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Graphs of Holomorphic Functions with
Isolated Singularities Are Complete Pluripolar

Jan Wiegerinck

1. Introduction

In classical potential theory one encounters the notions of polar set and complete
polar set. A setE ⊂ Rn is calledpolar if there exists a subharmonicu on a neigh-
borhood ofE such thatE ⊂ {x : u(x) = −∞}; E is calledcomplete polarif one
actually hasE = {x : u(x) = −∞}. (The function identically equal to−∞ is
not considered to be subharmonic.) It is well known that we may takeu to be de-
fined on all ofRn and also thatE is complete polar if and only ifE is polar and a
Gδ (cf. [5]).

In pluripotential theory the situation is more complicated. A setE in a domain
D ⊂ Cn is calledpluripolar in D if there exists a plurisubharmonic functionu
onD such thatE ⊂ {z : u(z) = −∞}; E is calledcomplete pluripolar inD if,
for some plurisubharmonic functionu onD, we haveE = {z : u(z) = −∞}.
Although Josefson’s theorem [4] asserts thatE being pluripolar inD implies that
E is pluripolar inCn, the corresponding assertion is false in the complete pluri-
polar setting. Also, a pluripolarGδ need not be complete: the open unit disk1 in
the complex linez2 = 0 in C2 is aGδ but is not complete inC2. In fact, every
plurisubharmonic function onC2 that equals−∞ on1 must equal−∞ on the
line z2 = 0. Thus, it is reasonable to introduce thepluripolar hull of a pluripolar
setE ⊂ D as

E∗D =
{
z∈D : u

∣∣
E
= −∞ H⇒ u(z) = −∞ ∀u∈PSH(D)

}
,

where PSH(D) denotes the set of all plurisubharmonic functions onD. We also
have use for thenegative pluripolar hull,

E−D =
{
z∈D : u

∣∣
E
= −∞ H⇒ u(z) = −∞ ∀u∈PSH(D), u ≤ 0

}
.

If E is complete pluripolar inD then clearlyE is aGδ andE∗D = E. A partial
converse is Zeriahi’s theorem [11].

Theorem 1. LetE be a pluripolar subset of a pseudoconvex domainD in Cn. If
E∗D = E andE is aGδ as well as anFσ , thenE is complete pluripolar inD.
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Completeness and hulls of various pluripolar sets have been studied in [6; 7; 9;
10].

In [9], Sadullaev posed the following questions. Consider the sets

E1= {(x, y)∈C2 : y = xα, x ∈ (0,1)},
with α irrational, and

E2 = {(x, y)∈C2 : y = e−1/x, x ∈ (0,1)}.
Sadullaev asked if there exists a plurisubharmonic functionhj on a neighborhood
V of Ej such that

hj(0) > lim sup
(x,y)→0
(x,y)∈Ej

hj(x, y)

(see also Bedford’s survey [1]). In [7], Levenberg and Poletsky gave a positive
answer forE1; in [10], the author gave a positive answer forE2. In fact, it was
shown in both cases that the pluripolar hullsE∗C2 are equal to the graphs of the
maximal analytic extension ofy = xα (respectively,y = e−1/x).

In the present paper we generalize the results of [10] as follows.

Theorem 2. Suppose thatD is a domain inC and thatA is a sequence of points
inD without density point inD. Letf be holomorphic onD \A, and letE denote
the graph off in (D \ A)× C. ThenE is complete pluripolar inD × C.

Necessary preliminaries are dealt with in Section 2. After some preparations, we
give in Section 3 the proof of the theorem. Surprisingly, it is more elementary than
the special cases that were treated in [10]; part of it resembles proofs in [6] and [9].

Acknowledgment. Part of the work on this paper was completed while I vis-
ited Université Paul Sabatier at Toulouse. I wish to thank this institution for its
hospitality and the members of the Laboratoire Émile Picard for interesting and
stimulating discussions.

2. Preliminaries

2.1. Pluripolar Hulls

We will need some facts about the pluripolar hullsE∗D andE−D , which were de-
fined in Section 1. Of course,E∗D ⊂ E−D . Moreover, these hulls are related as
follows (see [7]),

Theorem 3. LetD be pseudoconvex inCN and letE ⊂ D be pluripolar. Sup-
poseD =⋃j Dj,where theDj form an increasing sequence of relatively compact
pseudoconvex subdomains ofD. Then

E∗D =
⋃
j

(E ∩Dj)−Dj .
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Moreover, ifD is hyperconvex(i.e., ifD admits a bounded plurisubharmonic ex-
haustion function) then

E−D =
⋃
j

(E ∩Dj)−Dj .

2.2. Pluriharmonic Measure

The notion of pluriharmonic measure was introduced in [2; 9]. LetE be a subset
of a domainD ⊂ Cn. Thepluriharmonic measureat z ∈D of E relative toD is
the number

ω(z,E,D) = −sup{u(z) : u∈PSH(D) andu ≤ −χE}. (2.1)

HereχE is the characteristic function ofE onD.
Notice that we do not regularize the supremum in (2.1). Doing so would yield

0 if E were pluripolar (the case we will consider), and all information would be
lost. Forn = 1, E compact inD, andz ∈ D \ E, this notion boils down to the
usual concept of harmonic measure atz of the boundary ofE in the domainD \E.

The relation of pluriharmonic measure with pluripolar hulls is given by the fol-
lowing proposition. The proof may be found in [7].

Proposition 4. LetD be a hyperconvex domain inCN and letE ⊂ D be pluri-
polar. Then

E−D = {z∈D : ω(z,E,D) > 0}.
The following observation will be used in the proof of Theorem 2. LetE be the
graph of some holomorphic functionf on a domainG ⊂ C, and letB be a do-
main inC. Next, letK be a closed disk of positive radius inG such thatf(K) ⊂
B, and letEK denote the graph off overK. Then

(EK)
∗
G×B = (E ∩ (G× B))∗G×B, (EK)

−
G×B = (E ∩ (G× B))−G×B. (2.2)

One may simply observe that a plurisubharmonic function onG × B that equals
−∞ onEK equals−∞ onE ∩ (G× B).

3. Proof of Theorem 2

3.1. Construction of a Plurisubharmonic Function

Our isolated singularities will of course be poles or essential singularities. The
principal part at such a singularity will be considered as an infinite Laurent series,
which may consist of only finitely many nonzero terms.

Proposition 5. Letf be holomorphic on a bounded domainD in C except for
finitely many isolated singularities ata1, . . . , an ∈ D. Let E denote the graph
of f in D \ {a1, . . . , an} × B, whereB is a disk about the origin. Then there
is a negative plurisubharmonic function onD × B that equals−∞ precisely at
E ∪⋃n

i=1{(z, w) ∈D × B : z = ai} and is continuous outside its−∞ locus. In
particular,E ∪⋃n

i=1{(z, w)∈D × B : z = ai} is complete pluripolar inD × B.
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Proof. We write down the Mittag–Leffler decomposition off as

f = f0 + f1+ · · · + fn,
wheref0 is holomorphic onD while, for j = 1, . . . , n, the functionfj is holo-
morphic onC \ {aj }, vanishes at∞, and has an isolated singularity ataj . The
functionsfj have the expansion

fj =
∞∑
m=1

cjm(z− aj )−m

with
|cjm|1/m→ 0 asm→∞. (3.1)

After introducing the new coordinates

w ′ = w − f0(z) and z ′ = z,
we may assume thatf0 = 0.

LetN be a positive integer, which later will be chosen sufficiently large to suit
our purposes. Let

PN(z,w) =
(
w −

n∑
j=1

N∑
m=1

cjm(z− aj )−m
) n∏
j=1

(z− aj )N

and let

hN(z,w) = 1

N
log|PN(z,w)|.

ThenhN is a plurisubharmonic function onD × C.
We make some estimates ofhN. Let εm = maxj=1,. . . ,n; k≥m|cjk|1/k. Thenεm

decreases to 0 according to (3.1). Fixδ > 0, and letK be the compact set consist-
ing of thosez∈D with distance at leastδ to the boundary ofD \{a1, . . . , an}. Let
M be the diameter ofD. On (K × B) ∩ E we have, forεN < δ/2,

hN(z, f(z)) = 1

N
log

∣∣∣∣f(z)− n∑
j=1

N∑
m=1

cjm(z− aj )−m
∣∣∣∣+ n∑

j=1

log|z− aj |

= 1

N
log

∣∣∣∣ n∑
j=1

∞∑
m=N+1

cjm(z− aj )−m
∣∣∣∣+ n∑

j=1

log|z− aj |

≤ 1

N
log

( n∑
j=1

∞∑
m=N+1

εmN |z− aj |−m
)
+

n∑
j=1

log|z− aj |

≤
(

1+ 1

N

)
logεN + log 2n−

(
1+ 1

N

)
logδ + n logM

≤ logεN + C, (3.2)

whereC depends onδ,M, n but not onεN . Next, letA be positive. Forz∈K and
|w − f(z)| > A > 0, we have
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hN(z,w) = 1

N
log

∣∣∣∣w − n∑
j=1

N∑
m=1

cjm(z− aj )−m
∣∣∣∣+ n∑

j=1

log|z− aj |

≥ 1

N
log

∣∣∣∣|w − f(z)| − n∑
j=1

∞∑
m=N+1

εmN |z− aj |−m
∣∣∣∣+ n log|δ|

≥ 1

N
log

(
A− 2n

(
εN

δ

)N+1)
+ n log|δ| ≥ −C ′, (3.3)

for some positive constantC ′, if N is sufficiently large.
The final estimate is that, for large enoughC0 andC ′′, the inequality

hN(z,w) <
C0

N
log(|w| +1)+ C0 ≤ C ′′ (3.4)

holds onD × B.
Now we introduce the negative plurisubharmonic functions

uN = max(hN − C ′′, logεN).

Choose a sequence of positive integersNi and a sequence of positive numbersdi
with the following property:

∑
di converges, but

∑
di logεNi diverges to−∞.

This is possible sinceεN ↓ 0. We form the series

u(z,w) =
∞∑
i=1

diuNi(z, w). (3.5)

This is, onD × B, a limit of a decreasing sequence of plurisubharmonic func-
tions. OnE ∩ (K × B) we use (3.2) and find thatu = −∞ onE ∩ (K × B) and
hence also onE. By (3.3) we obtain thatu > −∞ if w 6= f(z). The convergence
properties of (3.5) are independent ofδ; we conclude thatu represents a negative
plurisubharmonic function onD × B that satisfies

E ⊂ {(z, w) : u(z,w) = −∞} ⊂ E ∪
⋃

1≤j≤n
{z = aj }.

Moreover, the convergence of (3.5) is uniform on compact sets in the complement
of E ∪⋃1≤j≤n{z = aj }. Hence,u is continuous in this complement. Finally, the
function

u(z,w)+
n∑
i=1

log|z− ai | − n logM

satisfies all our conditions.

3.2. Estimates for Harmonic Measure

The next one-variable proposition will allow us to estimate pluriharmonic mea-
sure in the proof of the main theorem. The proposition is a small variation on a
classical result concerning the existence of barriers (cf. [3]). We will denote clas-
sical harmonic measure byω0.
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Proposition 6. LetG be a Dirichlet domain inC, letK be a closed disk con-
tained inG, and leta be a point in the boundary ofG. Assume that there is an
arc γ : [0,1] → C contained in the complement ofG with γ (0) = a. Then, for
everyε > 0, there exist aδ > 0 and a negative subharmonic functionh onGδ =
G ∪ {z : |z− a| < δ} such thath|K = −1 andh(a) ≥ −ε.

Proof. Without loss of generality we can takea = 0. Applying a Möbius trans-
formation if necessary, we can assume that∞ = γ (1). For every 0< δ < 1 we let
γδ be the component ofγ \ B(0, δ) that contains∞. Abusing notation, letγδ(δ)
denote the other endpoint ofγδ, so that|γδ(δ)| = δ.

Let�0 = C∗ \γδ. Choose an analytic branchfδ of log(z−γδ(δ)) on�0. LetBδ
be the disk{z : |z− γδ(δ)| < 1} andCδ its boundary. The image ofGδ ∩Bδ under
fδ is contained in the half-planeH = {<w < 0} andX, the intersection of its
boundary with the imaginary axis, has length< 2π. Setu(z) = −ω0(z,X,H ).

Thenu Bfδ is a negative harmonic function onGδ ∩Bδ that equals−1 onGδ ∩Cδ.
Moreover,u(fδ(0)) ≥ 2/ logδ. Now let h(z) = −ω0(z,K,Gδ). Thenh(z) >
−1 onGδ ∩ Cδ andh(z) = 0 on∂Gδ ∩ Bδ. Henceh(z) ≥ u(z) on ∂(Gδ ∩ Bδ).
Therefore,h(0) ≥ u(0) ≥ 2/ logδ, so thath(0) > −ε if δ is sufficiently small.
Also,h is negative subharmonic onGδ andh = −1 onK.

3.3. Proof of Theorem 2

LetD ′′ ⊂ D ′ be subdomains ofD with D ′′ ⊂⊂ D ′ ⊂⊂ D. Assume also thatD ′

is a Dirichlet domain. LetK be a (small) closed disk inD ′ that does not meetA,
and denote byEK the graph off overK. Let M be the maximum of|f | onK
and letB ′′ ⊂ B ′ be disks about the origin with different radii, each bigger than
M. Let�′ = D ′ × B ′ and�′′ = D ′′ × B ′′. We putZ = E ∪ {(z, w) : z∈A}.

By Proposition 5, there exists a negative continuous plurisubharmonic function
u on�′ such thatu equals−∞ precisely on�′ ∩ Z. It follows that

ω((z,w),EK,�
′′) = 0 for (z, w)∈�′′ \ Z.

We next estimateω((a,w),EK,�′′) for a ∈A ∩D ′′. Let ε > 0 and letG denote
the projection ofE ∩�′ on the first coordinate. Ifa is a pole off, thena is an in-
terior point of the complement ofG. The functionh defined by−1 onG and−ε
on a small neighborhood ofa is harmonic onG∪B(a, δ) for sufficiently smallδ.
If a is an essential singularity, thena is a boundary point ofG. Since there exists
a curve ending ina along whichf tends to∞, it is clear that the conditions of
Proposition 6 are met. We thus find a smallδ > 0 and a negative subharmonic
functionh onG ∪ B(a, δ) with h(a) > −ε andh

∣∣
K
= −1.

In either case we view the functionh as a plurisubharmonic function on
(G ∪ B(a, δ)) × B ′. It is plurisubharmonic in a neighborhood of{(z, w) ∈ �′ :
u(z,w) = −∞}. There exists anη > 0 such that this neighborhood containsX =
{(z, w) ∈ �′′ : dist((z, w), Z) = η}. Now the supremum ofh onX is negative
andu is continuous. Thus, for sufficiently small (positive)λ we find thatλu > h

onX.
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The functionh can be extended to a negative plurisubharmonic function on�′′

as follows. Set

h̃(z, w) =
{

max{(h(z,w), λu(z,w)} if dist((z, w), Z) < η,

λu(z,w) otherwise.

The functionh̃ competes for the supremum in the definition ofω((a,w),EK,�
′′).

We conclude thatω((a,w),EK,�′′) = 0.
It now follows from Proposition 4 that(EK)

−
�′′ = E ∩�′′. Application of (2.2)

and Theorem 3 shows that

E∗D×C = (EK)∗D×C = E.
Finally, observing thatE is aGδ as well as anFσ , we infer from Theorem 1 that
E is complete pluripolar inD × C.
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