
Graphs, Branchwidth, and Tangles! Oh My!

Illya V. Hicks
Industrial Engineering, Texas A & M University, Zachry Engineering Center, College Station, Texas 77843-3131

Branch decomposition-based algorithms have been
used in practical settings to solve some NP-hard prob-
lems like the travelling salesman problem (TSP) and
general minor containment. The notions of branch
decompositions and branchwidth were introduced by
Robertson and Seymour to assist in proving the Graph
Minors Theorem. Given a connected graph G and a
branch decomposition of G of width k where k is at least
3, a practical branch decomposition-based algorithm to
test whether a graph has branchwidth at most k − 1 is
given. The algorithm either constructs a branch decom-
position of G of width at most k − 1 or constructs a
tangle basis of order k, which offers a lower bound on
the branchwidth of G. The algorithm is utilized repeatedly
in a practical setting to find an optimal branch decom-
position of a connected graph, whose branchwidth is at
least 2, given an input branch decomposition of the graph
from a heuristic. This is the first algorithm for the optimal
branch decomposition problem for general graphs that
has been shown to be practical. Computational results
are provided to illustrate the effectiveness of finding opti-
mal branch decompositions. A tangle basis is related to
a tangle, a notion also introduced by Robertson and Sey-
mour; however, a tangle basis is more constructive in
nature. Furthermore, it is shown that a tangle basis of
order k is coextensive to a tangle of order k. © 2004 Wiley
Periodicals, Inc. NETWORKS, Vol. 45(2), 55–60 2005

Keywords: branchwidth; branch decomposition; tangle; tangle
basis

1. INTRODUCTION

Robertson and Seymour [14] introduced the notion of
branch decompositions and branchwidth to assist in their
proof of the Graph Minors Theorem. However, branch
decompositions are of algorithmic importance, because
Courcelle [7] and Arnborg et al. [2] showed that sev-
eral NP-hard problems can be solved in polynomial time
using dynamic programming techniques on input graphs
with bounded branchwidth, which are referred to as branch

Received August 2003; accepted November 2004
Correspondence to: I.V. Hicks; e-mail: ivhicks@tamu.edu
Contract grant sponsor: NSF; Contract grant number: DMI-0217265
DOI 10.1002/net.20050
Published online in Wiley InterScience (www.interscience.wiley.com).
© 2004 Wiley Periodicals, Inc.

decomposition-based algorithms. These results were origi-
nally proved for graphs with bounded treewidth, a notion
also introduced by Robertson and Seymour [13]; how-
ever, treewidth and branchwidth bound each other by
constants [14].

Despite the promising theoretical algorithmic results of
Courcelle [7] and Arnborg et al. [2], there has been little
effort in developing practical branch decomposition-based
and tree decomposition-based algorithms. As for branch
decomposition-based algorithms, the work of Cook and
Seymour [6] on the TSP and the work of Hicks [9] on
general minor containment are the most notable. One is
also referred to the work of Christian [4]. For practical
tree decomposition-based algorithms, one is referred to the
work of Koster et al. [12], Telle and Proskurowski [17],
and Alber and Neidermeier [1]. Bodlaender and Thilikos [3]
also gave a tree decomposition-based algorithm for find-
ing optimal branch decompositions but it appears to be
impractical. These examples illustrate the potential of branch
decomposition-based and tree decomposition-based algo-
rithms for other NP-hard problems. A more thorough survey
of relevant literature on this research topic can be found in
Hicks [9].

Computing the branchwidth of a general graph is NP-
hard [16]. Thus, one has to rely on heuristics to find branch
decompositions for most practical branch decomposition-
based algorithms unless the graph is planar where there
exists a polynomial time algorithm [10, 11, 16]. This arti-
cle offers a practical branch decomposition-based algorithm
to test whether an input graph has branchwidth at most k − 1
for some integer k at least 3. The algorithm will either find a
branch decomposition whose width is at most k − 1 or find a
tangle basis of order k. This algorithm is utilized repeatedly
in a practical setting to find an optimal branch decomposition
of a connected graph G whose branchwidth is at least 2, given
an input branch decomposition of width at least 3 for G by
a heuristic. The notion of a tangle basis is related to tangles,
which share a min–max relationship with the branchwidth
of graphs with branchwidth at least 2 [14]. This article also
shows that tangles and tangle bases are coextensive for graphs
with branchwidth at least 2.

Foundational definitions are given in Section 2. Section 3
introduces the notion of tangle basis and its relevant
importance. Section 4 offers the descriptions of the branch

NETWORKS—2005

decomposition algorithm, and Sections 5 and 6 are reserved
for computational results and conclusions, respectively.

2. BRANCHWIDTH

Let G be a graph (or hypergraph) with node set V(G) and
edge set E(G). Let T be a tree having |E(G)| leaves in which
every nonleaf node has degree 3. Let ν be a bijection (one-to-
one and onto function) from the edges of G to the leaves of T .
The pair (T , ν) is called a branch decomposition of G. Notice
that removing an edge, say e, of T partitions the leaves of T
and the edges of G into two subsets Ae and Be. The middle set
of e and of (Ae, Be), denoted by mid(e) or mid(Ae, Be), is the
set V(G[Ae]) ∩ V(G[Be]) where G[Ae] is the subgraph of G
induced by Ae and similarly for G[Be]. The width of a branch
decomposition (T , ν) is the maximum order of the middle sets
over all edges in T . The branchwidth of G, denoted by β(G),
is the minimum width over all branch decompositions of G. A
branch decomposition of G is optimal if its width is equal to
the branchwidth of G. For example, Figure 1 gives an optimal
branch decomposition of an example graph where some of
the middle sets of the edges of the branch decomposition
are provided. The pair (T , ν) is called a surjection branch
decomposition if ν is only a surjection (onto) function instead
of a bijection.

Graphs of small branchwidth are characterized by the
following theorem.

Theorem 1 (Robertson and Seymour [14]). A graph G has
branchwidth (a.) 0 if and only if every component of G has
≤ 1 edge; (b.) ≤ 1 if and only if every component of G has ≤ 1
node of degree ≥ 2; (c.) ≤ 2 if and only if G has no K4 minor.
�

Other classes of graphs with known branchwidth are grids
and complete graphs. The branchwidth of an a × b-grid is
the minimum of a and b while the branchwidth of a complete
graph G with at least 3 nodes is �(2/3) |V(G)|�.

FIG. 1. Example graph G with optimal branch decomposition (T , ν) with
width 3.

3. TANGLE BASES

Let G be a graph (or hypergraph) and let k ≥1 be an integer.
A separation of a graph G is a pair (G1, G2) of subgraphs of
G with G1 ∪ G2 = (V(G1) ∪ V(G2), E(G1) ∪ E(G2)) = G,
E(G1)∩E(G2) = ∅ and the order of this separation is defined
as |V(G1)∩V(G2)| where V(G1)∩V(G2) is called the middle
set of the separation. For a hypergraph G, define I(G) to be the
bipartite graph such the nodes of I(G) correspond to the nodes
and edges of G and an edge ev in I(G) corresponds to the edge
e of G being incident with the node v in G. A hypergraph G is
called connected if I(G) is connected. Also, let γ (G) denote
the largest cardinality of a set of nodes incident to an edge of
G. Thus, for an edge e, γ (e) is the number of nodes incident
with e. A tangle in G of order k is a set T of separations of
G, each of order < k, such that:

(T1) for every separation (A, B) of G of order < k,

one of (A, B), (B, A) is an element of T ;

(T2) if (A1, B1), (A2, B2), (A3, B3) ∈ T
then A1 ∪ A2 ∪ A3 	= G; and

(T3) if (A, B) ∈ T then V(A) 	= V(G).

These are called the first, second, and third tangle axioms.
The tangle number of G, denoted by θ(G), is the maximum
order of any tangle of G. Figure 2 gives an example of a tangle
of order 3 for the graph in Figure 1. Notice in Figure 2 that the
inclusion of separations of the graph of order 3 in the tangle
would result in a violation of one of the tangle axioms. A tan-
gle T of G with order k can be thought of as a “k-connected”
component of G because some “k-connected” component of
G will either be on one side or the other for any separation
of T . Robertson and Seymour [14] proved a strong min–max
relation between tangles and branch decompositions which
is given below.

Theorem 2 (Robertson and Seymour [14]). For any hyper-
graph G such that E(G) 	= ∅, max{β(G), γ (G)} = θ(G). �

For our algorithm we will need a more concrete version of
a tangle. For an integer k and hypergraph G, a tangle basis B
of order k is a set of separations of G with order < k such that:

Separation of order 0
(∅, G)

Separations of order 1
(v, G) ∀ v ∈ V(G)

Separations of order 2
({v, w}, G) ∀ v, w ∈ V(G)

(G[e], G[E(G) \ e]) ∀ e ∈ E(G)

(G[0, 2, 4, 6, 8], G[1, 3, 5, 7, 9])
FIG. 2. Tangle of order 3 for the graph of Figure 1.

56 NETWORKS—2005

(B1) (G[e], G[E(G) \ e]) ∈ B, ∀ e ∈ E(G) if γ (e) < k

(B2) if (C, D) ∈ B and � e ∈ E(G) such that G[e] = C

if and only if ∃ (A1, B1), (A2, B2) ∈ B
such that A1 ∪ A2 = C and B1 ∩ B2 = D

(B3) B obeys the tangle axioms T2 and T3.

We will refer to B1, B2, and B3 as the tangle basis axioms.
The concept for a tangle basis comes from two lemmas about
tangles given by Robertson and Seymour [14], which are the
following.

Lemma 1 (Robertson and Seymour [14]). Let T be a set
of separations of a hypergraph G, each of order < k, some
integer, and satisfying T1 and T2. Then T is a tangle if
and only if (e, G \ e) ∈ T for every e ∈ E(G) such that
γ (e) < k. �
Lemma 2 (Robertson and Seymour [14]). If T is a tangle
of order k and (A, B), (A′, B′) ∈ T and (A ∪ A′, B ∩ B′) has
order < k then (A ∪ A′, B ∩ B′) ∈ T . �

A tangle basis B in G of order k is connected if every
separation (A, B) of B has A connected. Define the connected
tangle basis number of G, denoted by θ ′(G), as the maxi-
mum order of any connected tangle basis of G. An example
of a connected tangle basis for the graph in Figure 1 is given
by (G[e], G[E(G) \ e]) ∀ e ∈ E(G). Notice that the num-
ber of separations of the connected tangle basis of Figure 1
is lower than the number of separations of the tangle of
Figure 1 offered by Figure 2 but still contains the essential
members of the tangle. This will be helpful in the speedup
of the algorithm. In addition, there are certain separations
that the tangle basis prohibits. These types of separations
(C, D) satisfy the order restriction of a tangle basis but the
separation cannot be constructed from other members of the
tangle basis using the tangle basis axiom B2. For exam-
ple, the separation (G[0, 2, 4, 6, 8], G[1, 3, 5, 7, 9]) is excluded
from the connected tangle basis for the graph of Figure 1.
Below, a min–max theorem relating connected tangle bases
and branchwidth is offered.

Theorem 3. If hypergraph G is connected such that β(G) ≥
γ (G), then β(G)= θ ′(G).

Proof. Clearly, θ ′(G) ≥ θ(G) by Theorem 2 and
Lemmas 1 and 2. To prove θ ′(G) ≤ β(G), we will show
that an optimal branch decomposition of G bounds θ ′(G) by
showing that for any connected subgraph C (E(C) 	= ∅) of
G, the separation (C, G[E(G) \ E(C)]) is in the tangle basis
of order θ ′(G) (including (G, ∅)) if θ ′(G) > β(G).

Suppose θ ′(G) > β(G) and let B be a connected tan-
gle basis of order θ ′(G) and let (T , ν) be an optimal branch
decomposition of G. Let st be an edge of T . Subdivide st
by deleting st and introducing a node p and edges sp and
pt. Root T at p. So every nonleaf node u has two children, l
and r. For tree node u, denote by Gu the subgraph induced

by the edges of G corresponding to the leaves of T in the
subtree rooted at u. For a tree node u, let Bu denote the sub-
set of separations (A, B) of B such that A (connected) is a
subgraph of Gu. So for a leaf w of T , Bw would only consist
of (ν−1(w), G[E(G) \ ν−1(w)]), by tangle basis axiom B1.
For a nonleaf tree node u that is not p, let (C, D) denote a
separation of G such that C is a connected subgraph of Gu.
Because θ ′(G) > β(G), the subtree of T rooted at the least
common ancestor (common ancestor with greatest depth) of
the leaves of T corresponding to the edges of C dictate a way
to use the tangle basis axiom B2 to derive C from members
of Bl ∪ Br . Thus, Bu will contain separations (C, D) such
that C is a connected component of Gu. For the root p, Bp

will contain separations (C, D) such that C is a connected
component of Gs and Bp will also contain separations (F, H)

such that F is a connected component of Gt . Let (Cs, Ds)

and (Ct , Dt) be members of Bp such that Cs is a connected
component of Gs, Ct is a connected component of Gt , and
V(Cs) ∩ V(Ct) 	= ∅. Because the order of (Cs ∪ Ct , Ds ∩ Dt)

is at most |mid(st)|, then (Cs ∪ Ct , Ds ∩ Dt) ∈ Bp by the
tangle basis axiom B2. If Cs ∪ Ct = G, then stop, else there
exists a separation (Cx, Dx) such that Cx is a connected com-
ponent of Gs or Gt and Cx ∩ (Cs ∪ Ct) is maximal (one exists
because G is connected). Because Cx is either a connected
component of Gs or a connected component of Gt (but not
both) then the order of (Cx ∪ Cs ∪ Ct , Dx ∩ Ds ∩ Dt) is at
most |mid(st)| and (Cx ∪ Cs ∪ Ct , Dx ∩ Ds ∩ Dt) ∈ Bv by
the tangle basis axiom B2. Continue this process until the
separation (G, ∅) is constructed. So, (G, ∅) can be derived
from the members of Bs and Bt using the tangle basis axiom
B2 because G is connected. Thus, (G, ∅) would be a mem-
ber of Bv and also of B, which contradicts tangle axiom T3.
Therefore, θ ′(G) ≤ β(G). ■

Tangle bases are similar in nature to respectful tangles
associated with a surface � in the fact that only certain sepa-
rations are needed to make the min–max relationship between
branch decomposition and tangles valid. Respectful tangles
were discussed in the work of Robertson and Seymour [15]
and created the foundation for the Seymour and Thomas [16]
result for planar graphs. Because we have shown the min–
max relationship between connected tangle bases and branch
decompositions, we can now discuss how the two can be used
to create an algorithm to test if a given graph has branchwidth
at most k − 1 where k ≥ 3.

4. AN ALGORITHM FOR A TANGLE BASIS

Assume we are given a connected graph G with branch-
width at least 2 and a branch decomposition (T , ν) of G of
width k > 2. We describe an algorithm that either gives a
connected tangle basis or order k, or a branch decomposition
of width k − 1 for G. This algorithm is somewhat described
in the proof of Theorem 3. In addition, each separation (A, B)

created will also have a surjection branch decomposition of
G associated with it where the edges of B will be mapped

NETWORKS—2005 57

to one leaf node. The construction of these surjection branch
decompositions are discussed in Section 4.1.

Initially, this branch decomposition-based algorithm in-
cludes making the tree of the branch decomposition into a
rooted binary tree by subdividing an edge st of the branch
decomposition and the newly created node p will be the root
of the tree. The process also involves visiting the nodes of
the tree in postdepth first-search order where each node of
the tree will correspond to a set of distinct subgraphs of G, a
tangle set. Because one member of a separation dictates the
separation, each member of a tangle set will be considered the
first member of its corresponding separation. A graph is in the
tangle set if it is connected and the order of its corresponding
separation is at most k − 1.

For the leaves of the rooted branch decomposition, if the
leaf u corresponds to edge ab ∈ E(G) then the graph of ab
would be the only member of u’s tangle set because k > 2.
For a nonleaf node u in the rooted branch decomposition, u
will have children l and r. Suppose that graph Gl is a graph
in the tangle set of l and Gr is a graph in the tangle set of r.
If Gl ∪ Gr is connected and the separation associated with
Gl ∪ Gr has order at most k − 1, then Gl ∪ Gr becomes a
member of the tangle set for u. Also, the members of the
tangle sets of l and r become members of the tangle set for
u. To find all possible members for the tangle set of u, we
keep joining any two members of the tangle set for u until
either no more new members are created or G is created.
If G is a member of the tangle set for the root p, then we
also have a branch decomposition of G of width at most k −
1. If G is not a member of the tangle set for p, then the
tangle set corresponds to a connected tangle basis of G with
order k. For the complexity of the algorithm, there are O(e)
nodes in the rooted branch decomposition tree where e =
|E(G)|. Thus, the complexity of the algorithm is O(n2k−2e)
because a tangle basis can have O(nk−1) members where
n = |V(G)|.

4.1. Joining Surjection Branch Decompositions

This section shows how to construct the associated sur-
jection branch decompositions for leaf nodes and how to join
surjection branch decompositions associated with Gl and Gr

to form a surjection branch decomposition of G associated
with Gl ∪ Gr . Given a graph G1 in the tangle set of some
node of the input branch decomposition, the surjection branch
decomposition (T1, ν1) of G associated with G1 will consist
of distinct leaves of T1 for each edge of G1 but only one leaf h1

for all edges in E(G)\E(G1). Also, the middle set of the edge
of T1 incident with h1 will be V(G1)∩ V(G[E(G) \ E(G1)]).
These surjection branch decompositions are used to conserve
the composition structure of the separations.

The surjection branch decomposition (T ′, ν′) associated
with a leaf node of T that corresponds to some edge ab will be
an edge vh′, where ν′(ab) = u and ν′(E(G) \ {ab}) = h′. For
the joining of two surjection branch decompositions (Tl, νl)

and (Tr , νr), there are two cases to consider: Gl ∪ Gr 	= G
and Gl ∪ Gr = G. Figure 3 illustrates the joining procedure

FIG. 3. Joining surjection branch decompositions.

for both cases where the top case is for Gl ∪ Gr 	= G. For
the first case, let vhl be the edge of (Tl, νl) and let whr be
the edge of (Tr , νr), where νl(hl) = E(G) \ E(Gl) and
νr(hr) = E(G) \ E(Gr), respectively. Create the new sur-
jection branch decomposition (T ′, ν′) of G by deleting the
nodes hl and hr , introducing new nodes x and h′ such that x
is incident with v, w, and h′, and ν′ such that

ν′(e) =




νl(e) if e ∈ E(Gl),

νr(e) if e ∈ E(Gr),

h′ else

For the final case, let vhl and whr be defined as earlier. Create
the new branch decomposition of G by deleting the nodes
hl and hr and adding the edge vw. Because, the separation
associated with Gl ∪ Gr has order at most k − 1 then the
associated surjection branch decomposition of G for Gl ∪
Gr will have width at most k − 1, and if Gl ∪ Gr = G,
then the new surjection branch decomposition of G will have
width at most k − 1 and will be a branch decomposition
of G.

5. COMPUTATIONAL RESULTS

The usage of the connectedness and only joining
edge-disjoint members increased the runtime speedup and
decreased memory requirements. Dominance was also used
in the algorithm. Suppose F and H are in the tangle set
of some tree node u and V(F) ∩ V(G[E(G) \ E(F)]) =
V(H) ∩ V(G[E(G) \ E(H)]) (i.e., the middle set associated
with F is equivalent to the middle set associated with H).
If F is a strict subgraph of H then H dominates F and F
can be deleted from the tangle set of u. This is true, because
any graph K that is not a subgraph of H and can join with
F, can also join with H. Thus, for every possible subset of
nodes with at most k − 1 elements, there will be at most one
member of the tangle set with the subset as its corresponding

58 NETWORKS—2005

TABLE 1. Optimal branch decomposition results.

Graphs Nodes Edges Start width β Time (seconds)

bad.tele133 133 212 6 5 29,818
c3xc4 12 24 6 6 6.4
starfish 20 30 6 5 16.4
advbnd 196 242 3 3 2.5
celbnd 178 215 3 3 1.4
colbur 40 54 3 3 0.0
decomp 117 150 4 3 2.2
diagns 48 61 3 3 0.1
field 746 919 4 4 60,817
fmin 78 104 3 3 0.0
fmtgen 59 77 4 4 5.9
heat 69 95 3 3 0.0
init 348 449 3 3 5.0
injcon 80 105 3 3 0.0
integr 50 70 3 3 0.0
lasden 66 85 3 3 0.0
putb 138 175 3 3 0.6
radbg 639 795 3 3 6.7
radfg 654 812 3 3 8.7
rkfs 122 165 5 5 5,544
smooth 298 361 3 3 2.3
svd 320 412 4 4 386.1
trans 73 95 4 4 13.4
twldrv 264 362 5 4 57,956

middle set, which is why a tangle basis can have O(nk−1)

members where n = |V(G)|.
The computational results for computing optimal branch

decompositions are given in Tables 1, 2, and 3. All com-
putations were performed on a SGI IRIX6.4 and the soft-
ware was written in the C++ language. The computational
results include a recursive call to the algorithm discussed in
Section 4. Once a new branch decomposition of G of lower
width is found, the algorithm is called again with the new
branch decomposition as the input branch decomposition.
This step is repeated until a tangle basis of the input graph
is found, which means the last input branch decomposition

TABLE 2. Optimal branch decomposition results.

Graphs Nodes Edges Start width β Time (seconds)

cim.60.166 60 166 8 ? > 100,000
comp.20.30 20 30 5 5 1.8
fac.foro.8.24 8 24 5 5 0.1
fac.foul.8.24 8 24 6 6 0.5
fac.leun.10.44 10 44 9 7 10.9
hims.34.45 34 45 4 4 0.4
hims.46.64 46 64 5 4 1.7
hims.48.69 48 69 6 5 10,196
jaya.10.22 10 22 5 5 0.2
kant.45.85 45 85 4 4 0.8
mart.cb450.30.6.56 30 56 4 4 1.1
mart.cb450.45.8.98 45 98 5 5 786.9
mart.cb450.47.8.99 47 99 6 5 9,223
mart.cb450.47.9.101 47 101 8 ? > 100,000
mart.cl.17.4.39 17 39 5 5 2.3
sug.43.62 43 62 4 4 1.6

TABLE 3. Optimal branch decomposition results.

Graphs Nodes Edges Start width β Time (seconds)

class12 12 45 7 7 565.5
class8 8 18 4 4 0.0
g1.cimi 10 21 5 4 0.0
g1 10 22 5 5 0.2
g10 25 71 4 4 0.4
g11 25 72 5 5 57.8
g2.cimi 60 166 8 ? > 100,000
g2 45 85 4 4 0.8
g3.cimi 28 75 4 4 1.1
g4.cimi 10 22 5 5 0.2
g4 10 25 4 4 0.0
g5.cimi 45 85 4 4 0.8
g5 10 26 4 4 0.0
g6.cimi 43 63 6 5 173.3
g6 10 27 4 4 0.0
g7 10 34 6 6 5.3
g9 25 70 4 4 1.4
t1 11 22 4 4 0.0
t2 17 25 5 5 1.1

was optimal. Most of the graphs given in Table 1 come from
instances of control-flow graphs from actual C compilations.
These test instances were provided by Keith Cooper at Rice
University, and usually have small branchwidth [18]. The
graphs given in Tables 2 and 3 are test instances for the
maximum planar subgraph problem. These graphs were pro-
vided by Petra Mutzel at Vienna University of Technology,
Brett Peters of Texas A&M University, and Mauricio Resende
at AT&T Labs. The maximum planar subgraph problem is
important to network visualization and facility layout design.
The input branch decompositions were given by an heuris-
tic developed by Hicks [8], which is competitive with the
heuristic developed by Cook and Seymour [5, 6].

For the tables, the column labeled “start width” offers
the width of the initial branch decomposition. The column
labeled “β” gives the branchwidth of the graphs, if they were
obtained. The column labeled “time” only offers the runtime
(in seconds) for computing the optimal branch decomposi-
tion from the initial branch decomposition. The run times do
not include the time needed by the heuristic to construct an
initial branch decomposition. The code was stopped if the
run time exceeded 100,000 seconds. As one can tell from
the tables, the algorithm relies heavily on the starting width
of the input branch decomposition and the number of edges
in the graphs. For instance, the run times for field and twl-
drv in Table 1 are similar, but the starting width and number
of edges for the field were 4 and 919, respectively, while
the starting width and number of edges for twldrv were 5
and 362. The code also failed to find optimal branch decom-
positions when the input width was 8 and the graph had at
least 100 edges. In contrast, the code performed well for
graphs with input width at most 7. Although not apparent,
the run times also depended upon the number of edges of
the branch decomposition with large middle sets.

NETWORKS—2005 59

6. CONCLUSIONS AND FUTURE WORK

In conclusion, we presented a more constructive object
similar to a tangle called a tangle basis, and showed that
tangles and tangle bases are coextensive for graphs with
branchwidth of at least 2. Furthermore, we used the tangle
bases to construct a branch decomposition-based algorithm
to test if a connected graph G has branchwidth at most
k − 1, where k ≥ 3. This algorithm was used repeatedly
to find an optimal branch decomposition of a graph given an
input branch decomposition from a heuristic. We also showed
through computational results that the algorithm is dependent
upon the input width and the number of edges in the graph.
Thus, the algorithm performed well for input graphs with a
small number of edges and low initial width branch decom-
positions. Future directions in this area include finding more
ways to decrease the number of members in a tangle set and
the algorithm’s possible use to find members of obstruction
sets of graphs with a branchwidth of at most a constant k.

Acknowledgments

The author would like to thank Bill Christian and Bill Cook
for our discussions about the research. The author would like
to acknowledge the anonymous referees who assisted in the
presentation of the research.

REFERENCES

[1] J. Alber and R. Niedermeier, Improved tree decomposition
based algorithms for domination-like problems, Proc 5th
Latin American Theoretical Informatics, Springer-Verlag,
Heidelberg, Germany, 2002, pp. 613–627.

[2] S. Arnborg, J. Lagergren, and D. Seese, Easy problems for
tree-decomposable graphs, J Algorithms 12 (1991), 308–340.

[3] H. Bodlaender and D. Thilikos, Constructive linear time algo-
rithms for branchwidth, Proc 24th International Colloquium
on Automata, Languages, and Programming, P. Degano,

R. Gorrieri, and A. Marchetti-Spaccamela (Editors),
Springer-Verlag, Heidelberg, Germany, 1997, pp. 627–637.

[4] W.A. Christian, Linear-time algorithms for graphs with
bounded branchwidth, PhD thesis, Rice University, 2003.

[5] W. Cook and P.D. Seymour, An algorithm for the ring-router
problem, technical report, Bellcore, 1994.

[6] W. Cook and P.D. Seymour, Tour merging via branch-
decomposition, INFORMS J Comput 15 (2003), 233–248.

[7] B. Courcelle, The monadic second-order-logic of graphs
I: Recognizable sets of finite graphs, Informat Comput 85
(1990), 12–75.

[8] I.V. Hicks, Branchwidth heuristics, Congressus Numeran-
tium 159 (2002), 31–50.

[9] I.V. Hicks, Branch decompositions and minor containment,
Networks 43 (2004), 1–9.

[10] I.V. Hicks, Planar branch decompositions I: The ratcatcher,
INFORMS J Comput (2005), to appear.

[11] I.V. Hicks, Planar branch decompositions II: The cycle
method, INFORMS J Comput (2005), to appear.

[12] A. Koster, S. van Hoesel, and A. Kolen, Solving partial
constraint satisfaction problems with tree-decomposition,
Networks 40 (2002), 170–180.

[13] N. Robertson and P.D. Seymour, Graph minors I: Excluding
a forest, J Comb Theory Series B 35 (1983), 39–61.

[14] N. Robertson and P.D. Seymour, Graph minors X: Obstruc-
tions to tree-decompositions, J Comb Theory Series B 52
(1991), 153–190.

[15] N. Robertson and P.D. Seymour, Graph minors XI: Circuits
on a surface, J Comb Theory Series B 60 (1994), 72–106.

[16] P.D. Seymour and R. Thomas, Call routing and the ratcatcher,
Combinatorica 14 (1994), 217–241.

[17] J.A. Telle and A. Proskurowski, Algorithms for vertex par-
titioning problems on partial k-trees, SIAM J Discrete Math
10 (1997), 529–550.

[18] M. Thorup, All structured programs have small tree width
and good register allocation, Informat Comput 142 (1998),
159–181.

60 NETWORKS—2005

