
Appearing in IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM 2006), April 24–26, 2006

GraphStep: A System Architecture for
Sparse-Graph Algorithms

Michael deLorimier, Nachiket Kapre, Nikil Mehta, Dominic Rizzo,
Ian Eslick, Raphael Rubin, Tomás E. Uribe, Thomas F. Knight, Jr., and André DeHon

Dept. of CS, MC 256-80
California Institute of Technology

Pasadena, CA 91125
contact: <andre@cs.caltech.edu>

Abstract— Many important applications are organized around
long-lived, irregular sparse graphs (e.g., data and knowledge
bases, CAD optimization, numerical problems, simulations). The
graph structures are large, and the applications need regular
access to a large, data-dependent portion of the graph for each
operation (e.g., the algorithm may need to walk the graph, visiting
all nodes, or propagate changes through many nodes in the
graph). On conventional microprocessors, the graph structures
exceed on-chip cache capacities, making main-memory band-
width and latency the key performance limiters. To avoid this
“memory wall,” we introduce a concurrent system architecture
for sparse graph algorithms that places graph nodes in small
distributed memories paired with specialized graph processing
nodes interconnected by a lightweight network. This gives us a
scalable way to map these applications so that they can exploit
the high-bandwidth and low-latency capabilities of embedded
memories (e.g., FPGA Block RAMs). On typical spreading-
activation queries on the ConceptNet Knowledge Base, a sample
application, this translates into an order of magnitude speedup
per FPGA compared to a state-of-the-art Pentium processor.

I. INTRODUCTION

We have long noted that spatial hardware organizations
(e.g., FPGAs, reconfigurable architectures) offer computational
density superior to conventional, temporal hardware orga-
nizations [1], [2]. This conference has reported numerous
compute-intensive applications where FPGAs deliver orders of
magnitude higher performance than processor-based systems.
Nonetheless, many problems are limited by memory speed
rather than computation. As processing speed grows faster than
memory speed, the effect is exacerbated, leaving many appli-
cations limited by memory performance rather than compute
performance [3], [4].

Spatial organization of computations turns many memory
operations into interconnect [2]. Nonetheless, it often remains
infeasible to implement tasks with large data sets in a fully
spatial manner (e.g., [5]), leaving a need to use memories
for virtualization. To address this need, modern FPGAs in-
tegrate increasingly larger quantities of on-chip memory. The
aggregate memory bandwidth accessible from the collection of
small, distributed memories on modern FPGAs is two orders
of magnitude larger than the memory bandwidth available on
processors (Section II). This presents a new opportunity for
FPGAs to offer superior performance to microprocessors on
data-intensive applications.

Algorithms representing data with sparse graphs are a large
class of these data-intensive applications. While small graphs
can be directly implemented spatially in FPGAs (e.g., [6],
[7]), the size of graphs that can be realized with a modest
number of FPGAs is extremely limited. Consequently, we
introduce a new concurrent system architecture for sparse
graph-processing algorithms. The system architecture provides
a high-level way to capture a broad range of graph-processing
tasks abstracted from the detailed hardware implementation.
We can efficiently map tasks in this system architecture to
collections of FPGAs with embedded memories, allowing
performance to scale with the number of FPGAs used to solve
the problem. The new system architecture is complementary
to compute-intensive system architectures like SCORE [8],
providing a natural way to capture data-intensive applications.

The novel contributions of this work include:
1. Highlighting the raw, memory-bound performance poten-
tial of FPGA hardware

2. Introducing a data-centric system architecture for sparse-
graph applications

3. Mapping this new system architecture to FPGAs with a
collection of small distributed on-chip memories

4. Identifying applications which could benefit from the new
system architecture

5. Demonstrating the performance benefit on a sample ap-
plication

II. RAW MEMORY PERFORMANCE

Table I summarizes the raw, aggregate memory bandwidth
available on processors and FPGAs to both on- and off-chip
memory. In each case, this is computed in the most simplistic
and direct way. For the processors, on-chip bandwidth is the
bandwidth available from L1 memory. For the FPGAs, on-chip
bandwidth assumes that the specified RAMs (Block RAMs,
M4K’s) operate concurrently at their dual-port operating speed
(given by the memory clock speed) and transferring data on
both ports at the highest rated data width. For the FPGA off-
chip bandwidth, we assume that the off-chip pins are dedicated
SDRAM interfaces (twelve 32b SDRAM interfaces operating
at 200MHz for Virtex-2, twelve 32b SDRAM interfaces oper-
ating at 300MHz for Virtex 4, eight 16b SDRAM interfaces
operating at 300MHz on two edges for Stratix 2).

c© 2006 IEEE 1

http://www.fccm.org/
http://www.cs.caltech.edu/~andre/
mailto:andre@cs.caltech.edu

TABLE I
RAW MEMORY BANDWIDTH AVAILABLE FROM FPGAS AND PROCESSORS

Family Pentium-4 Virtex-2 Virtex-4 Stratix-2
Chip Pentium-4 550 XC2V6000 XC4VLX200-12 EP2S180

Technology 90 nm 150 nm 90 nm 90nm
Memory Clock 3.4 GHz 260 MHz 500 MHz 475 MHz

On-chip Memory BW 0.2 Tb/s 1.2 Tb/s 5.4 Tb/s 12 Tb/s
from L1 D-Cache 144 BRAMs 336 BRAMs 768 M4Ks

On-chip Memory Capacity
at speed quoted 16 KB 288 KB 688 KB 192 KB

total 1 MB 0.29 MB 0.69 MB 1.1 MB
Off-chip Memory BW 51 Gb/s 77 Gb/s 110 Gb/s 77 Gb/s

Reference [9] [10] [11] [12]

We can make several important observations from this
data:
• A single FPGA can offer higher on-chip memory band-
width than the most advanced microprocessors—one to two
orders of magnitude at comparable technology generations.
• For the FPGA, the on-chip bandwidth is one to two orders
of magnitude higher than off-chip bandwidth; further, we
expect on-chip capacities and hence potential bandwidth to
increase more rapidly than off-chip bandwidth, widening the
on-chip vs. off-chip bandwidth gap.
• Assuming we can exploit the parallelism, we can scale
bandwidth in large systems by tiling FPGAs; similarly,
vendors scale the on-chip bandwidth along with compute
capacity by scaling the number of independent, on-chip
memory banks.
These are, of course, peak memory numbers. Neither archi-

tecture is likely to achieve them. Processors can seldom run
with their data contained exclusively in L1 memory and prac-
tical caching schemes fail to exploit the potential bandwidth
available (e.g., [13]). Nonetheless, these observations do point
to real performance ceilings and raw potential that we may be
able to exploit.

Further, traditional ways of organizing computations result
in very significant deviations from these peaks when the
dataset is large. That is, traditional processor applications will
fetch data and stall execution until the data is returned (allow-
ing multiple outstanding memory references helps, but does
not completely compensate for this strategy). Consequently,
when the dataset is large and cannot fit in the on-chip memory,
bandwidth is limited by the off-chip access latency rather than
the on- or off-chip bandwidth. This effect may easily drop
effective memory bandwidth by another order of magnitude.

III. IDEA

If we could arrange for all of our data to reside in distributed
on-chip memory (e.g., FPGA Block RAMs), and arrange to
perform parallel operations and hence parallel access to the
data, we could exploit this raw potential (Section II) and
achieve orders of magnitude improvement in net memory
bandwidth and hence performance on data-centric processing
tasks. To handle large tasks, we assemble multiple-FPGA
collections to contain the data. This gives us two additional
wins:

1) We scale bandwidth and processing with the dataset.
2) We keep all data within a constant (small) latency of the

active processing.

Of course, we get less memory capacity per die (per λ2 or
per cm2 of silicon) using memory in an FPGA than we get
using off-chip DRAMs. This is a deliberate trade-off to get
higher performance on these tasks. If performance is limiting
the application, then this gives us a way to trade area for higher
performance.

We can also engineer FPGAs with a different memory/logic
balance or with embedded DRAMs (e.g., [14], [15]) that
would provide an architectural point between these extremes.
These architectures might trade only a factor of 2 to 3 in
net memory density for orders of magnitude improvement in
usable memory bandwidth.

IV. GRAPH APPLICATIONS

Many applications are naturally represented by sparse graph
data structures and can exploit the opportunity identified in the
previous section. In these problems:

• The graph is sparse and irregular, meaning nodes have a
bounded [O(1)] number of edges, but are not necessarily
connected in nearest-neighbor fashion in any number of
dimensions. Because of the irregular connectivity and
data access, it is not possible to localize processing to a
small subset of the graph; i.e., traditional spatial locality
exploited in cache-line blocking and virtual memory
pages is not adequate to hide the long delay to off-chip
memory on processors.

• Algorithms require that the whole graph (or large frac-
tions of it) be traversed as part of an iteration.

• Algorithms admit to parallelism across the graph.

To be concrete, consider the following kernels and applica-
tions:

• Iterative Sparse Matrix-Vector Multiply – Here
we must complete each sparse matrix-vector multiply
(SMVM) before starting the next, and each SMVM
requires that we access all the sparse-matrix coefficients.
Each entry in the vector result is independent and can be
computed in parallel [5].

• Sparse Neural-Network Evaluation – This can essen-
tially be the same problem as SMVM above.

2

• Shortest Path – A traditional (e.g., Bellman-Ford [16])
shortest path computation requires that every node update
its delay on every cycle. The serialization goes only as
the depth (diameter) of the graph, which is typically small
compared to the size of the graph for high-speed circuit
graphs.

• Routing – Routing (e.g., FPGA routing such as
Pathfinder [17]) is based on a series of shortest path
searches. For nets that cross the entire device, the shortest
path search can potentially touch the majority of routing
resources in the circuit. When nets are highly localized,
it may be possible to perform multiple route searches on
different portions of the device in parallel. We already
have evidence that this parallelism can lead to substantial
speedups in routing [18]–[20].

• Timing Calculations – Simple timing analyses (ASAP
and ALAP calculations) also perform whole graph traver-
sals in order to update delays and slack.

• Placement – Node placement can move a large number
of nodes, potentially all of them, and update their costs
in parallel [21], [22].

• Associative Search – In some applications, we need to
check every graph node for some property.

• Transitive Closure – Transitive closure is a reachability
search that can be seen as a simplified version of the
shortest path problem.

• Marker Passing – Many knowledge-base queries, in-
ferences, and classification tasks can be supported by
algorithms that propagate binary data along neighboring
links and perform local and global binary state operations
[23], [24].

In general, any application that needs to walk the entire
graph will fit the properties noted above, particularly when the
operations at each node can be cast as one of the following:
• perform local operation at a node (data parallel)
• accumulate information from nodes (associative reduce)
• propagate information to neighboring nodes

V. GRAPHSTEP SYSTEM ARCHITECTURE

To exploit the idea introduced above, we have developed
the GraphStep concurrent system architecture. We call this
a concurrent system architecture in the spirit of “Software
Architectures” [25], and, in fact, GraphStep is closely related
to an Object-Oriented or Repository software architecture. As
a concurrent system architecture, GraphStep gives a gross
organization for conceiving the task and managing the par-
allelism in the task.

A. System Architecture Description

In the GraphStep architecture, the computation is organized
as a graph of nodes connected by edges.

Nodes: Each node is an object or actor [26]. It has
• local state, typically in typed data fields
• edges to other graph node objects along which it can send
messages or method invocations

• a set of methods through which the object data is accessed
and modified

It can be useful to think of each object as having its own
locus (thread) of control and acting concurrently with all
other objects. The program counter is part of its local state.
As explained below, the objects synchronize in “steps”, so it
is alternately possible to simply think of the objects being
invoked in a data-parallel, concurrent manner and performing
operations that depend on their state.

Methods: In strict, object-oriented fashion, the object can
be accessed only through its methods. Most methods are
invoked through messages from edges (connected objects),
although methods can also be self-invoked or invoked globally
(typical in broadcast operations). Methods are of bounded
length and atomic. Self-invoked methods may be used to
perform recursive operations on a single node. In response to
a method invocation, an object may change its state and send
a message (i.e., method invocation) along each of its edges or
may produce a message into a global reduce operation.

Graph Operations: The graph evaluates as a series of syn-
chronized steps. The evaluation model is a Receive-Update-
Send sequence:
1. Graph nodes receive input messages.
2. Graph nodes wait for a barrier synchronization to proceed.
3. Graph nodes perform an update operation.
4. Graph nodes send output messages.

This evaluation sequence is the basis of semantic correctness
and scaling. Graph node operations appear concurrent in
that all nodes perform their update and exchange messages
between synchronization events regardless of how they are
sequentialized onto physical processing engines. Deterministic
computation is guaranteed by forcing a step’s set of messages
to be received before performing each update. The GraphStep
name was selected to emphasize this step-by-step operation.

Global Operations: A central controller can perform global
broadcast and reduce operations on the graph or an activated
subset of the nodes in the graph. The broadcast operations are
effectively a designated method invocation on every node.

B. Relation to Other Concurrent System Architectures

The GraphStep architecture can be seen as a stylized restric-
tion of the Bulk-Synchronous Parallel (BSP) model [27]. Like
BSP, its semantics are based on a series of steps synchronized
across the entire machine. The GraphStep architecture is more
stylized in that it restricts the computational tasks to method
updates on an object graph and emphasizes communication
along object links, whereas BSP takes no stand on how
communication occurs.

GraphStep can also be seen as a Data Parallel model in that
operations are performed on a set of concurrent objects. The
operations are not necessarily homogeneous actions applied to
data because
• Nodes may be of different object types.
• Operations performed depend on the methods invoked,
which may differ within a single operational step.

3

Dataflow

Multithread/CSP

Sequential Control (BSP)

Data Parallel

 SIMD
(Vector)

GraphStepVLIW

Streaming Dataflow
 (Pipe−and−Filter)

SCORE

Fig. 1. Portion of Concurrent System Architecture Taxonomy Placing
GraphStep

The SCORE architecture [28] also organizes computation
as a graph of nodes. However, there is a fundamental dif-
ference between the semantics of the SCORE model and
the GraphStep model in that SCORE is based on dataflow
semantics, while GraphStep is based on lock-step sequential
semantics. That is, SCORE nodes (operators or “filter” using
the “pipe-and-filter” terms) synchronize only on the presence
of data on their inputs, allowing some nodes to run ahead of
other nodes as long as they have present data. In GraphStep
all nodes are allowed to evaluate each step. In SCORE, a
computation may wait for a set of inputs to occur, whereas
in GraphStep, the node processes all the edges that have
arrived on a cycle, even when this is only a subset of the
potential inputs. One consequence of the dataflow semantics is
that SCORE allows unbounded FIFOs on the edges (streams,
pipes) between nodes, whereas GraphStep demands that all
messages be delivered and consumed synchronously.

Philosophically, GraphStep is a data-centric concurrent sys-
tem architecture and consequently takes a very different stand
on how computation progresses than either SCORE or tra-
ditional, multithreaded computations. In GraphStep, the data
contained in the graph nodes remains in a fixed location,
and the computations are sent to the data. In SCORE, the
graph is the computation and data is streamed through the
graph. In a traditional processor organization, the computa-
tion runs on a processor and data is fetched from mem-
ory (possibly remote) in order for computation to proceed.
Consequently, multithreaded, processor-oriented computations
always involve a round-trip message pair to acquire data.
Without careful latency-hiding hardware (e.g., [29], [30]),
the round-trip latency for data fetches can end up limiting
exploitable data bandwidth and computational throughput. In
contrast, GraphStep operations have a Continuation Passing
Style (CPS) (e.g., [31]) with execution always moving to the
data.

Figure 1 shows a piece of the concurrent system architecture
taxonomy, illustrating how GraphStep is related to the other
architectures discussed in this section.

C. Possible Realizations

The concurrent system architecture defines the way the
computation should be organized and expressed, as well as
its semantics. While preserving the semantics, the architecture
admits to a wide range of implementations. For example:

• Fully Spatial – The entire graph can be implemented
spatially, with each node getting its own processing
engine and with dedicated links between graph nodes.

The graph may be configured on top of one or more
FPGAs (e.g., [6], [7], [19]).

• Sequential Processor – The entire graph could be pro-
cessed by a single processor, which picks up each node
and executes it in turn. In this case, during data propa-
gation steps, when no global operations are performed,
the implementation may keep an active node set so it
can avoid visiting nodes that have received no messages
during the previous GraphStep send operation.

• Multiprocessor – The graph nodes can be distributed
among the processors in a multiprocessor. Each proces-
sor is responsible for evaluating its nodes in sequence.
This could even be realized using multiprocessor chips
with local memory such as MIT’s RAW [32] or IBM’s
Cell [33]. Processor-In-Memory (PIM) message passing
processors would also allow us to exploit a close coupling
of on-chip memory and data (e.g., [34]–[36]).

• Specialized Graph Processor – It may be useful to build
specialized processors designed to handle the typical
operations involved in handling graph node messages.
This could include integrated message handling (e.g.,
[37], [38]).

• Reconfigurable with Embedded Memories – the graph
nodes can be distributed among specialized graph pro-
cessing engines configured on top of an FPGA with
the nodes associated with each graph processing en-
gine stored in on-chip, embedded memories (e.g., Block
RAMs; see Section VI-D).

• Object-Specialized Graph Processing Engines – When
implementing the processing engines on an FPGA, we
can assign graph nodes to processing engines by object
type and specialize each processing engine to handle a
single type of node object.

In practice, the fully spatial case is unlikely to be ideal when
supporting graphs with thousands of nodes. In particular, the
GraphStep model demands that we complete communication
between phases. That means we must wait for the worst-case
communication latency between nodes in the graph. If this
latency is large (e.g., hundreds of cycles) compared to the
processing of a single message or node update (e.g., 1–10
cycles), then a fully spatial implementation will spend all of its
time waiting for messages to be routed. Consequently, sharing
a processing engine among a modest number of graph nodes
will better balance out the computation and communication
latency. Effectively, this allows us to use substantially less
hardware without increasing execution time; since the worst-
case communication distance shrinks with the size of the
physical hardware, up to a point, this may yield a net reduction
in the time required for each GraphStep. Ultimately, node
serialization will dominate communication latency and further
serialization comes at the expense of slower computation.

VI. EXAMPLE: CONCEPTNET

As a concrete example, we consider an FPGA implemen-
tation of spreading activation on the ConceptNet Knowledge

4

Base [39] and compare this to a C-coded, sequential Pentium
implementation.

A. Knowledge Base

ConceptNet is a knowledge base for commonsense rea-
soning compiled from a Web-based, collaborative effort to
collect commonsense knowledge [39]. Nodes in the Concept-
Net knowledge base are nouns and verb-noun pairs (e.g.,
“run marathon”). Edges are distinguished by type to denote
specific semantic relationships (e.g., “effect of”, “used for”).
The knowledge base is used in natural language processing
and commonsense reasoning tasks. Specific applications have
included identifying contextual neighborhoods, topic gisting,
analogy generation, predictions from sensor data, semantic
prediction (projections), disambiguation, and affect sensing.

A “small” version of the ConceptNet knowledge base
contains more than 14K nodes and 27K edges. The default
ConceptNet knowledge base contains 220K nodes and 550K
edges. There are 25 types of semantic relationships.

B. Spreading Activation

A key operation on the ConceptNet knowledge base is
spreading activation. First, an initial set of graph nodes is
chosen; these may be keywords, or portions of a natural
language text. Depending on the application, each edge is
given a weight coefficient based on its type. Starting with an
activation potential of 1.0 for the initial nodes, activities are
propagated through the network, stimulating related concepts.
After a series of propagation steps, each node in the network
will have an updated activity factor. Typically, nodes with
the highest activity factors are then identified as being most
relevant to the initial query. This calculation is similar to
neural-network simulation; in spreading activation, the link
weights vary based on the application in which ConceptNet is
used and the specific query being performed.

Figure 2 sketches the spreading activation calculation. For
actual implementation, this can be optimized while achieving
the same semantics. Sequential implementations can take care
to visit only nodes that receive at least one input message in a
step. Since the update operation is associative, an implemen-
tation can directly sum the message into step-activity without
waiting for the update phase; this avoids the need to make a
full pass over the inputs during the update phase and avoids
the need for space to store the full set of input activities in a
step. To avoid buffering all the incoming messages, the send
and receive phases can be overlapped.

C. Sequential Implementation

For baseline comparison, we implemented a streamlined
version of spreading activation in C to run on standard micro-
processors. The default ConceptNet graph requires >30MB to
represent and, consequently, will not fit in the 1MB on-chip
cache on Pentium processors. Even the smallest ConceptNet
graph requires 1.5MB to represent.

To optimize the sequential implementation, we use an active
graph node queue so that we need to visit only the nodes that

AUPDATE(v1,v2)
tmax = max(v1,v2)
tmin = min(v1,v2)
return(tmax+(1-tmax)×tmin)

SPREADINGACTIVATION
//start with activities of non-initial nodes set to zero
foreach step

foreach graph node g
// receive
foreach incoming message m

g.edges[m.edge].activity←m.activity
wait for step synchronization
// update
g.step-activity←0
foreach input edge e to g

g.step-activity ← AUpdate(g.step-activity,
e.activity)

g.node-activity ← AUpdate(g.node-activity,
e.activity)

// send
foreach output edge e from g

if (g.step-activity>THRESHOLD)
send to e.sink with

activity=g.step-activity×g.discount
×weight[e.type]

// reset
foreach input edge e to g

e.activity←0

Fig. 2. Basic Computation for Spreading Activation

have new activity on each graph step. We also use an efficient
radix sort data structure (similar to the one used in [40]) so
we can extract the highest-activity nodes without walking the
entire graph or paying O(N log(N)) to perform the sort. Both
insertion into the activity queue and replacement in the sort
are O(1) operations.

On a typical, modest query (“boy” “play” “park”) on the
default ConceptNet database, we allow activation to spread
for three steps and visit 539,819 edges. Each edge visit takes
about 700 cycles (around 200 ns) including one cache miss to
main memory that accounts for roughly 300 of the 700 cycles.
On average, this includes 12 L1 cache misses that are serviced
by the L2 cache at 20 cycles apiece. All told, the query takes
over 386,841,905 cycles, or about 113 ms. This query starts
with three graph nodes activated, so the first few graph steps
have moderate activity as activation spreads out from the initial
nodes. Queries that start with many initial terms or high fanout
nodes, as is typical in document processing tasks, will start
with more of the graph active and consequently visit more
nodes and require greater runtime (e.g., the NYT query in
Table II).

To collect data for the sequential implementation, we com-
piled the code with GCC 3.4.1 using the -O3 option and
ran it on a 3.4 GHz Pentium-4 Xeon machine. We used the

5

TABLE II
COMPARISON OF QUERY EXECUTION TIMES ON SMALL CONCEPTNET DATABASE

Small ConceptNet P4-3.4 GHz XC2V6000
12 FPGAs 64 FPGAs
(128 PEs) (512 PEs)

Query initial edges % query edges query speed up edges query speed up
nodes visited active time visited time total per FPGA visited time total per FPGA

“run marathon” 1 370 0.45 75 µs 81K 15 µs 5 0.42 81K 6.8 µs 11 0.27
“boy” “play” “park” 3 4600 5.6 0.99 ms 81K 15 µs 66 5.5 81K 6.8 µs 146 2.3

“person” “play”
“dog” “park” 4 22K 28 3.4 ms 81K 15 µs 230 19 81K 6.8 µs 500 7.8

NYT-Abramoff
article 109 23K 28 3.5 ms 81K 15 µs 230 19 81K 6.8 µs 510 8.0

TABLE III
COMPARISON OF QUERY EXECUTION TIMES ON DEFAULT CONCEPTNET DATABASE

Default ConceptNet P4-3.4 GHz XC2V6000
288 FPGAs
(2048 PEs)

Query initial edges % query edges query speed up
nodes visited active time visited time total per FPGA

“run marathon” 1 450K 27 94 ms 1.6M 33 µs 2800 9.9
“boy” “play” “park” 3 540K 32 110 ms 1.6M 33 µs 3300 12

“person” “play” “dog” “park” 4 920K 55 190 ms 1.6M 33 µs 5800 20
NYT-Abramoff article 109 930K 56 190 ms 1.6M 33 µs 5800 20

Pentium cycle counters to capture complete runtime. Separate
non-timing runs were used to collect basic statistics on edges
visited. Cache statistics were captured with the Pentium event
counters using PAPI-3.2.1 [41], [42].

Tables II and III summarize the results from several, typical
ConceptNet queries.

D. FPGA Implementation

For the FPGA implementation, we place graph nodes into
Block RAMs and build a specialized processing engine for
ConceptNet spreading activation, which is pipelined to handle
one edge operation per cycle. Each such processing engine re-
quires 320 Virtex-2 slices. We exploit the dual-port capabilities
of the Block RAM to perform a read of the current graph node
state, compute an activity update, and write back the graph
node state in the edge-update pipeline. We connect graph-
processing engines together with a packet-switched or time-
multiplexed overlay network (i.e. Network-on-a-Chip—see
[43]). The processing engine and network operate at 166 MHz
(XC2V6000-4). To avoid serial bottlenecks on node process-
ing, we decompose large nodes, those with high fanin or
fanout, into a set of edge-limited nodes using fanin and fanout
trees to preserve the original graph connectivity. To minimize
network contention, we place graph nodes onto memory blocks
to maximize locality using an efficient partitioner (UMpack’s
multi-level partitioner, UCLA MLPart5.2.14 [44]) similar
to [5].

In the simplest case, we use a time-multiplexed network
and process every graph node and every edge on every graph
step. That is, we do not exploit activity sparseness. Note
that since each edge update occurs in pipelined fashion, we
spend two cycles processing each edge (one sending and one

receiving) for a total of 12 ns (XC2V6000-4) compared to the
200 ns per edge for the processor. Further, we get multiple
processing engines per FPGA (e.g., 32 on an XC2V6000),
so we obtain two to three orders of magnitude higher edge-
processing throughput on the FPGA than on the processor.
Since the FPGA implementation processes every edge, it
processes an order of magnitude more edges than the processor
in modest queries like (“boy” “play” “park”); however, it takes
no more time to process compound queries that start with more
initial terms (see Tables II and III).

Each ConceptNet edge can be represented in 32b. Assuming
we group together Block RAMs into sets which are powers of
two, we use 128 of the 144 Block RAMS on the XC2V6000.
This gives us 128 × 512 = 64K edges per XC2V6000.
Consequently, it will take at least 16 leaf FPGAs to hold the
default ConceptNet knowledge base.

Our FPGA performance numbers are calculated from a
mapped implementation for the key elements (processing
engine and network switches) and a cycle-accurate schedule of
a graph step. We mapped our processing engine and network
switches to an XC2V6000-4 and validated 166MHz operation.
Datapaths are 16b wide to accommodate the activity value.
On one XC2V6000, we get 32 processing engines using a
Butterfly Fat Tree (BFT) interconnect structure (see Table IV).
At the root of the leaf FPGAs, we have 8 input and 8 output
channels. We use dedicated route FPGAs with 4 input and
output downlinks and 2 input and output uplinks to continue
to connect the leaf FPGAs up into a p ≈ 0.5 BFT (see Figure 3
and Table V). Based on timing from this implementation (e.g.,
cycles per switch, pipeline stages in the processing engine),
we completely schedule computation and communication in a

6

TABLE IV
BREAKDOWN OF LOGIC IN CONCEPTNET LEAF FPGA WITH 32 PES

(XC2V6000)

Slices Total %
Component # Each Slices Area
Processing Engines 32 320 10240 30%
Node Address 460 12/node 5520 16%

Memory max graph nodes/PE
BFT Switches 1920 6%

L1 16 π 48 768
L2 16 T 24 384
L3 8 π 48 384
L4 8 T 24 192
L5 4 π 48 192

TM Memory 2112 7.5/cycle 15840 47%
max cycles supported

Total 33520 99%

TABLE V
MULTICHIP BFT COMPOSITION

FPGAs
Total Compute Tree
PEs Leaves Interconnect Total
128 4 8 12
512 16 4×8+16=24 64

2048 64 4×48+32=224 228

single graph step for a given number of processors and network
organization [43].

E. Discussion

As shown in Tables II and III, the reconfigurable implemen-
tation gets an order of magnitude speedup per FPGA compared
to the processor solution for modest queries. We normalize
speedup to the number of FPGAs to demonstrate that we get
both parallelism speedup from using multiple components and
speedup per component from the greater bandwidth identified
in Section II. This shows that the FPGA solution has excellent
scaling to tens and hundreds of FPGAs, whereas the processor
version will not scale as nicely. For compound queries, the
advantage per FPGA increases. For the simple queries with
low activity, it may be possible to also exploit sparse activity
using packet-switched interconnect to further reduce the FPGA
runtime (see [43]).

VII. VARIATIONS AND FUTURE WORK

The applications outlined so far have all worked on static
graphs. That is, we know the graph before the computation
starts and the graph does not change during the computation.
Further, since the graphs are known, we can place the tasks
offline for spatial locality. Note that placement and routing
are graph algorithms, so we expect to be able to use the same
machine for placement and routing of the graph as we use to
run the graph algorithms.

One generalization for future work is to efficiently support
algorithms where the graph changes during the computation,
that is, allow nodes and edges to be added and removed. In

 T
re

e
FP

G
A

 T
re

e
FP

G
A

 T
re

e
FP

G
A

 T
re

e
FP

G
A

 T
re

e
FP

G
A

 T
re

e
FP

G
A

 T
re

e
FP

G
A

 T
re

e
FP

G
A

Compute
 Leaf
 32 PEs

Compute
 Leaf
 32 PEs

Compute
 Leaf
 32 PEs

Compute
 Leaf
 32 PEs

Fig. 3. BFT Network with 128 PEs in 12 FPGAs

addition to support for the new nodes, this will demand online
placement of the new nodes and routing of the new links.

Many applications have mostly static graphs. That is, the
graph may be large (millions of nodes and edges), but only
a few edges are changed at a time. One example is a large
knowledge base that filters out facts and adds new facts
(nodes and edges) as it identifies them. Another example
is a learning-based SAT solver (e.g., [45]). In these SAT
solvers, the learned clause database becomes large (hundreds
of thousands to millions of entries); however, there will be
many graph operations per conflict and each conflict adds only
a few clauses to the database. Consequently, we are changing
only a tiny fraction (maybe 0.001%) of the graph at a time.

As noted in Section VI, our primary comparison is to a
static, time-multiplexed GraphStep implementation. For low
activities, a dynamic version might be more efficient. Further,
low activities and evolving graphs might motivate adaptive
techniques for graph node placement, such as moving nodes
based on dynamic activity to enhance locality and parallelism.

VIII. RELATED WORK

The idea of integrating computing with memory certainly is
not new [15], [34]–[36], [46]–[48]. What is new is a suitable
concurrent system architecture that organizes applications to
exploit the parallelism and high memory bandwidth of these
hardware architectures. As already noted in Section V-C many
existing or proposed multiprocessor and PIM architectures
could be useful implementation targets.

Other concurrent system architectures have explored logic
and DRAM integration. Active Pages [48] was designed to
support a data-parallel model that specifically did not ef-
ficiently handle interconnect between pages. Vector IRAM
[49] supported a vector model, making it suitable for dense

7

applications, but not necessarily efficient for irregular, sparse-
graph applications.

The GraphStep system architecture follows the vision of
Hillis’ Connection Machine (CM) [50]. The CM was an early
herald of the data-parallel system architecture [51], and the
first Connection Machines were SIMD implementations. As
Figure 1 suggests, GraphStep is a refinement and restriction
on the data parallel system architecture to more directly and
efficiently support parallel graph algorithms.

IX. CONCLUSIONS

The high bandwidth and low latency available from the
small, distributed, on-chip memories in modern FPGAs pro-
vide another opportunity for delivering high performance with
field-programmable custom computing machines. This opens
up the opportunity for these machines to accelerate a distinct
and complementary class of applications to those which tra-
ditionally exploited the high computational throughput of FP-
GAs and reconfigurable architectures. We can capture many of
these data-intensive applications with a sparse, graph-oriented
concurrent system architecture. We show how we can use the
GraphStep system architecture to exploit the high memory
performance of FPGA-based machines to deliver performance
that is orders of magnitude better on these memory-bound
applications than that of microprocessors.

Acknowledgments: This work was supported in part by
DARPA under grant FA8750-05-C-0011, the NSF CAREER
program under grant CCR-0133102, and the Microelectronics
Advanced Research Consortium (MARCO) as part of the ef-
forts of the Gigascale Systems Research Center (GSRC). Xil-
inx Corporation donated hardware, including the XC2V6000s
used for the FPGA implementation.

REFERENCES

[1] A. DeHon, “The Density Advantage of Configurable Computing,” IEEE
Computer, vol. 33, no. 4, pp. 41–49, April 2000.

[2] ——, “Reconfigurable Architectures for General-Purpose Computing,”
MIT Artificial Intelligence Laboratory, 545 Technology Sq., Cambridge,
MA 02139, AI Technical Report 1586, October 1996. [Online].
Available: http://www.cs.caltech.edu/∼andre/abstracts/dehon phd.html

[3] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications
of the obvious,” Computer Architecture News, vol. 23, no. 1, pp. 20–24,
1995.

[4] S. A. McKee, “Reflections on the memory wall,” in Proceedings of
Computing Frontiers, April 2004.

[5] M. deLorimier and A. DeHon, “Floating-Point Sparse Matrix-Vector
Multiply for FPGAs,” in Proceedings of the International Symposium
on Field-Programmable Gate Arrays, February 2005, pp. 75–85.

[6] J. Babb, M. Frank, and A. Agarwal, “Solving graph problems with
dynamic computational structures,” in Proceedings of SPIE: High-Speed
Computing, Digital Signal Processing, and Filtering Using Reconfig-
urable Logic, vol. 2914, November 1996, pp. 225–236.

[7] O. Mencer, Z. Huang, and L. Huelsbergen, “Hagar: Efficient multicon-
text graph processors,” in Proceedings of the International Conference
on Field-Programmable Logic and Applications, 2002, pp. 915–924.

[8] E. Caspi, M. Chu, R. Huang, N. Weaver, J. Yeh, J. Wawrzynek, and
A. DeHon, “Stream computations organized for reconfigurable execu-
tion (SCORE): Extended abstract,” in Proceedings of the International
Conference on Field-Programmable Logic and Applications, ser. LNCS.
Springer-Verlag, August 28–30 2000, pp. 605–614.

[9] Intel Corporation, “Intel Pentium 4 processor product briefs,” http://
www.intel.com/design/Pentium4/prodbref/, December 2005.

[10] Xilinx Virtex-II Platform FPGAs Data Sheet, Xilinx, Inc., 2100 Logic
Drive, San Jose, CA 95124, October 2003, dS031 <http://direct.xilinx.
com/bvdocs/publications/ds031.pdf> .

[11] Xilinx Virtex-4 Family Ovreview, Xilinx, Inc., 2100 Logic Drive, San
Jose, CA 95124, June 2005, dS112 <http://direct.xilinx.com/bvdocs/
publications/ds112.pdf> .

[12] Stratix II Device Handbook, 4th ed., Altera Corporation, 2610 Orchard
Parkway, San Jose, CA 95134-2020, December 2005.

[13] A. S. Huang and J. P. Shen, “A limit study of local memory requirements
using value reuse profiles,” in Proceedings of MICRO-28, December
1995, pp. 71–91.

[14] M. Motomura, Y. Aimoto, A. Shibayama, Y. Yabe, and M. Yamashina,
“An embedded DRAM-FPGA chip with instantaneous logic reconfig-
uration,” in Digest of Technical Papers Symposium on VLSI Circuits,
1997, pp. 55–56.

[15] S. Perissakis, Y. Joo, J. Ahn, A. DeHon, and J. Wawrzynek, “Embed-
ded DRAM for a Reconfigurable Array,” in Proceedings of the 1999
Symposium on VLSI Circuits, June 1999.

[16] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms.
MIT Press, 1990.

[17] L. McMurchie and C. Ebling, “PathFinder: A Negotiation-Based
Performance-Driven Router for FPGAs,” in Proceedings of the Inter-
national Symposium on Field-Programmable Gate Arrays. ACM,
February 1995, pp. 111–117.

[18] A. DeHon, R. Huang, and J. Wawrzynek, “Hardware-Assisted Fast Rout-
ing,” in Proceedings of the IEEE Symposium on Field-Programmable
Custom Computing Machines, April 2002, pp. 205–215.

[19] R. Huang, J. Wawrzynek, and A. DeHon, “Stochastic, Spatial Routing
for Hypergraphs, Trees, and Meshes,” in Proceedings of the International
Symposium on Field-Programmable Gate Arrays, February 2003, pp.
78–87.

[20] R. R.-F. Huang, “Hardware-Assisted Fast Routing for Runtime Recon-
figurable Computing,” Ph.D. dissertation, University of California at
Berkeley, 2004.

[21] M. Wrighton and A. DeHon, “Hardware-Assisted Simulated Annealing
with Application for Fast FPGA Placement,” in Proceedings of the
International Symposium on Field-Programmable Gate Arrays, February
2003, pp. 33–42.

[22] M. Wrighton, “A Spatial Approach to FPGA Cell Placement
by Simulated Annealing,” Master’s thesis, California Institute of
Technology, June 2003. [Online]. Available: http://www.cs.caltech.edu/
∼wrighton/ms thesis.doc

[23] S. E. Fahlman, NETL: A System for Representing and Using Real-World
Knowledge. MIT Press, 1979.

[24] J.-T. Kim and D. I. Moldovan, “Classification and retrieval of knowl-
edge on a parallel marker-passing architecture,” IEEE Transactions on
Knowledge and Data Engineering, vol. 5, no. 5, pp. 753–761, October
1993.

[25] M. Shaw and D. Garlan, Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, 1996.

[26] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular actor
formalism for artificial intelligence,” in Proceedings of the International
Joint Conference on AI, 1973.

[27] L. G. Valliant, “A bridging model for parallel computation,” Communi-
cations of the ACM, vol. 33, no. 8, p. 103, August 1990.

[28] E. Caspi, M. Chu, R. Huang, N. Weaver, J. Yeh, J. Wawrzynek, and
A. DeHon, “Stream Computations Organized for Reconfigurable Exe-
cution (SCORE): Introduction and Tutorial,” <http://www.cs.berkeley.
edu/projects/brass/documents/score tutorial.html> , short version ap-
pears in FPL’2000 (LNCS 1896), 2000.

[29] Arvind and R. A. Ianucci, “Two fundamental issues in multiprocessing,”
in Proceedings of DFVLR Conference on Parallel Processing in Science
and Engineering, West Germany, June 1987, pp. 61–88.

[30] A. Snavely, L. Carter, J. Boisseau, A. Majumdar, K. S. Gatlin,
N. Mitchell, J. Feo, and B. Koblenz, “Multi-processor performance on
the tera mta,” in Proceedings of Supercomputing, November 1998.

[31] A. Appel and T. Jim, “Continuation-passing, closure-passing style,” in
Proceedings of the ACM Conference on Principles of Programming
Languages, 1989, pp. 293–302.

[32] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim,
M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal,
“Baring it all to software: Raw machines,” IEEE Micro, vol. 30, no. 9,
pp. 86–93, September 1997.

8

http://csdl.computer.org/comp/mags/co/2000/04/r4041abs.htm
http://www.cs.caltech.edu/~andre/abstracts/dehon_phd.html
http://www.cs.caltech.edu/~andre/abstracts/dehon_phd.html
http://www.cs.caltech.edu/research/ic/abstracts/smvm_fpga2005.html
http://www.cs.caltech.edu/research/ic/abstracts/smvm_fpga2005.html
http://www.intel.com/design/Pentium4/prodbref/
http://www.intel.com/design/Pentium4/prodbref/
http://direct.xilinx.com/bvdocs/publications/ds031.pdf
http://direct.xilinx.com/bvdocs/publications/ds031.pdf
http://direct.xilinx.com/bvdocs/publications/ds031.pdf
http://direct.xilinx.com/bvdocs/publications/ds112.pdf
http://direct.xilinx.com/bvdocs/publications/ds112.pdf
http://direct.xilinx.com/bvdocs/publications/ds112.pdf
http://www.altera.com/literature/hb/stx2/stratix2_handbook.pdf
http://www.cs.berkeley.edu/projects/brass/documents/cmb_vlsi99.html
http://www.cs.berkeley.edu/projects/brass/documents/cmb_vlsi99.html
http://www.cs.washington.edu/research/projects/lis/www/papers/postscript/mcmurchie-FPGA95.ps
http://www.cs.washington.edu/research/projects/lis/www/papers/postscript/mcmurchie-FPGA95.ps
http://www.cs.caltech.edu/research/ic/abstracts/fastroute_fccm2002.html
http://www.cs.caltech.edu/research/ic/abstracts/fastroute_fccm2002.html
http://www.cs.caltech.edu/research/ic/abstracts/fastroute_fpga2003.html
http://www.cs.caltech.edu/research/ic/abstracts/fastroute_fpga2003.html
http://www.cs.berkeley.edu/~rhuang/rhuang_thesis.pdf
http://www.cs.berkeley.edu/~rhuang/rhuang_thesis.pdf
http://www.cs.caltech.edu/research/ic/abstracts/hwassistsa_fpga2003.html
http://www.cs.caltech.edu/research/ic/abstracts/hwassistsa_fpga2003.html
http://www.cs.caltech.edu/~wrighton/ms_thesis.doc
http://www.cs.caltech.edu/~wrighton/ms_thesis.doc
http://www.cs.caltech.edu/~wrighton/ms_thesis.doc
http://www.cs.caltech.edu/~wrighton/ms_thesis.doc
http://www.cs.berkeley.edu/projects/brass/documents/score_tutorial.html
http://www.cs.berkeley.edu/projects/brass/documents/score_tutorial.html
http://www.cs.berkeley.edu/projects/brass/documents/score_tutorial.html
http://www.cs.berkeley.edu/projects/brass/documents/score_tutorial.html

[33] D. C. Pham, T. Aipperspach, D. Boerstler, M. Bolliger, R. Chaudhry,
D. Cox, P. Harvey, P. M. Harvey, H. P. Hofstee, C. Johns, J. Kahle,
A. Kameyama, J. Keaty, Y. Masubuchi, M. Pham, J. Pille, S. Posluszny,
M. Riley, D. L. Stasiak, M. Suzuoki, O. Takahashi, J. Warnock,
S. Weitzel, D. Wendel, and K. Yazawa, “Overview of the architecture,
circuit design, and physical implementation of a first-generation cell
processor,” IEEE Journal of Solid State Circuits, vol. 41, no. 1, pp.
179–196, January 2006.

[34] C. Lutz, S. Rabin, C. Seitz, and D. Speck, “Design of the mosaic
element,” in Proceedings, Conference on Advanced Research in VLSI,
P. Penfield, Jr., Ed., Cambridge, MA, January 1984, pp. 1–10.

[35] W. J. Dally, S. J. A. Fiske, J. S. Keen, R. A. Lethin, M. D. Noakes, P. R.
Nuth, R. E. Davison, and G. A. Fyler, “The message-driven processor: A
multicomputer processing node with efficient mechanisms,” IEEE Micro,
pp. 23–39, April 1992.

[36] T. Sunaga, H. Miyatake, K. Kitamura, P. M. Kogge, and E. Retter, “A
processor in memory chip for massively parallel embedded applications,”
IEEE Journal of Solid State Circuits, vol. 31, no. 10, pp. 1556–1559,
October 1996.

[37] D. S. Henry and C. F. Joerg, “A tightly-coupled processor-network
interface,” in Proceedings of the Fifth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems,
1992.

[38] W. S. Lee, W. J. Dally, S. W. Keckler, N. P. Carter, and A. Chang, “An
efficient, protected message interface,” IEEE Computer, vol. 31, no. 11,
pp. 69–75, November 1998.

[39] H. Liu and P. Singh, “ConceptNet – A Practical Commonsense Rea-
soning Tool-Kit,” BT Technical Journal, vol. 22, no. 4, p. 211, October
2004.

[40] C. M. Fiduccia and R. M. Mattheyses, “A linear time heuristic for
improving network partitions,” in Proceedings of the 19th Design
Automation Conference, 1982, pp. 175–181.

[41] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A portable
programming interface for performance evaluation on modern pro-
cessors,” The International Journal of High Performance Computing
Applications, vol. 14, no. 3, pp. 189–204, 2000.

[42] PAPI Project, “Performance application programming interface,” <http:
//icl.cs.utk.edu/papi/> , January 2006.

[43] N. Kapre, N. Mehta, M. deLorimier, R. Rubin, H. Barnor, M. J. Wilson,
M. Wrighton, and A. DeHon, “Packet-switched vs. time-multiplexed
FPGA overlay networks,” in Proceedings of the IEEE Symposium on
Field-Programmable Custom Computing Machines. IEEE, 2006.

[44] A. Caldwell, A. Kahng, and I. Markov, “Improved Algorithms for
Hypergraph Bipartitioning,” in Proceedings of the Asia and South Pacific
Design Automation Conference, January 2000, pp. 661–666.

[45] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik, “Efficient
conflict driven learning in a boolean satisfiability solver,” in Proceedings
of the International Conference on Computer-Aided Design, 2001, pp.
279–285.

[46] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick, “A case for intelligent RAM:
IRAM,” IEEE Micro, vol. 17, no. 2, pp. 34–44, Mar/Apr 1997.

[47] N. Margolus, “An FPGA architecture for DRAM-based systolic compu-
tations,” in Proceedings of the IEEE Symposium on FPGAs for Custom
Computing Machines, 1997, pp. 2–11.

[48] M. Oskin, F. T. Chong, and T. Sherwood, “Active pages: a model of
computation for intelligent memory,” in Proceedings of the International
Symposium on Computer Architecture, June 1998.

[49] C. Kozyrakis and D. Patterson, “Vector vs superscalar and VLIW
architectures for embedded multimedia benchmarks,” in Proceedings of
the International Symposium on Microarchitecture, 2002, pp. 283–293.

[50] W. D. Hillis, The Connection Machine. MIT Press, 1985.
[51] W. D. Hillis and G. L. Steele, “Data parallel algorithms,” Communica-

tions of the ACM, vol. 29, no. 12, pp. 1170–1183, December 1986.

APPENDIX

This query set had 109 keywords (initially activiated nodes)
extracted from a New York Times cover article about Jack
Abramoff. Terms: “the”, “jack”, “count”, “today”, “end”,
“testify”, “tax”, “set”, “begin”, “use”, “business”, “colleague”,
“charge”, “include”, “effort”, “wednesday”, “expect”, “con-
nection”, “purchase”, “boat”, “line”, “talk”, “speak”, “picture”,
“associate”, “prepare”, “reduce”, “exchange”, “knowledge”,
“action”, “element”, “can”, “serve”, “prison”, “time”, “night”,
“follow”, “communication”, “office”, “lawyer”, “prosecu-
tion”, “florida”, “come”, “schedule”, “stand”, “edge”, “close”,
“house”, “leader”, “earn”, “dollar”, “represent”, “interest”, “is-
land”, “help”, “funnel”, “friend”, “power”, “trip”, “develop”,
“work”, “suspect”, “justice”, “leadership”, “believe”, “take”,
“meal”, “downtown”, “restaurant”, “press”, “secretary”, “de-
lay”, “agreement”, “year”, “put”, “reach”, “hi”, “person”, “in-
volve”, “hear”, “cut”, “take place”, “stage”, “witness”, “face”,
“evidence”, “focus”, “location”, “sentence”, “place”, “week”,
“trial”, “word”, “tie”, “member”, “list”, “core”, “form”, “pres-
sure”, “case”, “deal”, “in prison”, “public”, “final”, “separate”,
“more”, “free”, “key”, “last”, “own”. This kind of query is
typical of those used to identify the topic of a piece of text.

Web links for this document: <http://www.cs.caltech.edu/research/ic/abstracts/graphstep_fccm2006.html>

http://web.media.mit.edu/~hugo/publications/papers/BTTJ-ConceptNet.pdf
http://web.media.mit.edu/~hugo/publications/papers/BTTJ-ConceptNet.pdf
http://icl.cs.utk.edu/papi/
http://icl.cs.utk.edu/papi/
http://doi.acm.org/10.1145/368434.368864
http://doi.acm.org/10.1145/368434.368864
http://www.cs.caltech.edu/research/ic/abstracts/graphstep_fccm2006.html

