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Abstract

Magnetic Resonance Image (MRI) acquisition is an in-

herently slow process which has spurred the development

of two different acceleration methods: acquiring multiple

correlated samples simultaneously (parallel imaging) and

acquiring fewer samples than necessary for traditional sig-

nal processing methods (compressed sensing). Both methods

provide complementary approaches to accelerating MRI ac-

quisition.

In this paper, we present a novel method to integrate

traditional parallel imaging methods into deep neural net-

works that is able to generate high quality reconstructions

even for high acceleration factors. The proposed method,

called GrappaNet, performs progressive reconstruction by

first mapping the reconstruction problem to a simpler one

that can be solved by a traditional parallel imaging methods

using a neural network, followed by an application of a par-

allel imaging method, and finally fine-tuning the output with

another neural network. The entire network can be trained

end-to-end. We present experimental results on the recently

released fastMRI dataset [20] and show that GrappaNet

can generate higher quality reconstructions than competing

methods for both 4× and 8× acceleration.

1. Introduction

Magnetic Resonance Imaging (MRI) is the leading diag-

nostic modality for a wide range of disorders including mus-

culoskeletal, neurological, and oncological diseases. How-

ever, the physics of the MRI data acquisition process make it

inherently slower than alternate modalities like CT or X-Ray.

As a consequence, increasing the speed of MRI acquisition

has been a major ongoing research goal for decades.

Parallel Imaging (PI) is one of the most important and

successful developments in reducing MRI scan time [3, 12].

The technique requires the use of multiple physical receiver

coils to simultaneously record different views of the object

being imaged. Parallel imaging is the default option for

many scan protocols and it is supported by almost all modern

clinical MRI scanners.

Another approach to accelerating MR imaging is the use

of Compressed Sensing (CS), which can speed up MRI ac-

quisition by acquiring fewer samples than required by tra-

ditional signal processing methods. To overcome aliasing

artifacts introduced by violating the Shannon-Nyquist sam-

pling theorem, CS methods incorporate additional a priori

knowledge about the images. Recently, the use of learned

image priors through the use of deep learning have rapidly

gained in popularity [4, 15, 18, 21]. These approaches have

shown a significant improvement in image reconstruction

quality, particularly for non-parallel MRIs.

In this paper, we show that a novel combination of classi-

cal parallel imaging techniques with deep neural networks

can achieve higher acceleration factors than using either ap-

proach alone. Utilizing parallel imaging in deep learning

approaches to reconstruction is challenging. The relation

between the captured views changes for each scan and is

dependent on the configuration of the detectors with respect

to the object being imaged.

To address this challenge we introduce GrappaNet, a

new neural network architecture that incorporates parallel

imaging. GrappaNet contains a GRAPPA layer that learns a

scan-specific reconstruction function to combine the views

captured during parallel imaging. To allow the network

to fully utilize all the information captured during parallel

imaging, the reconstruction is performed jointly across all

the complex-valued views captured during the parallel imag-

ing process. Unlike many previous approaches [4], the views

are not combined until the final layer to produce the output

reconstruction. The model uses a progressive refinement ap-

proach in both k-space (frequency domain) and image space

to both aid in the optimization and to take advantage of the

complementary properties of the two spaces. Most previous

approaches typically focus on either reconstructing in image

space [4] or k-space [6]. We evaluate the performance of our

method on the recently released fastMRI [20] dataset.

First, we present a brief introduction to parallel MR imag-

ing and review some deep learning methods for parallel MRI
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reconstruction in section 2. Next, we provide a description of

the GrappaNet model in section 3, followed by a description

of our experiments in section 4. Finally, we conclude with a

discussion of future work in section 5.

2. Background and Related Work

2.1. Parallel MRI

MR scanners image a patient’s anatomy by acquiring

measurements in the frequency domain using a measuring

instrument called a receiver coil. In the MRI literature, these

frequency-domain measurements are called k-space samples,

where k refers to the spatial wave number. The image can

then be obtained by applying an inverse multidimensional

Fourier transform F−1 to the measured k-space samples.

The underlying image x ∈ C
M is related to the measured

k-space samples k ∈ C
M as

k = F(x) + ǫ, (1)

where ǫ is the measurement noise.

Most modern scanners support parallel imaging: they em-

ploy an array of multiple receiver coils that simultaneously

obtain k-space samples from the anatomy being imaged. The

k-space samples measured by each coil are modulated by

their sensitivity to the MR signal arising from different re-

gions. In particular, the k-space sample measured by the i-th

coil is

ki = F(Six) + ǫi, i = 1, 2, . . . , N, (2)

where Si is a complex-valued diagonal matrix encoding the

position dependent sensitivity map of the i-th coil and N is

the number of coils.

Different coils are typically sensitive to different but over-

lapping regions. It is important to note that the coil sen-

sitivities vary per scan since they depend not only on the

configuration of the coils but also on their interaction with

the anatomy being imaged.

2.2. Accelerated MRI

The speed of MRI acquisition is limited by the number of

k-space samples obtained. This process can be accelerated

by obtaining only a subset of the k-space data:

ki = MF(Six) + ǫi, i = 1, 2, . . . , N, (3)

where M is a binary mask operator that selects a subset

of the k-space points. The same mask is used for all coils.

Applying an inverse Fourier transform naively to this under-

sampled k-space data results in aliasing artifacts.

Parallel MRI can be used to accelerate imaging by ex-

ploiting the redundancies in k-space samples measured by

different coils to estimate the missing k-space points from

the observed points. Various parallel imaging methods have

been proposed but they can be divided into two broad classes:

a) SENSE-type methods [12] that operate in the image space,

and b) GRAPPA-type methods [3] that operate locally in

k-space. The latter is relevant to this work.

The GRAPPA algorithm estimates the unobserved k-

space points as a linear combination of the neighboring

observed k-space points from all coils. The same set of

weights are used at all spatial locations, which can be seen as

a complex-valued convolution in k-space from N channels

to N channels, where N is the number of coils. Formally,

the unobserved k-space points k
u are computed from the

observed k-space points k by convolving with GRAPPA

weights G:

k
u = G ∗ k. (4)

During acquisition, the central region of k-space (which

corresponds to low spatial frequencies) is fully sampled.

This region, called the Auto-Calibration Signal or ACS, is

used to estimate the GRAPPA weights G. We can simulate

under-sampling in the ACS by masking out certain k-space

points. Let the simulated observed and unobserved k-space

points in the ACS be k′ and k
u′ respectively. From equation

4, the convolution of G and k
′ should be equal to k

u′. Thus,

we can estimate G by solving the following optimization

problem:

Ĝ = argminG ‖ku′ −G ∗ k′‖
2
. (5)

The knee images in the fastMRI dataset [20] were ac-

quired using machines that employ 15 receiver coils and

can generally support 2× acceleration for imaging of the

knee using this approach. Higher acceleration factors lead to

aliasing artifacts that cannot be removed by standard parallel

imaging methods.

2.3. Compressed Sensing for Parallel MRI Recon­
struction

Compressed Sensing [2] enables reconstruction of images

by using fewer k-space measurements than is possible with

classical signal processing methods by enforcing suitable

priors. Compressed sensing has been combined with parallel

imaging to achieve higher acceleration factors than those

allowed by parallel imaging alone.

Classical compressed sensing methods use sparsity in

some transform domain as a prior. Many classical com-

pressed sensing methods operate in the image domain and

solve the following optimization problem:

x̂ = argmin
x

1

2

∑

i

‖F(Six)− ki‖
2
+ λΨ(x), (6)

where Ψ is a regularization function that enforces a sparsity

constraint in some transform domain such as gradients in

the image domain. This problem can be solved by iterative

gradient descent style methods.
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In the last few years, there has been rapid develop-

ment of deep learning based approaches to MRI reconstruc-

tion [4, 9, 11, 15, 18, 21]. MRI reconstruction can be viewed

as an inverse problem and several previous research papers

have proposed neural networks whose design is inspired by

the optimization procedure to solve such an inverse prob-

lem [4, 9, 11]. One approach in this direction for the multi-

coil reconstruction problem is the Variational Network (VN)

[4]. The VN model is a deep neural network, each of whose

layers implements one gradient update step for the optimiza-

tion problem in equation 6. The VN uses pre-computed

sensitivity maps and achieves excellent reconstructions at

low acceleration factors. Computing sensitivity maps be-

comes more challenging at higher accelerations, which may

limit the maximum acceleration this method can achieve.

An alternate line of work operating in k-space is the RAKI

model [1] which replaces the single convolution operation in

GRAPPA with a deep convolutional network that is trained

independently for each scan. The RAKI method emphasizes

the importance of using a scan specific model for multi-coil

reconstruction. This method is complementary to our work

and can be integrated into the GrappaNet by replacing the

GRAPPA layer with the RAKI network.

A comprehensive survey of recent developments in using

deep learning for parallel MRI reconstruction can be found

in [10].

3. GrappaNet

The GrappaNet is a neural network that takes under-

sampled, multi-coil k-space data as input and outputs the re-

constructed image. Figure 1 shows a diagram of the network

architecture that contains three important properties. First,

the differentiable GRAPPA layer enables the network to take

advantage of the known physical proprieties of parallel imag-

ing. Next, each convolutional network is applied across all

complex-valued views jointly, before being combined in the

final stage. This enables the network to take advantage of

all the information captured during parallel imaging. Sev-

eral previous approaches [4, 6], performed reconstruction

after collapsing to a single view. Finally, image-to-image

mappings using U-Nets are performed in both k-space and

image space. Convolutions, pooling, and up-sampling result

in very different operations in image space and k-space. We

demonstrate in Section 4 that using both these complemen-

tary spaces provides improved accuracy.

The network consists of two convolutional neural net-

works, with the application of the GRAPPA operator in

between them. Denoting the input under-sampled k-space

data by k, the network computes the following function:

x = h ◦ f2(G ∗ f1(k)), (7)

where f1, and f2 are convolutional networks that map multi-

coil k-space to multi-coil k-space and h combines the multi-

coil k-space data to a single image by first applying an in-

verse fourier transform followed by an root sum-of-squares

(RSS) operation (equation 8).

The first network, f1 takes the multi-coil k-space data

with R-fold under-sampling and maps it to an R′-fold under-

sampled k-space dataset with the same number of coils. The

GRAPPA operator, G, which is separately obtained from the

ACS, is then applied to this R′-fold under-sampled dataset

to fill in the missing k-space data. This allows the network

to take advantage of the known physical proprieties of the

parallel imaging process. R′ is chosen to be small enough

that traditional parallel imaging methods like GRAPPA can

reconstruct the image accurately. We use R′ = 2 for our

experiments.

3.1. U­Net

Both f1 and f2 are composed of multiple U-Nets [14],

which are convolutional networks that operate at multiple

scales. U-Net models and their variants have successfully

been used for many image-to-image mapping tasks including

MRI reconstruction [5, 7] and image segmentation [13]. The

U-Nets used in this work are based on the U-Net baseline

models from [20].

A U-Net is useful for image to image mapping tasks like

semantic segmentation because the presence of pooling and

up-sampling layers allow it to learn useful feature maps at

multiple scales and abstraction levels. This multi-resolution

feature representation helps the U-Net predict the higher

level details of the output at the lowest level of the decoder

and gradually adds finer, higher frequency details as the

up-sampling layers are applied.

The baseline model, described in [20], used such a U-Net

model for MRI image reconstruction. However, that model

is only able to perform denoising since it is applied after

combining the different views using a root-sum-of-squares

(RSS) transform (equation 8). This prevents the baseline

model from learning how to combine all of the coils and

using the phase information. As a result, the reconstructions

from this baseline model are too smooth and lose much of the

medically relevant high frequency information (see Figure

3). We show in section 4 that simply applying a U-Net to

the real and imaginary data from all coils can significantly

improve upon this model. Such a U-Net can potentially learn

to combine information from different coils together, which

improves performance.

Han et al [6] show that a U-Net can also be applied di-

rectly to under-sampled k-space data. Their work was moti-

vated by connections between encoder-decoder models and

a classical CS algorithm called the annihilating filter-based

low-rank Hankel matrix approach (ALOHA) [8]. The in-

put to the ALOHA U-Net is zero-filled k-space data and

the model fills in the missing information. In an approach

similar to the fastMRI baseline model [20], Han et al [6]
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Figure 1. Left: The full GrappaNet model which takes under-sampled k-space samples as input and outputs the reconstructed image. Right:

Details about each of the convolutional networks, which take multi-coil k-space as input and output multi-coil k-space. Here, FT, IFT & RSS

refer to 2D Fourier transform, 2D inverse Fourier transform and root sum-of-squares operations (equation 8) respectively.

also apply their U-Net after combining all of the coils into a

single coil. Taking insight from algorithms like GRAPPA,

we posit that it would be beneficial to apply convolutions

directly to the multi-coil k-space data. We show in section 4

that such a model outperforms the baseline models.

The functions f1 and f2 apply the following series of

operations to the input k-space data (see figure 1): a U-Net

in k-space followed by a hard data consistency, inverse 2D

Fourier transform to convert to image space, a U-Net in the

image space, followed by a 2D Fourier transform and data

consistency. Each of the U-Nets map 15 complex-valued

channels to 15 complex-valued channels. Here, the hard

data consistency operations simply copy all of the observed

k-space samples to the correct locations in k-space. This en-

sures that the model only fills in the missing k-space points.

The function h combines the reconstructed multi-coil k-

space data into a single real-valued image by first applying

an inverse 2D Fourier transform to each coil, followed by

a root sum-of-squares (RSS) operation. The RSS operation

combines all the coils into a single real-valued image:

RSS(x1, . . .xN ) =

(

N
∑

n=1

|xn|
2

)1/2

, (8)

where x1, . . . ,xN are the images from the N coils.

3.2. GRAPPA Layer

As explained in the previous section convolutional net-

works in k-space or image space applied to all coils can,

to a limited extent, learn to combine all of the coils. How-

ever, as described in 2.2, the coil sensitivities can vary from

one imaging examination to another. Traditional parallel

imaging methods take this into consideration by estimating

distinct sensitivity maps or GRAPPA kernels for each scan.

This motivates the need to include a scan-specific compo-

nent within the neural network that can adapt to differences

in the sensitivity profile to improve generalization of the

reconstruction model.

We achieve this adaptation by introducing a new neural

network layer that we call the GRAPPA layer. The GRAPPA

layer estimates the GRAPPA kernel from the ACS region

and then applies a two dimensional convolution with the

estimated kernel. Because the application of GRAPPA is

differentiable, the entire network can be trained in an end-to-

end fashion using backpropagation.

4. Experimental Results

We ran all our experiments on the multi-coil knee MRIs

from the fastMRI dataset [20], which consists of raw k-space

data from 1594 knee MRI exams from four different MRI

machines. The dataset contains two types of MRI sequences

that are commonly used for knee exams in clinical practice:

a Proton Density (PD) weighted sequence and a Proton Den-

sity weighted sequence with Fat Saturation (PDFS). We used

the same train, validation and test splits as in the original

dataset. The training data consisted of 973 volumes which

contained k-space data of different sizes. During training, we

omitted k-space data with a width greater than 372, which is

about 7% of the training data. We evaluated various models

on all test images.

For training our models, we used random masks with

4× and 8× accelerations, based on code released with the

fastMRI dataset1. We experimented with the following mod-

els:

1. Classical CS baseline based on Total Variation mini-

mization [20]

2. U-Net baseline model applied to RSS inputs [20]

3. Variational Network model introduced in [4]

4. U-Net applied in k-space to 15 coil input

5. U-Net applied in image space to 15 coil input

6. GrappaNet model

1https://github.com/facebookresearch/fastMRI
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Ground Truth Variational Net GrappaNetImage U-NetBaseline U-Net

Figure 2. Example reconstructions for 4× under-sampling. The top row shows PD images without fat suppression, and the bottom row

shows PDFS images with fat suppression.

Ground Truth Variational Net GrappaNetImage U-NetBaseline U-Net

Figure 3. Example reconstructions for 8× under-sampling. The top row shows PD images without fat suppression and the bottom row

shows PDFS images with fat suppression.

We used the original implementation of the Variational

Network2. This code runs the ESPIRiT algorithm [17] to

estimate sensitivity maps from the densely sampled ACS

region. These maps are used both as input to the network

and also to combine the fully sampled coil responses to

compute the training targets. For experiments with 8× ac-

celerations, the input k-space contains very few ACS lines,

which yields poor quality sensitivity maps for the Variational

2https://github.com/VLOGroup/mri-variationalnetwork/

Network. The training targets computed using these poor

quality sensitivity maps contain aliasing artifacts that make

them unsuitable for training. To mitigate this problem, we

always use 30 low frequency lines to compute the training

target for 8× experiments. The sensitivity maps used as

inputs to the network are still computed from the ACS re-

gion. We did not change the model architecture or training

procedure from the original implementation, except for the

use of random masks.
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Ground Truth Variational Net GrappaNetBaseline U-Net Image U-Net

Figure 4. Example reconstructions for 4× under-sampling with the diagnostically important regions zoomed in.

Figure 5. Left: Ground truth, Middle: Reconstruction from baseline, Right: Reconstruction from GrappaNet. The arrow points to the

meniscus region, which appears "filled in" with the baseline method. Highly accurate reconstruction of the meniscus is important for

radiologists in diagnosing certain pathologies.

For the k-space U-Net, the image space U-Net, and the

GrappaNet models, we followed the training procedure for

the baseline models in [20]. To deal with complex-valued

inputs, we simply treated the real and imaginary parts as two

distinct channels. Hence, 15-coil complex-valued k-space or

image data were treated as 30-channel data. These models

were trained using the RMSProp [16] algorithm to minimize

a linear combination of Structural Similarity (SSIM) [19]

and L1 losses:

J(x̂,x) = − SSIM(x̂,x) + λ ‖x̂− x‖
1
, (9)

where x̂ is the reconstruction and x is the ground truth image,

after cropping to the central 320× 320 region. Lambda was

set to 0.001. The models were trained for 20 epochs with

a fixed learning rate of 0.0003. All models were trained on

a machine with 8 NVIDIA Volta V100 GPUs using data

parallel training for about 3 days.

The U-Net models applied either to 15-coil k-space input

or 15-coil image input start with 384 channels, which are

doubled after each pooling. The GrappaNet model contains

a total of 4 U-Nets, each of which starts with 192 channels.

All three models have roughly 480M parameters.

Experimental results are shown in table 1, which lists

three metrics that are computed in the same manner as [20]:

normalized mean squared error (NMSE), peak signal to noise

ratio (PSNR) and structural similarity (SSIM) [19]. All of

the proposed models perform significantly better than the

baselines. The large difference in performance between

a U-Net applied to all 15 coils versus the U-Net baseline

underscores the importance of letting the neural network

figure out how to combine the coil images.

The GrappaNet performs best according to all metrics.

The improved performance of the GrappaNet can be at-

tributed to the inclusion of the GRAPPA layer to implement

parallel imaging within the network.

Some example reconstructions are shown in figures 2

and 3 for 4× and 8× accelerations, respectively. Figure 4

and 5 show some of the medically relevant regions zoomed

in for 4× acceleration. The baseline U-Net model is able

to remove aliasing artifacts, but this comes at the cost of

severe over-smoothing. The reconstruction lacks some of

the high frequency detail that is clinically relevant. The re-

constructions from the image U-Net model are significantly

better than the baseline, but they are not as sharp as the

reconstructions from the GrappaNet model.

The Variational Net model makes heavy use of estimated

sensitivity maps throughout the network, including in the

data consistency terms. It is able to generate good recon-

structions with 4× acceleration, which retains a sufficient

number of low frequency lines to estimate sensitivity maps.

When the acquisition is accelerated by 8×, however, the

performance degrades significantly since it is not possible to

accurately estimate sensitivity maps for this case.

5. Conclusion and Future Work

In this paper, we introduced the GrappaNet architecture

for multi-coil MRI reconstruction. Multi-coil MRI recon-

struction presents an important and challenging problem
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Acceleration Model NMSE PSNR SSIM

PD PDFS PD PDFS PD PDFS

4-fold Classical CS baseline 0.0198 0.0951 32.6 27.5 0.693 0.588

U-Net Baseline 0.0154 0.0525 34.00 29.95 0.815 0.636

Variational Net 0.0138 0.0262 35.82 33.196 0.919 0.855

K-Space U-Net 0.0055 0.0114 37.27 36.45 0.927 0.870

Image U-Net 0.0034 0.0103 39.58 36.97 0.949 0.886

GrappaNet 0.0026 0.0085 40.74 37.77 0.957 0.891

8-fold Classical CS baseline 0.0352 0.109 29.6 26.8 0.642 0.551

U-Net Baseline 0.0261 0.0682 31.5 28.71 0.762 0.559

Variational Net 0.0211 0.0816 32.12 27.72 0.788 0.675

K-Space U-Net 0.0189 0.0206 36.45 32.54 0.870 0.807

Image U-Net 0.0079 0.0160 36.26 34.36 0.886 0.831

GrappaNet 0.0071 0.0146 36.76 35.04 0.922 0.842

Table 1. Experimental results

due to the prevalence of parallel imaging and the need to

make scan-specific adaptations to the neural networks. Grap-

paNet addresses this challenge by integrating traditional par-

allel imaging methods with neural networks and training the

model end-to-end. This allows the model to generate high

fidelity reconstructions even at high acceleration factors.

The GRAPPA kernel used in the GrappaNet model is

estimated from the low-frequency lines of k-space and is

used as a fixed input to the model. A possible extension

to this work could explore methods to optimize the process

of estimating the kernel jointly with the rest of the network

during training.

Quantitative measures such as NMSE, PSNR, and SSIM

only provide an estimate for the quality of the reconstruc-

tions. Clinically important details are often subtle and con-

tained in small portions of an MRI. Before techniques such

as those presented in this paper can be used in practice,

proper clinical validation studies need to be performed to

ensure that the use of accelerated MRIs does not degrade the

quality of diagnosis.
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ingärtner, and Kâmil Uğurbil. Scan-specific robust

artificial-neural-networks for k-space interpolation

(raki) reconstruction: Database-free deep learning

for fast imaging. Magnetic Resonance in Medicine,

81(1):439–453, 2019. doi: 10.1002/mrm.27420.

URL https://onlinelibrary.wiley.com/

doi/abs/10.1002/mrm.27420. 3

[2] David Donoho. Compressed sensing. IEEE Transac-

tions on Information Theory, 52(4):1289–1306, 2006.

2

[3] Mark A. Griswold, Peter M. Jakob, Robin M. Heide-

mann, Mathias Nittka, Vladimir Jellus, Jianmin Wang,

Berthold Kiefer, and Axel Haase. Generalized auto-

calibrating partially parallel acquisitions (GRAPPA).

Magnetic Resonance in Medicine, 47(6):1202–1210,

2002. 1, 2

[4] Kerstin Hammernik, Teresa Klatzer, Erich Kobler,

Michael P. Recht, Daniel K. Sodickson, Thomas Pock,

and Florian Knoll. Learning a variational network for

reconstruction of accelerated MRI data. Magnetic Res-

onance in Medicine, 79(6):3055–3071, 2018. 1, 3,

4

[5] Yoseob Han and Jong Chul Ye. Framing U-Net via

deep convolutional framelets: Application to sparse-

view CT. IEEE Transactions on Medical Imaging, 37

(6), 2018. 3

[6] Yoseob Han, Jae Jun Yoo, and Jong Chul Ye. Deep

learning with domain adaptation for accelerated pro-

jection reconstruction MR. Magnetic Resonance in

Medicine, 80(3), 2018. 1, 3

[7] Chang Min Hyun, Hwa Pyung Kim, Sung Min Lee,

Sungchul Lee, and Jin Keun Seo. Deep learning for

undersampled MRI reconstruction. Physics in medicine

and biology, 63(13), 2018. 3

[8] K. H. Jin and J. C. Ye. Annihilating filter-based

low-rank hankel matrix approach for image inpaint-

ing. IEEE Transactions on Image Processing, 24(11):

3498–3511, 2015. 3

[9] Kyong Hwan Jin, Michael T. McCann, Emmanuel

Froustey, and Michael Unser. Deep convolutional neu-

ral network for inverse problems in imaging. CoRR,

abs/1611.03679, 2016. URL http://arxiv.org/

abs/1611.03679. 3

14321



[10] Florian Knoll, Kerstin Hammernik, Chi Zhang,

S. Möller, Thomas Pock, Daniel K. Sodickson, and

Mehmet Akçakaya. Deep learning methods for paral-

lel magnetic resonance image reconstruction. CoRR,

abs/1904.01112, 2019. 3

[11] Dong Liang, Jing Cheng, Ziwen Ke, and Leslie

Ying. Deep mri reconstruction: Unrolled optimiza-

tion algorithms meet neural networks. arXiv preprint

arXiv:1907.11711, 2019. 3

[12] Klaas P Pruessmann, Markus Weiger, Markus B Schei-

degger, and Peter Boesiger. SENSE: sensitivity encod-

ing for fast MRI. Magnetic resonance in medicine, 42

(5), 1999. 1, 2

[13] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.

U-Net: Convolutional networks for biomedical im-

age segmentation. Medical Image Computing and

Computer-Assisted Intervention, 2015. 3

[14] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.

U-Net: Convolutional networks for biomedical image

segmentation. In MICCAI 2015: Medical Image Com-

puting and Computer-Assisted Intervention, volume

9351 of Lecture Notes in Computer Science, pages

234–241. Springer, 2015. 3

[15] Jo Schlemper, Jose Caballero, Joseph V. Hajnal, An-

thony N. Price, and Daniel Rueckert. A deep cascade

of convolutional neural networks for MR image recon-

struction. Information Processing in Medical Imaging,

2017. 1, 3

[16] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5 -

rmsprop: Divide the gradient by a running average of

its recent magnitude. COURSERA: Neural networks

for machine learning, 2012. 6

[17] Martin Uecker, Peng Lai, Mark J Murphy, Patrick

Virtue, Michael Elad, John M Pauly, Shreyas S

Vasanawala, and Michael Lustig. ESPIRiT -an eigen-

value approach to autocalibrating parallel MRI: where

SENSE meets GRAPPA. Magnetic resonance in

medicine, 71(3), 2014. 5

[18] Shanshan Wang, Zhenghang Su, Leslie Ying, Xi Peng,

Shun Zhu, Feng Liang, Dagan Feng, and Dong Liang.

Accelerating magnetic resonance imaging via deep

learning. In IEEE International Symposium on Biomed-

ical Imaging (ISBI), 2016. 1, 3

[19] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and

Eero P. Simoncelli. Image quality assessment: from er-

ror visibility to structural similarity. IEEE Transactions

on Image Processing, 13(4):600–612, 2004. 6

[20] Jure Zbontar, Florian Knoll, Anuroop Sriram,

Matthew J. Muckley, Mary Bruno, Aaron Defazio,

Marc Parente, Krzysztof J. Geras, Joe Katsnelson,

Hersh Chandarana, Zizhao Zhang, Michal Drozdzal,

Adriana Romero, Michael Rabbat, Pascal Vincent,

James Pinkerton, Duo Wang, Nafissa Yakubova, Erich

Owens, C. Lawrence Zitnick, Michael P. Recht,

Daniel K. Sodickson, and Yvonne W. Lui. fastmri:

An open dataset and benchmarks for accelerated MRI.

CoRR, abs/1811.08839, 2018. URL http://arxiv.

org/abs/1811.08839. 1, 2, 3, 4, 6

[21] Bo Zhu, Jeremiah Z. Liu, Stephen F. Cauley, Bruce R.

Rosen, and Matthew S. Rosen. Image reconstruction

by domain-transform manifold learning. Nature, 555

(7697), 2018. 1, 3

14322


