Graphs of Holomorphic Functions with Isolated Singularities Are Complete Pluripolar

Jan Wiegerinck

1. Introduction

In classical potential theory one encounters the notions of polar set and complete polar set. A set $E \subset \mathbb{R}^{n}$ is called polar if there exists a subharmonic u on a neighborhood of E such that $E \subset\{x: u(x)=-\infty\} ; E$ is called complete polar if one actually has $E=\{x: u(x)=-\infty\}$. (The function identically equal to $-\infty$ is not considered to be subharmonic.) It is well known that we may take u to be defined on all of \mathbb{R}^{n} and also that E is complete polar if and only if E is polar and a G_{δ} (cf. [5]).

In pluripotential theory the situation is more complicated. A set E in a domain $D \subset \mathbb{C}^{n}$ is called pluripolar in D if there exists a plurisubharmonic function u on D such that $E \subset\{z: u(z)=-\infty\} ; E$ is called complete pluripolar in D if, for some plurisubharmonic function u on D, we have $E=\{z: u(z)=-\infty\}$. Although Josefson's theorem [4] asserts that E being pluripolar in D implies that E is pluripolar in \mathbb{C}^{n}, the corresponding assertion is false in the complete pluripolar setting. Also, a pluripolar G_{δ} need not be complete: the open unit disk Δ in the complex line $z_{2}=0$ in \mathbb{C}^{2} is a G_{δ} but is not complete in \mathbb{C}^{2}. In fact, every plurisubharmonic function on \mathbb{C}^{2} that equals $-\infty$ on Δ must equal $-\infty$ on the line $z_{2}=0$. Thus, it is reasonable to introduce the pluripolar hull of a pluripolar set $E \subset D$ as

$$
E_{D}^{*}=\left\{z \in D:\left.u\right|_{E}=-\infty \Longrightarrow u(z)=-\infty \forall u \in \operatorname{PSH}(D)\right\},
$$

where $\operatorname{PSH}(D)$ denotes the set of all plurisubharmonic functions on D. We also have use for the negative pluripolar hull,

$$
E_{D}^{-}=\left\{z \in D:\left.u\right|_{E}=-\infty \Longrightarrow u(z)=-\infty \forall u \in \operatorname{PSH}(D), u \leq 0\right\}
$$

If E is complete pluripolar in D then clearly E is a G_{δ} and $E_{D}^{*}=E$. A partial converse is Zeriahi's theorem [11].

Theorem 1. Let E be a pluripolar subset of a pseudoconvex domain D in \mathbb{C}^{n}. If $E_{D}^{*}=E$ and E is $a G_{\delta}$ as well as an F_{σ}, then E is complete pluripolar in D.

Completeness and hulls of various pluripolar sets have been studied in [6;7;9; 10].

In [9], Sadullaev posed the following questions. Consider the sets

$$
E_{1}=\left\{(x, y) \in \mathbb{C}^{2}: y=x^{\alpha}, x \in(0,1)\right\}
$$

with α irrational, and

$$
E_{2}=\left\{(x, y) \in \mathbb{C}^{2}: y=e^{-1 / x}, x \in(0,1)\right\}
$$

Sadullaev asked if there exists a plurisubharmonic function h_{j} on a neighborhood V of $\overline{E_{j}}$ such that

$$
h_{j}(0)>\limsup _{\substack{(x, y) \rightarrow 0 \\(x, y) \in E_{j}}} h_{j}(x, y)
$$

(see also Bedford's survey [1]). In [7], Levenberg and Poletsky gave a positive answer for E_{1}; in [10], the author gave a positive answer for E_{2}. In fact, it was shown in both cases that the pluripolar hulls $E_{\mathbb{C}^{2}}^{*}$ are equal to the graphs of the maximal analytic extension of $y=x^{\alpha}$ (respectively, $y=e^{-1 / x}$).

In the present paper we generalize the results of [10] as follows.
Theorem 2. Suppose that D is a domain in \mathbb{C} and that A is a sequence of points in D without density point in D. Let f be holomorphic on $D \backslash A$, and let E denote the graph of f in $(D \backslash A) \times \mathbb{C}$. Then E is complete pluripolar in $D \times \mathbb{C}$.

Necessary preliminaries are dealt with in Section 2. After some preparations, we give in Section 3 the proof of the theorem. Surprisingly, it is more elementary than the special cases that were treated in [10]; part of it resembles proofs in [6] and [9].

Acknowledgment. Part of the work on this paper was completed while I visited Université Paul Sabatier at Toulouse. I wish to thank this institution for its hospitality and the members of the Laboratoire Émile Picard for interesting and stimulating discussions.

2. Preliminaries

2.1. Pluripolar Hulls

We will need some facts about the pluripolar hulls E_{D}^{*} and E_{D}^{-}, which were defined in Section 1. Of course, $E_{D}^{*} \subset E_{D}^{-}$. Moreover, these hulls are related as follows (see [7]),

Theorem 3. Let D be pseudoconvex in \mathbb{C}^{N} and let $E \subset D$ be pluripolar. Suppose $D=\bigcup_{j} D_{j}$, where the D_{j} form an increasing sequence of relatively compact pseudoconvex subdomains of D. Then

$$
E_{D}^{*}=\bigcup_{j}\left(E \cap D_{j}\right)_{D_{j}}^{-}
$$

Moreover, if D is hyperconvex (i.e., if D admits a bounded plurisubharmonic exhaustion function) then

$$
E_{D}^{-}=\bigcup_{j}\left(E \cap D_{j}\right)_{D_{j}}^{-}
$$

2.2. Pluriharmonic Measure

The notion of pluriharmonic measure was introduced in [2;9]. Let E be a subset of a domain $D \subset \mathbb{C}^{n}$. The pluriharmonic measure at $z \in D$ of E relative to D is the number

$$
\begin{equation*}
\omega(z, E, D)=-\sup \left\{u(z): u \in \operatorname{PSH}(D) \text { and } u \leq-\chi_{E}\right\} \tag{2.1}
\end{equation*}
$$

Here χ_{E} is the characteristic function of E on D.
Notice that we do not regularize the supremum in (2.1). Doing so would yield 0 if E were pluripolar (the case we will consider), and all information would be lost. For $n=1, E$ compact in D, and $z \in D \backslash E$, this notion boils down to the usual concept of harmonic measure at z of the boundary of E in the domain $D \backslash E$.

The relation of pluriharmonic measure with pluripolar hulls is given by the following proposition. The proof may be found in [7].

Proposition 4. Let D be a hyperconvex domain in \mathbb{C}^{N} and let $E \subset D$ be pluripolar. Then

$$
E_{D}^{-}=\{z \in D: \omega(z, E, D)>0\} .
$$

The following observation will be used in the proof of Theorem 2. Let E be the graph of some holomorphic function f on a domain $G \subset \mathbb{C}$, and let B be a domain in \mathbb{C}. Next, let K be a closed disk of positive radius in G such that $f(K) \subset$ B, and let E_{K} denote the graph of f over K. Then

$$
\begin{equation*}
\left(E_{K}\right)_{G \times B}^{*}=(E \cap(G \times B))_{G \times B}^{*}, \quad\left(E_{K}\right)_{G \times B}^{-}=(E \cap(G \times B))_{G \times B}^{-} . \tag{2.2}
\end{equation*}
$$

One may simply observe that a plurisubharmonic function on $G \times B$ that equals $-\infty$ on E_{K} equals $-\infty$ on $E \cap(G \times B)$.

3. Proof of Theorem 2

3.1. Construction of a Plurisubharmonic Function

Our isolated singularities will of course be poles or essential singularities. The principal part at such a singularity will be considered as an infinite Laurent series, which may consist of only finitely many nonzero terms.

Proposition 5. Let f be holomorphic on a bounded domain D in \mathbb{C} except for finitely many isolated singularities at $a_{1}, \ldots, a_{n} \in D$. Let E denote the graph of f in $D \backslash\left\{a_{1}, \ldots, a_{n}\right\} \times B$, where B is a disk about the origin. Then there is a negative plurisubharmonic function on $D \times B$ that equals $-\infty$ precisely at $E \cup \bigcup_{i=1}^{n}\left\{(z, w) \in D \times B: z=a_{i}\right\}$ and is continuous outside its $-\infty$ locus. In particular, $E \cup \bigcup_{i=1}^{n}\left\{(z, w) \in D \times B: z=a_{i}\right\}$ is complete pluripolar in $D \times B$.

Proof. We write down the Mittag-Leffler decomposition of f as

$$
f=f_{0}+f_{1}+\cdots+f_{n}
$$

where f_{0} is holomorphic on D while, for $j=1, \ldots, n$, the function f_{j} is holomorphic on $\mathbb{C} \backslash\left\{a_{j}\right\}$, vanishes at ∞, and has an isolated singularity at a_{j}. The functions f_{j} have the expansion

$$
f_{j}=\sum_{m=1}^{\infty} c_{j m}\left(z-a_{j}\right)^{-m}
$$

with

$$
\begin{equation*}
\left|c_{j m}\right|^{1 / m} \rightarrow 0 \text { as } m \rightarrow \infty . \tag{3.1}
\end{equation*}
$$

After introducing the new coordinates

$$
w^{\prime}=w-f_{0}(z) \quad \text { and } \quad z^{\prime}=z
$$

we may assume that $f_{0}=0$.
Let N be a positive integer, which later will be chosen sufficiently large to suit our purposes. Let

$$
P_{N}(z, w)=\left(w-\sum_{j=1}^{n} \sum_{m=1}^{N} c_{j m}\left(z-a_{j}\right)^{-m}\right) \prod_{j=1}^{n}\left(z-a_{j}\right)^{N}
$$

and let

$$
h_{N}(z, w)=\frac{1}{N} \log \left|P_{N}(z, w)\right|
$$

Then h_{N} is a plurisubharmonic function on $D \times \mathbb{C}$.
We make some estimates of h_{N}. Let $\varepsilon_{m}=\max _{j=1, \ldots, n ; k \geq m}\left|c_{j k}\right|^{1 / k}$. Then ε_{m} decreases to 0 according to (3.1). Fix $\delta>0$, and let K be the compact set consisting of those $z \in D$ with distance at least δ to the boundary of $D \backslash\left\{a_{1}, \ldots, a_{n}\right\}$. Let M be the diameter of D. On $(K \times B) \cap E$ we have, for $\varepsilon_{N}<\delta / 2$,

$$
\begin{align*}
h_{N}(z, f(z)) & =\frac{1}{N} \log \left|f(z)-\sum_{j=1}^{n} \sum_{m=1}^{N} c_{j m}\left(z-a_{j}\right)^{-m}\right|+\sum_{j=1}^{n} \log \left|z-a_{j}\right| \\
& =\frac{1}{N} \log \left|\sum_{j=1}^{n} \sum_{m=N+1}^{\infty} c_{j m}\left(z-a_{j}\right)^{-m}\right|+\sum_{j=1}^{n} \log \left|z-a_{j}\right| \\
& \leq \frac{1}{N} \log \left(\sum_{j=1}^{n} \sum_{m=N+1}^{\infty} \varepsilon_{N}^{m}\left|z-a_{j}\right|^{-m}\right)+\sum_{j=1}^{n} \log \left|z-a_{j}\right| \\
& \leq\left(1+\frac{1}{N}\right) \log \varepsilon_{N}+\log 2 n-\left(1+\frac{1}{N}\right) \log \delta+n \log M \\
& \leq \log \varepsilon_{N}+C, \tag{3.2}
\end{align*}
$$

where C depends on δ, M, n but not on ε_{N}. Next, let A be positive. For $z \in K$ and $|w-f(z)|>A>0$, we have

$$
\begin{align*}
h_{N}(z, w) & =\frac{1}{N} \log \left|w-\sum_{j=1}^{n} \sum_{m=1}^{N} c_{j m}\left(z-a_{j}\right)^{-m}\right|+\sum_{j=1}^{n} \log \left|z-a_{j}\right| \\
& \left.\geq \frac{1}{N} \log | | w-f(z)\left|-\sum_{j=1}^{n} \sum_{m=N+1}^{\infty} \varepsilon_{N}^{m}\right| z-\left.a_{j}\right|^{-m}|+n \log | \delta \right\rvert\, \\
& \geq \frac{1}{N} \log \left(A-2 n\left(\frac{\varepsilon_{N}}{\delta}\right)^{N+1}\right)+n \log |\delta| \geq-C^{\prime}, \tag{3.3}
\end{align*}
$$

for some positive constant C^{\prime}, if N is sufficiently large.
The final estimate is that, for large enough C_{0} and $C^{\prime \prime}$, the inequality

$$
\begin{equation*}
h_{N}(z, w)<\frac{C_{0}}{N} \log (|w|+1)+C_{0} \leq C^{\prime \prime} \tag{3.4}
\end{equation*}
$$

holds on $D \times B$.
Now we introduce the negative plurisubharmonic functions

$$
u_{N}=\max \left(h_{N}-C^{\prime \prime}, \log \varepsilon_{N}\right)
$$

Choose a sequence of positive integers N_{i} and a sequence of positive numbers d_{i} with the following property: $\sum d_{i}$ converges, but $\sum d_{i} \log \varepsilon_{N_{i}}$ diverges to $-\infty$. This is possible since $\varepsilon_{N} \downarrow 0$. We form the series

$$
\begin{equation*}
u(z, w)=\sum_{i=1}^{\infty} d_{i} u_{N_{i}}(z, w) \tag{3.5}
\end{equation*}
$$

This is, on $D \times B$, a limit of a decreasing sequence of plurisubharmonic functions. On $E \cap(K \times B)$ we use (3.2) and find that $u=-\infty$ on $E \cap(K \times B)$ and hence also on E. By (3.3) we obtain that $u>-\infty$ if $w \neq f(z)$. The convergence properties of (3.5) are independent of δ; we conclude that u represents a negative plurisubharmonic function on $D \times B$ that satisfies

$$
E \subset\{(z, w): u(z, w)=-\infty\} \subset E \cup \bigcup_{1 \leq j \leq n}\left\{z=a_{j}\right\}
$$

Moreover, the convergence of (3.5) is uniform on compact sets in the complement of $E \cup \bigcup_{1 \leq j \leq n}\left\{z=a_{j}\right\}$. Hence, u is continuous in this complement. Finally, the function

$$
u(z, w)+\sum_{i=1}^{n} \log \left|z-a_{i}\right|-n \log M
$$

satisfies all our conditions.

3.2. Estimates for Harmonic Measure

The next one-variable proposition will allow us to estimate pluriharmonic measure in the proof of the main theorem. The proposition is a small variation on a classical result concerning the existence of barriers (cf. [3]). We will denote classical harmonic measure by ω_{0}.

Proposition 6. Let G be a Dirichlet domain in \mathbb{C}, let K be a closed disk contained in G, and let a be a point in the boundary of G. Assume that there is an arc $\gamma:[0,1] \rightarrow \mathbb{C}$ contained in the complement of G with $\gamma(0)=a$. Then, for every $\varepsilon>0$, there exist a $\delta>0$ and a negative subharmonic function h on $G_{\delta}=$ $G \cup\{z:|z-a|<\delta\}$ such that $\left.h\right|_{K}=-1$ and $h(a) \geq-\varepsilon$.

Proof. Without loss of generality we can take $a=0$. Applying a Möbius transformation if necessary, we can assume that $\infty=\gamma(1)$. For every $0<\delta<1$ we let γ_{δ} be the component of $\gamma \backslash B(0, \delta)$ that contains ∞. Abusing notation, let $\gamma_{\delta}(\delta)$ denote the other endpoint of γ_{δ}, so that $\left|\gamma_{\delta}(\delta)\right|=\delta$.

Let $\Omega_{0}=\mathbb{C}^{*} \backslash \gamma_{\delta}$. Choose an analytic branch f_{δ} of $\log \left(z-\gamma_{\delta}(\delta)\right)$ on Ω_{0}. Let B_{δ} be the disk $\left\{z:\left|z-\gamma_{\delta}(\delta)\right|<1\right\}$ and C_{δ} its boundary. The image of $G_{\delta} \cap B_{\delta}$ under f_{δ} is contained in the half-plane $H=\{\Re w<0\}$ and X, the intersection of its boundary with the imaginary axis, has length $<2 \pi$. Set $u(z)=-\omega_{0}(z, X, H)$. Then $u \circ f_{\delta}$ is a negative harmonic function on $G_{\delta} \cap B_{\delta}$ that equals -1 on $G_{\delta} \cap C_{\delta}$. Moreover, $u\left(f_{\delta}(0)\right) \geq 2 / \log \delta$. Now let $h(z)=-\omega_{0}\left(z, K, G_{\delta}\right)$. Then $h(z)>$ -1 on $G_{\delta} \cap C_{\delta}$ and $h(z)=0$ on $\partial G_{\delta} \cap B_{\delta}$. Hence $h(z) \geq u(z)$ on $\partial\left(G_{\delta} \cap B_{\delta}\right)$. Therefore, $h(0) \geq u(0) \geq 2 / \log \delta$, so that $h(0)>-\varepsilon$ if δ is sufficiently small. Also, h is negative subharmonic on G_{δ} and $h=-1$ on K.

3.3. Proof of Theorem 2

Let $D^{\prime \prime} \subset D^{\prime}$ be subdomains of D with $D^{\prime \prime} \subset \subset D^{\prime} \subset \subset D$. Assume also that D^{\prime} is a Dirichlet domain. Let K be a (small) closed disk in D^{\prime} that does not meet A, and denote by E_{K} the graph of f over K. Let M be the maximum of $|f|$ on K and let $B^{\prime \prime} \subset B^{\prime}$ be disks about the origin with different radii, each bigger than M. Let $\Omega^{\prime}=D^{\prime} \times B^{\prime}$ and $\Omega^{\prime \prime}=D^{\prime \prime} \times B^{\prime \prime}$. We put $Z=E \cup\{(z, w): z \in A\}$.

By Proposition 5, there exists a negative continuous plurisubharmonic function u on Ω^{\prime} such that u equals $-\infty$ precisely on $\Omega^{\prime} \cap Z$. It follows that

$$
\omega\left((z, w), E_{K}, \Omega^{\prime \prime}\right)=0 \quad \text { for }(z, w) \in \Omega^{\prime \prime} \backslash Z
$$

We next estimate $\omega\left((a, w), E_{K}, \Omega^{\prime \prime}\right)$ for $a \in A \cap D^{\prime \prime}$. Let $\varepsilon>0$ and let G denote the projection of $E \cap \Omega^{\prime}$ on the first coordinate. If a is a pole of f, then a is an interior point of the complement of G. The function h defined by -1 on G and $-\varepsilon$ on a small neighborhood of a is harmonic on $G \cup B(a, \delta)$ for sufficiently small δ. If a is an essential singularity, then a is a boundary point of G. Since there exists a curve ending in a along which f tends to ∞, it is clear that the conditions of Proposition 6 are met. We thus find a small $\delta>0$ and a negative subharmonic function h on $G \cup B(a, \delta)$ with $h(a)>-\varepsilon$ and $\left.h\right|_{K}=-1$.

In either case we view the function h as a plurisubharmonic function on $(G \cup B(a, \delta)) \times B^{\prime}$. It is plurisubharmonic in a neighborhood of $\left\{(z, w) \in \Omega^{\prime}:\right.$ $u(z, w)=-\infty\}$. There exists an $\eta>0$ such that this neighborhood contains $X=$ $\left\{(z, w) \in \Omega^{\prime \prime}: \operatorname{dist}((z, w), Z)=\eta\right\}$. Now the supremum of h on X is negative and u is continuous. Thus, for sufficiently small (positive) λ we find that $\lambda u>h$ on X.

The function h can be extended to a negative plurisubharmonic function on $\Omega^{\prime \prime}$ as follows. Set

$$
\tilde{h}(z, w)= \begin{cases}\max \{(h(z, w), \lambda u(z, w)\} & \text { if } \operatorname{dist}((z, w), Z)<\eta, \\ \lambda u(z, w) & \text { otherwise } .\end{cases}
$$

The function \tilde{h} competes for the supremum in the definition of $\omega\left((a, w), E_{K}, \Omega^{\prime \prime}\right)$. We conclude that $\omega\left((a, w), E_{K}, \Omega^{\prime \prime}\right)=0$.

It now follows from Proposition 4 that $\left(E_{K}\right)_{\Omega^{\prime \prime}}^{-}=E \cap \Omega^{\prime \prime}$. Application of (2.2) and Theorem 3 shows that

$$
E_{D \times \mathbb{C}}^{*}=\left(E_{K}\right)_{D \times \mathbb{C}}^{*}=E .
$$

Finally, observing that E is a G_{δ} as well as an F_{σ}, we infer from Theorem 1 that E is complete pluripolar in $D \times \mathbb{C}$.

References

[1] E. Bedford, Survey of pluripotential theory, Several complex variables: Proceedings of the Mittag-Leffler Inst. 1987-1988 (J.-E. Fornæss, ed.), Math. Notes, 38, Princeton University Press, Princeton, NJ, 1993.
[2] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-40.
[3] M. Heins, Selected topics in the classical theory of functions of a complex variable, Holt, Rinehart \& Winston, New York, 1962.
[4] B. Josefson, On the equivalence between locally polar and globally polar sets for plurisubharmonic functions on \mathbb{C}^{n}, Ark. Mat. 16 (1978), 109-115.
[5] N. S. Landkof, Foundations of modern potential theory, Grundlehren Math. Wiss., 180, Springer-Verlag, Berlin, 1972.
[6] N. Levenberg, G. Martin, and E. A. Poletsky, Analytic disks and pluripolar sets, Indiana Univ. Math. J. 41 (1992), 515-532.
[7] N. Levenberg and E. A. Poletsky, Pluripolar hulls, Michigan. Math. J. 46 (1999), 151-162.
[8] E. A. Poletsky, Holomorphic currents, Indiana Univ. Math. J. 42 (1993), 85-144.
[9] A. Sadullaev, Plurisubharmonic measures and capacities on complex manifolds, Uspekhi Mat. Nauk 36 (1981), 53-105; translation in Russian Math. Surveys 36 (1981), 61-119.
[10] J. Wiegerinck, The pluripolar hull of $\left\{w=e^{-1 / z}\right\}$, Ark. Mat. 38 (2000), 201-208.
[11] A. Zeriahi, Ensembles pluripolaires exceptionnels pour la croissance partielle des fonctions holomorphes, Ann. Polon. Math. 50 (1989), 81-91.

Universiteit van Amsterdam
Korteweg-de Vries Instituut voor Wiskuncle
Plantage Muidergracht 24
1018 TV Amsterdam
The Netherlands
janwieg@wins.uva.nl

