Data: An out-of-

core Graph Processing System with Reduced Disk I/O. In

2017 USENIX Annual Technical Conference (USENIX ATC

17),(Santa Clara, CA), pages 125–137, 2017.

[8] L. Akoglu, H. Tong, and D. Koutra. Graph based anomaly

detection and description: a survey. Data Mining and Knowl-

edge Discovery, 29(3):626–688, May 2015.

[9] R. Albert, H. Jeong, and A.-L. Barabási. Internet: Diameter

of the World-Wide Web. Nature, 401(6749):130–131, Sept.

1999.

[10] D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic. EP-

SPARQL: A Unified Language for Event Processing and

Stream Reasoning. In Proceedings of the 20th international

conference on World wide web, pages 635–644. ACM, 2011.

[11] S. Beamer, K. Asanovic, and D. Patterson. Direction-

Optimizing Breadth-First Search. In International Conference

for High Performance Computing, Networking, Storage and

Analysis (SC), 2012.

[12] B. Bhattarai, H. Liu, and H. H. Huang. CECI: Compact Em-

bedding Cluster Index for Scalable Subgraph Matching. In

Proceedings of the 2019 International Conference on Man-

agement of Data, SIGMOD ’19, 2019.

[13] U. Brandes. A faster algorithm for betweenness centrality*.

Journal of Mathematical Sociology, 25(2):163–177, 2001.

[14] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov,

H. Ding, J. Ferris, A. Giardullo, S. Kulkarni, H. C. Li, et al.

TAO: Facebook’s Distributed Data Store for the Social Graph.

In USENIX Annual Technical Conference, pages 49–60, 2013.

[15] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A Recur-

sive Model for Graph Mining. In SDM, 2004.

[16] R. Chen, J. Shi, Y. Chen, and H. Chen. PowerLyra: Differenti-

ated Graph Computation and Partitioning on Skewed Graphs.

In Proceedings of the Tenth European Conference on Com-

puter Systems, 2015.

[17] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng, M. Wu,

F. Yang, L. Zhou, F. Zhao, and E. Chen. Kineograph: Taking

the Pulse of a Fast-Changing and Connected World. In Pro-

ceedings of the 7th ACM european conference on Computer

Systems, 2012.

[18] S. Choudhury, L. B. Holder, G. Chin, K. Agarwal, and J. Feo.

A Selectivity based approach to Continuous Pattern Detection

in Streaming Graphs. In 18th International Conference on

Extending Database Technology (EDBT), 2015.

[19] J. Cipar, G. Ganger, K. Keeton, C. B. Morrey III, C. A.

Soules, and A. Veitch. LazyBase: trading freshness for perfor-

mance in a scalable database. In Proceedings of the 7th ACM

european conference on Computer Systems, pages 169–182.

ACM, 2012.

[20] D. Easley and J. Kleinberg. Networks, crowds, and markets:

Reasoning about a highly connected world. Cambridge Uni-

versity Press, 2010.

[21] D. Ediger, R. McColl, J. Riedy, and D. A. Bader. Stinger:

High Performance Data Structure for Streaming Graphs. In

High Performance Extreme Computing (HPEC), 2012 IEEE

Conference on, pages 1–5. IEEE, 2012.

[22] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On Power-Law

Relationships of the Internet Topology. In ACM SIGCOMM

computer communication review, volume 29, pages 251–262.

ACM, 1999.

[23] FlockDB. https://blog.twitter.com/engineering/

en_us/a/2010/introducing-flockdb.html, 2010.

[24] Graph Compute with Neo4j. https://neo4j.com/blog/

graph-compute-neo4j-algorithms-spark-extensions/,

2016.

[25] Graph500. http://www.graph500.org/.

[26] W. Han, Y. Miao, K. Li, M. Wu, F. Yang, L. Zhou, V. Prab-

hakaran, W. Chen, and E. Chen. Chronos: A Graph Engine

for Temporal Graph Analysis. In EuroSys, 2014.

[27] W.-S. Han, S. Lee, K. Park, J.-H. Lee, M.-S. Kim, J. Kim, and

H. Yu. TurboGraph: A Fast Parallel Graph Engine Handling

Billion-scale Graphs in a Single PC. In Proceedings of the

19th ACM SIGKDD international conference on Knowledge

discovery and data mining, 2013.

[28] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. Green-

Marl: a DSL for Easy and Efficient Graph Analysis. In ACM

SIGARCH Computer Architecture News, 2012.

[29] Y. Hu, P. Kumar, G. Swope, and H. H. Huang. Trix: Tri-

angle Counting at Extreme Scale. In High Performance Ex-

treme Computing Conference (HPEC), 2017 IEEE, pages 1–7.

IEEE, 2017.

[30] Y. Hu, H. Liu, and H. H. Huang. TriCore: Parallel Triangle

Counting on GPUs. In Proceedings of the International Con-

ference for High Performance Computing, Networking, Stor-

age, and Analysis, page 14. IEEE Press, 2018.

[31] B. A. Huberman and L. A. Adamic. Internet: Growth dynam-

ics of the World-Wide Web. Nature, 1999.

[32] A. P. Iyer, L. E. Li, T. Das, and I. Stoica. Time-Evolving

Graph Processing at Scale. In Proceedings of the Fourth Inter-

national Workshop on Graph Data Management Experiences

and Systems, page 5. ACM, 2016.

USENIX Association 17th USENIX Conference on File and Storage Technologies 261

http://konect.uni-koblenz.de/networks/friendster
http://konect.uni-koblenz.de/networks/friendster
https://github.com/thinkaurelius/titan
https://github.com/thinkaurelius/titan
http://konect.uni-koblenz.de/networks/twitter_mpi
http://konect.uni-koblenz.de/networks/twitter_mpi
http://webdatacommons.org/hyperlinkgraph/2012-08/download.html
http://webdatacommons.org/hyperlinkgraph/2012-08/download.html
https://blog.twitter.com/engineering/en_us/a/2010/introducing-flockdb.html
https://blog.twitter.com/engineering/en_us/a/2010/introducing-flockdb.html
https://neo4j.com/blog/graph-compute-neo4j-algorithms-spark-extensions/
https://neo4j.com/blog/graph-compute-neo4j-algorithms-spark-extensions/
http://www.graph500.org/

[33] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L.

Barabási. The large-scale organization of metabolic networks.

Nature, 2000.

[34] Y. Ji, H. Liu, and H. H. Huang. iSpan: Parallel Identifica-

tion of Strongly Connected Components with Spanning Trees.

In Proceedings of the International Conference for High Per-

formance Computing, Networking, Storage, and Analysis,

page 58. IEEE Press, 2018.

[35] X. Ju, D. Williams, H. Jamjoom, and K. G. Shin. Version

Traveler: Fast and Memory-Efficient Version Switching in

Graph Processing Systems. In 2016 USENIX Annual Techni-

cal Conference (USENIX ATC 16), pages 523–536. USENIX

Association, 2016.

[36] U. Kang, H. Tong, J. Sun, C.-Y. Lin, and C. Faloutsos.

GBASE: A Scalable and General Graph Management System.

In Proceedings of the 17th ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, 2011.

[37] A. D. Kent. Comprehensive, Multi-Source Cyber-Security

Events. Los Alamos National Laboratory, 2015.

[38] A. D. Kent, L. M. Liebrock, and J. C. Neil. Authentication

graphs: Analyzing user behavior within an enterprise net-

work. Computers & Security, 48:150–166, 2015.

[39] U. Khurana and A. Deshpande. Efficient Snapshot Retrieval

over Historical Graph Data. In Data Engineering (ICDE),

2013 IEEE 29th International Conference on, pages 997–

1008. IEEE, 2013.

[40] K. Kim, T. Wang, R. Johnson, and I. Pandis. Ermia:

Fast Memory-Optimized Database System for Heterogeneous

Workloads. In Proceedings of the 2016 International Confer-

ence on Management of Data, pages 1675–1687. ACM, 2016.

[41] D. Knoke and S. Yang. Social network analysis, volume 154.

Sage, 2008.

[42] J. Kreps, N. Narkhede, J. Rao, et al. Kafka: a Distributed

Messaging System for Log Processing. In Proceedings of the

NetDB, pages 1–7, 2011.

[43] P. Kumar and H. H. Huang. G-Store: High-Performance

Graph Store for Trillion-Edge Processing. In Proceedings of

the International Conference for High Performance Comput-

ing, Networking, Storage and Analysis (SC), 2016.

[44] P. Kumar and H. H. Huang. Falcon: Scaling IO Performance

in Multi-SSD Volumes. In 2017 USENIX Annual Technical

Conference (USENIX ATC 17). USENIX Association, pages

41–53, 2017.

[45] P. Kumar and H. H. Huang. SafeNVM: A Non-Volatile Mem-

ory Store with Thread-Level Page Protection. In IEEE In-

ternational Congress on Big Data (BigData Congress), 2017,

pages 65–72. IEEE, 2017.

[46] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a

social network or a news media? In WWW, 2010.

[47] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi: Large-

Scale Graph Computation on Just a PC. In OSDI, 2012.

[48] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time:

densification laws, shrinking diameters and possible explana-

tions. In Proceedings of the eleventh ACM SIGKDD inter-

national conference on Knowledge discovery in data mining,

pages 177–187. ACM, 2005.

[49] H. Liu and H. H. Huang. Enterprise: Breadth-First Graph

Traversal on GPUs. In Proceedings of the International Con-

ference for High Performance Computing, Networking, Stor-

age and Analysis (SC), 2015.

[50] H. Liu and H. H. Huang. Graphene: Fine-Grained IO

Management for Graph Computing. In Proceedings of the

15th USENIX Conference on File and Storage Technologies

(FAST), 2017.

[51] H. Liu, H. H. Huang, and Y. Hu. iBFS: Concurrent Breadth-

First Search on GPUs. In Proceedings of the SIGMOD Inter-

national Conference on Management of Data, 2016.

[52] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and

J. M. Hellerstein. Distributed GraphLab: A Framework for

Machine Learning and Data Mining in the Cloud. Proceed-

ings of the VLDB Endowment (VLDB), 2012.

[53] S. Maass, C. Min, S. Kashyap, W. Kang, M. Kumar, and

T. Kim. Mosaic: Processing a Trillion-Edge Graph on a Sin-

gle Machine. In Proceedings of the Twelfth European Confer-

ence on Computer Systems, EuroSys ’17, 2017.

[54] P. Macko, V. J. Marathe, D. W. Margo, and M. I. Seltzer.

LLAMA: Efficient Graph Analytics Using Large Multiver-

sioned Arrays. In Data Engineering (ICDE), 2015 IEEE 31st

International Conference on, pages 363–374. IEEE, 2015.

[55] J. Malicevic, B. Lepers, and W. Zwaenepoel. Everything you

always wanted to know about multicore graph processing but

were afraid to ask. In 2017 USENIX Annual Technical Con-

ference (USENIX ATC 17), pages 631–643, Santa Clara, CA,

2017. USENIX Association.

[56] R. C. McColl, D. Ediger, J. Poovey, D. Campbell, and D. A.

Bader. A Performance Evaluation of Open Source Graph

Databases. In Proceedings of the First Workshop on Paral-

lel Programming for Analytics Applications, PPAA ’14, pages

11–18, New York, NY, USA, 2014. ACM.

[57] F. McSherry, M. Isard, and D. G. Murray. Scalability! But at

what COST? In 15th Workshop on Hot Topics in Operating

Systems (HotOS XV), 2015.

[58] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham,

and M. Abadi. Naiad: A Timely Dataflow System. In Pro-

ceedings of the Twenty-Fourth ACM Symposium on Operating

Systems Principles (SOSP), 2013.

[59] Neo4j Inc. https://neo4j.com/, 2016.

[60] D. Nguyen, A. Lenharth, and K. Pingali. A Lightweight In-

frastructure for Graph Analytics. In Proceedings of the ACM

Symposium on Operating Systems Principles (SOSP), 2013.

[61] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageR-

ank citation ranking: bringing order to the Web. 1999.

[62] C. Ren, E. Lo, B. Kao, X. Zhu, and R. Cheng. On Query-

ing Historical Evolving Graph Sequences. Proceedings of the

VLDB Endowment, 4(11):726–737, 2011.

[63] I. Robinson, J. Webber, and E. Eifrem. Graph Databases.

O’Reilly Media, 2013.

[64] D. M. Romero, B. Meeder, and J. Kleinberg. Differences in

the mechanics of information diffusion across topics: idioms,

262 17th USENIX Conference on File and Storage Technologies USENIX Association

https://neo4j.com/

political hashtags, and complex contagion on twitter. In Pro-

ceedings of the 20th international conference on World wide

web, pages 695–704. ACM, 2011.

[65] A. Roy, L. Bindschaedler, J. Malicevic, and W. Zwaenepoel.

Chaos: Scale-out Graph Processing from Secondary Storage.

In SOSP. ACM, 2015.

[66] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-stream: Edge-

centric Graph Processing using Streaming Partitions. In

SOSP. ACM, 2013.

[67] S. Sallinen, K. Iwabuchi, S. Poudel, M. Gokhale, M. Ri-

peanu, and R. Pearce. Graph Colouring as a Challenge

Problem for Dynamic Graph Processing on Distributed Sys-

tems. In Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis,

page 30. IEEE Press, 2016.

[68] J. Seo, J. Park, J. Shin, and M. S. Lam. Distributed So-

ciaLite: A Datalog-Based Language for Large-Scale Graph

Analysis. Proceedings of the VLDB Endowment, 6(14):1906–

1917, 2013.

[69] M. Sevenich, S. Hong, O. van Rest, Z. Wu, J. Banerjee, and

H. Chafi. Using Domain-specific Languages for Analytic

Graph Databases. Proc. VLDB Endow., 9(13):1257–1268,

Sept. 2016.

[70] B. Shao, H. Wang, and Y. Li. Trinity: A Distributed Graph

Engine on a Memory Cloud. In Proceedings of the SIGMOD

International Conference on Management of Data, 2013.

[71] F. Sheng, Q. Cao, H. Cai, J. Yao, and C. Xie. GraPU: Ac-

celerate Streaming Graph Analysis Through Preprocessing

Buffered Updates. In Proceedings of the ACM Symposium

on Cloud Computing, SoCC ’18, 2018.

[72] X. Shi, B. Cui, Y. Shao, and Y. Tong. Tornado: A System For

Real-Time Iterative Analysis Over Evolving Data. In Pro-

ceedings of the 2016 International Conference on Manage-

ment of Data, pages 417–430. ACM, 2016.

[73] J. Shun and G. E. Blelloch. Ligra: A Lightweight Graph Pro-

cessing Framework for Shared Memory. In Proceedings of the

18th ACM SIGPLAN symposium on Principles and practice of

parallel programming (PPoPP), 2013.

[74] M. J. M. Turcotte, A. D. Kent, and C. Hash. Unified Host and

Network Data Set. ArXiv e-prints, Aug. 2017.

[75] K. Vora, R. Gupta, and G. Xu. Kickstarter: Fast and Accurate

Computations on Streaming Graphs via Trimmed Approxi-

mations. In Proceedings of the Twenty-Second International

Conference on Architectural Support for Programming Lan-

guages and Operating Systems, pages 237–251. ACM, 2017.

[76] M. Wu, F. Yang, J. Xue, W. Xiao, Y. Miao, L. Wei, H. Lin,

Y. Dai, and L. Zhou. GRAM: Scaling Graph Computation to

the Trillions. In Proceedings of the Sixth ACM Symposium on

Cloud Computing, 2015.

[77] W. Xie, Y. Tian, Y. Sismanis, A. Balmin, and P. J. Haas.

Dynamic interaction graphs with probabilistic edge decay.

In Data Engineering (ICDE), 2015 IEEE 31st International

Conference on, pages 1143–1154. IEEE, 2015.

[78] Y. Zhang, R. Chen, and H. Chen. Sub-millisecond Stateful

Stream Querying over Fast-evolving Linked Data. In Pro-

ceedings of the 26th Symposium on Operating Systems Prin-

ciples, pages 614–630. ACM, 2017.

[79] D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E. Priebe,

and A. S. Szalay. FlashGraph: Processing Billion-Node

Graphs on an Array of Commodity SSDs. In Proceedings of

the 13th USENIX Conference on File and Storage Technolo-

gies (FAST), 2015.

[80] X. Zhu, W. Chen, W. Zheng, and X. Ma. Gemini: A

Computation-Centric Distributed Graph Processing System.

In OSDI, pages 301–316, 2016.

[81] X. Zhu, W. Han, and W. Chen. GridGraph: Large-scale Graph

Processing on a Single Machine Using 2-level Hierarchical

Partitioning. In Proceedings of the USENIX Conference on

Usenix Annual Technical Conference, 2015.

USENIX Association 17th USENIX Conference on File and Storage Technologies 263

	Introduction
	Use Case: Network Analysis
	Opportunities and Overview
	Graph Representation: Opportunities
	Overview

	Hybrid Store
	Data Management and Optimizations
	Data Management Phases
	Logging Phase
	Archiving Phase
	Durable Phase and Recovery
	Compaction Phase

	Memory Overhead and Optimizations

	GraphView Abstraction
	Static View
	Stream View
	Historic Views

	Evaluations
	Data Ingestion Performance
	Graph Systems Performance
	System Design Parameters

	Related Work
	Conclusion

