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INTRODUCTION 

Throughout the paper, we consider only finite connected graphs having no loops 
or multiple edges. The spectrum of such a graph G is the set of eigenvalues of its 0— 1 
adjacency matrix Ä{G), The sum of all its positive eigenvalues is denoted by S[G), 
and called the energy of G. 

For any real a ^ 1, we consider the class of graphs 

P{a) = {G\S{G)ua}, 

and, in this paper, we completely describe the class P(3). 
Briefly, any graph G e P(3) is called — admissible, and any other graph — im

possible. 
Let G' be any connected (induced) subgraph of a graph G, which is denoted by 

G' E G. Since by the known interlacing theorem [ l , p. 19] S(G') ^ S{G), we have 
that any connected subgraph of an admissible graph is admissible, too. It imphes 
that the method of forbidden subgraphs can be consistently applied. 

Throughout the paper, X„, P,„ C„ will be the complete graph, the path and the 
cycle with n vertices, respectively, while X„^ is the complete bipartite graph with 
n + m vertices. 

In this paper, without a special reference, we often use the lists of spectra of all 
connected graphs with 2, 3, 4 or 5 vertices (see [1]), or connected graphs with 6 
vertices (112 graphs; an internal publication). Using these lists, for each particular 
graph with this number of vertices we determine whether it is admissible or not. 

RESULTS 

Denote by a circle any set of isolated vertices, and by the line between two circles 
the fact that there are all edges between these circles. 

Then, by the direct inspection of spectra of all connected graphs with 2, 3, 4, 5 or 6 
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vertices, we have that all admissible graphs with at most 6 vertices belong to one of 
the following classes of graphs: 
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Now, we determine the exact values of parameters for which the above graphs are 
admissible. 

Lemma 1. The graph K(n, m) (1 ^ n ^ m) is admissible exactly in the following 
cases: 

Г n = и m й 9; 
2° n = 2, m = 2,3, 4; 
3° и = m = 3. 
Proof. As is easily seen, this graph is admissible if and only if nm ^ 9 holds, 

whence the statement is immediate. П 

Lemma 2. The graph A{n, m) (1 ^ n ^ m) is admissible exactly in the following 
cases: 

Г n = 1, m = 1,2,3; 
2° П = m = 2. 
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Proof. Immediately, this graph is admissible if and only if ^n + ^ m ^ 2 ^ 2 , 
whence the statement is obvious. П 

Lemma 3. The graph B{n, m) (1 ^ n ^ m) is admissble exactly in the following 
cases: 

r П = 1, m = 1, 2, 3; 
2° П = m = 2. 
Proof. As is easily seen, the graph Б(п, m) is admissible if and only if n + m -Ь 

+ 2 ^{n + m) ^ 9, whence the statement. П 

Lemma 4. The graph C{n) (n ^ 2) zs admissible iff n = 2, 3. 
Proof. Indeed, since it is a complete 3-partite graph, it has exactly one positive 

eigenvalue r„ = r{C{n)), and r„ = (1 + ^'(1 + 8n))/2 ^ 3 iff n = 2, 3. D 

Lemma 5. The graph D{n) (n ^ 1) /s admissible ijf n = 1, 2. 
Proof. The graphs ^(1), D{2) are admissible while D(3) is not. Hence, all D(n) 

(n ^ 3) are impossible. П 

Lemma 6. The graph E(n, m) (n, m ^ 1) is admissible iff n = m = 1. 
Proof. Indeed, since £ ( l , 1) is admissible and £(1,2) is an impossible graphs 

we have that £(n, m) for n ^ 2 or m ^ 2 are impossible graphs. П 

Now, we prove the main result of the paper. 

Theorem 1. Each admissible graph G is one of the graphs displayed in Figure 1. 
Proof. We distinguish the following three cases: 

I. There is no C3 or C4 in G as a subgraph. 
II. There is a C3 in G. 

III. There is C4 but no C3 as an induced subgraph in G. 

Case I. Since C„ [n ^ 5) cannot be a subgraph of an admissible G, we conclude 
that, in this case, there is no contour in G; thus G is a tree. Further, since there is 
no P5 or 

in G, we have that G must be one of the graphs K(l, n) [n ^ 1), Ä{n, m) [n, m ^ 1), 
B[n, m) (n, m ^ 1). 

Case II. Denote the vertices of L = C3 in G by 1, 2, 3. Next, denote by T^ (i = 
= 1, 2, 3) the vertices of G which are (with respect to L) adjacent exactly to the 
vertex i; the notations T^2^ ^13? ^23 ^^^ ^123 have a similar meaning. Put 

T = Ti + T^ + T3 + T12 + Г13 + T23 + T,23 . 

Next, denote by f^ the vertices of G (non-adjacent to L) which are (with respect 
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to Т) adjacent exactly to some vertices of T^; the notations fij (i ф j) and ^123 
have a similar meaning. 

Now, we are interested in determining the edge structure of each particular subset 
between T̂ , Tij and T123, as well as the edge structure between these subsets. 

For any two subsets A, В we use the notation AjA = 0 if Л consists of isolated 
vertices only, AjA = 1 if it is complete, AJB = 0 or 1 or 0 or *, if there is no edge 
between A and B, or there are all such edges, or A and В are not consistent, or we 
cannot determine this structure, respeciively. 

All the above information is obtained by choosing arbitrarily two vertices a e A, 
b E B, then testing the subgraph 123ab in the two possible cases: either a, b are 
adjacent or not. 

So, considering the impossible graphs of order 5, we easily obtain the following 
relations: 

T.JT, = 0{l= 1, 2, 3), T,JIT,J = 0 (/ Ф j), 

| Г , 2 з1^1 , T,/T, = 0 ( / ф ; ) , T,lT,j = 0, 

Next, testing the graph 123abc (a e T^, b e T2, с e T3), we obtain that the 3-tuple 
Tj, T2, T3 is not consistent in G. 

Similarly, we obtain that 

f, = 0 , f,, = 0 , ^ 2 3 = 0 , 

which imphes that each admissible G, in the case II, consists of L = C3 and possibly 
of the classes T;, T,-,., T123. 

In view of all the above results, excluding the symmetric cases, we have that G, 
in case II, consists only of one of the following subsets: L = C3, L + T^, L + T12, 
L+ T,23,L+ T, + T2. 

Consequently, G is one of the following graphs: Сз,Х4, C(n) (n ^ 2), D[n) (n ^ 1), 
E(n, m) (n, m ^ 1). 

Case I I I . Denote the vertices of L = C4 in G by 1, 2, 3, 4. 

Then, similarly as in the previous case, we have the subsets T̂ , Tij, Tijj, and Т^234. 
in G. 

By assumption, or by considering the forbidden subgraphs, we easily conclude 
that 

T,2 - T23 = Г34 = Ti4 = 0 , Tij, = 0 and T1234 = 0 . 

so in Tonly the subsets Ti [i = 1, 2, 3, 4) and Г^з, Г24 remain. 
By the impossible graphs of order 6 ^and by the assumption), we conclude that 

Гi = 0 and Tis = fiA. = 0. Thus, in this case, each admissible G consists only of the 
subsets L, Ti, T2, T3, Г4, Г13 and T24. 
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As in case II, we conclude that 

\Ti\uU Г,з/Г,з = Г24/Т24 = 0 , 

T.JTj = 0 , Г,/Т,з = Г,/Г24 = 0 , Г13/Г24 - 1 . 

Hence, excluding the symmetric cases, we have that G consists of one of the fol
lowing subsets: 

L = C 4 , L+T,, L+T,^, L + T i 3 + r24. 

Consequently, in the case III, G must be one of the following graphs: K[2, 2)^ 
R, K[2, n) {n ^ 3), K(n, m) [n, m ^ 3), which completes the proof. П 

Note that Theorem 1 and Lemmas 1 — 6 completely describe the class P(3). 
Moreover, note that the previous results imply that class P(a) is finite if a = 3. 

In the following theorem, we prove this for any a ^ 1. 

Theorem 2. The class P(a) is finite for any a ^ 1. 
Proof. Choose an arbitrary giaph G e P(a) and its arbitrary (not necessarily 

induced) subgraph K[l, n). Then, since a ^ S{G) ^ r[G) ^ ^n = r(X(l, n)), where 
r{G) is the spectral radius of G (see Theorem 0.9 [1, p. 19] for the last inequality), 
we conclude that X(l , n) e P{a), thus all such n are uniformly bounded by Ь = a^. 
Hence, the degrees of all vertices in G cannot exceed the constant b. 

Next, choose any path P„. Since, for an arbitrary q e N, its q-th positive eigenvalue 
tends to 2 as n -> 00, we get that S(P„) -> 00 as n -> 00. Consequently, for any 
path P„ G P(a) we have that all w's are uniformly bounded by a constant к = f(a). 

Now assume, contrary to the statement, that the set P(a) is infinite for an a ^ 1. 
Then it is easily seen that either there is a sequence of complete bipartite graphs 
iC(l, /If) e P{a) (n^ < ^2 < . . . ) , or there is a sequence of paths P(n^)EP{a){n^ < П2 < 
< . . .) , and both these cases yield contradictions. 

This proves the theorem. П 
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