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Grasp Analysis as Linear Matrix Inequality Problems
Li Han, Jeff C. Trinkle, and Zexiang X. Li, Member, IEEE

Abstract—Three fundamental problems in the study of grasping
and dextrous manipulation with multifingered robotic hands are
as follows. a) Given a robotic hand and a grasp characterized by a
set of contact points and the associated contact models, determine
if the grasp has force closure. b) Given a grasp along with robotic
hand kinematic structure and joint effort limit constraints, deter-
mine if the fingers are able to apply a specified resultant wrench
on the object. c) Compute “optimal” contact forces if the answer to
problem b) is affirmative.

In this paper, based on an early result by Busset al., which trans-
forms the nonlinear friction cone constraints into positive definite-
ness constraints imposed on certainy symmetric matrices, we fur-
ther cast the friction cone constraints into linear matrix inequali-
ties (LMIs) and formulate all three of the problems stated above
as a set ofconvex optimization problems involving LMIs. The latter
problems have been extensively studied in optimization and con-
trol communities. Currently highly efficient algorithms with poly-
nomial time complexity have been developed and made available.
We perform numerical studies to show the simplicity and efficiency
of the LMI formulation to the three grasp analysis problems.

Index Terms—Convex programming, grasp analysis, force clo-
sure, force optimization, friction cones, linear matrix inequalities.

I. INTRODUCTION

I T HAS been recognized for some time that robotic systems
equipped with multifingered hands have great potential

for performing useful work in various environments. This
recognition is evidenced by the hundreds of research papers
(see [1]–[12] and references therein for further details) on grasp
analysis, synthesis, control, design, and related topics and the
large number of mechanical hands built for both robotic and
prosthetic research. Despite the huge effort, many unsolved
theoretical and practical problems remain.
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Of the remaining problems, the three of interest in this paper
are theforce closure problem, theforce feasibility problem, and
theforce optimization problem, which have mainly been solved
(with a handful exception discussed below) after conservatively
linearizing the contact friction models. Our main objective here
is to develop efficient solution techniques for these fundamental
nonlinear problems in a unified mathematical framework devel-
oped through the theories of linear matrix inequalities (LMIs)
and convex programming. Informally, these problems can be
stated as follows.

1) Force Closure Problem—Given the locations of the con-
tact points on the object and the hand, the corresponding
friction models, and the kinematic structure of the hand,
determine if every object load in can be balanced.1

2) Force Feasibility Problem—Given the locations of the
contact points on the object and the hand, the corre-
sponding friction models, the kinematic structure of the
hand, the actuator limits, and known external load on the
object and hand, determine if the load can be balanced.

3) Force Optimization Problem—Given a grasp force
problem that has passed the feasibility test in item 2
above, determine the “optimal” actuator efforts and
corresponding contact forces.

These three problems will collectively be referred to asgrasp
analysisproblems. One may note that these problems also arise
in the study of foot-step planning and force distribution by
multilegged robots [14]. Other applications of these problems
can be found in fixturing, cell manipulation by multiple laser
probes, and the control of satellites with multiple unidirectional
thrusters. As for grasp synthesis problems which address
how to generate grasps of certain desired properties, several
approaches based on grasp force properties such as force
closure and optimal forces have been proposed. Therefore, the
solution techniques to grasp analysis problems discussed in this
paper can also be applied to grasp synthesis and other relevant
applications.

A. Related Previous Work

The major difficulty associated with the three grasp analysis
problems has been the nonlinearity of the commonly accepted
contact friction models: point contact with friction (PCWF) and
soft-finger contact (SFC). The quadratic nature of both models
has been experimentally verified [2], [5] for some common
materials. For the force closure problem, there exist theorems
[15], [8], [7] for general grasps, which consist of arbitrary
numbers and types of contact points. Due to the difficulty

1There exist other definitions of force closure, e.g., the one without taking the
hand structure into account [7], which was adopted in our earlier publication
[13] and handled similarly as the one in this paper.
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of handling the nonlinear models, the force closure theorems
[8], [11], have been specialized for the grasps characterized
by the number of contact points and the associated contact
models and expressed in geometric terms such as antipodal
positions. Even with these specialized theorems, the analysis
and synthesis of frictional force closure grasps has mainly been
studied by linearizing the friction cone constraints and then
applying linear programming techniques. Similar approaches
[14], [3], [4] have also prevailed in the study of grasp force
feasibility and optimization problems.

While simplifying the three grasp analysis problems, the lin-
earized model and linear programming approach have the fol-
lowing disadvantages. 1) The friction cone must be approxi-
mated conservatively, to avoid the possibility of finding solu-
tions that satisfy the linearized model, but violate the nonlinear
model (false positive). Unfortunately, a conservative lineariza-
tion, may cause the linear analysis to yield false negative re-
sults, (e.g., the linear model implies no force closure, when it
exists). 2) The orientations of the tangent plane directions in
the contact frame affect the results of grasp analysis, which vi-
olates the usual assumption of isotropic Coulomb friction. 3)
Small perturbations in the parameters describing the grasp (ge-
ometry, physics, and kinematics) can produce large variations
in the solutions of the linear programs. The nonsmoothness of
solutions of linear programming methods [16] poses difficulty
for optimization-based grasp synthesis and real-time control ap-
plications. (4) Increasing the number of facets in the linearized
friction models will increase the running time unacceptably for
real-time applications.

The problems just discussed, can be alleviated to a large
extent by retaining the nonlinear nature of the friction models.
Despite the discouraging fact that our current computing
resources only allow off-line computation for most nonlinear
analyses, this approach has been pursued persistently inside
and outside the robotics community. To name a few here,
Nakamuraet al. [17] developed a nonlinear formulation of
the grasp force optimization problem. Bicchi [1] formulated
the force closure test as a nonlinear differential equation.
Lobo et al. [18] briefly discussed the grasp force feasibility
and optimization problems as an engineering application of
second order cone programming. Haidacheret al.included
a two-stage quadratically-constrained quadratic programming
formulation for force closure in [19].

One major progress in the study of grasp force optimization
was made by Buss, Hashimoto, and Moore (BHM) [20]. They
made the important observation that the nonlinear friction
cone constraints are equivalent to the positive definiteness
of certain symmetric matrices. This observation enabled
them to formulate the grasp force optimization problem on
the Riemannian manifold of linearly constrained symmetric
positive definite matrices and to develop efficient projected
gradient flow algorithms [20]–[23] fast enough for real-time
applications. However, to start their optimization algorithms,
a valid initial grasp force, which satisfied the friction cone
constraints and generated the specified object wrench, was
needed, and there was no discussion on how to compute valid
initial forces for general grasps. Therefore, the force feasibility
and force closure problems remained open.

B. Our Results

In this paper, based on the BHM observation and a detailed
analysis of the structure of the symmetric positive definite ma-
trices arising from the friction cone constraints, we cast the fric-
tion cone constraints into LMIs and formulate the basic grasp
analysis problems as a set ofconvex optimization problems in-
volving LMIs [24]. The latter problems have been extensively
studied in optimization and control communities. Recently the
efficient algorithms with polynomial time complexity [25], [24]
have been developed and made available. We used these algo-
rithms to perform numerical studies that showed the simplicity
and efficiency of the LMI formulation to the three grasp anal-
ysis problems.

II. PROBLEM REVIEW

Consider an object grasped by a multifingered robotic hand
with contacts between the object and the links of the fingers
and the palm. The grasp map, , transforms applied
finger forces expressed in local contact frames to resultant ob-
ject wrenches

(1)

where is the contact wrench of
the grasp, and is the independent wrench intensity
vector of finger .2 In order for the grasp to be maintained, the
resultant generalized contact forcemust balance the external
(possibly dynamic) load experienced by the object. Thus we
have

(2)

Since the contacts are unilateral, the wrench vector must adhere
to a generalized contact friction constraint

(3)

where defines the set of contact wrenches under the contact
model and friction law applicable at contact. For our purposes,
this set will be assumed to take the following general form:3

(4)

where , which will also be denoted as in this paper, is the
normal component of the contact force at contactand
denotes a weighted quadratic norm of the frictional compo-
nents at contact. For the four common contact types, friction-
less point contact (FPC), point contact with friction (PCWF),
soft finger contact with elliptic approximation (SFCE), and soft
finger contact with linearized elliptic approximation (SFCL)
[2], the weighted norms are defined respectively as follows:

(5)

(6)

2The numberm is respectively, one, three, and four for frictionless point
contacts, frictional point contacts, and for soft finger contacts which can transmit
a component of moment about the contact normal.

3The conditionx � 0 is included to explicitly show the unilateral property
of friction cones, even though it is implied by the conditionkx k � x .
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(7)

(8)

where and are friction force components in two orthog-
onal directions in the contact tangent plane, is the friction
moment component in the contact normal direction,is the
usual coefficient of Coulomb friction, and and are (dif-
ferent) torsion friction limits.

A relationship analogous to (2) must be satisfied by the hand
subsystem. The external load on the robot joints must
be balanced by the contact wrenchand the actuator efforts

(9)

where is the transpose of the hand Jacobian. Note that the
term may include Coriolis, centripetal, and inertial loads.

The null space of the Jacobian transpose, , when
it exists, corresponds to thestructurally dependent forces[7],
which cannot be generated by robot actuators and cannot be de-
termined for certain types of grasps without more information
about the elastic properties of the mechanism [26]. In general,
the admissible grasp forces [27], [1] have to be in the range
space of , or when the de-
flection and the grasp stiffness, denoted by matrix, are taken
into account. For simplicity, let be a matrix whose columns
form a basis for the space of admissible grasp forces, and thus,
the latter can be described as

(10)

The analog to the friction constraints (3) are joint effort con-
straints. Assume that the joint effort vectoris limited by upper
and lower bound vectors and

(11)

The corresponding constraintson the contact wrench vector
are written as

(12)

Equations (2), (3), (9), (10), and (11) comprise the system
model for our subsequent analysis of the grasp problems
discussed above. Their simultaneous satisfaction implies that a
grasp is valid (i.e., will be maintained).

With the model completed, the three fundamental grasp anal-
ysis problems can be formalized as follows.

Problem 1: Force Closure Problem:Given a grasp
and admissible contact force constraints, determine if force
closure exists, i.e., .

Problem 2: Force Feasibility Problem:Given a grasp
, admissible contact force constraints, joint effort

constraints , a joint external load , and a generalized
resultant wrench on the object, determine if there exists a
contact wrench vector satisfying (2), (3), (10), and (12).

Problem 3: Force Optimization Problem:Given a grasp
, admissible contact force constraints, joint effort

constraints , a joint external load , and a generalized
resultant wrench on the object, find an optimal contact
wrench vector satisfying (2), (3), (10), and (12).

III. FORMULATING GRASPFORCECONSTRAINTS ASLMI S

According to BHM [20], the friction cone constraints (3)
imposed by the set of contacts can be written as a positive
semidefinite constraint on a block diagonal matrix

(13)

where denotes positive semidefiniteness.
The submatrix for contact takes one of the following

forms dictated by its contact type:

(14)

(15)

(16)

(17)

where , and
.

The correctness of this observation can be proved by the pos-
itive semidefiniteness of the symmetric matrices [20] and
the following proposition which will also be used in this paper.

Proposition 1: A block diagonal matrix
is symmetric (semi) positive

definite if and only if each block , is symmetric
(semi) positive definite.

Notice that for all the friction models, the matrices are
linear and symmetric in the unknown components of the contact
wrench. This fact allows us to write the friction constraints as
nonstrictLMIs which have the following general form:

(18)

where the real symmetric matrices serve as
the coefficients of the LMI, with being zero for the friction
cone LMIs.

Denoting by , the symmetric matrix of dimen-
sion with element equal to 1 and all other elements zero,
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the coefficient matrices of the matrix can be written con-
veniently. For example, if contactis of type SFCE, then the

matrices are given as follows:

(19)

The coefficient matrices for other friction models have similarly
simple forms.

Since is block diagonal with the on the main diagonal,
it can be written as an LMI

(20)

where the double-indexed is simplified to
and

, with the being symmetric. Replacing in (20)
by would yield astrict LMI and would restrict the contact
forces to lie in the interiors of their respective friction cones,
denoted by .

One key property of LMIs is that both nonstrict LMIs and
strict LMIs are convex constraints onas indicated in the fol-
lowing proposition.

Proposition 2: Given , where
. The sets and

are convex.
In general, LMIs can be viewed as an extension of linear in-

equality constraints where the componentwise inequalities be-
tween vectors are replaced by matrix inequalities. It is shown in
[24] that LMIs can represent a wide class of convex constrains
on such as linear inequalities, (convex) quadratic inequalities
or matrix norm inequalities. Consider, for instance, asecond-
order coneconstraint [18] (which is also called a quadratic,
ice-cream, or Lorenz cone constraint)

(21)

where the constraint variable is the vector , the problem
parameters are , and .
The vector norm appearing in the constraint is the standard Eu-
clidean norm, i.e., . It is shown [18] that a

second-order cone constraint can be cast into a linear matrix in-
equality:

(22)

where is the identity matrix with dimension. Note that the
friction cone constraints (6), (7), (8) can all be transformed into
second order cone constraints whose BHM observation (15),
(16), (17) can be derived from transformation (22).

Next take as another example a linear inequality constraint

(23)

where and . Since a vector
(componentwise) if and only if the matrix (the

diagonal matrix with the components ofon its diagonal) is
positive semidefinite, the linear inequality constraint (23) can
be cast into a nonstrict LMI with , i.e.,

(24)

As a direct application of this example, partition the joint ef-
fort constraints defined in (12) into two linear inequality con-
straints

(25)

and formulate the corresponding LMIs

Therefore, the joint effort constraints (12) can also be cast into
one LMI constraint, shown in (26) at the bottom of the page,
where .

Utilizing proposition 1, we obtain the LMI which in-
corporates both friction cone and joint effort limit con-
straints, shown in (27) at the bottom of the page, where

.

(26)

(27)
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In closing this section, we first note that our model for grasp
analysis using LMIs is defined by (20) and (26). Second, we
stress that the representational breadth of LMIs is greater than
what was required by our formulation. So the LMI approach is
not restricted to the friction models used in this paper. As long
as the friction cone models and other system constraints can be
cast into LMIs, the grasp analysis problems can be formulated
in the same vein as those discussed in the next section, and thus,
can be readily solved by the efficient LMI algorithms.

IV. GRASPFORCEANALYSIS PROBLEMS

Based on the LMI formulation of grasp force constraints, we
now restate the grasp analysis problems as follows.

Problem 1: Force Closure Problem
Given a grasp and admissible contact force con-

straints , determine if for every , such that
and .

Problem 2: Force Feasibility Problem
Given a grasp , admissible contact force constraints

, joint effort constraints , a joint external load , and an
object wrench , determine if , such that

and .
Problem 3: Force Optimization Problem
Given a grasp , admissible contact force constraints

, joint effort constraints , a joint external load , and an
object wrench , find an “optimal” grasp force
satisfying and .

In this section, we will analyze these problems and trans-
form them into standardconvex optimization problems involving
LMIs, which can be efficiently solved inpolynomial timeusing
recently developed interior-point methods [25], [24].

A. Force Closure Problem

It was shown that a grasp has force closure if and only if the
grasp map has full row rank and there exists an admissible
strictly-internal grasp force [7]. In other words, the following
two conditions are simultaneously satisfied:

1) ;
2) s.t. and .
While verification of the first condition is straightforward,

the second condition is difficult due to the nonlinear friction
constraints. To resolve this problem, note that needs to lie
in the intersection of the null space of and the range space
of . If such an intersection is empty, then the answer to the
force closure problem is negative. Otherwise, concatenate a set
of the basis vectors of the admissible subspace of the null space
as column vectors to form a matrix , where is
the dimension of the admissible subspace. Then an admissible
internal force can be written as

(28)

where is the free variable.

Substituting (28) into the LMI , we obtain an
equivalent LMI in terms of for admissible strictly-internal
forces

(29)

is indeed an LMI since LMI structure is preserved under
affine transformations as indicated in the following proposition.

Proposition 3: Given , where
. Let , where ,

and is the new variable. Then
has the LMI structure, i.e., , and

.
In summary, the force closure problem is solved by first

checking the rank of and, if it is onto, then determining if
there exists a such that (29) holds. The latter problem
is a standardLMI feasibility problem[24].

Remark 1: If the conventional quadratic representation of
the friction cones (5), (6), (7), (8) is used instead of their LMI
formulations (14), (15), (16), (17), theinternal force existence
problemcan be cast into asecond-order cone feasibilityproblem
utilizing same process described in this section.

B. Force Feasibility Problem

Thegrasp force feasibility problemis very similar to thein-
ternal force existence problemand can be solved using a similar
approach: First, determine if there exists a solution
for the linear equation

(30)

Here, need not satisfy the grasp force constraints.
Thus, a simple choice is the least-square solution

(31)

where is the generalized inverse of. The solution is
exact if Range . Otherwise, the answer to the grasp
force feasibility problem is negative. For the case that

, the general admissible force satisfying (30), if ex-
ists, has the form

(32)

where helps to bring to be an
admissible force satisfying (30), since alone might not lie in

. The columns of form a basis of the admissible
subspace of the null space of.

Thus, the answer to the grasp force feasibility problem is af-
firmative if and only if , there exist
satisfying (32) and holding the LMI

(33)

Again, the last problem is anLMI feasibility problemand can
also be cast as a second-order cone feasibility problem as noted
in Remark 1.
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One important property on the force feasibility problem that
can be derived from the convexity of the problem is:

Proposition 4: Given a grasp , admissible contact
force constraints , joint effort constraints , a joint external
load , if every object wrench in set
is feasible, then every object wrench in the convex hull of set
is feasible.

A similar result for frictionless contacts was proved in paper
[28].

C. Force Optimization Problem

Given a grasp , admissible contact force constraints
, joint effort constraints , a joint external load , and an

object wrench , thegrasp force optimization problemamounts
to finding an optimal grasp force in the feasible set

(34)

Here, we only consider the nontrivial case when the feasible set
is nonempty. This is true if and only if the answer to the

correspondingforce feasibility problemis affirmative. In this
case, there exists a nonempty feasible set for

(35)

where is defined in (33).
Noting that both and are convex, we would like to

define a convex objective function to take advantage of
the properties of convex optimization4 and formulate the force
optimization problem as

(36)

Substituting (32) into the objective function yields

Then the problem (36) can be transformed into a problem of

(37)

The latter problem is also a convex optimization problem
since the convexity of a function ispreservedunder affine trans-
formation [30].

Recall that an affine function is convex. Therefore, we can
define

(38)

where the vector is used to
weight the normal components of the grasp force, for a fric-
tionless contact , for a PCWF contact
and for a SFC contact . In other words,
this objective function minimizes the summation of the normal
force components. The smaller the objective value, the lighter

4A convex function reaches its global minimum at its local minimum points
[29].

the overall squeezing force on the object. With the linear objec-
tive function (38), the grasp force optimization problem can be
cast with respect to as follows.

Optimization Problem 1:Minimizing the summation of
normal force components (SDP)

minimize

subject to (39)

where is a constant and can be
omitted from the objective function. Optimization Problem 1 is
in the standard form ofsemidefinite programming (SDP)[31],
[13]. If we use the conventional nonlinear expression of the fric-
tion cones (5), (6), (7), (8) instead of their LMI formulations
(14), (15), (16), (17), then the grasp force optimization problem
as defined below becomes asecond-order cone programming
(SOCP)problem [18], [13].

Optimization Problem 2:Minimizing the summation of
normal force components (SOCP)

minimize

subject to (2), (3), (10), and (12). (40)

Both semidefinite programming and second-order cone pro-
gramming problems can be solved efficiently [25], [31], [18].
However, one potential problem with these formulations is that
the linear objective function (38), while minimizing the total
normal pressure on the object, may push the contact forces to-
ward their friction cone boundaries. Grasping with such contact
forces is not robust to the uncertainty of friction coefficients and
may cause the slippage between the object and the fingers. One
strategy to overcome this drawback is to add a term that will
confine contact forces to the interior of their friction cones. In
particular, let be defined as

(41)

where the vector is the same as in function (38) and is used
to weight the normal components of the contact forces. The
second term, , tends to infinity as any contact
force approaches the boundary of its friction cone and thus
yields optimal grasp forces interior to their friction cones. It
can be proven that the function is convex and
self-concordant[25], two properties essential for the design of
polynomial time algorithms and making it aself-concordant
barrier for the set of the symmetric positive definite matrices.

Proposition 5: The function , where
, is convex and self-concordant on the set of symmetric positive

definite matrices.
Proof: See Appendix A.

Proposition 6: The function
is strictly convex on the set .

Proof: See Appendix A.
This objective function (41) is very similar to the self-con-

cordant one proposed in [23]. The weight vectorbalances the
minimal normal (squeezing) forces (linear term) and friction
cone boundary (slippage avoidance) conditions (logarithmic
term). Larger will generally lead to smaller squeezing forces
while smaller will push the contact forces away from their
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friction cone boundaries. The grasp force optimization problem
under the self-concordant objective function as given below is
in the form of adeterminant maximization (maxdet) problem
with LMI constraints[32].

Optimization Problem 3:Force optimization as a maxdet
problem (maxdet1)

minimize

subject to

(42)

While the above maxdet problem can generate grasp forces
robust to friction cone constraints, it does not prevent grasp
forces from moving to upper or lower joint effort limits, espe-
cially for small weights. Small weights put more emphasis on
the friction cone barrier term , which may re-
sult in forces that are far away from friction cone boundaries
but close to the joint effort limits. One way to generate optimal
forces that are robust to both friction cone and joint effort con-
straints is to use the matrix in the logarithmic term of the
maxdet objective function. In other words, formulate the force
optimization problem as follows.

Optimization Problem 4:Force optimization as a maxdet
problem (maxdet2)

minimize

subject to (43)

The objective function (43) restricts optimal force solution to
the interior of the constraint set. It is known [25], [33] that in-
terior solutions to convex optimization programs vary smoothly
with changes in the input data. Therefore, the convex Optimiza-
tion Problem 4 would lead to smooth optimal force solutions.

Remark 2: There are many other ways to define convex
objective functions for the force optimization problem,
which can be formulated as semidefinite programming,
second-order cone programming or determinant maximiza-
tion problems. For example, define an objective function as

, i.e., the maximum contact wrench
magnitude among all contact wrenches of a grasp. Then
the minimization problem for this objective function can be
formulated as follows:

minimize

subject to

(2), (3), (10), and (12) (44)

where is a slack variable. Since the newly-added constraint
is also a second order cone constraint, the problem

above can be cast into SOCP and SDP problems as discussed in
this section.

Remark 3: This paper formulates the force optimization
problem in terms of contact forces. It should be noted that
the force optimization problem can be similarly formulated
and solved with respect to joint efforts or both joint effortsand
grasp forces to obtain various kinds of “optimal grasp forces.”

Remark 4: Current algorithms solve the semidefinite pro-
gramming, second-order cone programming and determinant

maximization problems withinterior-point convex program-
ming techniques, which need a valid initial grasp force to
start the optimization procedure. Our solver of the grasp force
feasibility problem, discussed in next section, will provide such
an initial force, if the problem is determined to be feasible.
Such an initial force can also be used for other optimization
procedures, such as the gradient flow algorithm by BHM [20],
[23].

D. Transforming LMI Feasibility Problem to Optimization
Problem

This section shows that an LMI feasibility problem can be
transformed to an optimization problem with an easily com-
putable starting point, and thus, can be solved utilizing corre-
sponding optimization algorithms.

First notice that for a symmetric matrix

s.t. (45)

where is the identity matrix with same dimension as
. This is true since (a) is true if and only if

, where is the minimal eigenvalue of
. (b) Under the constraint if and only if

, i.e., is positive semidefinite. (A matrix is posi-
tive semidefinite if and only if all of its eigenvalues are nonneg-
ative.)

Therefore, an LMI feasibility problem, , can be
formulated as a semidefinite programming problem.

Optimization Problem 5:The SDP problem equivalent to the
LMI feasibility problem

minimize

subject to

The LMI is feasible if and only if the optimal value .
Second-order feasibility problem can be transformed to second
order cone programming problem in a similar manner.

Notice that a valid initial point for Optimization Problem 5
is , where is the minimal
eigenvalue of . Therefore, we can use this initial point to
start any interior-point semidefinite program algorithms to solve
Optimization Problem 5.

Also notice that the SDP Problem 5 can be transformed to an
equivalent maxdet problem by choosing the logarithmic term

, i.e.,

minimize

subject to (46)

Therefore, a maxdet algorithm can also solve the LMI feasi-
bility problem. Indeed, SDP is a special case of maxdet.

Finally notice that the optimal objective value of Optimiza-
tion Problem 5 is the negative of the maximum minimum eigen-
value of . In particular, when the LMI is feasible,
Optimization Problem 5 is equivalent to

maximize

subject to (47)
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with the optimal values of the two problems being related by
.

The minimal eigenvalue of a positive definite matrix can be
used as a “robustness” criterion of the matrix since it denotes
how far the matrix is to the boundary of the set of the positive
definite matrices [20]. Therefore, the optimal solution from Op-
timization Problem 5 can be interpreted as the “most robust” so-
lution to the LMI constraint under themax-mindefinition (47).
Optimization Problem 5, when used to solve the grasp force
feasibility problem, will yield a grasp force corresponding
to forces at each contact point that are farther away from the
boundaries of their friction cones and the joint effort limits.

It should be noted that the SDP and maxdet formulations of
the grasp force optimization problems only need a valid grasp
force to start the optimization procedure. So there is no need to
finish the Optimization Problem 5. Instead, it can be terminated
whenever becomes negative and then use the corresponding
as a valid initial force.

V. NUMERICAL EXAMPLES

In this section, we present the numerical results obtained from
applying themaxdetoptimization package developed by Wuet
al. [34] to grasp force feasibility and optimization problems.
The results for the force closure problem are not presented here
since the existence problem of an admissible internal force is es-
sentially a force feasibility problem. The figures in the paper are
chosen to highlight the convergence of contact forces and the ef-
fect of different optimization problem formulations on optimal
forces. More numerical results and figures can be found in our
technical report [35].

A. MaxDet

The ANSI C source code ofmaxdetwas downloaded from
http://www.stanford.edu/~boyd/MAXDET.html. We further
developed auxiliary C code to compute various problem data
(such as grasp maps), formulate LMI constraints, transform an
LMI feasibility problem to a maxdet optimization problem, and
record the feasibility and optimization data. An executable file
was generated by linking the standard Fortran77 math libraries
blas and lapackprovided on our HP/Convex computer to the
object files generated bygcc.

Maxdetimplements a primal-dual interior-point convex opti-
mization algorithm. Assume that the optimal objective value of
a concernedmaxdetproblem is . Briefly, maxdetcomputes
an upper bound and a lower bound for the optimal value.
The quality is called theduality gap[32], [34]. The pro-
gram uses three parameters, namely, maximum number of iter-
ations allowed, absolute toleranceabstoland relative tolerance
reltol, as its termination criteria. More specifically, the program
will stop if at least one of the following conditions is satisfied:

• the maximum number of iterations is exceeded;
• the absolute tolerance is reached: abstol;
• the relative tolerance is reached. If both upper and lower

bounds are positive and reltol , or both
bounds are negative and reltol

In our numerical study, the maximum number of iterations
allowed was 100, the relative tolerance was 0.005; the absolute

tolerance was set in the way that its corresponding relative tol-
erance was at most 0.005. Note that relaxing tolerance criteria
could reduce the running times.

B. Numerical Example

Consider a case in which four fingertips grasp a ball of unit
radius. In our numerical study, we assumed the following. a)
The first two contact points were frictionless. (b) The third
contact was a soft finger contact with elliptic approximation
(SFCE), with 0.632 tangential friction coefficient and 0.669
torsion friction coefficient. (c) The fourth contact was a point
contact with friction (PCWF) with 0.4 tangential friction
coefficient. (d) The contact points on the object had spherical
coordinates [7] . To
simplify the presentation, we will present the numerical results
without including a detailed kinematic description of a robotic
hand in the problem. In our study, however, we mimicked kine-
matic effects on the grasping capabilities by assuming partially
admissible space of the contact forces. We also assumed that
the minimal normal solution (31) to the force equilibrium
constraint (30) was admissible, and thus, the termin our
admissible force formula (32) was set to zero. Furthermore, we
assumed lower and upper bounds for the contact force compo-
nents as a simplified way to incorporate joint effort constraints.
In particular, all contact wrench components were assumed to
have and 10 as their lower and upper bounds. The task was
to solve the grasp force feasibility and optimization problems
for resultant object wrench .

C. Numerical Results

The grasp map of the four-finger grasp was rank 6
and had a 3-D null space, whose basis vectors were

, and
.

When the last basis vector of the null space was assumed to be
nonadmissible, the problem was determined to be infeasible
in 7.81 ms. On the other hand, when the first basis vector was
not admissible, the system could generate the desired object
wrench. The figures in this section show the feasibility and
optimization results for the latter case.

The convergence of the contact forces and objective value
for the feasibility phase is shown in Fig. 1. Notice the grasp
force constraints were violated at the beginning. a) At step 0,
the first contact force reached 10.02, above its upper limit
10.0. b) Again at step 0, the weighted tangential force at the
fourth contact point, , was larger than the normal force com-
ponent , violating the friction cone constraints. c) At steps
one through four, the normal force component of the fourth
contact was greater than its upper limit 10.0. By the end
of the feasibility phase, all contact wrenches satisfied friction
cone constraints and torque limit constraints, which were also
satisfied through the whole optimization procedure (Figs. 2–5).
One point to notice here is that the feasibility condition became
satisfied at step 5 (the objective value became negative), while
the feasibility phase continued up to step 15. This is because
maxdet implements a two-loop optimization algorithm and only
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Fig. 1. Force feasibility phase.

Fig. 2. Force optimization phase for problem maxdet1(d = 10:0).

the outer loop checks the objective value and may terminate the
algorithm if at least one termination criteria is satisfied. It would
be easy to let the inner loop check the objective value, which
would add more computation to each step but could reduce the
total time needed for the feasibility phase by reduced number of
steps.

Figs. 2–4 are the results of three different runs of force Opti-
mization Problem 3 (maxdet1) with the weights being set to
10, 0.6 and 0.01, respectively. Recall that larger weights favor
smaller normal forces, while smaller weights favor forces that
are far away from the friction cone boundaries. The effect of dif-
ferent weights were clearly reflected in Figs. 2–4. The normal
forces were smallest when the weight was 10.0 (Fig. 2), and they
were the closest to the friction cone boundary. (Notice that the
curve of almost coincides with that of .) On

Fig. 3. Force optimization phase for problem maxdet1(d = 0:6).

Fig. 4. Force optimization phase for problem maxdet1(d = 0:01).

Fig. 5. Force optimization phase for problem maxdet2(d = 0:01).

the other hand, the optimal forces for weight 0.01 (Fig. 4) were
furtherest from the friction cone boundaries (the largest gap be-
tween and , among three different weights),
but were closest to the upper limits of the (simulated) joint ef-
fort constraints. The weight 0.6 puts approximately equal im-
portance on the linear term and the self-concordant term in the
maxdet objective function. Fig. 3 shows that its corresponding
optimization results were found to lie between those for larger
weight 10 and smaller weight 0.01.

Fig. 5 shows the optimization results under problem formula-
tion 4 (maxdet2), i.e., with the actuator limits being included in
the logarithmic barrier term, and with weights being 0.01.
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Notice that the normal forces were not as close to their upper
bounds 10.0 as those in Fig. 4. This was expected since the ob-
jective function (43) for Optimization Problem 4 would move to
infinity as any force moves to its friction or effort boundaries and
thus prohibit any force to be close to its upper or lower limits.

Figs. 1 –5 observed larger contact force adjustment at some
iteration steps (e.g., step 5 in Fig. 1) than at others, which hap-
pened at the start of new outer loop optimization and appeared
to be caused by the two-loop optimization procedure. This kind
of behavior, which is also typical for many other optimization
algorithms, is not expected to cause much difficulty in manipu-
lation experiments since not all intermediate forces computed
within an optimization procedure need to be sent to the robotic
systems especially when the optimal forces can be generated
fast, which is the case of the maxdet algorithm. Instead, the
continuity of optimal force trajectories during a manipulation
task is important for a stable implementation of the task, and our
next numerical example shows the maxdet performance on this
regard. For the ball-in-hand system discussed above, we sim-
ulated a manipulation task where contact points moved as the
ball rotated 180 relative to its -axis. The incremental change
values of the contact and object configurations were taken to
be (0.000 396, 0.000 840, 0.000 353, 0.000 447, 0.000 319,
0.000 886, 0.000 016, 0.000 584) and 1.8. Fig. 6 highlights the
smoothness of the solution trajectories during this simulated
manipulation. Also, we observed that the tangential friction
force directions varied by 129.04for contact 3 and 305.47
for contact 4. If we were to produce the solution trajectories
using linearized friction cones and an LP-based grasp analysis,
we would expect the friction force directions to contain jump
discontinuities. In other words, a friction direction would
point toward a particular facet in the linearized friction cone
until the external force changed enough to cause it to jump
to a neighboring facet. This behavior is inherent in linearized
approaches, but is avoided by our LMI formulation.

For the results presented in Figs. 1 –5,maxdettook at most
7.81 ms to solve the feasibility problem or the optimization
problem. The total computation times, including computing the
problem data, preparing the LMI constraints, determining the
feasibility and optimizing the objectives, ranged from 7.81 to
15.63 ms, which indicated the preprocessing times, including
computing problem data and prepare the LMI constraints, were
insignificant. The last example took about 0.9453 s for the 100
runs of maxdet.

VI. CONCLUSION

Grasp analysis is of fundamental importance in robotics,
yet despite many years of research effort, efficient solutions
to general formulations of some of the basic problems, such
as grasp feasibility, have not previously been developed. The
major stumbling block has been thenonlinear friction cone
constraints imposed by the contact models. In this paper, based
on the important observation by BHM, that the nonlinear
friction cone constraints are equivalent to the constraint that
certain symmetric matrices be positive definite, we have cast the
friction cone constraints intolinear matrix inequalities (LMIs)
and formulated the basic grasp analysis problems as a set of

Fig. 6. Optimal forces for problem maxdet2(d = 0:01).

convex optimization problems involving LMIs. The resulting
problems can be solved inpolynomial timeby highly efficient
algorithms. Our simulation results showed the simplicity and
efficiency of this approach.

Convex optimization has found wide applications in various
areas such as control and system theory, combinatorial opti-
mization, statistics, computational geometry and pattern recog-
nition. It can efficiently solve problems involving nonlinear and
nondifferentible functions, which would be considered to be
very difficult in a standard treatment of optimization. Due to
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its natural application to grasp analysis problems, it appears
that convex optimization will play an increasingly active role
in solving complicated mathematical and engineering problems
in robotics.

APPENDIX A
PROOFS OFPROPOSITIONS

This appendix only proves relatively difficult propositions,
namely Propositions 5 and 6. Refer to [36] for proofs of all
propositions.

Definition of Self-Concordant Barrier:Assume
is a closed convex subset in . A function defined over is
a self-concordant barrier for if the following two properties
are satisfied:

constant

constant (48)

where denote the first, second, and
third order Frechet derivatives of the functionat a point in
the interior of , and is a tangent vector at to

.
Proof of Proposition 5: Denote the set of symmetric ma-

trices and the set of symmetric positive semidefinite matrices of
dimension by and , respectively

Note that and are smooth manifolds [37] of di-
mension , and , the tangent space to

at point , is . Define a function

We need to prove that the functionis a strictly convex and
self-concordant barrier on the set .

Proof: Denote the first, second, and third order Frechet
derivatives of the function at a point as and

. , it can be computed that

where denotes trace.
To show that is strictly convex, we only need to prove that

the Hessian of is strictly positive definite, or equivalently,
. This is

true since

and the equality holds if and only if .

The proof of self-concordance utilizes the similar strategy as
above but involves more computation, and is omitted here. More
details can be found in book [25].

Proof of Proposition 6: Since is convex, we know
, and is still

in . Also note that

Therefore

(by Proposition 5)
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