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GRAPH SIGNAL PROCESSING: 

FOUNDATIONS AND EMERGING DIRECTIONS

IEEE SIGNAL PROCESSING MAGAZINE   |   November 2020   | 1053-5888/20©2020IEEE

Fernando Gama, Elvin Isufi, Geert Leus, 
and Alejandro Ribeiro

N
etwork data can be conveniently modeled as a graph sig-

nal, where data values are assigned to nodes of a graph that 

describes the underlying network topology. Successful 

learning from network data is built upon methods that effec-

tively exploit this graph structure. In this article, we leverage 

graph signal processing (GSP) to characterize the representa-

tion space of graph neural networks (GNNs). We discuss the 

role of graph convolutional filters in GNNs and show that any 

architecture built with such filters has the fundamental proper-

ties of permutation equivariance and stability to changes in the 

topology. These two properties offer insight about the workings 

of GNNs and help explain their scalability and transferability 

properties, which, coupled with their local and distributed na-

ture, make GNNs powerful tools for learning in physical net-

works. We also introduce GNN extensions using edge-varying 

and autoregressive moving average (ARMA) graph filters and 

discuss their properties. Finally, we study the use of GNNs in 

recommender systems and learning decentralized controllers 

for robot swarms.

Introduction
Data generated by networks are increasingly common in power 

grids, robotics, biological, social and economic networks, and 

recommender systems among others. The irregular and com-

plex nature of these data poses unique challenges so that suc-

cessful learning is possible only by incorporating the structure 

into the inner-working mechanisms of the model [1].

Convolutional neural networks (CNNs) have epitomized the 

success of leveraging the data structure in temporal series and 

images transforming the landscape of machine learning in the 

last decade [2]. CNNs exploit temporal or spatial convolutions 

to learn an effective nonlinear mapping, scale to large settings, 

and avoid overfitting [2, Ch. 10]. CNNs offer also some degree 

of mathematical tractability, allowing the derivation of theo-

retical performance bounds under domain perturbations [3]. 

However, convolutions can only be applied to data in regular 

domains, hence making CNNs ineffective models when learn-

ing from irregular network data.
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Graphs are used as a mathematical description of network 

topologies, while the data can be seen as a signal on top of 

this graph. In recommender systems, for instance, users can 

be modeled as nodes, their similarities as edges, and the rat-

ings given to items as graph signals. Processing such data by 

accounting also for the underlying network structure has been 

the goal of the field of GSP [1]. GSP has extended the concepts 

of Fourier transform, graph convolutions, and graph filtering to 

process signals while accounting for the underlying topology.

Graph CNNs (GCNNs) build upon graph convolutions to 

efficiently incorporate the graph structure into the learning 

process [4]. A GCNN is a concatenation of layers, in which 

each layer applies a graph convolution followed by a pointwise 

nonlinearity [5]–[11]. GCNNs exhibit the key properties of 

permutation equivariance and stability to perturbations [12], 

[13]. The former means GCNNs exploit topological symme-

tries in the underlying graph, while the latter implies the output 

is robust to small changes in the graph structure. These results 

allow GCNNs to scale to large graphs and transfer to different 

(but similar) scenarios.

Graph convolutions can be exactly modeled by finite impulse 

response (FIR) graph filters [1]. FIR graph filters often require 

large orders to yield highly discriminatory models, demanding 

more parameters and an increased computational cost. These 

limitations are well understood in the field of GSP, and alterna-

tive graph filters such as the ARMA and edge-varying graph 

filters have been proposed to address this [14], [15]. ARMA 

graph filters maintain the convolutional structure but can 

achieve a similar response with fewer parameters. Contrarily, 

the edge-varying graph filters are inspired by their time-vary-

ing counterparts and adapt their structure to the specific graph 

location. The enhanced flexibility of edge-varying graph filters 

requires more parameters but their use lays the foundation of a 

unified framework for all GNNs [16], generalizing GCNNs by 

using nonconvolutional graph filters.

In this article, we characterize the representation space of 

GNNs, obtaining properties and insights that hold irrespective of 

the specific implementation or set of parameters obtained from 

training. We highlight the role of graph filters in such a charac-

terization and exploit GSP concepts to derive the permutation 

equivariance and stability properties that hold for all GCNNs.

Graphs and convolutions
We capture the irregular structure of the data by means of an un-

directed graph ( , , )G V E W=  with node set { , , },N1V f=  

edge set ,E V V#3  and weight function .: RW E " +  The 

neighborhood of node i V!  is the set of nodes that share an 

edge with node i, and it is denoted as { : ( , ) }.j j iN V Ei ! !=  

An N N#  real symmetric matrix S, known as the graph shift 

operator, is associated to the graph and satisfies [ ] s 0S ij ij= =  

if ( , )j i E"  for ,j i!  i.e., the shift operator has a zero when-

ever two nodes are disconnected. Common shift operators in-

clude the adjacency, Laplacian, and Markov matrices as well as 

their normalized counterparts [1]. The data on top of this graph 

forms a graph signal ,x R
N!  where the ith entry [ ] xx i i=  is 

the datum of node i. Entries xi  and x j  are pairwise related to 

each other if there exists an edge ( , ) .i j E!  The graph signal 

x can be shifted over the nodes by using S so that the ith entry 

of Sx is

 [ ] [ ] [ ] ,s xSx S xi ij j

j

N

ij

j

j

1 Ni

= =

!=

/ /  (1)

where the last equality holds due to the sparsity of S (local-

ity). The output Sx is another graph signal where the value at 

each node is the linear combination of the values of x at the 

neighbors.

Equipped with the notion of signal shift, we define the 

graph convolution as a linear shift-and-sum operation. Given 

a set of parameters [ , , ] ,h hh K0 f=
<  the graph convolution is

 ( ) .hH S x S xk

k

K
k

0

=

=

/  (2)

Operation (2) linearly combines the information contained in 

different neighborhoods. The k-shifted signal S x
k  contains a 

summary of the information located in the k-hop neighborhood 

and hk  weighs this summary. This is a local operation since 

( )S x S S x
k k 1
=

-  entails k information exchanges with one-hop 

neighbors [cf. (1)]. The graph convolution (2) filters a graph 

signal x with an FIR graph filter H(S); thus, we refer to the 

weights hk  as the filter taps or filter weights.

We can gain additional insight about graph convolutions 

by analyzing (2) in the graph frequency domain [1]. Consider 

the eigendecomposition of the shift operator S V VK=
<  with 

orthogonal eigenvector matrix V R
N N! #  and diagonal eigen-

value matrix R
N N!K #  ordered as .N1 g# #m m  The eigen-

vectors vi  conform the graph frequency basis of graph G  and 

can be interpreted as signals representing the graph oscillating 

modes, while the eigenvalues im  can be considered as graph 

Layer 1 Layer 2

x z1 = H1(S)x z2 = H2(S)x1x1 = v(z1) x2 = v(z2)
z1

x2 = U(x; S, H)
x1

z2

FIGURE 1. Each blue block represents a linear graph filter and each green block represents a nonlinearity. The concatenation of a convolutional graph filter 

[cf. (2)] and a nonlinearity forms a graph perceptron (Definition 1) or layer. Using a bank of graph convolutional filters [cf. (10) and (11)] and cascad-

ing several layers, leads to a GCNN. GCNNs are a subset of GNNs, which follow the same structure but consider arbitrary graph filters; see the section 

“Extensions: General Graph Filters.” 
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frequencies. Any signal x can be expressed in terms of these 

graph oscillating modes

 .V xx =
<u  (3)

Operation (3) is known as the graph Fourier transform (GFT) 

of x, in which entry [ ] xx i i=u u  denotes the Fourier coefficient 

associated to graph frequency im  and quantifies the contribu-

tion of mode vi  to the signal x [1]. Computing the GFT of the 

output signal (2) yields

 ( ) ,h hy V y V V V x x H xk
k

k

K
k

k

k

K

0 0

K K K= = = =
< <<

= =

u u u/ /  (4)

where ( )H K  is a diagonal matrix with ith diagonal element 

( )h im  for :h RR "  given by

 ( ) .h hk
k

K
k

0

m m=

=

/  (5)

The function in (5) is the frequency response of the graph filter 

H(S) and it is determined solely by the filter taps h. The ef-

fect that a filter has on a signal depends on the specific graph 

through the instantiation of ( )h m  on the eigenvalues im  of S. It 

affects the ith frequency content of yu  as

 ( ) .y h xi i im=u u  (6)

That is, the graph convolution (2) modifies the ith frequency 

content xiu  of the input signal x according to the filter value 

( )h im  at frequency .im  Notice the graph convolution is a point-

wise operator in the graph frequency domain, in analogy to the 

convolution in time and images.

GCNNs
Learning from graph data requires identifying a representation 

map ( )$U  between the data x and the target representation y that 

leverages the graph structure, ( ; ).y x SU=  The image of U  is 

known as the representation space and determines the space 

of all possible representations y for a given S and any input x. 

One example of a representation map is the graph convolution 

( ; , ) ( )x S H S xHU =  in (2), where set { }hH =  contains the 

filter coefficients that characterize its representation space [17]. 

To learn this map, we consider a cost function ( )J $  and a train-

ing set { , , }x xT 1 Tf= ; ;  with T; ; samples. The learned map 

is then ( ; , )x S HU
)  with

 ( ( ; , )).argmin J
1

x SH
T

H
xH T

U=
)

!

/  (7)

Typical cost functions include the mean squared error (MSE) or 

the L1 loss for regression and cross-entropy loss for classifica-

tion problems [2]. Problem (7) consists of finding the K 1+  

filter taps { }hH =) )  that best fit the training data w.r.t. cost 

( ),J $  with K being a design choice (a hyperparameter). Howev-

er, graph convolutions limit the representation power to linear 

mappings. We can increase the class of mappings that leverage 

the graph by nesting convolutions into a nonlinearity. The latter 

leads to the concept of the graph perceptron, which is formal-

ized next.

Definition 1 (Graph Perceptron). A graph perceptron is a 

mapping that applies an entrywise nonlinearity ( )$v  to the output 

of a graph convolution ( ) ,H S x  i.e.,

 ( ; , ) ( ( ) ),x S H S xH vU =  (8)

where set { }hH =  contains the filter coefficients.

The graph perceptron generates another graph signal obtained 

as a graph convolution followed by a nonlinearity (e.g., a rectified 

linear unit (ReLU) ( ) { , }).maxz z 0v =  As such, the graph per-

ceptron captures nonlinear relationships between the data x and 

the target representation y. By building then a cascade of L  graph 

perceptrons, we get a multilayer graph perceptron, where at layer 

, we compute

 ( ( ) ), , , .L1x H S x 1 , fv= =, , ,-  (9)

Differently from (8), a multilayer graph perceptron  allows nonlin-

ear signal mixing between nodes. This can be seen in (9) where 

the input of the perceptron at layer , is ,x 1,-  which is in turn the 

output of the perceptron at  layer , ( ( ) ).1 x H S x1 1 2, v- =, , ,- - -  

The cascade form allows, therefore, graph convolutions of nonlin-

ear signal transformations coming from the precedent layer (Fig-

ure 1). Unrolling this recursion to all layers, we have that the input 

to the first layer is the data x x0 =  and the output of the last layer 

is the estimate of the target representation ( ; , );x x S HL U=  

here, the set { }hH = , ,  contains the filter taps of the L graph 

filters in (9).

The graph perceptron (8) and the multilayer graph perceptron 

(9) can be viewed as specific GCNNs. The former is a GCNN of 

one layer, while the latter is a GCNN of L layers. As it is a good 

practice in neural networks [2], we can substantially increase the 

representation power of GCNNs by incorporating multiple paral-

lel features per layer. These features are the result of processing 

multiple input features with a parallel bank of graph filters. Let us 

consider F 1,-  input graph signal features , ,x x
F

1
1

1
1

f, ,- -

,-  at layer 

.,  Each input feature x
g

1,-  for , ,g F1 1f= ,-  is processed in par-

allel by F,  different graph filters of the form (2) to output the F,  

convolutional features

 ( ) , , , .h f F1u H S x S x
fg fg g

k
fg

k

K
k g

1

0

1 f= = =, , , , , ,-

=

-/  (10)

The convolutional features are subsequently summarized along 

the input index g to yield the aggregated features (see [16, eq. 

(13)] for a compact matrix-based notation)

 ( ) , , , .f F1u H S x
f fg

g

F
g

1

1

1

f= =, , , ,

=

-

,-

/  (11)

The aggregated features are finally passed through a nonlinearity 

to complete the th,  layer output

 , , , .f F1x u
f f

fv= =, , ,^ h  (12)

A GCNN in its complete form is a concatenation of L layers, 

in which each layer computes operations (10)–(12). (We omit 
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 pooling to emphasize the role of graph filters. Please refer to [5]–

[7] for pooling methods.) Differently from the multilayer graph 

perceptron GCNN in (9), the complete form employs a parallel 

bank of F F 1#, ,-  graph convolutional filters. This increases the 

representation power of the mapping and exploits both the stable 

operation in signal processing, the convolution, and the underly-

ing graph structure of the data. The input to the first layer is the 

data x x0 =  and the target representation is the collection of FL  

features of the last layer [ , , ] ( ; , ),x x x S HL L

F1 L

f U=  where set 

{ }hH
fg

fg= , ,  collects now the filter taps of all layers. For a giv-

en S and fixed hyperparameters L, ,F,  and K, the representation 

space of a GCNN is characterized by the set of filter coefficients 

at each layer .H  This representation space is different from the 

one obtained by using linear FIR filters representation maps [17]. 

(See “Implementations of GCNN.”) 

We can learn the filter taps by solving (7) with the GCNN 

map ( ; , ).x S HU  To do so, we use some optimization method 

based on stochastic gradient descent [18] and, noting the GCNN 

is a compositional layered architecture, we also use backpropa-

gation to compute the derivatives of the loss function ( )J $  with 

respect to the filter taps H  [19]. Since the training data comes 

from a distribution that has a graph structure S, we expect the 

learned map ( ; , )x S HU
)  to generalize and perform well for data 

x T"  that come from a similar distribution leveraging S. The 

rationale behind this expectation is that the GCNN is a nonlin-

ear processing architecture that exploits the knowledge the graph 

carries about the data. Another advantage of a GCNN is its local 

implementation due to the use of graph convolutions [cf. (2)] and 

pointwise nonlinearities. In fact, all the F F 1#, ,-  convolutional 

features in (10) are local over the graph as they simply comprise 

a parallel bank of graph convolutional filters, each of which is 

local [cf. (2)]. Further, since the aggregation step in (11) happens 

across features of the same node and the nonlinearity in (12) is 

pointwise, these operations are also local and distributable. This 

built-in characteristic of GCNNs naturally leads to learning solu-

tions that are distributed on the underlying graph. (See “Imple-

mentations of GCNNs.”)

Permutation equivariance
A graph shift operator S fixes an arbitrary ordering of the nodes 

in the graph. Since nodes are naturally unordered, we want the 

GCNN output to be unaffected by it. That is, we want any change 

in node ordering to be reflected with the corresponding reordering 

in the GCNN output. It turns out GCNNs are unaffected by node 

Given a matrix representation S  and fixed set of hyperpa-
rameters [number of layers ,L  filter taps ,K  features F,  
and nonlinearity ( )$v ], the representation space of the 
graph convolutional neural network (GCNN) model (10)–
(12) is characterized by the set of parameters H  that 
determine the graph filters. There exist in the literature dif-
ferent implementations for the graph convolution operation 
(10), as well as other parametrizations that further restrict 
this representation space. We overview these in light of the 
description (10)–(12).
Same representation space
Spectral GCNNs [5] compute (10) in the spectral domain 
(4) and consider the (normalized) Laplacian as the shift ;S

as long as all the eigenvalues of S  are different, both 
(4) and (10) are equivalent [1]. ChebNets [6] use a 
Chebyshev polynomial to compute the graph convolution 
and consider as S  a normalized version of the Laplacian 
that forces all eigenvalues to be in [ , ]1 1-  which is re -
quired for the use of Chebyshev polynomials; Chebsyhev 
polynomials are equivalent to the polynomials in (10). In 
summary, we see that [5] and [6] just differ in their imple-
mentation of the graph convolution, but all cover the same 
representation space as the GCNN model (10)–(12) for 
the specific shift .S

Smaller representation space
GCNs [8] consider (10) with only the one-hop filter 
tap h fg

1,  for each layer and each filter, i.e., K 1=  and 
h 0fg

0 =,  for all ;,  they adopt a normalized self-looped 

version of the adjacency as .S  Simple graph convolutional 
networks (SGCs) [9] consider (10) with only the K-hop filter 
tap, i.e., h 0k

fg
=,  for all ;k K1  they also adopt a normal-

ized self-looped version of the adjacency as .S  Graph iso-
morphism networks (GINs) [10] consider an order-one 
polynomial K 1=  but with ( )h h1fg fg

0 1f= +, , ,  for some pre-
defined ;f,  it adopts the binary adjacency as S  and sug-
gests the inclusion of layers with K 0=  in between layers 
with .K 1=  Diffusion CNNs [11] consider a single layer 
with F NF1 0=  and the same K filter taps for all input features 

;h hk
fg

k
f

1 1=  it adopts the adjacency matrix as .S  It follows that 
the representations space of [8]–[11] is just a subspace of the 
representation space of the GCNN model in (10)–(12).

We note that, while the representation space of [5] and 
[6] is the same as in the GCNN model (10)–(12), their dif-
ference in the implementation of the graph convolution 
impacts how the optimization space is navigated during 
training, arriving at different solutions. No particular imple-
mentation, however, has consistently outperformed the rest 
across a wide range of problems. In any case, since the 
representation space is the same, the characterizations, 
properties and insights established here apply to all of 
these. Implementations [8]–[11], on the other hand, further 
regularize the graph convolution, constraining the repre-
sentation space to be a subspace of that in the GCNN 
model. These might be useful in problems with smaller 
data sets, or where further information on the data struc-
ture is available.

Implementations of GCNNs

Authorized licensed use limited to: TU Delft Library. Downloaded on August 26,2021 at 08:50:33 UTC from IEEE Xplore.  Restrictions apply. 



132 IEEE SIGNAL PROCESSING MAGAZINE   |   November 2020   |

labeling—a property known as permutation equivariance—as 

stated by the following theorem. [12], [13]

Theorem 1 (Permutation Equivariance). Consider an 

N N#  permutation matrix P and the permutations of the shift 

operator S P SP=
<t  and of the input data .x P x=

<t  For a GCNN 

( )$U  [12], [13], it holds that [12], [13]

 ( ; , ) ( ; , ).x P x SS H HU U=
<t t  (13)

Theorem 1 states that a node reordering results in a correspond-

ing reordering of the GCNN output, implying GCNNs are in-

dependent of node labeling. Theorem 1 implies also that graph 

convolutions exploit the inherent symmetries present in a graph 

to improve data processing. If the graph exhibits several nodes 

with the same topological neighborhood (graph symmetries), 

then learning how to process data in any of these nodes can be 

translated to every other node with the same topological neigh-

borhood. This allows GCNNs to learn from fewer samples and 

generalize easier to signals located at any topologically similar 

neighborhood; see Figure 2.

Stability to perturbations
Since real graphs rarely exhibit perfect symmetries, we are in-

terested in more general changes to the underlying graph sup-

port than just permutations. For instance, in problems where the 

graph S is fixed but unknown, we need to use an estimate St  but 

we still want the GCNN to work well as long as the estimate is 

good (see the section “Recommender Systems”). On another set 

of problems, the graph support may naturally differ from training 

S to testing ,St  a scenario known as transfer learning (see the sec-

tion “Learning Decentralized Controllers for Flocking”). In these 

cases, we need the GCNN to have a similar performance whether 

they run on S or on St  as long as both graphs are similar. To mea-

sure the similarity between graphs S and ,St  and in light of Theo-

rem 1, we define next the relative distance modulo permutation.

Definition 2 (Relative Distance). Consider the set of all per-

mutation matrices { { , } : , }.0 1 1 1 1P P 1 PP N N!= = =
# <  For 

two graphs S and St  with the same number of nodes, we define the 

set of relative error matrices as

 ( , ) { : ( ), }.S E P SP S ES SE PSR P!= = + +
<t t  (14)

The relative distance modulo permutation between S and St  is 

then defined as

 ( , ) ,mind S ES
( , )E S SR

=
!

t
t

 (15)

where $< < indicates the operator norm. We denote by E)  and P)  

the relative error matrix and the permutation matrix that minimize 

(15), respectively.

We readily see that if ( , ) ,d 0S S =t  then St  is a permutation of 

S, and thus the relative distance (15) measures how far S and St  

are from being permutations of each other. We note that, unlike 

the absolute perturbation model, the relative distance (Defini-

tion 2) accurately reflects changes to both the edge weights and 

the topology structure [12].

The change in the output of a GCNN due to a change in the 

underlying support is bounded for GCNNs whose constitutive 

graph filters are integral Lipschitz.

Definition 3 (Integral Lipschitz Filters). We say a filter ( )H S  

is integral Lipschitz if its frequency response ( )h m  [cf. (5)] is such 

that ( )h 1; ; #m  and its derivative ( )h ml  satisfies ( )h C; ; #m ml  for 

some finite constant C.

The derivative condition ( )h C; ; #m ml  implies integral Lip-

schitz filters have frequency responses that can vary rapidly 

around 0m =  but are flat for ;" 3m  see Figure S1(a).  GCNNs 

that use integral Lipschitz filters are stable under relative perturba-

tions. This means the change in the output due to changes in the 

underlying graph is bounded by the size of the perturbation [cf. 

Definition 2].

Theorem 2 (Stability). Let S and St  be two different graphs 

with the same number of nodes such that their relative distance 

is ( , )d S S # ft  [cf. Definition 2]. Let (·; ·, )HU  be a multi-

layer graph perceptron GCNN [cf. (9)] where all filters H  are  

1
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FIGURE 2. Permutation equivariance of GCNNs. The output of a GCNN is equivariant to graph permutations (Theorem 1). This means independence from 

labeling and shows GCNNs exploit internal signal symmetries. (a) Graph S and signal x. (b) Graph S and signal .xt  (c) Graph St  and signal .xt  Signals in 

(a) and (b) are different on the same graph but they are permutations of each other—interchange inner and outer hexagons and rotate 180° [c.f. (c)]. A 

GCNN would learn how to classify the signal in (b) from seeing examples of the signal in (a). Integers represent labels, while colors signal values. 
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integral Lipschitz with constant C [cf. Definition 3]. Then, it holds 

that [12]

 
; , ; ,

,C N L2 1

x S P x P SP

x

H H

O 2# d f f

U U-

+ +

) ) )
< <

t^
^

^
^

h
h

h
h  

(16)

where ( )1 1U V
2< <d = - + -  is the eigenvector misalignment 

between the eigenbasis V of S and the eigenbasis U of the relative 

error matrix ,E
)  with E)  and P)  given in Definition 2.

Theorem 2 proves that a change f  in the shift operator causes 

a change proportional to f  in the GCNN output. The proportion-

ality constant has the term C that depends on the filter design, 

and the term ( )N1 d+  that depends on the specific perturba-

tion. But it also has a constant factor L that depends on the depth 

of the architecture implying deeper GCNNs are less stable. (See 

“Insights on Stability.”)

Extensions: General graph filters
Oftentimes, the GCNN would require highly sharp filter re-

sponses to discriminate between classes. We can increase the 

discriminatory power by either increasing the filter order K or 

changing the filter type H(S) in the graph perceptron (8). In-

creasing K is not always feasible as it leads to more filter coeffi-

cients, a higher complexity, and numerical issues related to the 

higher order powers of the shift operator .S
k  Instead, changing 

the filter type allows implementing another family of GNNs 

with different properties. We present two alternative filters 

that provide different insights on how to design more general 

GNNs: the ARMA graph filter [14] and the edge-varying graph 

filter [15].

ARMANet
An ARMA graph filter operates also pointwise in the spectral do-

main ( )y h xi i im=u u  [cf. (6)] but it is characterized by the rational 

frequency response

 ( ) .h

a

b

1 p
p

q
q

p

P

q

Q

1

0
m

m

m

=

+

=

=

/

/

 (17)

The frequency response is now controlled by P denominator 

coefficients [ , , ]a aa P1 f=
<  and Q 1+  numerator coefficients 

[ , , ] .b bb Q0 f=
<  The rational frequency responses in (17) span 

an equivalent space to that of graph filters in (2). However, the 

spectral equivalence does not imply that the two filters have the 

same properties. ARMA filters implement rational frequency re-

sponses rather than polynomial ones as FIR filters do (5). There-

fore, we expect them to achieve a sharper response with lower 

orders of P  and Q such that .P Q K1+  Replacing the spectral 

variable m  with the shift operator S allows us to write the ARMA 

output ( )y H S x=  as

 : ,a by I S S x P S Q S xp

p

P
p

q

q

Q
q

1

1

0

1
= + =

=

-

=

-e e ^ ^o o h h/ /  (18)

where ( ) : aP S I Sp
P

p
p

1R= + =  and : bQ Sq
Q q

0 1R= =  are two 

FIR filters [cf. (2)] that allow writing the ARMA filter as ( )H S =

( ) ( ).P S Q S1-  As it follows from (18), we need to apply the ma-

trix inverse P(S) to obtain the ARMA output. This, unless the 

number of nodes is moderate, is computationally unaffordable; 

hence, we need an iterative method to approximately apply the 

inverse. Due to its faster convergence, we choose a parallel struc-

ture that consists of first transforming the polynomial ratio in (18) 

into its partial fraction decomposition form and subsequently us-

ing the Jacobi method to approximately apply the inverse. While 

other Krylov approaches are also possible to solve (18), the paral-

lel Jacobi method offers a better tradeoff between computational 

complexity, distributed implementation, and convergence. 

Partial fraction decomposition of ARMA filters
Consider the rational frequency response ( )h m  in (17) and let 

[ , , ]P1 fc c c=
<  be the P  poles, [ , , ]P1 fb b b=

<  the corre-

sponding residuals and [ , , ]K0 fa a a=
<  the direct terms. Then, 

we can write (18) in the equivalent form

 .y S I x S xp

p

P

p k

k

K
k

1

1

0

b c a= - +

=

-

=

^ h/ /  (19)

The equivalence of (19) and (18) implies that instead of learning 

a and b in (18), we can learn , ,a b  and c  in (19). To avoid the 

matrix inverses in the single pole filters, we can approximate each 

output u p  through the Jacobi method.

Jacobi method for single pole filters
We can write the output of the pth single pole filter u p  in the 

equivalent linear equation form ( ) .S I u xp p pc b- =  The Jacobi 

algorithm requires separating ( )S Ipc-  into its diagonal and off-

diagonal terms. Defining ( )diagD S=  as the matrix containing 

the diagonal of the shift operator, we can write the Jacobi approxi-

mation u px  of the pth single pole filter output u p  at iteration x  by 

the recursive expression

 , .withu D I x S D u u x( )p p p p p
1

1 0c b= - - - =x x
-

-^ ^h h6 @   

 (20)

The inverse in (20) is now elementwise on the diagonal matrix 

( ).D Ipc-  This recursion can be unrolled to all its terms to write 

an explicit relationship between u px  and .x  To do that, we define 

the parameterized shift operator ( ) ( ) ( )R D I S Dp p
1c c=- - -
-  

and use it to write the Tth Jacobi recursion as

 ( ) ( ) .u R x R xpT p

T

p
T

p

0

1

b c c= +
x

x=

-

/  (21)

For a convergent Jacobi method, u pT  converges to the single 

pole output .u p  However, in a practical setting we truncate (21) 

for a finite T. We can then write the single pole filter output as 

: ( ( )) ,u H R xpT T pc=  where we define the following FIR filter 

of order T:

 ( ( )) ( ) ( )H R R RT p p

T

p
T

p

0

1

c b c c= +
x

x=

-

/  (22)

with the parametric shift operator ( ).R c  In other words, a single 

pole filter is approximated by a graph convolutional filter of the 
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form (2) in which the shift operator S is substituted by ( ).R c  

This parametric convolutional filter uses coefficients pb  

for , ,T0 1fx = -  and 1 for .Tx =

Jacobi ARMA filters and ARMANets
Assuming we use truncated Jacobi iterations of order T to ap-

proximate all single pole filters in (19), we can write the ARMA 

filter as

 ( ) ( ( )) ,H S H R ST

p

P

p k

k

K
k

1 0

c a= +

= =

/ /  (23)

where the pth approximated single pole filter ( ( ))H RT pc  is de-

fined in (22) and the parametric shift operator ( )R pc  in (21). In 

summary, a Jacobi approximation of the ARMA filter with orders 

(P, T, K) is the one defined by (22) and (23). Scalar P indicates 

the number of poles, T the number of Jacobi iterations, and K the 

order of the direct term Sk
K

k
k

0aR =  in (19).

Substituting (23) into (8) yields an ARMA graph percep-

tron, which is the building block for ARMA GNNs or, for short, 

ARMANets. ARMANets are themselves convolutional. For a 

sufficiently large number of Jacobi iterations T, (23) is equivalent 

to (18) which performs a pointwise multiplication in the spectral 

To offer further insight into Theorem 2, consider the particular 
case where the perturbation St  is an edge dilation of a 
graph S, i.e., ( )1 ,S Sf= +t  where all edges are increased 
proportionally by a factor .f  The relative error matrix is 

( / )2E If=  so that the relative distance is ( , ) .d S S E< <#f=t  
The graph dilation changes the eigenvalues to 

( )1i im f m= +
t  while the eigenvectors remain the same. We 

note that, even if f  is small, the change in eigenvalues could 
be large if im  is large; see Figure S1(a). 

This observation that even small perturbations lead to 
large changes in the eigenvalues can considerably affect 
the output of a graph filter causing instability, unless the 
graph filters are carefully designed. To see this, consider 
first the output of a graph filter in the frequency domain, 

( )y h xi i im=u u  [cf. (6)]. With the graph dilation, the fre-
quency response gets instantiated at ( )1i im f m= +

t  
instead of ,im  so the ith frequency content is now 

( ) .y h xi i im=ut
t
u  The change between the original ith fre-

quency content of the output y iu  and the perturbed one 
y iut  depends on how much ( )h im  changes with respect to 

( ),h imt  and thus can be quite large for large .m  So if we 
want y iu  to be close to y iut  for stability, we need to have 
frequency responses ( )h m  that have a flat response for 

large eigenvalues; see Figure S1(a). Integral Lipschitz fil-
ters do have a flat response at large eigenvalues and 
thus are stable.

The cost to pay for stability is that integral Lipschitz fil-
ters cannot discriminate information located at higher 
eigenvalues. As seen in Figure S1(b), discriminative fil-
ters are narrow filters. Then, if even a small perturbation 
causes a large change in the instantiated eigenvalue (as 
is the case for large eigenvalues), the filter output chang-
es to a zero output, and thus is not stable. Thus, linear 
graph filters exhibit a tradeoff between discriminability 
and stability; a trait shared by regular convolutional fil-
ters [3].

GCNNs incorporate pointwise nonlinearities in the 
graph perceptron. This nonlinear operation has a frequen-
cy mixing effect (akin to demodulation) by which the signal 
energy is spilled throughout the spectrum; see Figure S1(c). 
Thus, energy from large eigenvalues now appears in small-
er eigenvalues. This new low-eigenvalue frequency content 
can be captured and discriminated by subsequent filters in 
a stable manner. Therefore, pointwise nonlinearities make 
GCNNs information processing architectures that are both 
stable and selective.

Insights on Stability 

m1 m1
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m1 m1

"

mi mi

"

mi mi

"

mN mN

"

mN mN

"

mN mN

"

mN–1 mN–1

"

(a) (b) (c)

FIGURE S1. (a) Integral Lipschitz filters: frequency response for an integral Lipschitz filter (in black), eigenvalues for S (in blue), and eigenvalues for 

St  (in red). Larger eigenvalues exhibit a larger change. (b) High eigenvalue features: separating energy located at N 1m -  from that at Nm  requires 

filters with sharp transitions that are not integral Lipschitz. Then, a change in eigenvalues renders these filters useless (they are not stable). (c) 

Frequency mixing: applying a ReLU to a signal with all its energy located at Nm  results in a signal with energy spread through the spectrum. Infor-

mation on low eigenvalues can be discriminated in a stable fashion. 

Authorized licensed use limited to: TU Delft Library. Downloaded on August 26,2021 at 08:50:33 UTC from IEEE Xplore.  Restrictions apply. 



135IEEE SIGNAL PROCESSING MAGAZINE   |   November 2020   |

domain with the response (17). The Jacobi filters in (23) are also 

reminiscent of the convolutional filters in (2). But the similarity 

is superficial because in ARMANets we train also the P2  single 

pole filter coefficients pb  and pc  alongside the K 1+  coefficients 

of the direct term .Sk
K

k
K

0aR =  The equivalence suggests ARMA-

Nets may help achieve more discriminatory filters by tuning the 

single pole filter orders P and T. An example of an implementa-

tion of ARMANets are CayleyNets [20]; see [16].

EdgeNet
While ARMANets enhance the discriminatory power of GCNNs 

with alternative convolutional filters, the edge-varying GNN de-

parts from the convolutional prior to improve GCNNs. The Ed-

geNet leverages the sparsity and locality of the shift operator S 

and forms a graph perceptron [cf. (9)] by replacing the graph con-

volutional filter with an edge-varying graph filter [15].

From shared to edge parameters
In the convolutional filter (2), all nodes share the same scalar hk  

to weigh equally the information from all k-hop away neighbors 

.S x
k  This is advantageous because it limits the number of train-

able parameters, allows permutation equivariance, and favors 

stability. However, this parameter sharing limits also the discrimi-

natory power to architectures whose filters H(S) have the same 

eigenvectors as S [cf. (4)]. We can improve the discriminatory 

power by considering a linear filter in which node i uses a scalar 
( )
ij
k

U  to weigh the information of its neighbor j  at iteration k. For 

,k 0=  each node weighs only its own signal to build the zero-

shifted signal ,z x
( ) ( )0 0
U=  where ( )0

U  is an N N#  diagonal ma-

trix of parameters with ith diagonal entry 
( )
ii

0
U  being the weight 

of node i. Signal z( )0  is subsequently exchanged with neighboring 

nodes to build the one-shifted signal ,z z
( ) ( ) ( )1 1 0
U=  where the 

parameter matrix ( )1
U  shares the support with ;I S+  the (i, j)th 

entry 
( )
ij
1

U  is the weight node i applies to signal z
( )
j
0

 from neigh-

bor j. Repeating the latter for k shifts, we get the recursion

 , , , ,k K0z z x x
( ) ( ) ( ) ( ) ( : )k k k k

k

k
k1

0

0
fU U U= = = =

-

=

l

l

%  (24)

where the product matrix ( : ) ( ) ( ) ( )k
k

k k k0
0

0
gPU U U U= ==l

l
 ac-

counts for the weighted propagation of the graph signal z x
( )1
=

-  

from at most k-hops away neighbors. Each node is therefore free 

to adapt its weights for each iteration k to capture the necessary 

local detail.

Edge-varying filters and EdgeNets
The collection of signals z( )k  in (24) behaves like a sequence of 

parametric shifts, where at iteration k we use the parametric shift 

operator ( )k
U  to shift-and-weigh the signal. Following the same 

idea as in (2), we can sum up edge-varying shifted signals z( )k  to 

get the input–output map ( )y H xU=  of an edge-varying graph 

filter. For this relation to hold, the filter matrix ( )H U  should satisfy

 ( ) .H
( : )k

k

K
k

k

k

k

K
0

0 00

U U U= =

= ==

l

l

e o%/ /  (25)

The edge-varying graph filter is characterized by the K 1+  pa-

rameter matrices , ,( ) ( )K0
fU U  and contains ( )K M N N+ +  

parameters. The edge-varying graph filter forms the broadest 

family of graph filters: It generalizes the FIR filter in (2) (for 

),h S
( : )k

k
k0

U =  the ARMA filter in (23), and almost all other fil-

ters employed to build GNNs including spectral filters [5], Che-

byshev filters [6], Cayley filters, graph isomorphism filters, and 

also graph attention filters [21].

Substituting (25) into (8) yields an edge-varying graph per-

ceptron, which is the building block for edge-varying GNNs 

or, for short, EdgeNets. EdgeNets are more than convolutional 

architectures; the high number of degrees of freedom and lin-

ear complexity render EdgeNets strong candidates for highly 

discriminatory GNNs in sparse graphs. If the graph is large, the 

EdgeNet can efficiently trade some edge detail (e.g., allowing 

edge-varying weights only to a few nodes) to make the num-

ber of parameters independent of the graph dimension [16]. To 

control the number of parameters in EdgeNets we can adopt 

graph attention networks [21]; see [16] for details on this and 

other alternatives.

Applications
We consider the application of GNNs for rating prediction in rec-

ommender systems (see the section “Recommender Systems”) 

and learning decentralized controllers for flocking (see the sec-

tion “Learning Decentralized Controllers for Flocking”). These 

two applications aim at illustrating the use of GNNs in problems 

beyond semisupervised learning.

We focus on the representation space of GNNs built with 

different filter types and compare them with that of linear FIR 

filters to corroborate the discussed insights. We note that, in all 

cases, the values of hyperparameters (number of layers L, filter 

taps K, and features )F,  are design choices that have been made 

after cross-validation. (The PyTorch GNN library used is avail-

able at http://github.com/alelab-upenn/graph-neural-networks.)

Recommender systems
Consider the problem of rating prediction in recommender sys-

tems. We have a database of users that have rated many items, and 

we use it to build a graph where each item is a node and each edge 

weight is given by the rating similarity between items [22]. Then, 

given the ratings a specific user has given to some of the items, we 

want to predict the rating the same user would give to a specific 

item not yet rated. The ratings given by that user can be modeled 

as a graph signal, so that this becomes a problem of interpolating 

one of the (unknown) entries in it.

Setup
We consider items as movies and use a subset of the MovieLens-

100k data set, containing the 200 movies with the largest number 

of ratings [23]. The resulting data set has 47,825 ratings given by 

943 users to some of those 200 movies. The similarity between 

movies is the Pearson correlation [22, eq. (6)], which is further 

sparsified to keep only the ten edges with the stronger similarity. 

We split the data set into 90% for training and 10% for testing. In 

this context, each user represents a graph signal, where the value 

at each node is the rating given to that movie. Movies not rated 

are given a value of zero. The objective is to estimate the rating a 
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user would give to the movie Star Wars based on the ratings given 

by that same user to other movies and leveraging the graph of 

rating similarities.

GNN models and training
We implement a FIR graph filter (10), (11) (cf. [22]), a GCNN 

(10)–(12), an ARMANet with T 1=  Jacobi iterations (23), and 

an EdgeNet (25). The number of features in all cases is ,F 641 =  

the filter order is ,K 4=  and ReLU nonlinearities are used. We 

include a local readout layer and extract the entry corresponding 

to the Star Wars movie as the estimate of the rating. The loss func-

tion is the smooth L1 loss ( , ) . ( )J x y x y0 5 2
= -  if x y 11; ;-  

and .x y 0 5; ;- -  otherwise, and the evaluation measure is the 

root MSE (RMSE). We train the architectures for 40 epochs with 

a batch size of five samples, using ADAM [18] with learning rate 

5 10 3
#

-  and forgetting factors 0.9 and 0.999.

Results
Figure 3(a) shows that the rating for all models is similar, with the 

EdgeNet performing slightly better at an RMSE of .  ( . ).0 81 0 05!  

In Figure 3(b) we take the same models trained for estimating the 

rating for Star Wars, and extract the rating predicted for Contact 

instead. We do this in an attempt to show transferability of the 

trained models. In this case, the performance is similar among 

the FIR filter, GCNN, and ARMANet, but the EdgeNet has se-

verely degraded.

Discussion
First, we note that the GCNN performs similarly to the linear 

graph filter, which, in light of Theorem 2, suggests that the rel-

evant content is in low eigenvalues. Second, the GCNN and the 

ARMANet exhibit essentially the same performance, suggesting 

that the ARMA filter does not significantly increase the repre-

sentation power, which is true in light of the FIR implementation 

(Jacobi) of ARMA filters. Third, the EdgeNet achieves the best 

performance when training and testing for the same movie, sug-

gesting an increase in representation power, but does not transfer 

well to other settings, likely because it does not satisfy Theorem 1 

nor Theorem 2.

Learning decentralized controllers  
for flocking
The objective of flocking is to coordinate a team of agents to 

fly together with the same velocity while avoiding collisions. 

Agents start flying at arbitrary velocities and need to take ap-

propriate actions to flock together. This problem has a straight-

forward centralized solution that amounts to setting each agent’s 

velocity to the average velocity of the team [24, eq. (10)], but 

decentralized solutions are famously difficult to find [25]. Since 

GCNNs are naturally distributed, we use them to learn the de-

centralized controllers.

Setup
Let us consider a team of N 50=  agents, in which each agent i 

is described at discrete time t by its position ( ) ,tr Ri
2!  velocity 

( ) ,tv Ri
2!  and acceleration ( ) .tu Ri

2!  We want to control the 

acceleration ( )tui  of each agent, so that they coordinate their ve-

locities ( )tvi  to be the same for all i; see Figure 4. We consider a 

decentralized setting where agents i and j can communicate with 

each other at time t only if ( ) ( ) .t t R 2mr ri j< < #- =  This defines 

a communication graph ( )tG  that changes with t as the agents 

move around, imposing a delayed information structure [24,  

eq. (2)]. Note that we can easily adapt graph filters (and thus, GCNNs) 

to the change in support matrices ( )tS  by using delayed FIR filters 

( ( )) ( ) ( ) ( ) ( ) ( )t t h t t t k t k1 1H S x S S S xk
K

k0 gR= - - + -=  [cf.  

(2)]. The filter taps hk  are the same, but the shift operators change 

with time. We generate 400 optimal trajectories for training and 

20 for testing. We refer to [24] for details on system dynamics.

GNN models and training
We implement a linear FIR filter and a GCNN. We consider F 321 =  

features and filters of order .K 31 =  We include a second, local 

readout layer to obtain the final acceleration ( )tu Ri
2!  that each 

agent takes. We train the architectures using imitation  learning 
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FIGURE 3. RMSE and standard deviation for different architectures in the movie recommendation problem. (a) Training and testing on Star Wars. (b) 

Training on Star Wars, testing on Contact; we also include the RMSE obtained for training and testing on Contact as horizontal solid lines.
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by minimizing the MSE between the out-

put action ( )tui  and the optimal action 

( )tui
)  given by [24, eq. (10)]. At test time, 

we do not require access to the optimal 

action. The evaluation measure is the ve-

locity variation of the team throughout the 

trajectory, ( ) ( )N t tv vt i
N

i
1

1
2< <R R -

-

= r  

with ( ) ( )t N tv vj
N

j
1

1R=
-

=r  being the av-

erage velocity at time t. We trained for 40 epochs with a batch size 

of 20 samples using ADAM [18] with learning rate 5 10 4
#

-  and 

forgetting factors 0.9 and 0.999.

Results
We observe in Table 1 the cost achieved by the GCNN-based con-

troller is close to the optimal cost, while the FIR filter fails to con-

trol the system leading to a very high cost. We further investigate 

the effect of Theorems 1 and 2 by transferring at scale the learned 

solutions. That is, we take the controllers learned with teams of 

N 50=  agents, and test them in teams of increasing size. The 

GCNN scales perfectly, maintaining the same performance.

Discussions
The GCNNs improved performance over the graph filter is ex-

pected since we know that optimal distributed controllers are non-

linear [25]. The GCNN also achieves a cost close to optimum, 

evidencing successful control. Once trained, this GCNN based 

controller can be used in teams of arbitrary number of agents evi-

dencing the properties of permutation equivariance and stability, 

and speaking to the potential of GCNNs for learning behaviors in 

homogenous teams.

Conclusions
GSP plays a crucial role in characterizing and understanding the 

representation space of GNNs. By emphasizing the role of graph 

filters and leveraging the concept of GFT, we are able to derive 

fundamental properties such as permutation equivariance and 

stability, as well as establish a unified mathematical description. 

This reinforces the notion that GNNs are nonlinear extensions of 

graph filters, and thus GSP can help explain and understand the 

observed success of GNNs and contribute to improved designs.

As a matter of fact, several areas of interest lie ahead for GSP 

researchers to pursue. First, the understanding of what precise effect 

the nonlinearities have on the frequency content is limited. A better 

characterization of their effect in relation to the underlying topology 

is bound to help in designing appropriate ones. Second, the gen-

eral relationship between the hyperparameters (number of layers, 

filter taps) and the characteristics of the graph (diameter, degree) 

is currently unknown. It is expected, for instance, the number of 

hops bears some relationship with the diameter of the graph, but no 

theoretical result is out there yet. Third, the bounds in the stability 

results are quite loose due to the coarse bound used on the eigenvec-

tors. Thus, focusing on the eigenvector perturbation to improve the 

bound is a worthwhile pursuit. Fourth, the stability result holds for 

graphs of the same size. Extending this result to graphs of different 

size is an important research direction. Finally, we mention explor-

ing the possibility of nonlinear aggregations of the filter banks, as 

well as using different shift operators at each layer.

From a higher vantage point, realizing GNNs are an object of 

study of GSP and regarding them as nonlinear extensions of graph 

filters, help us exploit our understanding of filtering techniques as 

well as leverage spectral domain analysis. Thus, GSP plays a cru-

cial role in characterizing, understanding, and improving GNNs.
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FIGURE 4. Snapshots of a sample trajectory. The dots illustrate the agents, the gray edges represent the communication links, and the arrows show the 

velocity. (a) The agents start flying at time t 0 s=  with arbitrary velocities. (b) They manage to agree on a direction at .t 1s=  (c) They effectively fly 

together at .t 2 s=

Table 1. Scalability results. These models were trained on 50 agents and tested on N agents. 
Optimal cost: 51(± 1). 

N 50 62 75 87 100 

FIR filter ( )408 88! ( )408 93! ( )434 128! ( )420 105! ( )430 131!

GCNN ( )77 3! ( )78 3! ( )77 2! ( )77 2! ( )78 2!
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