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Abs t rac t .  We show that. if a graph of v vertices can be drawn in the 
plane so that every edge crosses at most k > 0 others, then its number of 
edges cannot exceed 4.108v/kv. For k < 4, we establish a better bound, 
(k + 3)(v - 2), which is tight for k = 1 and 2. We apply these estimates 
to improve a result of Ajtai et al. and Leighton, providing a general 
lower bound for the crossing number of a graph in terms of its number of 
vertices and edges. 

1 In troduct ion  

Given a simple graph G, let v(G) and e(G) denote its number of vertices and 
edges, respectively. We say that G is drawn in the plane if its vertices are rep- 
resented by distinct points of the plane and its edges are represented by Jordan 
arcs connecting the corresponding point pairs but not passing through any other 
vertex. Throughout  this paper, we only consider drawings with the property that 
any two arcs have at most  one point in common. This is either a common end- 
point or a common interior point where the two arcs properly cross each other. 
We will not make any notational distinction between vertices of G and the cor- 
responding points in the plane, or between edges of G and the corresponding 
Jordan arcs. 

We address the following question. What  is the maximum number of edges 
that a simple graph of v vertices can have if it can be drawn in the plane so that 
every edge crosses at most  k others? For k = 0, i.e. for planar graphs, the answer 
is 3v - 6. Our first theorem generalizes this result to k _< 4. The case k = 1 has 
been discovered independently by Bernd G~rtner, Torsten Thiele, and Giinter 
Ziegler (personal communication). 

T h e o r e m  1. Let G be a simple graph drawn in the plane so that every edge is 
crossed by at most k others. If 0 < k < 4, then we have 

e ( c )  _< + - 2).  

For k = 0, 1, 2, the above bound cannot be improved (see Remark 2.3 at the 
end of the next section.) 

The crossing number er(G) of a graph G is the minimum number of crossing 
pairs of edges, over all drawings of G in the plane. 
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Ajtai et al. [AC82] and, independently, Leighton [L83] obtained a general 
lower bound for the crossing number of a graph, which found many applications 
in combinatorial geometry and in VLSI design (see [PA95], [PS96], [$95]). Our 
next result, whose proof is based on Theorem 1, improves the bound of Ajtai et 
al. by roughly a factor of 2. 

T h e o r e m  2. The crossing number of any simple graph G satisfies 

1 e3(a) e3(a) 
cr(G) > 33.75 v2(G) 0.9v(G) > 0"029v2'G't ) 0.9v(G). 

T h e o r e m  3. Let G be a simple graph drawn in the plane so that every edge is 
crossed by at most k others, for some k ~ 1. Then we have 

e(G) < ~ v ( G )  ~ 4.108v~v(G). 

Theorems 2 and 3 do not remain true if we replace the constants 0.029 and 
4.108 by 0.06 and 1.92, respectively (see Remarks 3.2 and 3.3). 

In the last section, we use the ideas of Sz6kely [$95] to deduce some conse- 
quences of Theorem 2. 

2 P r o o f  o f  T h e o r e m  1 

First we need a lemma for multigraphs, i.e., for graphs that may have multiple 
edges. In a drawing of a multigraph, any two non-disjoint edges either share only 
endpoints or have precisely one point in common, at which they properly cross. 

Let M be a multigraph drawn in the plane so that every edge crosses at most 
k other edges. Let M'  be a sub-multigraph of M with the largest number of edges 
such that in the drawing of M'  (inherited from the drawing of M), no two edges 
cross each other. We say that M'  is a maximal plane sub-multigraph of M, and 
its faces will be denoted by ~1,4i2, . . . ,  q)-~. Let Idii] denote the number of edges 
of M'  along the boundary of ~i, where every edge whose both sides belong to the 
interior of ~i is counted twice. It follows from the maximality of M'  that every 
edge e of M - M'  crosses at least one edge of M ~. The closed portion between 
an endpoint of e and the nearest crossing of e with an edge of M'  is called a 
half-edge. Thus, every edge of M - M'  contains two half-edges. Every half-edge 
lies in a face �9 and intersects at most k - 1 other half-edges and an edge of ~i 
(not counting the incidences at the vertices of M). Let h ( ~ )  denote the number 
of half-edges in Oi. 

L e m m a  2.1. Let 0 < k < 4 and let M be a multigraph drawn in the plane so that 
every edge crosses at most k others. Let M ~ be a maximal plane sub-multigraph 
of M,  and let 4) denote a face with I~1 = s ~_ 3 sides in M I, whose bondary is 
connected. 

Then the number of half-edges in 4) satisfies 

<_ (s  - 2 ) ( k  + 1) - 1. 
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P r o o f :  We proceed by induction on s. First, let s = 3 and denote the vertices of 
by A, B, and C. Let a, b, and c denote the number of half-edges in # emanating 

f rom A, B, and C, respectively. We have to show that a + b + c _< k. For k = 0, 
there is nothing to prove. We check the cases k = 1, 2, 3, 4, separately. 

�9 k = 1 :  If a = b = c = 0, we are done. Assume without loss of generality that 
a > 1. But then a = 1, because all half-edges in # emanating from A intersect 
the edge BC. Since any half-edge in # emanating from B or C would create 
another intersection on the half-edge starting f rom A, we obtain b = c = 0. 
Hence, a + b + c = l .  

�9 k = 2 :  Suppose without loss of generality that a >_ 1. Clearly, a < 2. If a = 1, 
the unique half-edge in # emanating from A intersects all half-edges coming 
f r o m B  and C. So l + b + c  = a + b + c _ <  2. I r a  = 2, any half-edge f r o m B  
would intersect both half-edges emanating from A and the edge AC, which is 
impossible. Hence, b = 0. Similarly, c = 0, and a + b + c = 2. 

�9 k = 3 :  Just like before, we can exclude all cases when a + b + c > 3, except 
for the case a = b = 2 and c = 0. Now let el and e2 denote the edges containing 
the two half-edges in # emanating from A. Both of them intersect the two half- 
edges starting from B and the edge BC. So they cannot cross any other edge. 
Removing BC from M t and adding el and e2, we would obtain a larger plane 
sub-multigraph of M, contradicting the maximali ty  of M t. 

�9 k = 4 :  We can again exclude all cases when a + b + c > 4, with the exception of 
the case a = 2, b = 3, c = 0. As before, let el and e2 denote the edges containing 
the two half-edges in ~ emanating f rom A. Now both el and e2 are intersected 
by the three half-edges emanating f rom B and by the edge BC. Hence, there are 
no other edges crossing them, and the number of edges of M t can be increased 
by replacing BC with el and e2. Contradiction. 

Now let s > 3, and suppose that the l emma has already been proved for faces 
with fewer than s sides. Let A1, A2,..., As denote the sequence of vertices of #, 
listed in clockwise order. In this sequence, the same vertex may  occur several 
times (as many  times as it is visited during a full clockwise tour around the 
boundary of #) .  For simplicity, let A0 = A~ and A,+I  = A1. 

We call an open arc empty if it does not intersect any half-edge in #. 

C a s e  1. Assume that there is a half-edge e = AiE in #,  where E is an interior 
point of the side AjAj+I, and either 
(i) the arc AjE C_ AjAj+I is empty  and i # j - 1, or 
(ii) the arc EAj+I C_ AjAj+I is empty  and i # j + 2. 

By symmetry,  we can suppose that e satisfies (i). Let M* denote the (multi- 
graph) drawing obtained from M by replacing the edge of M containing e with 
a new edge e t = AiAj lying in ~ and running very close to e and the arc AjE. 

Since AjE was empty  in M, e ~ crosses exactly the same half-edges as e. 
Thus, M* also satisfies the condition that each of its edges crosses at most  k 
other edges. Clearly, M ~ U e ~ is a maximal  plane sub-multigraph of M*. In M*, 
e t divides # into two faces #t and #H having s t and stt sides, respectively, where 
3_<#,s t~<s, #+s  tt=s+2. 
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Each half-edge in #, except e, corresponds to a half-edge in (pt or (P'. By the 
induction hypothesis, 

h(~) = h ( (p ' )+h (~" )+ l  _< (s'-2)(k+l)+(s"-2)(k+1)-2+l = ( s - 2 ) ( k + l ) - l .  

Aj El ~ A2 A 3 

F i g u r e  1. 

Case  2. Assume that there is no half-edge in (P that satisfies the condition of 
Case 1. 

Then, for any non-empty side A~Ai+I of (P, the half-edge a+_i (resp. a~-+2 ) 
whose intersection with AiA~+I is closest to A~ (resp. closest to A~+I) starts at 
the vertex Ai-1 (resp. Ai+2). 

Since any side of ~5 intersects at most k half-edges, if there are two empty 
sides of(P, then h((p) < (s - 2)k < (s - 2)(k q- 1) - 1. So we can suppose that (P 
has at most one empty side. Since s > 3, there are three consecutive non-empty 
sides, say, A1A2, A2A3, and A3Ad. 

Then a + must intersect a +, a +, a3, and the side A2A3. Similarly, a 4 must 
- a + a + and the side A2A3. This is clearly impossible if k = 1, 2 or intersect a~, 3, 2, 

3. 
For k = 4, let eL and e2 denote the edges of M containing a + and ad, 

respectively. Both of these edges cross three half-edges and the side A2A3 of (P, 
so neither of them can cross any further edges. Removing the edge A2A~ from 
M ~ and adding e] and e2, we would obtain a plane sub-multigraph of M, whose 
number of edges is larger than the number of edges of Mq This contradicts the 
maximality of M ~, completing the proof of Lemma 2.1. [] 

For any face (P with at least 3 sides, let t((p) denote the number of triangles 
in a triangulation of r  

L e m m a  2.2 Let (P be any face of M' with I(Pl >- 3 sides. Then the number of 
half-edges of (p satisfies 

h((p) < t((p)k + I(Pl - 3. 

P r o o f :  If the boundary  of  (P is connected,  then t((p) = I(Pl - 2. Hence,  by L e m m a  
2.1, h((p) < ( I (P l -  2 ) (~  + 1) - 1 = t((p)k + I (p l -  3. 
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For any face 4~, the number of half-edges in �9 is at most 1~Slk, because every 
side of �9 intersects at most k half-edges. If the boundary of �9 is not connected, 
then t(~) > I~1. Therefore, in this case, we have h(~) < I~lk < t (~)k + I~t- 3. 
[ ]  

Now we are ready to prove Theorem 1. Suppose that a simple graph G is 
drawn in the plane with at most k crossings on each edge. Let G' be a maximal 
plane subgraph of G. Denote the faces of G' by q~l, q~2,. �9 .~m. To triangulate ~ ,  
we need at least I~i] - 3 edges. Therefore, 

m 

e(G') _< 3v - 6 - ~ ( l ~ [ -  3). 
i = 1  

Every edge of G - G' gives rise to two half-edges. So, Lemma 2.2 yields that 

i = 1  

Summing up the last two inequalities and noticing that the total number of 
triangles satisfies ~ t(~i) = 2v(G) - 4, we obtain 

m 

3v (a )  - 6 - - 3)) 3v(G) - 6 + ( v ( G )  - 2)k 
i----1 

as desired. [] [] 

= (k + 3)(v(a)  - 2), 

R e m a r k  2.3. For k = 0, the bound e < 3v - 6 is tight for any triangulation. 
For k = 1, the obtained bound e < 4v - 8 is also tight, provided that v > 12. 

First we show that for every v _> 12 there is a planar graph with v vertices, all 
of whose faces are quadrilaterals, and no two faces share more than one edge. 
Indeed, Figure 2 illustrates that such graphs exist for v = 8, 13, 14, 15. Once we 
have an example G with v vertices, we can construct another one with v + 4 
vertices, by replacing some face of G by the 8-point example in Figure 2. Notice 
that if we add both diagonals of each face (including the external face), then we 
obtain a graph with 4v - 8 edges such that along each edge there is at most one 
crossing. 

)4 
F i g u r e  2. 



350 

For k = 2, the bound e < 5 v -  10 is sharp for all v > 50 such that v =_ 
2 (rood 3). For simplicity, we only exhibit a construction for v -- 5 (rood 15). 
First we construct a planar graph whose faces are pentagons and two faces have 
at most one edge in common. For v = 20, such a graph is shown in Figure 3. The 
number of vertices of such an example G can be increased by 15, by replacing 
some face of G with the graph depicted in Figure 3. Notice that if we add all 5 
diagonals of each face to G, then we obtain a graph with v vertices and 5v - 10 
edges, in which every edge crosses at most 2 others. 

F i g u r e  3. 

3 P r o o f s  of  T h e o r e m s  2 and 3 

In this section, we slightly improve the best known general lower bound on the 
crossing number of a graph, due to Ajtai et al. and Leighton. Our proof is based 
on the following consequence of Theorem 1. 

C o r o l l a r y  3.1. The crossing number of any simple graph G with at least 3 
vertices satisfies 

cr (a)  > he(G) - 25v(V) + 50. 

P r o o f :  If e(G) _< 3 v ( G ) - 6 ,  then the statement is void. Assume e(G) > 3 v ( G ) - 6 .  
It follows from Theorem 1 that if e(G) > (k + 3)(v(G) - 2), then G has an 

edge crossed by at least k + 1 other edges (k < 4). Deleting such an edge, we 
obtain by induction on e(G) that the number of crossings is at least 

4 

[ e ( a )  - (k + 3 ) ( v ( a )  - 2)] = 5 4 0 )  - 2 5 v ( a )  + 5 0  
k=-0 

D 

P r o o f  o f  T h e o r e m  2. Let G be a simple graph drawn in the plane with cr(G) 
crossings, and suppose that e(G) >__ 7.hv(G). 
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Construct a random subgraph G ~ C_ G by selecting each vertex of G inde- 
pendently with probability p = 7.5v(G)/e(G) <_ 1, and letting G' be the sub- 
graph induced by the selected vertices. The expected number of vertices of G ~, 
E[v(G')] = pv(G). Similarly, E[e(G')] = p2e(a). The expected number of cross- 
ings in the drawing of G ~ inherited from G is p4cr(G), and the expected value of 
the crossing number of G ~ is even smaller. 

By Corollary 3.1, cr(G') > 5e (a ' ) -25v(a ' )  for every G'. Taking expectations, 

p4cr(G) _> E[cr(G')] _> 5E[e(G')] - 25E[v(G')] = 5p2e(G) - 25pv(G). 

This implies that 

cr(C)> 1 e~(C) 
- 33 .75  z ~ ( C ) '  (~) 

whenever e(G) > 7.5v(G). With a slight modification, we can extend this bound 
to the range e(G) < 7.5v(G). In fact, using Corollary 3.1, it is easy to check that 

1 e3(G) 
cr(C) >_ 33.75 v:(V) o.gv(c) 

is valid for every simple graph g. [] 

P r o o f  of  T h e o r e m  3. For k _< 4, the result is weaker than the bounds given in 
Theorem 1. 

So let k > 4, and consider a drawing of G such that every edge crosses at most 
k others. Let C denote the number of crossings in this drawing. If e(G) < 7.5v (G), 
then there is nothing to prove. If e(G) >__ 7.5v(G), then using the stronger form 
(1) of Theorem 2, we obtain 

Consequently, 

1 e3(G) e(G)k 
33.75 v2 (G) _< cr(G) < C_< 2 

~(c) <_ ~ ~ v ( c ) .  [] 

o o o o o o ~ o * o * o o o , o l o o ,  

- - a o t * , g o . . . o * * g o o o l  

o , , o Q t o o * * , e , o , o * * * *  

* o I Q e o o * * * e l e e o o * * o ,  

* * e o l l e o * l o * o * o o , o o ,  

e e J o l * o e o e e e e * e o * o o e  

e e o l l * * e l o e * o o o o i o e ,  

* * * J w e |  

ii-L iiiiiiiiiii 

Figure  4. 
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R e m a r k  3.2. The bound given in Theorem 2 is asymptotically tight, apart  f rom 
the values of the constants. The best construction we found is the following. 

Let v << e << v 2. Let V (G) be a set of v points arranged in a slightly perturbed 
unit square grid of size x/~ • V~, so that the points are in general position. Let 
d = V /~ /~rv ,  so that d~r = e/2v.  

Connect two points by a straight-line segment if and only if their distance is 
at most d. Then v(G) = v, e(G) ,~ vd27r/2 = e. 

To count the number of crossings in G, let S(a) = {(x,y)[1 < x , y  <_ a}, 
and for ~ y  two segments (~1, ~2), (~, ~), (~1, ~) e (~, ~2) means that t~e two 
segments cross each other. Then the number of crossings in G is 

1 
=1 {(Ul ,U2, Vl,V~) ~ [V(G)]  4 I It~1 - ~2il, l lv1 - v~l] < d, (u l ,u2)  | (v l ,v2) }  I 

- v2 e s(x/-Q 1 dv~dv ldu;du l  
8 1 e S(V]'~)I1,,~ - 

('it l, 'ITS) @ (V . . . .  ) 

= - " v d  e (1 + o(1)). 
27 

Thus, 

2~r  6 cr(a) < Kvd  (1 + o(1)) 

J. Spencer [$96] showed that the limit 

16 e 3 e 3 
2-~-7~ ~ ~ 0 6 7 '  

,,2 
c = Jim _2~ min cr(G) 

e o Iy(a)l = ,  
IE(a)l = 

exists, as v --+ ec and v << e << v 2. By our results, .06 > c > .029. 

R e m a r k  3.3. To see that the bound obtained in Theorem 3 is also asymp- 
totically tight. Consider the same construction as in Remark 3.2, but now set 
d = ~ ( 1  - o(1)), as k tends to infinity. Just like above, it can be shown that 
no edge crosses more than k other edges. The number of edges 

Thus, we have 

1.92(1 - o(1))v/-kv(G) < maxe (G)  < 4.108v/kv(G), 

where the maximum is taken over all simple graphs with v(G) vertices that have 
a drawing with at most k crossings per edge. 
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4 Two further applications 

Using Sz6kely's method (see [$95]) and Theorem 2, we can improve the constant 
in the Szemer6di-Trotter theorem [ST83], ICE90]. 

T h e o r e m  4.1. Given m points and n lines in the Euclidean plane, the number 
of incidences between them is at most 2.57n2/3m 2/3 + 2.07(m -t- n). 
P roof .  Define a graph G drawn in the plane such that the vertex set of G is the 
given set of m points, and join two points with an edge drawn as a straight line 
segment if the two points are consecutive along one of the lines. Let I denote 
the total number of incidences between the given m points and n lines. Then 
v(G) = m and e(G) = I -  n. Since every edge belongs to one of the n lines, 
cr(G) _< (~). Applying Theorem 2 to G, we obtain that 

( 2 )  1 ( I - n ) 3  0.9m, 
>_ cr(G) > 33.75 m 2 

which implies, by Jensen's inequality, that 

I < 2.57n2/arn ~/a + 3.13rn + n. 

By symmetry we also have that 

I < 2.57n2/am2/3 + m + 3.13n. 

Taking the average of the last two inequalities, the result follows. [] 

R e m a r k  4.2. As ErdSs pointed out fifty years ago, the order of magnitude of 
the bound in Theorem 4.1 cannot be improved. To see this, one can take n 
points arranged in a unit square grid of size ~ x V~ and consider the m most 
"popular" lines. 

More precisely, for any 1 > e > 0, take all lines which contain at least ev/-ff 
of the points. Then, for the number of lines m we have 

1/~ 1/~ l / ,  6v/_ ~ 
m ,~ 4v/~ E ~ r + s - 2rse = 6 v ~  E re(r)  - 4v~e E r2 r ~ ~r2c 3 . 

r -=l  s < r r = l  r = l  

(r, s) = 1 

Here r denotes Euler's function and we used the formula EN__I (~(r) ~,~ 3N2/Tr 2 
(see e. g. [HW54]). By similar calculations, for the number of incidences I we get 

3n 
I ~ 4 n E  E 1 - r s c  2 = 4 n E r  2 E  r2r  lr2v 2. 

r----1 s < r r----1 r : l  

(r,s) = 1 

Comparing the last two expressions, we obtain 

I ~-, cn2/am2/a with c = ..~ 0.42. 



354 

We can also generalize Theorem 2 for multigraphs with bounded edge-multiplicity, 
improving the constant in Sz6kely's result [$95]. 

T h e o r e m  4.3. Let G be a multigraph with maximum edge-multiplicity m. Then 

1 ~ 3 ( G )  0.9,~2v(G)" 
cr(c) > 33.75 mv2(c) 

Proof .  Define a random simple subgraph G ~ of G on the same vertex set. For 
each pair of vertices vl, v2 of G, let el, e2, . . .ek be the edges connecting them. 
With probability 1 - k/m, G ~ will not contain any edge between vl and v2. With 
probability k/m,  G ~ contains precisely one such edg% and the probability that 
this edge is ei is 1/m (1 < i < k). 

Applying Theorem 2 to G t, the result follows. [] 
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