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Abstract 1 

A fundamental requisite for genetic studies is an accurate determination of sequence 2 

variation. While human genome sequence diversity is increasingly well characterized, there 3 

is a need for efficient ways to utilize this knowledge in sequence analysis. Here we present 4 

Graphtyper, a publicly available novel algorithm and software for discovering and 5 

genotyping sequence variants. Graphtyper realigns short-read sequence data to a 6 

pangenome, a variation-aware graph structure that encodes sequence variation within a 7 

population by representing possible haplotypes as graph paths. Our results show that 8 

Graphtyper is fast, highly scalable, and provides sensitive and accurate genotype calls. 9 

Graphtyper genotyped 89.4 million sequence variants in whole-genomes of 28,075 10 

Icelanders using less than 100,000 CPU days, including detailed genotyping of six human 11 

leukocyte antigen (HLA) genes. We show that Graphtyper is a valuable tool in characterizing 12 

sequence variation in population-scale sequencing studies.  13 
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Introduction 1 

Advances in DNA sequencing technology have improved characterization of sequence 2 

diversity in the human genome and have resulted in refinements of the reference 3 

sequence1–4. The human reference sequence is extremely useful, but it represents a 4 

consensus of genomes and therefore it does not capture sequence variation within or 5 

between populations5,6. 6 

In the latest version of the human reference genome (GRCh38), there are several alternate 7 

loci where the sequence variation is too complex to be represented with a single sequence. 8 

These loci are generally highly polymorphic, and many are known to co-segregate with 9 

disease and are therefore of great interest in population genetics. The most prominent 10 

example, the human leukocyte antigen (HLA) region, is known to associate with a number of 11 

immune mediated human diseases7. Given the importance of this region, it has been further 12 

characterized in the IPD-IMGT/HLA database8, which contains a large collection of known 13 

HLA allele sequences. Such variation should be included in genome diversity analyzes.  14 

Short-read sequencing is the standard in genome-wide sequence analysis. Most common 15 

approaches for discovering sequence variants involve aligning sequence reads to a reference 16 

genome9 and searching for variants as alternative sequences in read alignments (Figure 1a i). 17 

However, some reads cannot be aligned to a reference genome, particularly those 18 

originating from highly polymorphic regions and regions absent from the reference genome. 19 

Reference genome alignments are also generally done without awareness of variation, 20 

causing mapping bias towards the reference allele and misalignments around indels10,11. 21 
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Richer data structures that utilize the large amount of available sequence variation data 1 

promise to alleviate some of the limitations of previous methods12–15. Although approaches 2 

that find polymorphisms in reference-free assemblies have been developed to avoid these 3 

limitations16,17, de novo assembly algorithms remain computationally expensive, have less 4 

sensitivity17, and use data structures that have a complex coordinate system. 5 

Pangenomes12,18,19 have recently been proposed to counter weaknesses of both reference 6 

alignments and de novo assemblies by extending the linear reference alignments with 7 

variation-aware alignments20. Pangenomes incorporate prior information about variation, 8 

allowing read aligners to better distinguish between sequencing errors in reads and true 9 

sequence variation. Unlike de novo assembly algorithms, pangenomes represent sequence 10 

variation with respect to the reference genome, enabling a direct access to its annotated 11 

biological features. Variation-aware data structures, such as pangenomes, also allow read 12 

mapping and genotype calling to be performed in a single step12. 13 

Graph-like data structures with directed edges have commonly been used to represent 14 

pangenomes19,21–24. In an idealized pangenome graph, nodes represent sequences and the 15 

sequence of every genotyped individual genome is a path in the graph, but not necessarily 16 

vice versa. A number of algorithms have recently been developed that tackle the problems 17 

of graph construction, indexing and alignment of sequence reads to graphs19,21,25–27,  Paten 18 

et al.24 provide a recent survey of current efforts. However, there is no method that 19 

combines these operations and uses the resulting alignments to update the graph with novel 20 

variation for the purpose of variant calling12. 21 

Here we present Graphtyper, a method and software for discovering and genotyping 22 

sequence variants in large populations using pangenome graphs. Graphtyper realigns all 23 
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sequence reads of a genomic region, including unaligned and clipped sequences, to a 1 

variation-aware graph (Figure 1a ii). Concomitantly, it aligns sequence reads and genotypes 2 

sequence variants present in its graph. Furthermore, Graphtyper discovers novel single 3 

nucleotide polymorphisms (SNPs) and short sequence insertion or deletion variants (indels), 4 

which can be used to update the pangenome graph (Methods). 5 

An important benefit of Graphtyper’s realignment step is to improve read alignments near 6 

indels. Figure 2a shows how Graphtyper represents three common sequence variants, a 40-7 

bp deletion and two SNPs. Using variation-aware realignment, Graphtyper is capable of 8 

better characterization of the region’s variation than previous methods, with no Mendelian 9 

errors (Figure 2b) and no falsely reported additional sequence variants around the indel 10 

(Supplementary Table 1) due to misaligned sequence reads (Supplementary Figure 1). 11 
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Results 1 

Data structures and genotyping pipeline Graphtyper uses a reference sequence and 2 

optionally all known sequence variants as input to construct pangenome graphs. Sequence 3 

reads mapped to a genomic region of the reference sequence, including unaligned and 4 

trimmed reads, are realigned to the pangenome graph. Using these graph alignments, 5 

Graphtyper discovers variants within the genomic region. This process is iterated several 6 

times (Supplementary Note 4), i.e., a pangenome graph is constructed, indexed and aligned 7 

with sequence reads, from which novel variants are discovered and previously discovered 8 

variants are genotyped (Figure 1b). 9 

The underlying pangenome data structure is a directed acyclic graph (DAG) where edges 10 

connect nodes that contain a DNA sequence (Supplementary Note 1). Graphtyper takes as 11 

input a reference genome and a list of known variants. Each known variant is a record of a 12 

chromosomal position, a reference allele, and one or more alternative alleles. First, variant 13 

records with overlapping reference alleles are merged into a single record (Figure 3a). 14 

Second, allele nodes are constructed, containing the sequence and start position of each 15 

allele of the variant records. Third, reference nodes are constructed between two adjacent 16 

variant records, storing the corresponding reference sequence and its start position. Finally, 17 

nodes at adjacent positions are connected. Paths in the graph alternate between reference 18 

and allele nodes and nodes that share a start position are parallel to each other. Each 19 

character in an allele node sequence is given a position equal to the first position of the node 20 

plus the character’s offset from that position (Figure 3b). Allele node positions longer than 21 

the reference allele are assigned new unique positions (𝑧1 and 𝑧2 in Figure 3b) to avoid 22 
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conflicts with the following positions. The final graph represents the reference sequence and 1 

all haplotypes in the population as paths. 2 

Aligning sequence reads by traversing the graph is time consuming. To expedite graph 3 

alignments, the graph structure is preprocessed by creating an index that maps 𝑘-mers to 4 

their start and end positions in the reference genome and to overlapping allele nodes (if any) 5 

(Figure 3c, Methods). Read alignment then follows the seed-and-extend paradigm (Figure 6 

3d-3h, Methods, and Supplementary Note 2). 7 

The output of each iteration is a file in variant-call format (VCF) including both newly and 8 

previously discovered variants, which Graphtyper uses to update the graph in the next 9 

iteration (Methods).  10 

Population-scale genotyping We compared Graphtyper to seven widely used genotyping 11 

pipelines on human chromosome 21 in a set of 691 whole-genome sequenced Icelanders 12 

(Table 1). Of these, 404 individuals were contained in 230 trios (parent-offspring trio 13 

families). The genotypers used were Genome Analysis ToolKit UnifiedGenotyper (GATK 14 

UG)28, GATK-Lite UnifiedGenotyper (UGLite), GATK HaplotypeCaller (HC), GATK HC GVCF 15 

joint genotyping (HC joint), Samtools29, Platypus17, and FreeBayes30 (Supplementary Note 4). 16 

Known sequence variants were not given to Graphtyper as input, all pipelines were given the 17 

same BAM files and reference sequence (GRCh38). 18 

Our results show that GATK UG, Graphtyper and Samtools all had comparable compute 19 

times and completed the genotyping in between 576 and 594 hours (Table 1). The other five 20 

genotypers required considerably greater compute times (1,030-12,964 hours). 21 

We assessed the raw output of all eight genotyping pipelines to compare them independent 22 

of filtering technique and to include analysis of all germline variation, somatic variation, and 23 
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wrongfully reported variation due to sequencing or alignment errors. Compared to other 1 

genotypers, Graphtyper called a large number of SNPs (406,087) with a reasonably high ratio 2 

of transitions (Ti) to transversions (Tv) (1.49). We observed that all eight genotypers had a 3 

large excess of alternative alleles with a transmission rate below 50% (Supplementary Figure 4 

2). We also observed higher Ti/Tv ratios among alleles with higher transmission rates 5 

(Supplementary Figure 3). Motivated by these realizations, we estimated the number of 6 

germline alternative alleles based on the transmission rate of the alternative alleles in the 7 

230 trios (Methods). Graphtyper detected the largest number of estimated germline 8 

alternative alleles in the trios (267,057), followed by GATK UGLite (264,753) and GATK UG 9 

(264,447) (Table 1).  10 

We found 105,302 SNPs and 7,694 indels that were called by all eight genotypers and have 11 

been reported as common (minor allele frequency > 1% in any population) in dbSNP build 12 

149. In the 230 trios, Graphtyper called these sequence variants with a mean transmission 13 

rate of 49.98%, very close to the expected 50%. Graphtyper had the highest Mendelian 14 

accuracy (99.52%) and the lowest number of missing genotype calls (0.201%) (Table 1). We 15 

also compared SNP calls to our in-house microarray genotypes (Methods), all genotyping 16 

pipelines were highly concordant (>99%). 17 

From our comparison of genotypers, we concluded that Graphtyper and GATK UG were the 18 

two best genotypers for population-scale genotyping in terms of performance, accuracy and 19 

sensitivity. We assessed a call set of highly confident Graphtyper sequence variants using our 20 

own filtering criteria and filtered the GATK call sets (UG, HC and HC joint) using their 21 

available ‘best practices’ filtering criteria (Supplementary Note 4). Graphtyper achieved 22 

substantially lower estimate of false discovery rate (FDR) (2.19%) than the other call sets 23 
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(10.26-31.22%), but also had lower estimated number of germline alternative alleles 1 

(200,984) than the other call sets (214,801-240,020) (Supplementary Table 2). 2 

We measured their scalability by genotyping chromosome 21 on a dataset of 15,220 3 

Icelanders, in which there are 1,729 trios (3,863 unique individuals). Our results show that 4 

Graphtyper scales much better than GATK UG (Figure 4), with GATK UG using approximately 5 

2.5x more time for computations than Graphtyper (Table 2). The compute time used by 6 

Graphtyper per sample did not increase substantially when the sample size increased from 7 

691 to 15,220 (changed from 0.842 hr/sample to 0.867 hr/sample), while GATK UG used 8 

2.65x more compute time per sample (changed from 0.834 hr/sample to 2.206 hr/sample). 9 

Based on the transmission of alternative alleles the 1,729 trios, we observed that the FDR 10 

increased for Graphtyper and GATK UG compared to the 230 trio dataset in both raw and 11 

filtered call sets. We estimated that Graphtyper detected more germline alternative alleles 12 

(308,204) with a significantly lower FDR (8.89%) than GATK UG (305,404 and 22.62%, 13 

respectively) in the filtered call sets (Table 2). 14 

Single sample genotyping We assessed the single sample genotyping performance of 15 

Graphtyper on a well-studied parent-offspring trio (NA12878, NA12891 and NA12892). 16 

Whole-genome sequence data (50x 101-bp paired-end Illumina HiSeq 2000) of these 17 

samples are publicly available through the Platinum Genome project31. We genotyped each 18 

sample independently using the same genotyping pipelines as in our population-scale 19 

experiment. We ran Graphtyper with and without initializing its graph structure with publicly 20 

available common (minor allele frequency > 1% in any population) sequence variants (dbSNP 21 

build 150). 22 
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We assessed sequence variant call sets of the offspring (NA12878) by comparing it to the set 1 

of publicly available high-confidence variant calls31 to measure variant recall rate and 2 

precision. Based on the genotyping of the parents (NA12891 and NA12892), we estimated 3 

FDR and the number of transmitted germline alternative alleles in the trio (Methods). 4 

Our results show that even without the knowledge of known variation, Graphtyper has a 5 

considerably better recall rate (98.14%) than the other genotypers (90.24-95.91%), high 6 

precision (99.774%), and overall the highest number of validated calls (4,081,193) (Table 3). 7 

As expected, the knowledge of common dbSNP variants increased Graphtyper’s recall rate 8 

(to 98.46%), in particular at non-SNP sites where it increased from 91.23% to 93.38%. 9 

Consistent with its measured high recall rate, we also estimated that Graphtyper called the 10 

highest number of germline alternative alleles in the trio (5,991,012 and 5,874,556 with and 11 

without dbSNPs, respectively), substantially more than the other genotypers (5,190,838-12 

5,562,776). However, Graphtyper had the longest compute time (154.1 hours), as the time 13 

of constructing and indexing a graph is relatively long for only a single sample. 14 

We also filtered the Graphtyper call sets (Supplementary Note 4) and compared it with 15 

GATK’s call sets filtered according their ‘best practices’ guidelines. After filtering, 16 

Graphtyper’s recall rate was reduced to 96.47% and its estimated FDR reduced from 6.06% 17 

to 4.69% (Table 3). 18 

28,075 Icelandic whole-genome samples We used Graphtyper to genotype the autosomes 19 

and chromosome X of 28,075 whole-genome sequenced Icelandic samples. The samples 20 

have a mean sequencing depth of 35.3x (s.d. 7.9x; range 2-200x) stored in a total of 2.12 PB 21 

of BAM files. The overall compute time for genotyping was 97,917 CPU days or 83.7 CPU 22 
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hours per sample on average. Graphtyper genotyped 89.4 million sequence variants: 1.1 1 

million complex variants, 6.4 million indels, and 81.9 million SNPs with a Ti/Tv ratio of 1.04. 2 

The compute time of genotyping chromosome 21 in 28,075 Icelandic samples was 27,853 3 

CPU hours or 0.99 CPU hours per sample on average. Compared to Graphtyper’s 4 

chromosome 21 genotyping of 691 samples, the sample size 40-folded, the number of 5 

sequence variants increased by 220%, but the compute time per sample only increased by 6 

17.6%. 7 

HLA typing The IPD-IMGT/HLA database8 contains known HLA allele sequences identified 8 

with a field (usually two digits) hierarchical colon separated identifier. The first field denotes 9 

the HLA allele family, the second field denotes the subtype within the family, the third field 10 

denotes groups with synonymous substitutions within the subtype, and the fourth field 11 

denotes allele differences in non-coding regions.  12 

Based on known HLA allele sequences, we created graphs for six important HLA genes: HLA-13 

A, HLA-B, HLA-C, HLA-DRB1, HLA-DQA1, and HLA-DQB1 (Methods). Using these graphs, we 14 

were able to HLA type the same dataset of 28,075 Icelanders in a single genotyping-only 15 

iteration. Our results show high diversity of HLA allele families in the Icelandic population 16 

(Supplementary Table 3). 17 

The total compute time of the HLA genotyping of the six genes was 2,609 hours, or 5.6 18 

minutes per sample. The compute time of Graphtyper for the HLA region was orders of 19 

magnitudes lower than other genotypers32,13 (Supplementary Note 6). Previously, deCODE 20 

genetics laboratory performed HLA typing of the six genes with a PCR based method at 2-21 

digit (𝑛 =  647) and 4-digit (𝑛 =  368) resolutions. These previous typings are in good 22 

concordance (95.1-100% 2-digit; 91.6-100% 4-digit) with Graphtyper’s HLA genotype calls 23 
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(Table 4). Upon manual inspection, we concluded that a large fraction of the discrepancy 1 

between the two methods are most likely explained by sample mix-up (Supplementary Note 2 

6).  3 
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Discussion 1 

Previous genotypers use read alignments to linear reference genomes, which limits their 2 

performance in polymorphic regions. To better characterize sequence diversity we 3 

implemented a novel variation-aware data structure and developed efficient algorithms in a 4 

software called Graphtyper. Graphtyper locally realigns sequence reads from a genomic 5 

region to a pangenome graph, and concomitantly genotypes sequence variants in all 6 

individuals. We show that combining these two steps is not only practical, but improves 7 

sensitivity and is more scalable than other genotyping methods. Our results show that 8 

Graphtyper has the highest Mendelian accuracy at previously reported variant sites among 9 

the genotypers in our comparison. 10 

Graphtyper can use known variants as input, further improving sensitivity. When using 11 

dbSNP as part of the input, Graphtyper fails to recall only 0.73% of SNP variants in the 12 

Platinum genome dataset, a rate 5 times lower than the 3.61% missed by the best 13 

competitor. Additionally, the graph representation allows us to construct graphs with known 14 

sequence variation in the HLA region and accurately genotype known alleles of six HLA 15 

genes. Our HLA types are in good concordance to previously PCR verified HLA types. 16 

Graphtyper’s ability to determine genotype calls for more sequence variants, including those 17 

that have complex representation, such as the HLA region may help geneticists in 18 

characterizing genomes and their impact. Despite these successes, additional work is 19 

required, for example, currently Graphtyper cannot call structural variants. 20 

The computational requirements of many genotypers are so large that it is infeasible to 21 

effectively apply them to population-sized data sets. For large datasets, the computational 22 

requirements of Graphtyper are significantly lower than previous methods, requiring full 23 
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utilization of a 10,000 core computer cluster for 10 days, compared to an estimated 1 

minimum of 25 days for GATK UG.  2 

It is important to note that our current pipeline still relies on the linear reference sequence 3 

and BWA for global read alignments in order to assign reads to a region. To completely 4 

remove bias towards the reference genome and fully utilize the promise of pangenome 5 

analysis requires developing robust methods for graph alignment, some of which are on the 6 

horizon24,25,27; one such notable project is vg (https://github.com/vgteam/vg). Our results 7 

further show the importance of replacing the linear reference with richer data structures to 8 

improve our understanding of how sequence diversity impacts diseases and other 9 

phenotypes.  10 
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Methods 1 

Icelandic DNA data The Icelandic samples were whole-genome sequenced at deCODE 2 

genetics2 using Illumina HiSeq and HiSeqX sequencing machines33 and aligned to the GRCh38 3 

human reference genome using the BWA MEM algorithm9. All sequenced individuals were 4 

also SNP chip typed using Illumina Human Hap or Omni chip arrays. DNA was isolated from 5 

both blood and buccal samples. 6 

All participating subjects signed informed consent. Personal identities of the participants and 7 

biological samples were encrypted by a third party system approved and monitored by the 8 

Data Protection Authority. Approvals for these studies were provided by the National 9 

Bioethics Committee and the Data Protection Authority in Iceland. 10 

Sequence read alignment In Graphtyper, sequence variation of small genomic regions (we 11 

used 50 kbp regions this study) are represented with a pangenome graph structure. 12 

Sequence reads are realigned to the graph of a region if BWA reported them to be in the 13 

same region. First, Graphtyper extracts a set of 𝑘-mers from the sequence read, which 14 

overlap by one DNA base in the read (Figure 3d), and determines if they are present in the 15 

graph using an index structure (Figure 3e). Seeds are generated from matches in the index 16 

look-up. If the alignments of two adjacent 𝑘-mers overlap by exactly one base, Graphtyper 17 

joins their matches into larger seeds (Figure 3g). The longest seeds are then extended (Figure 18 

3h) by finding a path in the graph with the fewest mismatches using a breadth first search 19 

algorithm. If no seeds are extended with 12 mismatches or fewer, Graphtyper again extracts 20 

a set of 𝑘-mers from the read which overlap by one base in a read, but now also 𝑘-mers with 21 

one mismatch are included (Figure 3f). The process is applied both to a read and its reverse 22 
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complement. If both orientations of a read align to the graph, Graphtyper selects the longer 1 

alignment or, if they are equally long, the alignment with fewer mismatches. 2 

Novel variant discovery Graphtyper post-processes graph alignments to discover novel small 3 

sequence variants. Novel sequence variants are classified as SNPs, indels (up to approx. 50 4 

bp), and complex variation (e.g. multiple nucleotide polymorphisms and microsatellites). For 5 

each read uniquely aligned to the graph, Graphtyper starts by determining the position in 6 

the reference genome of its first and last aligned position in the graph and extracts the 7 

reference sequence between these two positions. Then on each side of the reference 8 

sequence, the read is extended by an additional 50 bases plus the number of soft clipped 9 

bases on the given side. The read is then locally aligned to the extracted reference sequence 10 

using a banded semi-global version of Gotoh‘s algorithm (Supplementary Figure 4a). 11 

Differences in the local alignments are treated as observations of variants (Supplementary 12 

Figure 4b). 13 

Once all reads have been processed, Graphtyper outputs sequence variants where there 14 

exists a sample that has at least 5 observations of an alternative allele and its frequency is at 15 

least 20% (default values). 16 

Genotyping Graphtyper genotype calls sequence variants in the graph by treating the graph 17 

alignments as independent observations of each sample’s underlying genotype. It genotypes 18 

sequence variants in the graph by considering nearby variants together. Given graph-aligned 19 

sequence reads of a population, the likelihood that the reads were sampled from a pair of 20 

haplotypes is estimated for each sample and the haplotypes with the highest likelihood are 21 

determined. To greatly reduce the number of haplotypes considered, all sequence variants 22 

located 5 bp or less from each other are grouped (Supplementary Figure 5a) and each 23 
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variant group is genotyped independently. Let 𝐻𝑖 = {ℎ𝑖,1, ℎ𝑖,2} be a multiset of the unknown 1 

haplotypes of sample 𝑖 in a variant group, v, and let 𝑅𝑖 = {𝑟𝑖,1, 𝑟𝑖,2, … , 𝑟𝑖,|𝑅𝑖|} be the sample‘s 2 

multiset of sequence reads aligned by Graphtyper to the variant group v. 3 

For each pair of possible haplotypes, a relative likelihood of the observed reads given the 4 

haplotypes ℒ(𝑅𝑖|𝐻𝑖) is computed. We assume that the reads from one individual are 5 

independent of other individuals‘ reads. Graphtyper computes the relative likelihood 6 

iteratively as: 7 

 ℒ(𝑅𝑖|𝐻𝑖) = ∏ 𝐿(𝑟𝑖𝑗|𝐻𝑖)𝑟𝑖𝑗∈𝑅𝑖  (1) 8 

where the relative likelihood of observing a read 𝑟𝑖,𝑗 given the pair of underlying haplotypes 9 

is set as: 10 

 𝐿(𝑟𝑖𝑗|𝐻𝑖) = { 11/2 𝜀𝑟𝑖𝑗,𝐻𝑖
, if both ℎ𝑖,1 and ℎ𝑖,2 support the read.                    , if exactly one of ℎ𝑖,1 and ℎ𝑖,2 support the read.   , if neither ℎ𝑖,1 nor ℎ𝑖,2 support the read.              (2) 11 

where 𝜀𝑟𝑖,𝑗,𝐻𝑖 is the relative likelihood of observing an error, given the underlying haplotypes 12 

𝐻𝑖 and the read 𝑟𝑖,𝑗. These relative likelihoods are chosen from the set { 125 , 126 , … , 1213} based 13 

on how similar the read is to the haplotypes 𝐻𝑖, the base pair quality, mapping quality of the 14 

read, and if the read is soft clipped (Supplementary Note 3). Restricting relative likelihoods 15 

to this set allows storing only the integer exponents, minimizing storage requirements and 16 

avoiding floating point precision problems. 17 

As sequence variants are genotyped in groups, Graphtyper can identify the haplotypes in the 18 

population within each group (Supplementary Figure 5b) and remove unobserved 19 

haplotypes from the graph (Supplementary Figure 5c). This greatly reduces the number of 20 

haplotypes in complex regions. 21 
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Sequence variant quality assessment For each sequence variant we estimated the 1 

Mendelian error rate as the fraction of incorrectly inferred offspring in trios with two 2 

homozygous parents (Supplementary Figure 6a). We defined Mendelian inaccuracy as the 3 

estimated Mendelian error rate plus the fraction of trios with a missing genotype call, which 4 

are genotypes reported as “.” or “./.” in the VCF output.  5 

If either parent is heterozygous we cannot deterministically infer the genotype of the 6 

offspring (Supplementary Figure 6b). For those trios we instead calculated the transmission 7 

rate of each alternative allele from parent to offspring. The expected transmission rate of 8 

germline alternative alleles is 50%. Falsely discovered variation due to sequencing errors and 9 

somatic mutations are assumed to transmit at a lower rate. We used the difference of 10 

alternative allele transmission rates above and below 50% to estimate the false discovery 11 

rate (FDR) using: 12 

 𝐹𝐷𝑅estimated = max (#(𝐴𝐴𝑇𝑀𝑅<50%)−#(𝐴𝐴𝑇𝑀𝑅>50%)#(𝐴𝐴) , 0)  (3) 13 

 Here, #(𝐴𝐴) is the number of called alternative alleles, and #(𝐴𝐴𝑇𝑀𝑅>50%) and 14 #(𝐴𝐴𝑇𝑀𝑅<50%) are the number of alternative alleles with a transmission rate above and 15 

below 50%, respectively. We estimated the number of germline alternative alleles using: 16 

 #(Germline 𝐴𝐴)estimated = #(𝐴𝐴)(1 − 𝐹𝐷𝑅estimated)  (4) 17 

HLA typing pre-processing We retrieved HLA allele sequences from the IPD-IMGT/HLA 18 

database (version 3.23.0, see URLs). We extracted the differences to a VCF file that we used 19 

to create the pangenome graphs for HLA typing. A more detailed description of our HLA 20 

typing method as well as comparisons to other methods have been published in our 21 

previous work34 and are described in Supplementary Note 7. 22 
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Figures 1 

 2 

Figure 1: (a) Overview of two genotyping pipeline designs. (i) A commonly used genotyping pipeline, where sequence reads 3 
are aligned to a reference genome sequence and sequence variant calls are made from sequence discordances between the 4 
sequence reads and the reference sequence. (ii) Graphtyper's genotyping pipeline. Sequence reads are realigned to a 5 
variant-aware pangenome graph and variants are called based on which path the reads align to. (b) Graphtyper's iterative 6 
genotyping process. Dashed paths are optional. As input, Graphtyper requires a reference genome sequence and sequence 7 
reads (red) and outputs genotype calls (blue) of variants.  8 
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 1 

Figure 2: (a) The genomic region chr21:21,559,430-21,559,518 (GRCh38) and three previously reported sequence variants 2 
represented with a pangenome graph. (b) Mendelian error rates of the three previously reported sequence variants called by 3 
eight genotypers. The Mendelian error rate is measured in 230 Icelandic parent-offspring trios. 4 

  5 
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 1 

Figure 3: (a) An example reference sequence and its known variation. All overlapping variants are merged. (b) Constructed 2 
pangenome reference graph. We draw the path of the reference sequence as the topmost path. (c) The index data structure 3 
with k = 5. 5-mers in the graph are mapped to a list of its start position, end position, and a variant ID which it overlaps, if 4 
any. (d) Four k-mers are extracted from a sequence read. Each k-mer overlaps its neighbor k-mer by one character. (e) An 5 
example look-up of the k-mers from the index data structure from c). (f) All extracted k-mers with a single substitution. (g) 6 
Seeds are generated from matches in the index look-up. (h) Final graph alignment after extending the longest seed. 7 
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 1 

Figure 4: Comparison of compute times required to genotype chromosome 21 on three whole-genome sequence datasets. 2 
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Tables 1 

Table 1: Raw sequence variant calls comparison of 691 whole-genome sequenced Icelanders of human chromosome 21. 2 

  3 

*CPU time of the joint calling step.  4 
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Table 2: Comparison of Graphtyper and GATK UG genotyping chromosome 21 of 15,220 sequenced Icelanders. 1 

  2 

  3 
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Table 3: Comparison of whole-genome sequence variant calls of NA12878. Graphtyper was run with and without the 1 
knowledge of common dbSNP variation. 2 

 3 
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Table 4: Comparison of Graphtyper's HLA typings to PCR verified HLA types. 1 

 2 
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