GRAPHS WHOSE FULL AUTOMORPHISM GROUP IS A SYMMETRIC GROUP

MARTIN W. LIEBECK
(Received 16 May 1986; revised 5 September 1986)
Communicated by L. Caccetta

Abstract

We address the problem of describing all graphs Γ such that Aut Γ is a symmetric group, subject to certain restrictions on the sizes of the orbits of Aut Γ on vertices. As a corollary of our general results, we obtain a classification of all graphs Γ on v vertices with Aut $\Gamma \cong S_{n}$, where $$
v<\min \left\{5 n, \frac{1}{2} n(n-1)\right\} .
$$

1980 Mathematics subject classification (Amer. Math. Soc.): 05 C 25.

Introduction

It has been known since Frucht's paper [1] of 1938 that, given any finite group G, there is a graph Γ such that the automorphism group of Γ is isomorphic to G. For certain groups G, such as S_{n}, this result is obvious, and it is more interesting to investigate the more general problem of describing all graphs Γ such that Aut $\Gamma \cong G$. In this paper we address this problem for the symmetric groups S_{n}. This was considered for graphs with less than $2 n$ vertices in [2] and [3]. Here we investigate the graphs Γ such that Aut $\Gamma \cong S_{n}$, under the following far less restrictive hypothesis:
all orbits of Aut Γ on the set $V \Gamma$ of vertices of Γ have size less than $\frac{1}{2} n(n-1)$.

[^0]It is an elementary consequence of (*) (see Proposition 1.2 below) that for $n>6$, all the orbits of Aut Γ on $V \Gamma$ have size 1 or n. Let t be the number of orbits of size n. In Theorem 1.4 we show that Γ must satisfy various strong necessary conditions; and we conjecture (1.5) that these conditions on an arbitrary graph Δ are also sufficient to imply that Aut $\Delta \cong S_{n}$. We prove Conjecture 1.5 for $1 \leqslant t \leqslant 4$ (see Theorem 2.7). In particular this gives a classification of all graphs Γ with Aut $\Gamma \cong S_{n}(n>6)$ and $|V \Gamma|<\min \left\{5 n, \frac{1}{2} n(n-1)\right\}$. This substantially improves the results of [2] and [3], and also solves various problems raised in [3, Section 4]. We include general descriptions of these graphs in an Appendix.

Finally, we remark that the methods of this paper will extend to the analysis of graphs with automorphism group S_{n} under weaker hypotheses than (*) (see Remark 3 after Theorem 2.7).

Notation. If G is a permutation group on a set Ω and $\Delta \subseteq \Omega$ then $G_{\{\Delta\}}$ denotes the setwise stabilizer of Δ in G; and if Ψ is a fixed set of G then G^{Ψ} denotes the action of G on Ψ. Also $\operatorname{Alt}(\Omega)$ and $\operatorname{Sym}(\Omega)$ denote, respectively, the alternating and symmetric groups on Ω.

1. A general result and a conjecture

We begin with an elementary proposition.

Proposition 1.1. Let $n>6$ and let H be a proper subgroup of S_{n} with $\left|S_{n}: H\right|<\frac{1}{2} n(n-1)$. Then H is A_{n}, S_{n-1} or A_{n-1}.

Proof. If H is transitive and imprimitive on the n points with blocks of size a and $a b=n(a \neq 1, b \neq 1)$, then $|H| \leqslant(a!)^{b} b!$, so

$$
\frac{1}{2} n(n-1)>\left|S_{n}: H\right| \geqslant n!/\left((a!)^{b} b!\right)
$$

which forces $n \leqslant 6$, a contradiction. If H is primitive on the n points and $H \neq A_{n}$ then a result of Bochert (Theorem 14.2 of [4]) gives $\frac{1}{2} n(n-1)>\left|S_{n}: H\right|$ $\geqslant\left[\frac{1}{2}(n+1)\right]$!, forcing $n \leqslant 6$ or $n=8$. The latter is impossible (an easy check) so this case cannot occur. Finally if H is intransitive with an orbit of size r then $\frac{1}{2} n(n-1)>\left|S_{n}: H\right| \geqslant\binom{ n}{r}$, so that r is 1 or $n-1$ and H is S_{n-1} or A_{n-1}.

From Proposition 1.1 we see that if Γ is a graph with Aut $\Gamma \cong S_{n}(n>6)$ and all orbits of Aut Γ on $V \Gamma$ have size less than $\frac{1}{2} n(n-1)$ then these orbit sizes all lie in $\{1,2, n, 2 n\}$. We shall easily show below (Proposition 1.2) that the orbit
sizes 2 and $2 n$ cannot occur, so for the remainder of this section we concentrate on the set \mathscr{E}_{n} of graphs defined as follows:

Definition. Let Γ be a graph and let $n \geqslant 2$. Then $\Gamma \in \mathscr{E}_{n}$ if and only if Aut Γ has a subgroup G isomorphic to S_{n} such that all orbits of G on $V \Gamma$ have size 1 or n.

Let $\Gamma \in \mathscr{E}_{n}$. Then we may take Γ to be a graph on $t n+r$ vertices $\left\{\alpha_{11}, \ldots, \alpha_{1 n}, \ldots, \alpha_{t 1}, \ldots, \alpha_{t n}, \phi_{1}, \ldots, \phi_{r}\right\}$ such that Aut Γ has a subgroup G isomorphic to S_{n} with r fixed points $\phi_{1}, \ldots, \phi_{r}$ and t orbits $\Delta_{1}, \ldots, \Delta_{t}$ of size n, where $\Delta_{i}=\left\{\alpha_{i 1}, \ldots, \alpha_{i n}\right\}(i=1, \ldots, t)$. It is clear that each subgraph Δ_{i} is either the complete graph K_{n} or the null graph V_{n} and that for any i, j, ϕ_{j} is joined to all or no vertices in Δ_{i}. For any i, j, k define

$$
\Gamma_{j}\left(\alpha_{i k}\right)=\left\{\alpha_{j l} \in \Delta_{j} \mid \alpha_{j l} \text { is joined to } \alpha_{i k} \text { in } \Gamma\right\}
$$

Then $\Gamma_{j}\left(\alpha_{i k}\right)$ is a union of orbits of the stabiliser $G_{a_{i k}}$ on Δ_{j}. Now if $n \neq 6$ then S_{n} has just one conjugacy class of subgroups of index n, so we may assume in this case that $G_{\alpha_{i k}}=G_{\alpha_{j k}}$ for all i, j, k; and S_{6} has two conjugacy classes of subgroups of index 6 , one class containing the stabilizer of one of the 6 points and the other containing a subgroup S_{5} transitive on the 6 points. Hence for any $n \geqslant 2$ and any i, j, k we may assume that $G_{\alpha_{i k}}$ is either transitive on Δ_{j} or has orbits $\left\{\alpha_{j k}\right\}$ and $\Delta_{j} \backslash\left\{\alpha_{j k}\right\}$ on Δ_{j}. Consequently $\Gamma_{j}\left(\alpha_{i k}\right)$ is one of the sets \varnothing, Δ_{j}, $\left\{\alpha_{j k}\right\}$ and $\Delta_{j} \backslash\left\{\alpha_{j k}\right\}$; and for any k, l, if $\Gamma_{j}\left(\alpha_{i k}\right)$ is $\varnothing\left(\Delta_{j},\left\{\alpha_{j k}\right\}, \Delta_{j} \backslash\left\{\alpha_{j k}\right\}\right)$ then $\Gamma_{j}\left(\alpha_{i l}\right)$ is $\varnothing\left(\Delta_{j},\left\{\alpha_{j l}\right\}, \Delta_{j} \backslash\left\{\alpha_{j l}\right\}\right.$ respectively).

Note that the above analysis goes through if we replace S_{n} by the alternating group A_{n}. Using this analysis we now prove the result promised above.

Proposition 1.2. Let Γ be a graph with Aut $\Gamma \cong S_{n}(n>6)$ and suppose that all orbits of Aut Γ on $V \Gamma$ have size less than $\frac{1}{2} n(n-1)$. Then all these orbits have size 1 or n.

Proof. Write $G=$ Aut Γ. By Proposition 1.1 all G-orbits on $V \Gamma$ have size 1, 2, n or $2 n$. Let $H<G$ with $H \cong A_{n}$. Then all H-orbits on $V \Gamma$ have size 1 or n; let those of size n be $\Delta_{1}, \ldots, \Delta_{t}$ and let fix $H=\left\{\phi_{1}, \ldots, \phi_{r}\right\}$. By the above analysis, each Δ_{i} is K_{n} or V_{n}, each ϕ_{j} is joined to all or no vertices of Δ_{i} and, writing $\Delta_{i}=\left\{\alpha_{i 1}, \ldots, \alpha_{i n}\right\}$, we may choose notation so that $\Gamma_{j}\left(\alpha_{i k}\right)$ is one of \varnothing, Δ_{j}, $\left\{\alpha_{j k}\right\}$ and $\Delta_{j} \backslash\left\{\alpha_{j k}\right\}$ and if $\Gamma_{j}\left(\alpha_{i k}\right)$ is $\varnothing\left(\Delta_{j},\left\{\alpha_{j k}\right\}, \Delta_{j} \backslash\left\{\alpha_{j k}\right\}\right)$ then $\Gamma_{j}\left(\alpha_{i l}\right)$ is $\varnothing\left(\Delta_{j},\left\{\alpha_{j l}\right\}, \Delta_{j} \backslash\left\{\alpha_{j l}\right\}\right.$ respectively) (any $\left.i, j, k, l\right)$. It is clear from this that Aut Γ contains a subgroup K such that $K \cong S_{n}, K$ has orbits $\Delta_{1}, \ldots, \Delta_{t}$ and fixes each ϕ_{j}. Hence $K=G$ and the orbits of G all have size 1 or n.

We now resume our analysis of a graph $\Gamma \in \mathscr{E}_{n}$ on vertex set $\Delta_{1} \cup \cdots \cup \Delta_{t} \cup$ $\left\{\phi_{1}, \ldots, \phi_{r}\right\}$ as described above. From Γ we define a coloured graph Γ^{*} with vertex set $\left\{\delta_{1}, \ldots, \delta_{t}, \phi_{1}, \ldots, \phi_{r}\right\}$ having 3 vertex-colours (white, black and red) and 5 edge-colours ($0,1, n-1, n$ and black) as follows:
(i) δ_{i} is coloured white if Δ_{i} is V_{n}, black if Δ_{i} is $K_{n}(i=1, \ldots, t)$;
(ii) ϕ_{j} is coloured red $(j=1, \ldots, r)$;
(iii) ϕ_{j} is joined to δ_{i} by a black edge if ϕ_{j} is joined in Γ to all vertices of Δ_{i}, and by no edge at all if not;
(iv) ϕ_{i} is joined to ϕ_{j} by a black edge if ϕ_{i} is joined to ϕ_{j} in Γ, and by no edge if not;
(v) the vertices δ_{i}, δ_{j} are joined by an edge coloured $0,1, n-1$ or n as follows (if $n=2$ then the labels 1 and $n-1$ should represent different colours):

$$
\begin{array}{ll}
\delta_{i} \times-\frac{0}{-} \times \delta_{j} & \text { if } \Gamma_{j}\left(\alpha_{i k}\right)=\varnothing, \\
\delta_{i} \times \frac{1}{0} \times \delta_{j} & \text { if } \Gamma_{j}\left(\alpha_{i k}\right)=\left\{\alpha_{j k}\right\}, \\
\delta_{i} \times-\frac{n-1}{} \times \delta_{j} & \text { if } \Gamma_{j}\left(\alpha_{i k}\right)=\Delta_{j} \backslash\left\{\alpha_{j k}\right\}, \\
\delta_{i} \times-\frac{n}{} \times \delta_{j} & \text { if } \Gamma_{j}\left(\alpha_{i k}\right)=\Delta_{j},
\end{array}
$$

(here \times represents a black or a white vertex). The automorphism group Aut Γ^{*} is the group of permutations of $V \Gamma^{*}$ preserving all vertex- and edge-colours. Clearly Γ can be reconstructed from Γ^{*}; so $\Gamma \leftrightarrow \Gamma^{*}$ is a $1-1$ correspondence.

Now we define two further graphs from Γ^{*} : firstly, Γ_{0}^{*} is the subgraph of Γ^{*} on $\delta_{1}, \ldots, \delta_{t}$ with all edges coloured 0 or n deleted and all edges coloured 1 or $n-1$ replaced by a black edge; secondly, Γ_{1}^{*} is obtained from Γ^{*} by the following replacements:
(1) replace all vertices δ_{i}, ϕ_{j} by black vertices δ_{i}, ϕ_{j};
(2) replace any edge coloured 1 or n by a black edge;
(3) delete any edge coloured 0 or $n-1$.

Thus Γ_{1}^{*} can be regarded as an uncoloured graph.
We aim to obtain necessary and sufficient conditions for Aut $\Gamma \cong S_{n}$ purely in terms of the smaller graphs $\Gamma^{*}, \Gamma_{0}^{*}$ and Γ_{1}^{*}.

Example. If Γ^{*} is

then $\Gamma_{0}^{*}, \Gamma_{1}^{*}$ are respectively

Now consider a coloured graph Γ^{*} with $t=r=2$, that is, with $V \Gamma^{*}=$ $\left\{\delta_{1}, \delta_{2}, \phi_{1}, \phi_{2}\right\}$. Let Γ be the corresponding graph in \mathscr{E}_{n} with $V \Gamma=\Delta_{1} \cup \Delta_{2} \cup$ $\left\{\phi_{1}, \phi_{2}\right\}$. It is easy to see that Aut Γ contains a subgroup isomorphic to S_{n+1} having orbits $\Delta_{1} \cup\left\{\phi_{i_{1}}\right\}$ and $\Delta_{2} \cup\left\{\phi_{i_{2}}\right\}$ (where $\left\{i_{1}, i_{2}\right\}=\{1,2\}$) on $V \Gamma$ if and only if Γ^{*} is isomorphic to one of the following 12 graphs:

(where ${ }^{\circ}$, •, * represent white, black and red vertices respectively). Denote this set of 12 graphs by \mathscr{C}_{n}. Note that the graphs in \mathscr{C}_{n} correspond to 6 graphs in \mathscr{E}_{n} and their complements.

Lemma 1.3. Let $\Gamma \in \mathscr{E}_{n}$ have vertex set $\Delta_{1} \cup \cdots \cup \Delta_{t} \cup\left\{\phi_{1}, \ldots, \phi_{r}\right\}$ as above and let Γ^{*} and Γ_{1}^{*} be the graphs corresponding to Γ as above. Suppose that Aut Γ_{1}^{*} contains an automorphism $x=\left(\delta_{1} \phi_{i_{1}}\right) \cdots\left(\delta_{t} \phi_{i_{t}}\right)\left(i_{1}, \ldots, i_{t}\right.$ all distinct $)$ such that
(i) $\phi_{i j}$ is joined to δ_{j} in Γ^{*} if and only if δ_{j} is black $(j=1, \ldots, t)$, and
(ii) for any distinct, k, l the subgraph $\left\{\delta_{k}, \delta_{l}, \phi_{i_{k}}, \phi_{i_{l}}\right\}$ of Γ^{*} lies in the set \mathscr{C}_{n} of 12 graphs defined above.

Then $\Gamma \in \mathscr{E}_{n+1}$.

Proof. For $j=1, \ldots, t$ put $\Delta_{j}^{\prime}=\Delta_{j} \cup\left\{\phi_{i_{j}}\right\}$. By (i) each subgraph Δ_{j}^{\prime} is either K_{n+1} or V_{n+1}. Write $\phi_{i_{j}}=\alpha_{j, n+1}(j=1, \ldots, t)$ and for any i, j, k define

$$
\Gamma_{j}^{\prime}\left(\alpha_{i k}\right)=\left\{\alpha_{j l} \in \Delta_{j}^{\prime} \mid \alpha_{j l} \text { is joined to } \alpha_{i k} \text { in } \Gamma\right\}
$$

Then by (i) and (ii), $\Gamma_{j}^{\prime}\left(\alpha_{i k}\right)$ is one of the sets $\varnothing, \Delta_{j}^{\prime},\left\{\alpha_{j k}\right\}$ and $\Delta_{j}^{\prime} \backslash\left\{\alpha_{j k}\right\}$ and for any k, l, if $\Gamma_{j}^{\prime}\left(\alpha_{i k}\right)$ is $\varnothing\left(\Delta_{j}^{\prime},\left\{\alpha_{j k}\right\}, \Delta_{j}^{\prime} \backslash\left\{\alpha_{j k}\right\}\right)$ then $\Gamma_{j}^{\prime}\left(\alpha_{i l}\right)$ is $\varnothing\left(\Delta_{j}^{\prime},\left\{\alpha_{j l}\right\}\right.$, $\Delta_{j}^{\prime} \backslash\left\{\alpha_{j l}\right\}$ respectively). Also, since $x \in$ Aut Γ_{1}^{*}, for any $k \notin\left\{i_{1}, \ldots, i_{t}\right\}$ and any j, ϕ_{k} is joined to all or no vertices of Δ_{j}^{\prime}. From these facts we see that Aut Γ contains a subgroup $H \cong S_{n+1}$ having orbits $\Delta_{1}^{\prime}, \ldots, \Delta_{t}^{\prime}$ and fixing ϕ_{k} for $k \notin\left\{i_{1}, \ldots, i_{t}\right\}$. Hence $\Gamma \in \mathscr{E}_{n+1}$.

Theorem 1.4. Let $\Gamma \in \mathscr{E}_{n}$ have vertex set $\Delta_{1} \cup \cdots \cup \Delta_{t} \cup\left\{\phi_{1}, \ldots, \phi_{r}\right\}$ as above and let $\Gamma^{*}, \Gamma_{0}^{*}, \Gamma_{1}^{*}$ be the graphs corresponding to Γ. Suppose that Aut $\Gamma \cong S_{n}$. Then
(a) Aut $\Gamma^{*}=1$;
(b) Γ_{0}^{*} is connected (by the black edges);
(c) Aut Γ_{1}^{*} contains no automorphisms $\left(\delta_{1} \phi_{i_{1}}\right) \cdots\left(\delta_{t} \phi_{i_{i}}\right)$, with i_{1}, \ldots, i_{t} distinct, such that
(i) $\phi_{i j}$ is joined to δ_{j} in Γ^{*} if and only if δ_{j} is black $(j=1, \ldots, t)$,
(ii) for any distinct k, l the subgraph $\left\{\delta_{k}, \delta_{l}, \phi_{i_{k}}, \phi_{i,}\right\}$ of Γ^{*} lies in \mathscr{C}_{n}.

Proof. (a) Suppose that $h \in$ Aut Γ^{*} with $h \neq 1$. Define a permutation g on $V \Gamma$ as follows
(1) if $\delta_{i} h=\delta_{j}$ put $\alpha_{i k} g=\alpha_{j k}(k=1, \ldots, n)$,
(2) for $i=1, \ldots, r$ put $\phi_{i} g=\phi_{i} h$.

It is easy to check that $g \in$ Aut Γ, which contradicts the fact that since Aut $\Gamma \cong S_{n}$, Aut Γ has orbits $\Delta_{1}, \ldots, \Delta_{t}$ and fixes each ϕ_{j}.
(b) Suppose that Γ_{0}^{*} is disconnected and let $\left\{\delta_{i_{1}}, \ldots, \delta_{i_{u}}\right\}$ ($u<t$) be a connected component of Γ_{0}^{*}; write $\Delta=\bigcup_{j=1}^{u} \Delta_{i,}$. Then for any $\beta \in V \Gamma \backslash \Delta$ and any $j \in\{1, \ldots, u\}, \beta$ is joined to all or no vertices in $\Delta_{i,}$. Hence Aut Γ contains a subgroup $H \cong S_{n}$ with orbits $\Delta_{i_{1}}, \ldots, \Delta_{i_{u}}$ and fixing every vertex in $V \Gamma \backslash \Delta$. Since $u<t$ it is clear that $H \neq$ Aut Γ, contradicting the fact that Aut $\Gamma \cong S_{n}$. Thus Γ_{0}^{*} is connected.
(c) This follows directly from Lemma 1.3.

It seems likely that a general converse of Theorem 1.4 holds; since we have only been able to prove this when $t \leqslant 4$, we state the general case as a conjecture.

Conjecture 1.5. Let n, t be positive integers with $n>t$. Let Γ^{*} be a graph on vertex set $\left\{\delta_{1}, \ldots, \delta_{t}, \phi_{1}, \ldots, \phi_{r}\right\}$ with 3 vertex-colours (white and black among the δ_{i}, red for the ϕ_{i}) and 5 edge-colours ($0,1, n-1, n$ for edges between the δ_{i}, black for any other edges). Let Γ_{0}^{*} and Γ_{1}^{*} be the graphs defined from Γ^{*} as above and suppose that these satisfy conditions (a), (b) and (c) of Theorem 1.4. Then if Γ is the graph on tn $+r$ vertices corresponding as above to Γ^{*}, we have Aut $\Gamma \cong S_{n}$.

In the next sections we prove Conjecture 1.5 for $1 \leqslant t \leqslant 4$ and give some illustrations of its use in describing graphs Γ with Aut $\Gamma \cong S_{n}$. It should be noted that we have introduced the condition $n>t$ in Conjecture 1.5 solely for convenience in the proofs in $\S 2$, and that it seems likely that the conjecture is true for any values of n and t with $n \geqslant 3$.

2. Proofs of Conjecture $\mathbf{1 . 5}$ for $1 \leqslant t \leqslant 4$

The case $t=1$. We prove Conjecture 1.5 for $t=1$. Let Γ^{*} be a graph on $\left\{\delta_{1}, \phi_{1}, \ldots, \phi_{r}\right\}$ coloured as in 1.5. We assume first that δ_{1} is black. Writing $H=$ Aut Γ_{1}^{*}, condition (a) of Theorem 1.4 means that
(1) $H_{\delta_{1}}=1$,
condition (b) is vacuously satisfied and condition (c) means that
(2) H contains no automorphism ($\delta_{1} \phi_{i_{1}}$) with δ_{1} joined to $\phi_{i_{1}}$.

Suppose then that (1) and (2) hold and let Γ be the corresponding graph on $n+r$ vertices $\Delta_{1} \cup\left\{\phi_{1}, \ldots, \phi_{r}\right\}$, where $\Delta_{1}=\left\{\alpha_{11}, \ldots, \alpha_{1 n}\right\}$ is K_{n} since δ_{1} is black. Write $G=$ Aut Γ. We show that $G \cong S_{n}$.

Since $H_{\delta_{1}}=1$ it is clear that $G_{\left\{\Delta_{1}\right\}}$ fixes $V \Gamma \backslash \Delta_{1}$ pointwise; thus $G_{\left\{\Delta_{1}\right\}} \cong S_{n}$. Suppose that there exists $g \in G \backslash G_{\left\{\Delta_{1}\right\}}$. Then $G_{\left\{\Delta_{1} g\right)}$ fixes $V \Gamma \backslash \Delta_{1} g$ pointwise and $G_{\left\{\Delta_{1} g\right\}} \cong S_{n}$, so if $\Delta_{1} \cap \Delta_{1} g=\varnothing$ then $H_{\delta_{1}}$ has a subgroup isomorphic to S_{n}, contradicting (1). Hence $\Delta_{1} \cap \Delta_{1} g \neq \varnothing$. Write $\Sigma=\Delta_{1} \cup \Delta_{1} g$. It is easy to see that $G_{\{\Sigma\}}=\left\langle G_{\left\{\Delta_{1}\right\}}, G_{\left.\left\{\Delta_{1}\right\}\right\}}\right\rangle \cong \operatorname{Sym}(\Sigma)$ and that $G_{\{\Sigma\}}$ fixes $V \Gamma \backslash \Sigma$ pointwise.

Consequently Σ is a complete subgraph of Γ and if we choose $\phi_{i_{1}} \in \Sigma \backslash \Delta_{1}$ then $\left(\alpha_{11} \phi_{i_{1}}\right) \in$ Aut Γ. This forces $\left(\delta_{1} \phi_{i_{1}}\right) \in \operatorname{Aut} \Gamma_{1}^{*}$, contradicting (2), as $\phi_{i_{1}}$ is joined to $\boldsymbol{\delta}_{1}$.

The case where δ_{1} is white follows from the above argument by considering the complement of the corresponding graph Γ. Hence Conjecture 1.5 is proved for $t=1$.

Descriptions of the graphs characterized by this result can be found in the Appendix.

The cases $2 \leqslant t \leqslant 4$. We prove Conjecture 1.5 just for $t=4$, as the cases $t=2$ and $t=3$ are similar and easier. In the proof we shall need, for $2 \leqslant u \leqslant 4$ and $n>u$, a description of all coloured graphs Γ^{*} on $\left\{\delta_{1}, \ldots, \delta_{u}\right\}$ which give rise as in $\S 1$ to vertex-transitive graphs Γ on $u n$ vertices. We call Γ^{*} vertex-monochrome if all the vertices δ_{i} have the same colour.
$u=2$. The only graphs Γ^{*} on $\left\{\delta_{1}, \delta_{2}\right\}$ which give rise to a transitive graph Γ are

where a is $0,1, n-1$ or n (that is, Γ^{*} is any vertex-monochrome graph on $\left\{\delta_{1}, \delta_{2}\right\}$).
$u=3$. Suppose that Γ^{*} on $\left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$ gives rise to a transitive graph Γ. If Γ^{*} is vertex-monochrome then by the regularity of Γ it must be one of the following graphs:

$$
(a \in\{0,1, n-1, n\})
$$

There are no further such graphs Γ^{*}. For suppose that Γ^{*} is not vertex-monochrome. Then we may take Γ^{*} to be

where $a, b, c \in\{0,1, n-1, n\}$. Since Γ is regular we have

$$
a+b=a+c=b+c+n-1
$$

so that $b=c$ and $a=c+n-1$. Thus c is 0 or 1 , which forces Δ_{3} to be the unique subgraph K_{n} of Γ, contradicting the transitivity of Γ.
$u=4$. Suppose that Γ^{*} on $\left\{\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}\right\}$ gives rise to a transitive graph Γ. Let $a_{i j} \in\{0,1, n-1, n\}$ be the colour of the edge joining δ_{i} and δ_{j}. If Γ^{*} is vertex-monochrome then since Γ is regular of valency b, say, we have

$$
a_{12}+a_{13}+a_{14}=a_{12}+a_{23}+a_{24}=a_{13}+a_{23}+a_{34}=a_{14}+a_{24}+a_{34}=b
$$

This gives $a_{14}=a_{23}, a_{13}=a_{24}, a_{12}=a_{34}$, so Aut Γ^{*} contains the subgroup $V_{4}=\left\langle\left(\delta_{1} \delta_{2}\right)\left(\delta_{3} \delta_{4}\right),\left(\delta_{1} \delta_{3}\right)\left(\delta_{2} \delta_{4}\right)\right\rangle$. If δ_{1} is black and $\delta_{2}, \delta_{3}, \delta_{4}$ are white then the regularity of Γ gives $2\left(a_{23}-a_{14}\right)=n-1$ which is not possible since $n>u=4$. And if δ_{1}, δ_{2} are black and δ_{3}, δ_{4} are white then it is easy to see that any vertex in $\Delta_{1} \cup \Delta_{2}$ is contained in more subgraphs K_{n} of Γ than any vertex in $\Delta_{3} \cup \Delta_{4}$, contradicting the transitivity of Γ.

We summarise these results in a lemma:

Lemma 2.1. Let Γ^{*} be a coloured graph on $\left\{\delta_{1}, \ldots, \delta_{u}\right\}(u \leqslant 4)$ which gives rise as in $\S 1$ to a transitive graph Γ on un vertices $(n>u)$. Then Γ^{*} is vertex-monochrome and Aut Γ^{*} contains a subgroup S, where $S=S_{2}$ if $u=2, S=S_{3}$ if $u=3$ and $S=V_{4}$ if $u=4$.

Proof of Conjecture 1.5 for $t=4$. Let Γ^{*} be a graph on $\left\{\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}\right.$, $\left.\phi_{1}, \ldots, \phi_{r}\right\}$ coloured as in 1.5 and suppose that (a), (b) and (c) of Theorem 1.4 hold. Let n be an integer with $n>t=4$ and let Γ be the corresponding graph on $4 n+r$ vertices $\Delta_{1} \cup \Delta_{2} \cup \Delta_{3} \cup \Delta_{4} \cup\left\{\phi_{1}, \ldots, \phi_{r}\right\}$ (where $\Delta_{i}=\left\{\alpha_{i 1}, \ldots, \alpha_{i n}\right\}$ for $i=1, \ldots, 4$). Write $\Delta=\Delta_{1} \cup \Delta_{2} \cup \Delta_{3} \cup \Delta_{4}$ and $\Phi=\left\{\phi_{1}, \ldots, \phi_{r}\right\}$, and let Δ^{*} be the subgraph of Γ^{*} on $\left\{\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}\right\}$. Also write $\phi_{i} \sim \delta_{j}$ if ϕ_{i} is joined to δ_{j} in Γ^{*}. Put $G=$ Aut Γ. By the construction of Γ from Γ^{*} (explained in §1) it is clear that G has a unique subgroup $H \cong S_{n}$ having orbits $\Delta_{1}, \Delta_{2}, \Delta_{3}, \Delta_{4}$, fixing each ϕ_{i}, and such that $H_{\alpha_{i},}=H_{\alpha_{i k}}$ for all i, j, k. We aim to show that $G_{\{\Delta\}}=H$, which we establish in the following two lemmas.

Lemma 2.2. If $g \in G_{\{\Delta\}} \backslash H$ then $\Delta_{i} g \neq \Delta_{i}$ for some $i \in\{1,2,3,4\}$.
Proof. Suppose that $\Delta_{i} g=\Delta_{i}$ for all i. Then clearly $g^{\Phi} 1^{\Delta^{*}} \in$ Aut Γ^{*}, so $g^{\Phi}=1$ by (a) of 1.4. Now $H^{\Delta_{1}} \cong S_{n}$, so $g^{\Delta_{1}}=h^{\Delta_{1}}$ for some $h \in H$. Then $g^{-1} h$ fixes $\Delta_{1} \cup \Phi$ pointwise and $g^{-1} h \neq 1$ as $g \notin H$. Hence the sets

$$
\Delta^{\prime}=\bigcup\left\{\Delta_{i} \mid\left(g^{-1} h\right)^{\Delta_{i}}=1\right\}, \quad \Delta^{\prime \prime}=\bigcup\left\{\Delta_{i} \mid\left(g^{-1} h\right)^{\Delta_{1}} \neq 1\right\}
$$

are both nonempty. Let $K=\left\langle\left(g^{-1} h\right)^{x} \mid x \in H\right\rangle$. Then $K^{\Delta^{\prime}}=1$ and for $\Delta_{i} \subseteq \Delta^{\prime \prime}$ we have $K^{\Delta_{i}} \geqslant \operatorname{Alt}\left(\Delta_{i}\right)$ since $K^{\Delta_{i}} \triangleleft \operatorname{Sym}\left(\Delta_{i}\right)$. Hence for any $\Delta_{i} \subseteq \Delta^{\prime \prime}$ and any $\alpha_{j k} \in \Delta^{\prime}, \alpha_{j k}$ is joined to all or no vertices of Δ_{i}. Thus in Γ^{*}, any edge between a vertex of $\left\{\delta_{i} \mid \Delta_{i} \subseteq \Delta^{\prime}\right\}$ and a vertex of $\left\{\delta_{i} \mid \Delta_{i} \subseteq \Delta^{\prime \prime}\right\}$ must be coloured 0 or n. This forces $\left\{\delta_{i} \mid \Delta_{i} \subseteq \Delta^{\prime}\right\}$ to be a union of connected components of the graph Γ_{0}^{*}, contradicting (b) of 1.4.

Lemma 2.3. We have $G_{(\Delta)}=H$.

Proof. Suppose false and pick $g \in G_{\{\Delta\}} \backslash H$. By Lemma 2.2 we have $\Delta_{i} g \neq \Delta_{i}$ for some i, so if $L=\langle H, g\rangle$ then L has at most 3 orbits on Δ. We prove the lemma by obtaining a contradiction to the fact that Aut $\Gamma^{*}=1$. There are several cases, depending on the number of orbits of L on Δ.

Case 1. L is transitive on Δ. For any $i, j \in\{1,2,3,4\}$ write $\Delta_{i} \rightarrow \Delta_{j}$ if there exist $\alpha_{i k} \in \Delta_{i}, \quad \alpha_{j l} \in \Delta_{j}$ with $\alpha_{i k} g=\alpha_{j l}$. For distinct $i_{1}, \ldots, i_{u} \in\{1,2,3,4\}$ $(1 \leqslant u \leqslant 4)$ write $\left[\Delta_{i_{1}} \cdots \Delta_{i_{u}}\right]$ to mean that $\Delta_{i_{1}} \rightarrow \Delta_{i_{2}}, \Delta_{i_{2}} \rightarrow \Delta_{i_{3}}, \ldots, \Delta_{i_{u}} \rightarrow \Delta_{i_{1}}$.

Now H has orbits $\Delta_{1}, \Delta_{2}, \Delta_{3}, \Delta_{4}$ on Δ and $L=\langle H, g\rangle$ is transitive on Δ; it is not hard to see from this that we may assume that one of the following holds
(i) $\left[\Delta_{1} \Delta_{2} \Delta_{3} \Delta_{4}\right]$;
(ii) $\left[\Delta_{1} \Delta_{2}\right],\left[\Delta_{1} \Delta_{3}\right]$ and $\left[\Delta_{1} \Delta_{4}\right]$;
(iii) $\left[\Delta_{1} \Delta_{2}\right],\left[\Delta_{1} \Delta_{3}\right]$ and $\left[\Delta_{2} \Delta_{4}\right]$;
(iv) $\left[\Delta_{1} \Delta_{2} \Delta_{3}\right]$ and $\left[\Delta_{1} \Delta_{4}\right]$;
(v) $\left[\Delta_{1} \Delta_{2} \Delta_{3}\right]$ and $\left[\Delta_{1} \Delta_{2} \Delta_{4}\right]$.

Suppose that (i) holds. Then $\alpha_{1 i_{1}} g=\alpha_{2 i_{2}}, \alpha_{2 j_{2}} g=\alpha_{3 j_{3}}, \alpha_{3 k_{3}} g=\alpha_{4 k_{4}}, \alpha_{4 i_{4}} g=$ $\alpha_{1 i_{1}}$ for some i_{1}, i_{2}, etc. Choose $\phi_{a} \in \Phi$. If ϕ_{a} is joined to $\alpha_{1 i_{1}}$ then $\phi_{a} g$ is joined to $\alpha_{2 i_{2}}$, hence to every vertex in Δ_{2}, so $\phi_{a} g^{2}$ is joined to $\alpha_{3 j_{3}}$. Thus $\phi_{a} \sim \delta_{1} \Rightarrow$ $\phi_{a} g^{2} \sim \delta_{3}$. In this way we see that $\phi_{a} \sim \delta_{1} \Rightarrow \phi_{a} g^{2} \sim \delta_{3}, \phi_{a} \sim \delta_{2} \Rightarrow \phi_{a} g^{2} \sim \delta_{4}$, $\phi_{a} \sim \delta_{3} \Rightarrow \phi_{a} g^{2} \sim \delta_{1}$ and $\phi_{a} \sim \delta_{4} \Rightarrow \phi_{a} g^{2} \sim \delta_{2}$. Also by Lemma 2.1 we have $\left(\delta_{1} \delta_{3}\right)\left(\delta_{2} \delta_{4}\right) \in$ Aut Δ^{*}. It follows that $\left(g^{2}\right)^{\Phi}\left(\delta_{1} \delta_{3}\right)\left(\delta_{2} \delta_{4}\right) \in$ Aut Γ^{*}, contradicting the fact that Aut $\Gamma^{*}=1$.

If (ii) holds then for any $a \in\{1, \ldots, r\}$ we have $\phi_{a} \sim \delta_{2} \Leftrightarrow \phi_{a} g \sim \delta_{1} \Leftrightarrow$ $\phi_{a} \sim \delta_{3} \Leftrightarrow \phi_{a} \sim \delta_{4}$. Hence any permutation of $\left\{\delta_{2}, \delta_{3}, \delta_{4}\right\}$ fixing δ_{1} and each ϕ_{a} will be an automorphism of Γ^{*} providing it is an automorphism of the subgraph Δ^{*}. By Lemma 2.1 we can take Δ^{*} to be

where $a, b, c \in\{0,1, n-1, n\}$. If $a=b$ then $\left(\delta_{2} \delta_{4}\right) \in$ Aut Γ^{*}, if $b=c$ then $\left(\delta_{3} \delta_{4}\right) \in$ Aut Γ^{*} and if $a=c$ then $\left(\delta_{2} \delta_{3}\right) \in$ Aut Γ^{*}, all of which are contradictions. Hence, a, b, c are distinct and we may assume that either $a=0, b=1$, $c \geqslant n-1$ or $a \leqslant 1, b=n-1, c=n$. Write $m\left(\alpha_{i j}, \alpha_{k l}\right)$ for the number of mutual adjacencies of $\alpha_{i j}$ and $\alpha_{k l}$ in the subgraph Δ of Γ. Then for any i, j, k, l
we have $m\left(\alpha_{1 i}, \alpha_{1 j}\right) \geqslant n-2$ and $m\left(\alpha_{2 k}, \alpha_{3 l}\right) \leqslant 2$. However, by assumption (we are in case (ii)) there exist i, j, k, l such that $\alpha_{1 i} g=\alpha_{2 k}, \alpha_{1 j} g=\alpha_{3 l}$, which forces $m\left(\alpha_{1 i}, \alpha_{1 j}\right)=m\left(\alpha_{2 k}, \alpha_{3 l}\right)$; hence $n-2 \leqslant 2$ or $n \leqslant 4$, contradicting the fact that $n>t=4$.

In case (iii) we have $\phi_{a} \sim \delta_{1} \Leftrightarrow \phi_{a} g \sim \delta_{2} \Leftrightarrow \phi_{a} \sim \delta_{4}$ and $\phi_{a} \sim \delta_{2} \Leftrightarrow \phi_{a} g \sim \delta_{1}$ $\Leftrightarrow \phi_{a} \sim \delta_{3}$. Hence $\left(\delta_{1} \delta_{4}\right)\left(\delta_{2} \delta_{3}\right) \in$ Aut Γ^{*} which is a contradiction.
In case (iv) we see similarly that $\left(\delta_{1} \delta_{2}\right)\left(\delta_{3} \delta_{4}\right) \in$ Aut Γ^{*}, again a contradiction.
Finally, suppose that (v) holds. Then $\phi_{a} \sim \delta_{3} \Leftrightarrow \phi_{a} g \sim \delta_{1} \Leftrightarrow \phi_{a} \sim \delta_{4}$ so $\left(\delta_{3} \delta_{4}\right) \in$ Aut Γ^{*} if $b=c$ in the subgraph Δ^{*}. Thus $b \neq c$. Suppose first that $c \leqslant 1$. Then $m\left(\alpha_{3 i}, \alpha_{4 j}\right) \leqslant 2$ for any i, j, so by application of g^{-1} we see that $m\left(\alpha_{1 k}, \alpha_{1 l}\right) \leqslant 2$ for any distinct k, l. This forces $a \leqslant 1$ and $b \leqslant 1$. Since $b \neq c$ we may take $b=1, c=0$; as Γ_{0}^{*} is connected we have $a=1$ and Δ^{*} is

Thus the subgraph Δ of Γ consists of n disjoint squares. Now $\alpha_{1 i} g=\alpha_{2 j}$ for some i, j. Since $\alpha_{3 i}$ is the unique vertex of Δ opposite to $\alpha_{1 i}$ in the square containing $\alpha_{1 i}$ and $\alpha_{4 j}$ is similarly opposite to $\alpha_{2 j}$, we must have $\alpha_{3 i} g=\alpha_{4 j}$. In this way we see that $\left[\Delta_{3} \Delta_{4} \Delta_{1}\right]$ and $\left[\Delta_{3} \Delta_{4} \Delta_{2}\right]$ also hold. The usual argument now shows that $\phi_{a} \sim \delta_{1} \Leftrightarrow \phi_{a} \sim \delta_{2} \Leftrightarrow \phi_{a} \sim \delta_{3} \Leftrightarrow \phi_{a} \sim \delta_{4}$ so that $V_{4} \leqslant$ Aut Γ^{*}, which is a contradiction. Similar arguments yield a contradiction if $c \geqslant n-1$.

We have now dealt completely with Case 1.

Case 2. L has orbits $\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}$ and Δ_{4} on Δ. In this case we may assume that either (i) [$\Delta_{1} \Delta_{2} \Delta_{3}$], or (ii) [$\Delta_{1} \Delta_{2}$] and [$\Delta_{1} \Delta_{3}$] holds. Using Lemma 2.2 for $u=3$ and the fact that each vertex in $\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}$ has the same valency, we see that the subgraph Δ^{*} can be taken to be one of

and

for some $a, b \in\{0,1, n-1, n\}$. If (i) holds then $g^{\Phi}\left(\delta_{1} \delta_{2} \delta_{3}\right) \in$ Aut Γ^{*}, while in case (ii) we have $\phi_{a} \sim \delta_{2} \Leftrightarrow \phi_{a} g \sim \delta_{1} \Leftrightarrow \phi_{a} \sim \delta_{3}$ so that $\left(\delta_{2} \delta_{3}\right) \in$ Aut Γ^{*}. These contradictions deal with Case 2.

Case 3. L has orbits $\Delta_{1} \cup \Delta_{2}$ and $\Delta_{3} \cup \Delta_{4}$ or $\Delta_{1} \cup \Delta_{2}, \Delta_{3}$ and Δ_{4} on Δ. Then either (i) $\left[\Delta_{1} \Delta_{2}\right]$ and [$\Delta_{3} \Delta_{4}$], or (ii) [$\Delta_{1} \Delta_{2}$], [Δ_{3}] and [Δ_{4}], holds. In case (i) we have $g^{\Phi}\left(\delta_{1} \delta_{2}\right)\left(\delta_{3} \delta_{4}\right) \in \operatorname{Aut} \Gamma^{*}$ and in case (ii), $g^{\Phi}\left(\delta_{1} \delta_{2}\right) \in A u t \Gamma^{*}$, neither of which can be so.

This completes the proof of Lemma 2.3.
To finish the proof of Conjecture 1.5 for $t=4$ it remains to show that $G=G_{\{\Delta\}}$. Suppose then that there exists $g \in G \backslash G_{\{\Delta\}}$. Put $M=\left\langle G_{\{\Delta\}}, G_{\{\Delta\}}\right\rangle$ $=\left\langle H, H^{g}\right\rangle$ and let $\Psi_{1}, \ldots, \Psi_{s}$ be the orbits of M on $\Delta \cup \Delta g$. For each i let $X_{i}=\left\{j \mid \Delta_{j} \subseteq \Psi_{i}\right\}$.

Lemma 2.4. If $X_{i} \neq \varnothing$ then there is a block system \mathscr{B}_{i} for $M^{\Psi_{i}}$ (possibly with blocks of size 1), one of whose blocks B_{i} is contained in $\left\{\alpha_{j 1} \mid j \in X_{i}\right\}$, and such that $M^{\mathscr{P}_{i}} \geqslant \operatorname{Alt}\left(\mathscr{O}_{i}\right)$.

Proof. Pick $k \in X_{i}$, so that $\Delta_{k} \subseteq \Psi_{i}$. The lemma is certainly true if $\Delta_{k}=\Psi_{i}$ (for then we take $\mathscr{B}_{i}=\Psi_{i}$, that is, \mathscr{B}_{i} to be the set of blocks of size 1); hence we may assume that $\Delta_{k} \subset \Psi_{i}$. Let \mathscr{B}_{i} be a block system for $M^{\Psi_{i}}$ such that $\left|\mathscr{B}_{i}\right|>1$ and \mathscr{B}_{i} contains blocks of maximum possible size. Then $M^{\mathscr{C}_{i}}$ is primitive. Let B_{i} be the block of \mathscr{B}_{i} containing $\alpha_{k 1}$. Certainly either $\Delta_{k} \subseteq B_{i}$ or $\Delta_{k} \cap B_{i}=\left\{\alpha_{k 1}\right\}$; we show that the latter must hold. Suppose then that $\Delta_{k} \subseteq B_{i}$. From the action of H we have
(1) $B_{i} \cap \Delta$ is a union of H-orbits Δ_{j}.

Next we show that
(2) $B_{i} \cap \Delta g$ is a union of H^{g}-orbits $\Delta_{j} g$.

We prove this as follows: if $\left|\Delta_{k} \cap \Delta_{l} g\right| \leqslant 1$ for all l then since $n>t$ there exists $\alpha_{k m} \in \Delta_{k} \backslash \Delta g$, so that H^{g} fixes $\alpha_{k m}$. Now $\Delta_{k} \subset \Psi_{i}$ so we can find l such that $\Delta_{k} \cap \Delta_{l} g \neq \varnothing$. Also $\Delta_{k} \subseteq B_{i}$, so $B_{i} \cap \Delta_{l} g \neq \varnothing$. Since H^{g} fixes $\alpha_{k m}$ this forces $\Delta_{l} g \subseteq B_{i}$. The action of H^{g} now gives (2). If $\left|\Delta_{k} \cap \Delta_{l g} g\right| \geqslant 2$ for some l then $\Delta_{I} g \subseteq B_{i}$ again, from which (2) follows as before. Hence (2) is established. Now $M=\left\langle H, H^{g}\right\rangle$ and Ψ_{i} is a union of sets Δ_{j} and $\Delta_{j} g$ on which M is transitive. It follows from (1) and (2) that $B_{i}=\Psi_{i}$, contradicting the fact that $\left|\mathscr{B}_{i}\right|>1$.

Thus we have shown that $\Delta_{k} \cap B_{i}=\left\{\alpha_{k 1}\right\}$. Since $H_{\alpha_{k 1}}=H_{\alpha_{1}}$ for all j, it follows that $B_{i} \subseteq\left\{\alpha_{j 1} \mid j \in X_{i}\right\}$. Finally, $M^{\mathscr{P}_{i}}$ is primitive and contains the subgroup $H^{\mathscr{Q}_{i}} \cong S_{n}$, so $M^{\mathscr{P}_{i}}$ contains an element of degree at most 8 . From this it follows without much difficulty that $M^{\mathscr{W}_{i}} \geqslant \operatorname{Alt}\left(\mathscr{D}_{i}\right)$ (see for instance the papers of W. A. Manning referred to at the end of $\S 15$ of [4]).

If $X_{i}=\varnothing$ then $\Psi_{i}=\Delta_{j} g$ for some j and $M^{\Psi_{i}}=\operatorname{Sym}\left(\Psi_{i}\right)$. Put $\mathscr{B}_{i}=\Psi_{i}$ in this case (that is, let \mathscr{B}_{i} be the set of blocks of size 1). Choose notation so that $X_{i} \neq \varnothing$ for $i=1, \ldots, s_{0}$ and $X_{i}=\varnothing$ for $i=s_{0}+1, \ldots, s$. For $i \in\left\{1, \ldots, s_{0}\right\}$ let \mathscr{B}_{i}^{\prime} be the set of blocks of \mathscr{B}_{i} contained in Δ. Then $\left|\mathscr{B}_{i}^{\prime}\right|=r_{i} n$ for some positive integer r_{i}. Write $\mathscr{B}=\bigcup_{i=1}^{s} \mathscr{B}_{i}$.

Lemma 2.5. The following hold:

(i) $s=s_{0}$;
(ii) $\left|\mathscr{B}_{j}\right|=\left|\mathscr{B}_{k}\right|$ for all $j, k \in\{1, \ldots, s\}$;
(iii) if $\left|\mathscr{B}_{1}\right|=b$ then $M \cong A_{b}$ or $M \cong S_{b}$ and M acts similarly on each \mathscr{B}_{j} $(j=1, \ldots, s)$.

Proof. If K is the kernel of the action of M on \mathscr{B} then $K \leqslant G_{(\Delta\}}$, so $K=1$ since $G_{\{\Delta\}}=H$. Hence M acts faithfully on \mathscr{B}. Write $N=M^{\prime}$. Then by Lemma 2.4, N is a subdirect product of $\prod_{i=1}^{s} \operatorname{Alt}\left(\mathscr{B}_{i}\right)$ (that is, N projects surjectively onto each factor). Since each $\operatorname{Alt}\left(\mathscr{R}_{i}\right)$ is simple, N is isomorphic to a direct product of some of the groups $\operatorname{Alt}\left(\mathscr{B}_{i}\right)$ and if we choose i_{0} such that $\left|\mathscr{B}_{i_{0}}\right|=$ $\max \left\{\left|\mathscr{B}_{i}\right|: i=1, \ldots, s\right\}$ then N has a minimal normal subgroup $N_{0} \cong \operatorname{Alt}\left(\mathscr{B}_{i_{0}}\right)$. Now $g \notin G_{\{\Delta\}}$, so $H^{g} \neq H$ and so $M * G_{\{\Delta\}}$. Consequently $\left|\mathscr{B}_{i_{0}}\right|>n$. Hence if $X_{i}=\varnothing$ then $\left|\mathscr{B}_{i_{0}}\right|>\left|\mathscr{B}_{i}\right|$. Let

$$
J=\left\{j \mid N_{0}^{\mathscr{D}_{j}}=\operatorname{Alt}\left(\mathscr{B}_{j}\right)\right\} \quad \text { and } \quad \mathscr{B}_{0}=\bigcup_{j \in J} \mathscr{B}_{j}
$$

Then $J \subseteq\left\{1, \ldots, s_{0}\right\},\left|\mathscr{B}_{j}\right|=\left|\mathscr{B}_{i_{0}}\right|$ for all $j \in J$ and N_{0} fixes $\mathscr{B} \backslash \mathscr{B}_{0}$ pointwise.
Write $H_{0}=H^{\prime}$; then $H_{0} \cong A_{n}$ and $H_{0}^{\mathscr{S}_{0}} \leqslant N_{0}^{\mathscr{B}_{0}}$. It follows that N_{0} acts similarly on all $\mathscr{B}_{j}(j \in J)$ (whether $\left|\mathscr{B}_{i_{0}}\right|=6$ or not), and hence that N_{0} contains a nontrivial element x fixing each \mathscr{B}_{j}^{\prime} setwise $(J \in J)$. Then x fixes $\mathscr{B} \backslash \mathscr{B}_{0}$ pointwise, so $x \in G_{\{\Delta\}}$ and so $x \in H$. This forces $J=\left\{1, \ldots, s_{0}\right\}$. If $s>s_{0}$ then N has a subgroup $L \cong A_{n}$ fixing $\bigcup_{i=1}^{s_{0}} \mathscr{B}_{i}$ pointwise; clearly $L \leqslant G_{\{\Delta\}}$, which is not possible as $G_{\{\Delta\}}=H$. Thus $s=s_{0}, J=\{1, \ldots, s\}, N=N_{0}$ and the lemma follows.

Lemma 2.6. We have $\left|\mathscr{B}_{i}^{\prime}\right|=n$, that is, $r_{i}=1$ for all i.

Proof. By Lemma 2.5, M has a subgroup N_{1} fixing eacyh \mathscr{B}_{i}^{\prime} setwise and such that $N_{1}^{\mathscr{B}_{i}^{\prime}} \geqslant \operatorname{Alt}\left(\mathscr{B}_{i}^{\prime}\right)(i=1, \ldots, s)$. Clearly $N_{1} \leqslant G_{\{\Delta\}}$. Since $G_{\{\Delta\}}=H \cong S_{n}$ this forces $\left|\mathscr{B}_{i}^{\prime}\right|=n$, that is, $r_{i}=1$, for all i.

We can now complete the proof of Conjecture 1.5 for $t=4$. First note that from the proof of Lemma 2.5 , we have $M \nless G_{\{\Delta\}}$. Hence there exists k such that
$X_{k} \neq \varnothing$ and $\Psi_{k} \nsubseteq \Delta$ (equivalently $\mathscr{B}_{k}^{\prime} \neq \mathscr{B}_{k}$). By Lemma 2.6 we have $\left|\mathscr{B}_{k}\right|=$ $n+c$ where $c>0$ is the number of blocks in $\mathscr{B}_{k} \backslash \mathscr{B}_{k}^{\prime}$. Thus by Lemma 2.5, $X_{i} \neq \varnothing,\left|\mathscr{B}_{i}\right|=n+c$ and $M^{\mathscr{D}_{i}} \cong S_{n+c}(i=1, \ldots, s)$. Finally, choose $B_{1}^{\prime} \in$ $\mathscr{B}_{1} \backslash \mathscr{B}_{1}^{\prime}$. There exists $m \in M$ with $m^{\mathscr{P}_{i}}=\left(B_{1} B_{1}^{\prime}\right)$. By Lemma 2.5, M acts similarly on all \mathscr{B}_{i}, so $m^{\mathscr{Q}_{i}}=\left(B_{i} B_{i}^{\prime}\right)$ for some $B_{i}^{\prime} \in \mathscr{B}_{i} \backslash \mathscr{B}_{i}^{\prime}(i=1, \ldots, s)$. Since the kernel of the action of M on \mathscr{B} is trivial, we have $m^{2}=1$. Hence $m=$ $\left(\alpha_{11} \phi_{i_{1}}\right)\left(\alpha_{21} \phi_{i_{2}}\right) \cdots\left(\alpha_{t 1} \phi_{i_{i}}\right)$ for some $\phi_{i_{j}} \in \Phi(j=1, \ldots, t)$. From this it follows that $\left(\delta_{1} \phi_{i_{1}}\right) \cdots\left(\delta_{i} \phi_{i_{1}}\right) \in$ Aut Γ_{1}^{*} and that for any distinct k, l the subgraph $\left\{\delta_{k}, \delta_{l}, \phi_{i_{k}}, \phi_{i_{l}}\right\}$ of Γ^{*} lies in the set \mathscr{C}_{n} of 12 graphs defined in $\S 1$. This contradicts (c) of Theorem 1.4.

This completes the proof of Conjecture 1.5 for $t=4$.
We summarise the results proved in this section:
Theorem 2.7. Let n, t be integers with $1 \leqslant t \leqslant 4$ and $n>t$, and let Γ^{*} be a graph on $\left\{\delta_{1}, \ldots, \delta_{t}, \phi_{1}, \ldots, \phi_{r}\right\}$ coloured as described in Conjecture 1.5. Suppose that (a), (b) and (c) of Theorem 1.4 are satisfied. Then if Γ is the corresponding graph on th $+r$ vertices, we have Aut $\Gamma \cong S_{n}$.

The results $1.2,1.4$ and 2.7 give a description of all graphs Γ on v vertices with Aut $\Gamma \cong S_{n}(n>6)$ and $v<\min \left\{5 n, \frac{1}{2} n(n-1)\right\}$. This description is illustrated below in the Appendix. For values of n with $n \leqslant 6$ there are some extra possibilities which can easily be determined using the techniques of this paper.

Remarks. 1. The restriction $n>t$ in Theorem 2.7 is in fact unnecessary-it is not hard to show that the result is true for any n, t with $1 \leqslant t \leqslant 4, n \geqslant 3$.
2. The obstacle to a general proof of Conjecture 1.5 seems to lie solely in proving Lemma 2.3 in the general case; the subsequent steps of the proof for $t=4$ do not depend on the value of t and would remain largely unchanged in the general case.
3. The methods of this paper could be used to study graphs with automorphism group S_{n} having some orbit sizes greater than $\frac{1}{2} n(n-1)$. For example, suppose that we only restrict all orbits to have size less than $n(n-1)(n-2) / 6$. Then for n large enough, the proofs of Propositions 1.1 and 1.2 show that all orbits have size $1, n$ or $\frac{1}{2} n(n-1)$ (with the action of S_{n} in the latter case being that on the set of pairs of points in an underlying set of size n). There are four possible subgraphs on an orbit of size $\frac{1}{2} n(n-1)$: these are the complete graph $K_{\frac{1}{2} n(n-1)}$, the triangular graph T_{n} and their complements. By introducing a suitable collection of colours to represent these subgraphs and the edges between them, we can proceed in similar fashion to $\$ 1$.

Appendix

In this Appendix we give descriptions of some of the graphs characterized by Theorems 1.4 and 2.7. In particular we describe all graphs Γ with Aut $\Gamma \cong S_{n}$ and $|V \Gamma| \leqslant 3 n$ (with $n>6$). The reader will have no difficulty in extending these descriptions to cover all graphs Γ with Aut $\Gamma \cong S_{n}$ and

$$
|V \Gamma|<\min \left\{5 n, \frac{1}{2} n(n-1)\right\} .
$$

It is unfortunately necessary to introduce some fairly complicated notation for these descriptions, so we include a number of small examples for illustration.

Throughout this Appendix, Γ denotes a graph on v vertices. For any n, let

$$
\mathscr{F}_{v, n}=\left\{\Gamma \mid \text { Aut } \Gamma \cong S_{n}\right\} .
$$

For any t, r, n with $n>t$ define

$$
\mathscr{G}_{t, r, n}=\left\{\Gamma \mid v=t n+r, \text { Aut } \Gamma \cong S_{n} \text { has } t \text { orbits of size } n\right. \text { and }
$$ r fixed points on $V \Gamma\}$.

Thus by Proposition 1.2, for $n>6$ and $v<\frac{1}{2} n(n-1)$, we have

$$
\begin{equation*}
\mathscr{F}_{v, n}=\bigcup_{1 \leqslant j \leqslant t} \mathscr{G}_{j,(t-j) n+r, n} \tag{1}
\end{equation*}
$$

where $v=t n+r$ and $0 \leqslant r<n$. Thus to describe $\mathscr{F}_{v, n}$ we must describe the graphs in $\mathscr{G}_{t, r, n}$. This can be done for $t \leqslant 4$ using Theorems 1.4 and 2.7, and we now give such descriptions explicitly, starting with the simplest case $t=1$. For convenience, if \mathscr{S} is a set of graphs on v vertices, define

$$
\mathscr{P}^{*}=\{\{\Gamma, \bar{\Gamma}\} \mid \Gamma \in \mathscr{S}\}
$$

where $\bar{\Gamma}$ denotes the complement of Γ.
(A) The case $t=1$. We describe $\mathscr{G}_{1, r, n}$. Let $\mathscr{H}_{1, r}$ be the set of (uncoloured) graphs Γ_{1}^{*} on $1+r$ vertices $\left\{\delta_{1}, \phi_{1}, \ldots, \phi_{r}\right\}$ such that $H=$ Aut Γ_{1}^{*} satisfies
(1) $H_{\delta_{1}}=1$, and,
(2) H contains no element $\left(\delta_{1} \phi_{i_{1}}\right)$ with δ_{1} joined to $\phi_{i_{1}}$.

Each graph Γ_{1}^{*} in $\mathscr{H}_{1, r}$ corresponds as in Section 1 to a graph Γ on $n+r$ vertices as follows: Γ has vertex set $\Delta_{1} \cup\left\{\phi_{1}, \ldots, \phi_{r}\right\}$, the subgraph Δ_{1} is K_{n}, the subgraph $\left\{\phi_{1}, \ldots, \phi_{r}\right\}$ is as in Γ_{1}^{*}, and ϕ_{i} is joined to all or no vertices in Δ_{1} according as ϕ_{i} is or is not joined to δ_{1} in Γ_{1}^{*}. By Theorem 2.7 with $t=1$, we have Aut $\Gamma \cong S_{n}$, so that Γ is in $\mathscr{G}_{1, r, n}$.

Now the graphs in $\mathscr{G}_{1, r, n}$ are unlabelled, so we choose a subset $\mathscr{H}_{1, r}^{0}$ of $\mathscr{H}_{1, r}$ containing exactly one member of each orbit of $\operatorname{Sym}\left\{\phi_{1}, \ldots, \phi_{r}\right\}$ on $\mathscr{H}_{1, r}$. Then $\mathscr{G}_{1, r, n}^{*}$ is in 1-1 correspondence, as described above, with $\mathscr{H}_{1, r}^{0}$. We write this as

$$
\mathscr{G}_{1, r, n}^{*} \leftrightarrow \mathscr{H}_{1, r}^{0} .
$$

In particular, for $r<n$ we have by (1), $\mathscr{F}_{n+r, n}^{*} \leftrightarrow \mathscr{H}_{1, r}^{0}$. This gives the results of [3].

Example. We illustrate this with $r=2$ and $r=3$. Each of $\mathscr{H}_{1,2}^{0}$ and $\mathscr{H}_{1,3}^{0}$ consists of just one graph:

Thus $\mathscr{G}_{1,2, n}$ and $\mathscr{G}_{1,3, n}$ consist, respectively, of the graphs

and their complements.
(B) The case $t=2$. We now describe $\mathscr{G}_{2, r, n}(n \geqslant 3)$. If $\Gamma \in \mathscr{G}_{2, r, n}$ and Γ^{*} is the corresponding coloured graph on $\left\{\delta_{1}, \delta_{2}, \phi_{1}, \ldots, \phi_{r}\right\}$ then by (b) of Theorem 1.4 the subgraph of Γ^{*} on δ_{1}, δ_{2} is one of the following:

where a is 1 or $n-1$. Let $\mathscr{H}_{2, r}$ be the set of (uncoloured) graphs Γ_{1}^{*} on $\left\{\delta_{1}, \delta_{2}, \phi_{1}, \ldots, \phi_{r}\right\}$ such that $H=$ Aut Γ_{1}^{*} satisfies
(1) $H_{\left\{\delta_{1} \delta_{2}\right\}}=1$, and
(2) H contains no element $\left(\delta_{1} \phi_{i_{1}}\right)\left(\delta_{2} \phi_{i_{2}}\right)$ such that the subgraph $\left\{\delta_{1}, \delta_{2}, \phi_{i_{1}}, \phi_{i_{2}}\right\}$ is one of

And let $\mathscr{H}_{2, r}^{\prime}$ be the set of graphs Γ_{1}^{*} on $\left\{\delta_{1}, \delta_{2}, \phi_{1}, \ldots, \phi_{r}\right\}$ such that
(I) $H_{\delta_{1} \delta_{2}}=1$, and
(II) H contains no element $\left(\delta_{1} \phi_{i_{1}}\right)\left(\delta_{2} \phi_{i_{2}}\right)$ such that the subgraph $\left\{\delta_{1}, \delta_{2}, \phi_{i_{1}}, \phi_{i_{2}}\right\}$ is one of

Choose a subset $\mathscr{H}_{2, r}^{0}$ of $\mathscr{H}_{2, r}$ containing exactly one member of each orbit of $\operatorname{Sym}\left\{\phi_{1}, \ldots, \phi_{r}\right\} \times \operatorname{Sym}\left\{\delta_{1}, \delta_{2}\right\}$ on $\mathscr{H}_{2, r}$, and choose a subset $\mathscr{H}_{2, r}^{\prime 0}$ containing exactly one member of each orbit of $\operatorname{Sym}\left\{\phi_{1}, \ldots, \phi_{r}\right\}$ on $\mathscr{H}_{2, r}^{\prime}$. Then each graph Γ_{1}^{*} in $\mathscr{H}_{2, r}^{0}$ corresponds to a unique graph Γ in $\mathscr{G}_{2, r, n}$ in which the subgraphs Δ_{1} and Δ_{2} are both K_{n} (and $a=1$ if δ_{1} and δ_{2} are joined in $\Gamma_{1}^{*}, a=n-1$ if not). And each Γ_{1}^{*} in $\mathscr{H}_{2, r}^{\prime 0}$ corresponds to a unique graph Γ in $\mathscr{G}_{2, r, n}$ in which Δ_{1} is K_{n} and Δ_{2} is V_{n}; the complement $\bar{\Gamma}$ then corresponds to the graph $\left(\Gamma_{1}^{*}\right)^{+}$, which is the image of the complement $\bar{\Gamma}_{1}^{*}$ under the transposition ($\delta_{1} \delta_{2}$). Hence if we write

$$
\left(\mathscr{H}_{2, r}^{\prime 0}\right)^{+}=\left\{\left\{\Gamma_{1}^{*},\left(\Gamma_{1}^{*}\right)^{+}\right\} \mid \Gamma_{1}^{*} \in \mathscr{H}_{2, r}^{\prime 0}\right\}
$$

then we have

$$
\mathscr{G}_{2, r, n}^{*} \leftrightarrow \mathscr{H}_{2, r}^{0} \cup\left(\mathscr{H}_{2, r}^{0}\right)^{+} .
$$

Note that if $v=2 n+r<3 n$ and $n>6$, then by (1),

$$
\mathscr{F}_{v, n}=\mathscr{G}_{1, n+r, n} \cup \mathscr{G}_{2, r, n}
$$

so the description of $\mathscr{F}_{v, n}$ is given by (A) and the above.
Example. We illustrate the above by producing the graphs in $\mathscr{G}_{2,0, n}$ and $\mathscr{G}_{2,1, n}$. Those in $\mathscr{G}_{2,0, n}$ correspond to the two coloured graphs

Thus $\mathscr{G}_{2,0, n}$ consists of the corona $K_{n} \circ K_{1}$ (which is K_{n} with each vertex joined to just one further vertex) and its complement. This answers a question raised in [3 , §4]. The graphs in $\mathscr{G}_{2.1, n}$ are those corresponding to the coloured graphs

(where a is 1 or $n-1$), together with their complements.

Descriptions similar to, but rather more complicated than those given in (A) and (B), exist for $t=3$ and $t=4$. We leave these to the reader, and offer just one further illustration.
(C) We describe $\mathscr{G}_{3,0, n}(n \geqslant 4)$. By Theorems 1.4 and $2.7, \mathscr{G}_{3,0, n}^{*}$ is in $1-1$ correspondence with the following set $\mathscr{H}_{3,0}$ of coloured graphs:

(any $b \in\{0,1, n-1, n\}, a, d, f \in\{0, n\}, c, e \in\{1, n-1\}$).
Hence for $n>6$,

$$
\begin{aligned}
\mathscr{F}_{3 n, n}^{*} & =\mathscr{G}_{1,2 n, n}^{*} \cup \mathscr{G}_{2, n, n}^{*} \cup \mathscr{G}_{3,0, n}^{*} \\
& \leftrightarrow \mathscr{H}_{1,2 n}^{0} \cup \mathscr{H}_{2, n}^{0} \cup\left(\mathscr{H}_{2, n}^{\prime 0}\right)^{+} \cup \mathscr{H}_{3,0} .
\end{aligned}
$$

References

[1] R. Frucht, 'Herstellung von Graphen mit vorgegebener abstrakten Gruppe’, Compositio Math. 6 (1938), 239-250.
[2] A. Gewirtz and L. V. Quintas, 'Connected extremal edge graphs having symmetric automor phism group', Recent progress in combinatorics, ed. W. T. Tutte (Academic Press, New York, 1969).
[3] K. Heinrich and W. D. Wallis, 'Graphs with symmetric automorphism group', J. Graph Theory 2 (1978), 329-336.
[4] H. Wielandt, Finite permutation groups (Academic Press, New York-London, 1964).

Department of Mathematics
 Imperial College
 London S.W. 7
 England

[^0]: (c) 1988 Australian Mathematical Society 0263-6115/88 \$A2.00 +0.00

