
Proc. CAAP'94, pages 187-201.

Graphs and Decidable Transductions

based on Edge Constraints
(Extended Abstract)

Nils Klarlund? & Michael I. Schwartzbach??

Aarhus University, Department of Computer Science,

Ny Munkegade, DK-8000 �Arhus, Denmark

fklarlund,misg@daimi.aau.dk

Abstract. We give examples to show that not even c-edNCE, the most

general known notion of context-free graph grammar, is suited for the

speci�cation of some common data structures.

To overcome this problem, we use monadic second-order logic and in-

troduce edge constraints as a new means of specifying a large class of

graph families. Our notion stems from a natural dichotomy found in

programming practice between ordinary pointers forming spanning trees

and auxiliary pointers cutting across.

Our main result is that for certain transformations of graphs de�nable

in monadic second-order logic, the question of whether a graph family

given by a speci�cation A is mapped to a family given by a speci�cation

B is decidable. Thus a decidable Hoare logic arises.

1 Introduction

Graphs are complicated objects to describe. Thus various grammars and logics
have emerged for their representation, see the chapter by Courcelle [1]. The
monadic second-order logic of graphs (M2L-G) allows a very large class of graph
families to be described. The �rst-order terms of the logic denote nodes. The
second-order terms denote sets of nodes. Nodes and edges are related by built-in
predicates. The M2L-G formalism is very well-suited for describing properties of
some common data structures, see our earlier paper [5].

Some authors consider logics that comprise quanti�cation over edges. For
these logics, a fundamental result is that a family of graphs allows a decidable
M2L if and only if the family is speci�ed by a hyperedge-replacement grammar [2].
Such grammars constitute a natural generalization of context-free grammars for
string languages.

? The author is supported by a fellowship from the Danish Research Council.
?? The author is partially supported by the BRICS Center under the Danish Research

Foundation.

An even larger class of context-free grammars is known as c-edNCE. The
monadic logic of graph families thus given is undecidable, but certain other
questions, such a non-emptiness of a speci�cation, are decidable, see [4].

For programming purposes, we would like to describe common data struc-
tures found in the store such as trees and doubly-linked lists. Indeed, this is possi-
ble within the framework of decidable formalisms as e.g. hyperedge-replacement
grammars. Many other graph shapes are not representable. But whatever spec-
i�cation formalism we choose, we should be able to represent trees with addi-
tional, unconstrained pointers|reecting a situation where almost nothing is
said about the store, as is the case with type systems of most imperative pro-
gramming languages.

We show in this paper that not even c-edNCE grammars are able to de�ne
such families of graphs.

To reason about data structures, it is vital to model the execution of pro-
grams. Therefore, we must formulate ways of transforming graphs corresponding
to statements in a programming language. For program correctness, we would
use Hoare logic to show that the store transformations leave the graph speci�-
cations satis�ed.

In this paper we consider restricted graph transformations, called transduc-
tions, which are based on the method of semantic interpretation [7] and studied
in [3]. Given logical graph speci�cations A and B and a transduction, we address
the problem of verifying what we call transductional correctness: for any graph
satisfying A, any graph resulting from the transduction satis�es B. This informal
de�nition omits the di�culty of having shared logical variables in A and B|a
problem that is explicitly solved in this paper. Decidability of transductional
correctness amounts to decidability of the corresponding Hoare logic.

Contributions of this paper

We devise a class of graph speci�cations

{ that may model loosely restrained edges, and
{ for which transductional correctness is decidable.

Our graphs consist of ordinary edges constituting an underlying spanning forest,
called the backbone, and auxiliary edges cutting across the backbone.

These notions stem from a natural dichotomy found in programming practice
between ordinary pointers forming spanning trees and auxiliary pointers cutting
across as used for short-cuts (such as extra links pointing backward to previous
elements) or for indexing into other data structures using unrestrained pointers.

Our graph speci�cations are based on combining the full M2L in form of
a backbone formula for specifying ordinary edges together with a special M2L
syntax, called edge constraints, for specifying auxiliary edges. The formulas in an
edge constraint involve only the backbone to specify the sources and destinations
of auxiliary edges. The resulting class of graph families thus de�nable is called
EC. We show that the classes c-edNCE and EC are incomparable.

We next introduce a class of transductions. They are formulated in M2L
and are similar to the ones considered in [3]. We use extra logical variables to
model edges that are followed, deleted, or added during the transformation of
the graph.

Our main result is that the transduction problem is decidable for EC. This
result is based on a rather complicated encoding of the e�ects of the transduction
within M2L on the backbone alone. The obstacle that we overcome is that it is
impossible to directly represent all auxiliary edges in the logic of the backbone.
The key idea is to distinguish between the bounded number of auxiliary edges
that are explicitly manipulated by the transduction and the others, which are
represented by a universal quanti�cation in the logic.

Our other work

In an accompanying paper [6], we outline a typing system for data structures and
de�ne a programming language. The typing information is expressed in a logic
on the underlying recursive data types. The programming language provides
assignment, dereference, allocation, deallocation, and limited forms of iterations
based on regular walks. We show in [6] that the operational semantics is captured
by transductions and that by the results in this paper the resulting Hoare logic
on data structures is decidable.

In [5], we also used monadic second-order logic to reason about data struc-
tures as graphs, but we restricted ourselves to trees with auxiliary edges that
are functionally determined by the backbone in terms of regular walks.

2 Rooted Graphs

A graph alphabet � consists of a �nite set �V of node labels (which include a
special label spare) and a �nite set �E of edge labels. Usually, we denote a node
label by v. There are two kinds of edge labels: ordinary and auxiliary . Usually,
an ordinary edge label is denoted f and an auxiliary edge label is denoted a. An
edge label that is either ordinary or auxiliary is denoted n.

A rooted graph G over � consists of a �nite set GV of labeled nodes; a �nite
set GE of labeled edges; and a �nite set of node variables x, called roots, denoting
nodes in G _The label of node v 2GV is denoted GL(v). Nodes are either ordinary
or spare according to their label. An edge from v to w labeled n is denoted
(v; n; w). For each v and n, there is at most one such edge. Loops are allowed.
The edges of G are divided into ordinary and auxiliary ones according to their
label. The node denoted by root x is written x

G.

The set of all graphs over � is denoted GR(�). An edge set E is a set of
edges such that (v; n; w) 2 E and (v; n; u) 2 E implies w = u.

We sometimes view G as consisting of G, called the backbone, which is all of
G except for the auxiliary edges, and

=
G, which is the edge set of auxiliary edges

in G. Thus, G may be written as (G;
=
G).

The spare nodes model free memory cells in programming language applica-
tions. They are essential to allow addition and deletion of nodes by transductions.

Figure 1 shows a sketch of a rooted graph. The ordinary edges are drawn as
solid arrows, whereas the auxiliary edges are dashed; spare nodes are black; the
roots are called x1, x2, and x3.

j j

j

j

j

jj

j

j
��
��

z
z

z

z z

z
z

�
J
JĴ

J
JĴ

�

?

?

?

?

-

j �

a

? ? ?

j??

v

f

f

f

f1 f2

f2f1

f

a

a

x1

x2

x3

Fig. 1. A rooted graph.

3 The Logic M2L-BB

The key to specifying data structures is theMonadic Second-Order of Backbones,
abbreviated M2L-BB. First-order terms range over nodes in the graph. Second-
order terms range over sets of nodes.

Syntax

Assume a graph alphabet �. The logic of rooted graphs over � is denoted M2L-
BB(�). Its syntax is as follows.

Address terms A denote nodes in the graph.

A ::= x root
src source
dst destination
�; �; : : : �rst-order variable

The terms src and dst are special variables used in certain assertions. Address
set terms � denote sets of nodes.

� ::= ; empty set
�1 [�2 set union
�1 n�2 set di�erence
S; T; : : : second-order variable

Formulas � denote true or false.

� ::= A1 = A2 equality
A 2� set membership
�1 � �2 set inclusion

A1

f
! A2 successor relation, where f2�E is ordinary

v?A test for node label, where v2�V

:� negation
�1 ^�2 conjunction
90� : � �rst-order quanti�cation over all nodes
90S : � second-order quanti�cation over all nodes

Note that the syntax does not allow references to auxiliary edges. We also use
unmarked quanti�ers that range only over ordinary nodes. They can be viewed
as abbreviations according to the following.

9� : �� 9�� : :spare?� ^�
9S : �� 9�S : (:9�� : � 2 S ^ spare?�) ^�

We also assume abbreviations 8,), _, etc.

Semantics

M2L-BB is interpreted relative to a backbone G. The interpretation of x is given

by G as x
G. The constants dst and src are used as variables. The semantics

of variables is formulated below by substitution for values in G
V

. A value v is

interpreted as itself, i.e. vG = v. A non-variable address set term� is interpreted
as follows.

;G = ;

(�1 [�2)
G = �G

1
[�G

2

(�1n�2)
G = �G

1
n�G

2

The semantics of formulas is as follows.

G � A1 = A2 if AG

1
= AG

2

G � A 2 � if AG2�G

G � �1 � �2 if �G

1
� �G

2

G � A1

f
! A2 if (A

G

1
; f;A

G

2
)2G

E

G � v?A if G
L

(AG) = v

G � :� if not G � �

G � �1 ^�2 if G � �1 and G � �2

G � 9�� : � if there is v 2G
V

such that G � �(� 7! v)

G � 9�S : � if there is V � G
V

such that G � �(S 7! V);

If � has free variables F and F is an interpretation of these variables in G
V

, then

G;F � � if G � �(F 7! F):

If G � � holds for all G, then we say that � is valid and we write � �. A graph
G is tree-formed if

{ all edges are between ordinary nodes; and
{ the graph induced by ordinary nodes and ordinary edges is a directed forest
such that each root is the value of some root variable.

Note that the graph depicted in Figure 1 is tree-formed.

Lemma1. There is a formula � such that G is tree-formed if and only if G � �.

Proof Among other conditions, acyclicity and reachability can be encoded in
M2L-BB. �

We say that � is tree-valid and we write � if G � � holds for all tree-formed
G.

Theorem2. Validity is undecidable, but tree-validity is decidable.

Proof The �rst result follows from the undecidability of the �rst-order logic of
�nite graphs. The second result follows from the decidability of the monadic
second-order logic of �nite trees. �

Edge Constraints and Assertions

Constraints on auxiliary edges cannot just be formulas, since the logic refers only

to ordinary edges. Instead, an edge constraint is of the form [�
a
! �], where � is

a formula involving src as a free variable, and � is a formula with free variables
src and dst. The edge constraint is valid for a given graph if whenever � is

valid with a node v in place of src, then there is an a-edge (which is unique by
de�nition of a rooted graph) from v to some node w and � is valid with v and
w in place of src and dst. Note that the edge constraint does not describe any
a-edges outside where � holds.

Formally, let [�
a
! �] be an edge constraint with free variables F. We say

that G and F satisfy [�
a
! �], and we write G;F � [�

a
! �] if:

for all v 2 GV; G;F � �(src 7! v) implies
for some (v; a; w) 2

=
G; G;F � �(src 7! v;dst 7! w):

An assertion A = �[�1

a1
! �1] : : : [�n

an
! �n] consists of a formula �, called the

backbone formula, and a number of edge constraints [�i
ai
! �i]. These components

are connected through free variables, which are implictly existentially quanti�ed.
Let F be a list containing the free variables and let F be a value assignment to

these variables. An assertion A is satis�ed in G with F, and we write G;F � A,

if G;F � � and for all i, G;F � [�i
ai
! �i].

An assertion A speci�es the language of graphs

fG j G is tree-formed and for some F; G;F � Ag

The class of such graph languages is called EC.

Example

Consider the common data structure, shown in Figure 2, of linked lists with a
head node that points both to the �rst element of the list and to some designated
element. The f- and n-edges are ordinary; the s-edge is auxiliary.

�
��

�
��

�
��

�
��

- - - -

6

?

�
��
H

x

L L L L

s

f n n n

Fig. 2. A list structure

The corresponding backbone formula contains these clauses.

H?x The head node has label H

9� : x
f
! � and an outgoing f-edge;

8�; �0 : �
f
! �0) � = x no other node has an outgoing f-edge;

8� : :�=x) L?� all other nodes have label L;

8�; �0 : �
n
! �0) � 6= x the head node has no outgoing n-edge;

L? and there is a designated L-node...

Note that we quantify only over ordinary nodes. There is only a single edge
constraint.

[H?src
s
�! =dst] that is the destination of the s-edge.

Here the free variable connects the backbone formula and the edge constraint.
In conjunction with the general requirement of tree-formedness, this assertion
describes backbones that are lists with a head node. Note that the assertion
does not eliminate extraneous s-edges from nodes other than the one marked H.
In a programming language application these are avoided through elementary
type-checking of the transductions that build graphs [6].

4 Relations to Other Formalisms

It is interesting to compare the expressive power of this graph speci�cation
formalism with those of other proposals. In particular we show in this section
that the set of trees with unrestrained auxiliary edges is not representable as a
context-free graph grammar.

We look at the most general class known of context-free graphs languages:
c-edNCE, which stands for \conuent edge and node labeled,directed graphs
given byNeighborhoodControlled Embedding." The grammars that de�ne such
languages are complicated. Instead we shall use a result by Engelfriet that these
languages are exactly the images of trees under functions de�nable in monadic
second-order logic [4]. The following de�nition is from [4] (but changed as to
allow loops in graphs):

Let �1 and �2 be alphabets. An M2L-de�nable function f : GR(�1) !
GR(�2) is given by the following formulas in M2L-BB(�1):

{ a closed formula �dom, called the domain formula;
{ for every v2�V

2
, a formula �v, called a node formula, with one free variable

src; and
{ for every n 2 �E

2
, a formula�n, called an edge formula, with two free variables

src and dst.

The domain of f is fG 2 GR(�1) j G � �domg. For every G 2 dom(f), the
graph G0 = f(G) 2GR(�2) is given by

G0V = fv 2 GV j there is exactly one v 2 �V
1
such that G � �v(src 7! v)g

G0E = f(v; n; w) j v; w 2 GVand G � �n(src 7! v;dst 7! w)g:

(For simplicity, we ignore roots in this section.)

Theorem3. [4] A language of graphs is c-edNCE if and only if it is the image
of an M2L-de�nable function f : GR(�1) ! GR(�2) applied to the set of
directed trees over �1.

Such a language is then said to be f-de�nable.

Theorem4. [4] It is decidable whether a function f de�nes a �nite language of
graphs.

Lemma5. [4] The class of M2L-de�nable functions is closed under composition.

Now �x �VT = fvg, �ET = ff1; f2; ag. A tree with equi-level edges is a graph
G over �T such that G restricted to f-edges is a directed tree and such that
(v; a; w) 2 GE if and only if w is the left-most node to the right of v at the same
level as v, as shown in Figure 3.

�
��

�
��

�
��

�
��

�
��

�
��

�
�

�
��	

@
@
@
@@R

�
�
�
���

A
A
A
AAU

�
�
�
���

A
A
A
AAU

�
�
�
��

B
B
B
BBN

-

�
��

- a- -

f1 f2

f1 f2 f1 f2

f1 f2

a

a a

Fig. 3. A tree with equi-level edges.

Lemma6. The set of trees over �T with equi-level edges is not c-edNCE.

Proof Suppose for a contradiction that the set is c-edNCE by means of an
M2L-de�nable function f . Then there would be a uniform way of obtaining an
M2L-de�nable function fi whose graph language represents all �nite sequences
of con�gurations that TM (Turing Machine) i may produce with an empty in-
put tape. In fact we may choose �V = f0; 1;#g and construct f 0

i
such that it

maps trees with equi-level edges into trees whose �V labels at level k encode
the con�guration of TM i after the k'th step (details are omitted). By Lemma 5,
the set of graphs representing �nite con�guration sequences is then de�nable by
a function fi = f 0i � f . But then the Halting Problem would be decidable by
Theorem 4, which is a contradiction. �

Lemma7. The set of trees over �T with unrestrained a-edges is not c-edNCE.

Proof If it was we could use Lemmas 5 and 6 to show that also the set of trees
with equi-level edges is c-edNCE. (We would construct a domain formula check-
ing, among other things, that whenever (v; a; w) and (v0; a; w0) are edges and v0

is a child of v, then w0 is a child of w.) �

Theorem8. c-edNCE and EC are incomparable.

Proof EC * c-edNCE: The set of trees with unrestrained a-edges is certainly
EC, but not c-edNCE by Lemma 7.

c-edNCE * EC: The set of cyclic graphs over singleton node and edge
alphabets is c-edNCE, but not EC (in fact, since the edge label determines
whether an edge is ordinary or auxiliary, only list-like structures and certain
degenerate structures can be described with singleton edge alphabets). �

5 Transductions

We are interested in graph transformations that model pointer manipulations
in programs. These can be speci�ed through a transduction, which is de�ned to
be of the form T =< L; E ; � >. The component L is a list of labeled entries.
An entry t de�nes one or two �rst-order variables, called transduction variables,
according to its label as follows.

{ add-n: this indicates the creation of an n-edge between two nodes denoted
by �rst-order terms src(t) and dst(t); an existing n-edge from the source is
deleted.

{ del-n: this indicates the deletion of the n-edge whose origin is denoted by
the �rst-order term src(t).

{ foll-a: this indicates the existence of an a-edge which has been followed be-
tween two cells denoted by �rst-order terms src(t) and dst(t); this makes for
an explicit representation of auxiliary edges that are followed and, therefore,
known to exist in the original graph.

{ v: this indicates that a node denoted by the �rst-order logical variable src(t)
is marked with label v (which may be spare); if an ordinary node is marked
spare, then its outgoing and incoming edges are deleted.

The component E is an environment, which maps root variables to address terms
denoting their values. The component � is a formula which must hold in order
for the free variables in L and E to denote a transformation. The formula � may
contain other transduction variables than those de�ned by L. Together they are
designated �.

The formula � must ensure that the entries are consistent with each other.
Thus if a graph G and a value assignment � are such that G;� � �, then some
examples of technical relationsships that most hold are:

{ given any v and a, there are at most one foll-a entry t such that G;� �

src(t) = v; and
{ given any (v; a; w) that is marked by a del-a entry before any add-a entry,
there is a foll-a entry, which makes explicit the assumption that (v; a; w) is
an edge in G.

6 Predicate Transformers

Each transduction T determines a predicate transformer TrT . A formula � is
translated into TrT � according to the following rules.

TrT (x) = T :E(x)
TrT (�) = �

TrT (A1 = A2) = TrT (A1) = TrT (A2)

TrT (�
f
! �) =

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

� = dst(t) if t is an add-f entry in T :L,
� = src(t), t is the last such en-
try, and no later spare entry t0 is
such that src(t0)2f�; �g and no
later del-f entry t0 is such that
src(t0) = �

false if there is a spare entry t with
src(t)2f�; �g or there is a del-f
entry t with src(t) = �, and no
later add-f entry t0 is such that
src(t0) = �g

�
f
! � otherwise

TrT (v?�) =

8>>>><
>>>>:

true if there is an v-entry t in T :L

such that src(t) = � and no later
v
0-entry t0 is such that src(t0) =
�

v?� otherwise
TrT (A 2 �) = TrT (A) 2 �
TrT (�1 � �2) = �1 � �2

TrT (:�) = :TrT�

TrT (�1 ^ �2) = TrT (�1) ^ TrL(�2)
TrT (9

�� : �) = 9�� : TrT �
TrT (9

�S : �) = 9�S : TrT �

The transformed backbone, denoted BBT (G;�), according to T on G with trans-

duction values � is the graph G
0
de�ned as follows.

{ G
0V

= G
V

;

{ (v; f; w) 2 G
0E

i� G;� � TrT (v
f
! w);

{ G
0L
(v) = v i� G;� � TrT (v?v); and

{ x
G

0

is the node v such that G;� � v = TrT (T :E(x)).

Lemma9. (Faithfulness) Let G
0
= BBT (G;�) and let F be a value assignment

to the free variables of �. Then,

G
0
;F � �

if and only if

G;F;� � TrT �

Proof (Sketch) By a straightforward structural induction. �

We say that G, �, and T determine a transformation. In addition to the trans-
formed backbone, the transformation also determines:

{ FollT -a(G;�), the set of a-edges in the old graph G that were followed;
{ DelT -a(G;�), the set of a-edges in the old graph G that were both followed
and deleted; and

{ AddT -a(G;�), the set of a-edges in the new graph G0 that were added.

To specify FollT -a(G;�), we de�ne a predicate FollT -a with free variables src
and dst expressing that an a-edge from src to dst was followed. Informally,

FollT -a � \for some foll-a entry in T :L, src = src(t) and dst =
dst(t),"

which can be encoded as a formula. Now,

FollT -a(G;�) = f(v; a; w) jG;�; src 7! v;dst 7! w � FollT -ag:

Similarly, we de�ne the two other sets by de�ning predicates DelT -a and AddT -
a:

DelT -a � \FollT -a and there is some spare entry with src = src(t)
or dst = src(t), or some del-a or add-a entry t with src =
src(t)."

AddT -a � \if there is an add-a entry t such that src(t) = src and
dst(t) = dst, and no later entries delete this edge."

Lemma10. DelT -a(G;�) � FollT -a(G;�) if G;� � �.

Proof By the de�nitions and imposed technical relationships. �

The transformation relation induced by T is:

G �!T G0

if and only if
for some � :

G;� j= T :�;

Foll-aT (G;�) �
=
G;

G
0
= BBT (G;�); and=

G0 = (
=
GnDel-aT (G;�)) [Add-aT (G;�)

Example (continued)

Consider the linked list with a designated element from Section 4. A common
transduction on such structures is the insertion of an new element just before
the head. This is realized by the following transduction.

L: L(�0):del-f(x; �):add-f(x; �0):add-n(�0; �)

E : x 7! x

�: x
f
! � ^ spare?�0

Notice how this closely mimics the code that one would write in a conventional
programming language. The expressive power of transductions goes beyond mere
straight-line code, since regular control structures can be encoded in formulas
[5].

7 Transductional Correctnesse

Let A be the free variables in the assertion A and let B be the free variables in
the assertion B that are not already free in A. The problem of transductional
correctness is:

Given assertions A, B, and a transduction T . Does it hold for all G, G0,
and A that if G is tree-formed and satis�es A with A, and if G �!T G0,
then G0 is tree-formed and satis�es B for some B?

Since tree-formedness by Lemma 1 can be encoded as a backbone formula, we
can without loss of generality rephrase the question as follows. We say that the
triple AfT gB is tree-valid , and write AfT gB, if:

for all tree-formed G; all G0 ; and all A; G;A � A and G �!T G0

implies there is B such that G0;B � B

Note that triple tree-validity concerns only transformations of tree-formed graphs.

Our main result is to demonstrate that tree triple validity can be encoded
in M2L-BB. For simplicity we assume in what follows that an assertion now

contains only one edge constraint, and that A = �[�
a
! �] and B = �0[�0

a
! �0].

Then we say that triple AfT gB is provable and write ` AfT gB if

 8�A : 8�� :
(� ^ � ^ 8�src9�dst : (�) (� ^ (:FollT) (8�dst : :FollT))))
) 9�B : (TrT�

0

^ 8�src : TrT �
0)

((9�dst : AddT ^ TrT �
0)

_(9�dst : FollT ^ :DelT ^ TrT �
0)

_(� ^ 8�dst : :AddT ^ :FollT ^ (�) TrT �
0))))

8 Soundness, Completeness, and Decidability

Theorem11. (Soundness) ` AfT gB implies AfT gB.

Proof Assume

` AfT gB:(1)

Fix a tree-formed G, a G0, and a value assignment A to the free variables A of
A such that

G;A � A; and(2)

G �!T G0:(3)

To establish AfT gB, we only need to �nd a value assignment B to the re-
maining free variables B such that

G0;A;B � B:(4)

Now by (3) and the de�nition of transductions, there is a value assignment � to
the transduction variables � of T such that

G;� j= T :�(5)

FollT (S;�) �
=
G;(6)

G
0
= BBT (G;�); and(7)

=
G0 = (

=
GnDelT (G;�)) [AddT (G;�)(8)

In order to apply (1), we would like to show that

G;A;� � � ^ � ^ 8�src9�dst : �) (� ^ (:FollT) (8�dst : :FollT)))(9)

holds. Now by (2), we have G;A � � and G;A � [�
a
! �]. Thus it is su�cient

to �nd for each v such that G;A; src 7! v � � some w satisfying

G;A; src 7! v;dst 7! w � � ^ (:FollT) (8�dst : :FollT))(10)

The w we choose is the one such that (v; a; w) 2
=
G. This w exists by virtue

of (2) and the de�nition of edge constraint satisfaction. Moreover, G;A; src 7!
v;dst 7! w � �. Thus in order to establish (10), it su�ces to suppose that

G;A; src 7! v;dst 7! w � :FollT(11)

and to prove that no u exists such that

G;A; src 7! v;dst 7! u � FollT :(12)

For a contradiction, assume that some u does satisfy (12). Then (v; a; u) 2

FollT (G;�). But by (5), FollT (G;�) �
=
G, and thus u = w, which contra-

dicts our supposition (11). It follows that (9) holds, and by (1) we then obtain
a B such that

G;A;B;� � TrT �
0

^ 8�src : TrT �
0)

((9�dst : AddT ^ TrT �
0)

_(9�dst : FollT ^ :DelT ^ TrT �
0)

_(� ^ 8�dst : :AddT ^ :FollT ^ (�) TrT �
0)))

(13)

holds. From (13) and Lemma 9 (Faithfulness), it follows that

G;A;B � �0(14)

We thus only need to show that also the edge constraint [�0
a
! �

0] holds. To do
this, we consider v 2

=
G0 such that

G;A;B; src 7! v � �0:(15)

We must then prove that there is w such that (v; a; w)2
=
G0 and

G;A;B; src 7! v;dst 7! w � �
0
:(16)

Now by (15) and Lemma 9 (Faithfulness), we have

G;A;B;�; src 7! v � TrT �
0:(17)

Discharging the hypothesis in (13) by means of (17) gives us three cases:

G;A;B;�; src 7! v � 9�dst : AddT ^ TrT �
0(18)

G;A;B;�; src 7! v � 9�dst : FollT ^ :DelT ^ TrT �
0(19)

G;A;B;�; src 7! v � � ^ 8�dst : :AddT ^:FollT ^ (�) TrT �
0))(20)

In case (18) there is a w such that

G;A;B;�; src 7! v;dst 7! w � AddT ^ TrT �
0(21)

By (8), (v; a; w)2
=
G0, and by Lemma 9 (Faithfulness) (16) holds. Case (19) is

handled by a similar argument. Finally, in Case (20) we have by Lemma 9
(Faithfulness) that G;A;B; src 7! v � � and G;A;B; src 7! v;dst 7! w �

:AddT ^ :FollT ^ (�) TrT �
0), where w is the node such that (v; a; w)2

=
G

(this node exists by virtue of (2)). By (8), (20), and Lemma 10, we infer that
(v; a; w) 2

=
G0 and by (2) that G;A;B; src 7! v;dst 7! w � TrT �. Thus

G;A;B; src 7! v;dst 7! w � TrT �
0 holds, whence (16) holds by Lemma 9

(Faithfulness). �

Theorem12. (Completeness) AfT gB implies ` AfT gB.

Proof Proof can be found in full paper.
�

Theorem13. Transductional correctness is decidable for EC.

Proof By Theorems 2, 11, and 12. �

References

1. B. Courcelle. Graph rewriting: an algebraic and logic approach. In J. van Leeuwen,

editor, Handbook of Theoretical Computer Science, volume B, pages 193{242. Else-

vier Science Publishers, 1990.

2. B. Courcelle. The monadic second-order logic of graphs I. Recognizable sets of �nite

graphs. Information and computation, 85:12{75, 1990.

3. B. Courcelle. Monadic second-order de�nable graph transductions. In J.C. Raoult,

editor, CAAP '92, Colloquium on Trees in Algebra and Programming, LNCS 581,

pages 124{144. Springer Verlag, 1992.

4. J. Engelfriet. A characterizarion of context-free NCE graph languages by monadic

second-order logic on trees. In H. Ehrig, H.J. Kreowski, and G. Rozenberg, edi-

tors, Graph grammars and their applications to computer science, 4th International

Workshop, LNCS 532, pages 311{327. Springer Verlag, 1990.

5. N. Klarlund and M. Schwartzbach. Graph types. In Proc. 20th Symp. on Princ. of

Prog. Lang., pages 196{205. ACM, 1993.

6. N. Klarlund and M. Schwartzbach. Invariants as data types. Unpublished, 1993.

7. M. Rabin. A simple method for undecidability proofs and some applications. In

Logic, Methodology and Philosophy of Science II, pages 58{68. North-Holland, 1965.

This article was processed using the LaTEX macro package with LLNCS style

