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Grasp Analysis as Linear Matrix Inequality Problems

Li Han, Jeff C. Trinkle, and Zexiang X. LMember, IEEE

Abstract—Three fundamental problems in the study of grasping Of the remaining problems, the three of interest in this paper
and dextrous manipulation with multifingered robotic hands are  are theforce closure problentheforce feasibility problemand
as follows. a) Given a robotic hand and a grasp characterized by a theforce optimization problenwhich have mainly been solved
set of contact points and the associated contact models, determine, . . . .
if the grasp has force closure. b) Given a grasp along with robotic (_W'th a handful exceptlor_w d_lscussed below) aft_er co_nse_rvatlvely
hand kinematic structure and joint effort limit constraints, deter-  linearizing the contact friction models. Our main objective here
mine if the fingers are able to apply a specified resultant wrench is to develop efficient solution techniques for these fundamental
on the object. ¢) Compute “optimal” contact forces if the answer to  nonlinear problems in a unified mathematical framework devel-
problem ) is affirmative. oped through the theories of linear matrix inequalities (LMIs)

In this paper, based on an early result by Buset al., which trans- d - Inf v th bl b
forms the nonlinear friction cone constraints into positive definite- ana convex programming. informaily, these probiems can be

ness constraints imposed on certainy symmetric matrices, we fur- Stated as follows.
ther cast the friction cone constraints intolinear matrix inequali- 1) Force Closure Problem-Given the locations of the con-

ties (LMIs) and formulate all three of the problems stated above tact points on the object and the hand, the corresponding
as a set ofconvex optimization problems involving LMIsThe latter fricti del d the ki tic st ’ t f the hand
problems have been extensively studied in optimization and con- ricuon moaels, an € Kinematc structure or the hand,

trol communities. Currently highly efficient algorithms with poly- determine if every object load iR° can be balanced.
nomial time complexity have been developed and made available. 2) Force Feasibility Problem-Given the locations of the
We perform numerical studies to show the simplicity and efficiency contact points on the object and the hand, the corre-
of the LMI formulation to the three grasp analysis problems. sponding friction models, the kinematic structure of the
Index Terms—Convex programming, grasp analysis, force clo- hand, the actuator limits, and known external load on the
sure, force optimization, friction cones, linear matrix inequalities. object and hand, determine if the load can be balanced.

3) Force Optimization Problem-Given a grasp force
problem that has passed the feasibility test in item 2

] ] ) above, determine the “optimal” actuator efforts and
T HAS been recognized for some time that robotic systems  ¢orresponding contact forces.

equipped with multifingered hands have great potential
for performing useful work in various environments. Thi%1
recognition is evidenced by the hundreds of research pap
(see [1]-[12] and references therein for further details) on gr
analysis, synthesis, control, design, and related topics andé
large number of mechanical hands built for both robotic al
prosthetic research. Despite the huge effort, many unsol
theoretical and practical problems remain.

. INTRODUCTION

These three problems will collectively be referred tgessp
nalysisproblems. One may note that these problems also arise
il the study of foot-step planning and force distribution by
Itilegged robots [14]. Other applications of these problems
% be found in fixturing, cell manipulation by multiple laser
bes, and the control of satellites with multiple unidirectional
t?ﬁ?usters. As for grasp synthesis problems which address
how to generate grasps of certain desired properties, several
approaches based on grasp force properties such as force
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of handling the nonlinear models, the force closure theorems Our Results

[8], [11], have been specialized for the grasps characterizeqy, this paper, based on the BHM observation and a detailed
by the number of contact points and the associated contgghysis of the structure of the symmetric positive definite ma-
models and expressed in geometric terms such as antipqd@bs arising from the friction cone constraints, we cast the fric-
positions. Even with these specialized theorems, the analy§is, cone constraints into LMIs and formulate the basic grasp
and synthesis of frictional force closure grasps has mainly be&'i'alysis problems as a setainvex optimization problems in-
studie_d b)_/ linearizing the_friction cone con_str_aints and th%lving LMIs[24]. The latter problems have been extensively
applying linear programming techniques. Similar approacheg,gied in optimization and control communities. Recently the
[14], [3], [4] have also prevailed in the study of grasp forCgicient algorithms with polynomial time complexity [25], [24]
feasibility and optimization problems. “have been developed and made available. We used these algo-
While simplifying the three grasp analysis problems, the linjihms to perform numerical studies that showed the simplicity

earized model and linear programming approach have the fghq efficiency of the LMI formulation to the three grasp anal-
lowing disadvantages. 1) The friction cone must be approxjsjs problems.

mated conservatively, to avoid the possibility of finding solu-

tions that satisfy the linearized model, but violate the nonlinear Il. PROBLEM REVIEW

model (false positive). Unfortunately, a conservative lineariza- ) ) - .

tion, may cause the linear analysis to yield false negative re-Consider an object grasped by a multifingered robotic hand
sults, (e.g., the linear model implies no force closure, when'ith & contacts between the object and the links of the fingers
exists). 2) The orientations of the tangent plane directions §7d the palm. The grasp ma@, RE™, transforms applied
the contact frame affect the results of grasp analysis, which {)pger forces expressed in local contact frames to resultant ob-
olates the usual assumption of isotropic Coulomb friction. #§ct wrenches
Small perturbations in the parameters describing the grasp (ge-

ometry, physics, and kinematics) can produce large variations

in the solutions of the linear programs. The nonsmoothness\gheres; = [z7 - - #7 -- -z¥]% € R™ is the contact wrench of

solutions of linear programming methods [16] poses difficulhe grasp, and; € R™ is the independent wrench intensity
for optimization-based grasp synthesis and real-time control &gstor of fingeri.2 In order for the grasp to be maintained, the
plications. (4) Increasing the number of facets in the linearizegsultant generalized contact forBemust balance the external

friction models will increase the running time unacceptably fqhossibly dynamic) loag, experienced by the object. Thus we
real-time applications. have

The problems just discussed, can be alleviated to a large
extent by retaining the nonlinear nature of the friction models. F=Gzr=—g,. (2)
Despite the discouraging fact that our current computin )
resources only allow off-line computation for most nonlineaél'nce the co_ntacts are umIgtgraI, the wr(_anch vector must adhere
analyses, this approach has been pursued persistently in&%i 9eneralized contact friction constraint
and outside the robotics community. To name a few here, FC={re R"|s; € FC;i=1,....k} 3)
Nakamuraet al. [17] developed a nonlinear formulation of ’ Y
the grasp force optimization problem. Bicchi [1] formulategvhereFC; defines the set of contact wrenches under the contact
the force closure test as a nonlinear differential equatiomodel and friction law applicable at contacEor our purposes,
Lobo et al. [18] briefly discussed the grasp force feasibilitythis set will be assumed to take the following general férm:
and optimization problems as an engineering application of
second order cone programming. Haidacketralincluded FCi={zi € R™ |win 2 0, ||zit]|w < 2in} (4)
a two-stage quadratically-constrained quadratic programmin?1 ) ) o _
formulation for force closure in [19]. wherez;,,, which will also be denoted as3 |nth|§ paper, is the
One major progress in the study of grasp force optimizatitﬂ'?rmaI component of the contact force at contambd||vi. ..

was made by Buss, Hashimoto, and Moore (BHM) [20]. Thé notes a Weighted quadratic norm of the frictional compo-
made the important observation that the nonlinear frictidtENts at contaat For the four common contact types, friction-
é SS point contact (FPC), point contact with friction (PCWF),

cone constraints are equivalent to the positive definiten §f s ith elliti T 4 sof
of certain symmetric matrices. This observation enabl@'t finger contact with elliptic approximation (SFCE), and soft

them to formulate the grasp force optimization problem of{'9€r contact with linearized elliptic approximation (SFCL)
the Riemannian manifold of linearly constrained symmetr{g]’ the weighted norms are defined respectively as follows:

F =Gz 1)

positive definite matrices and to develop efficient projected FPC: ||zit||w := 0 (5)
gradient flow algorithms [20]-[23] fast enough for real-time e
applications. However, to start their optimization algorithms, PCWEF: ||zt || = - (z3 +23) (6)

a valid initial grasp force, which satisfied the friction cone
constraints and generated the specified object wrench, wad he numbermn; is respectively, one, three, and four for frictionless point

needed, and there was no discussion on how to compute vé&?g;%zggﬁ'g?ﬁ!g;’2;fg%tgjﬁhae”fofﬁt;ct’f;g?r?gl contacts which can transmit

initial forces for general grasps. T.herefore, the force feasibilitysry,q conditionz;,, > 0 is included to explicitly show the unilateral property
and force closure problems remained open. of friction cones, even though it is implied by the conditipa ||, < ;...
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1, ) 1, constraints7’, a joint external loadr.,;, and a generalized

SFCE: [[zit|w := 2 (w1 + i) + u_zxm (") resultant wrench# on the object, find an optimal contact
] ‘ 1” wrench vectorz satisfying (2), (3), (10), and (12).

SFCL: [lwitllw := —1/(#f, + 23) + —lzia|  (8)

pi Hit lll. FORMULATING GRASPFORCE CONSTRAINTS ASLMI's

wherezx;; andz;, are friction force components in two orthog- According to BHM [20], the friction cone constraints (3)

onal directions in the.contact tangent plamg, _is thg fr.iction imposed by the set of contacts can be written as a positive
moment component in the contact normal directipnis the  ¢oidefinite constraint on a block diagonal matfix
usual coefficient of Coulomb friction, and;; andy, are (dif-

ferent) torsion friction limits.

A relationship analogous to (2) must be satisfied by the han
subsystem. The external loagd; € R™ on the robot joints must = 0} (13)
be balanced by the contact wrencland the actuator efforts,

d]:C = {z € R™| P(x) = Blockdiag(Py,..., P;,..., P)

where>- denotes positive semidefiniteness.
JF e — 11, = —Tex (9) The submatrixP; for contact: takes one of the following
forms dictated by its contact type:
whereJ! is the transpose of the hand Jacobian. Note that the

termr.,, may include Coriolis, centripetal, and inertial loads. FPC: P, := [z;3] (14)
The null space of the Jacobian transpasell(./}), when [pizis 0 T
it exists, corresponds to thetructurally dependent forcd3], PCWF: P, = 0 LiTis T (15)
which cannot be generated by robot actuators and cannot be de- T Tio  JiTis
termined for certain types of grasps without more information - s 0 0 T
about the elastic properties of the mechanism [26]. In general, 0 Cis 0 a;;
the admissible grasp forces [27], [1] have to be in the range SFCE: = | 6 s /;xl (16)
space ofJ,, or Range(K.J;) + Range(KGT) when the de- . /3‘;‘4 ;;
flection and the grasp stiffness, denoted by malfixare taken xz ’ 0 ’ ZO ZO ’ ’ )
into account. For simplicity, lef be a matrix whose columns 63 50 o
form a basis for the space of admissible grasp forces, and thus, 0 0” 5. x’j; 0
the latter can be described as SFCL:Po= | 0 @y a4 6
C = {x € R™|z € Range(J)}. (10) . % 0 il
a3 @2
The analog to the friction constraints (3) are joint effort con- L Lil  Li2 O
straints. Assume that the joint effort vectaris limited by upper (17)

and lower bound vectors” andr*
whereo; = 1/, 8 = 1/ i, 6 = pilwis + (1/ply )4, and
i< <Y (11) o0 = pilwiz — (1/ 1 )xia).-
The correctness of this observation can be proved by the pos-
The corresponding constrairifSon the contact wrench vectoritive semidefiniteness of the symmetric matrid&s [20] and

are written as the following proposition which will also be used in this paper.
) Proposition 1: A block diagonal matrix P =
T={seR"|r" < Jjo+7ex <77}, (12)  Blockdiag(Py, ..., P;,...,P) is symmetric (semi) positive
definite if and only if each blocl;, i = 1,. .., k, is symmetric

Equations (2), (3), (9), (10), and (11) comprise the syste(gemi) positive definite.

model for our subsequent analysis of the grasp problemsygtice that for all the friction models, th& matrices are

discussed above. Their simultaneous satisfaction implies thata .- 41g symmetric in the unknown components of the contact

grasp is valid (i.e., will be maintained). wrench. This fact allows us to write the friction constraints as
With the model completed, the three fundamental grasp anakstrictL Mis which have the following general form:
ysis problems can be formalized as follows.

Problem 1: Force Closure ProblemGiven a grasg&, FC) m;
and admissible contact force constrai@tsdetermine if force F, =S50+ Z %5595
closure exists, i.e((FC N C) = RE. j=1
Problem 2: Force Feasibility ProblemGiven a grasp =Sio+ xS+ +Tim,;Sim, =0 (18)

(G, FC), admissible contact force constrairds joint effort
constraints7, a joint external loadr.,, and a generalized where the real symmetric matricés;, j = 0,...m; serve as
resultant wrenchf" on the object, determine if there exists dhe coefficients of the LMI, withS;o being zero for the friction
contact wrench vectar satisfying (2), (3), (10), and (12). cone LMls.

Problem 3: Force Optimization ProblemGiven a grasp  Denoting byEy, = (E%)", the symmetric matrix of dimen-
(G, FC), admissible contact force constrairds joint effort siona with element(b, ¢) equal to 1 and all other elements zero,
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the coefficient matrices;; of the matrix¥; can be written con- second-order cone constraint can be cast into a linear matrix in-
veniently. For example, if contaétis of type SFCE, then the equality:

S,; matrices are given as follows:
’ g (Pe+d)I Ax+b

Az +b|| < fr+de =0
Sit = o (Bfy + E4) Iz +8l| < o (Az+ 0T Tz +d| —
Si» = a; (E3, + Ef) 22
Sis = Bty + Eyy + Egy + Ey where[ is the identity matrix with dimension. Note that the
Sia = 5 ( E§4 + Ejtg) . (19) friction cone constraints (6), (7), (8) can all be transformed into

second order cone constraints whose BHM observation (15),
The coefficient matrices for other friction models have similarly16), (17) can be derived from transformation (22).

simple forms. Next take as another example a linear inequality constraint
SinceP is block diagonal with thé”! s on the main diagonal,
it can be written as an LMI Az +b2>0 (23)
S whereA = [a; ...a,] € RV andb € R". Since a vector
Plz) = z_:xlsl =0 (20) 4 > 0 (componentwise) if and only if the matridiag(y) (the
=t diagonal matrix with the components gfon its diagonal) is

where the double-indexed,; is simplified to z;,1(,5) = positive.semidefinite_, the Iine.ar inequality constraint_ (23) can

Zz;i my +j and$; = Blockdiag(0, ... ,0,5;,0,...,0),1 = be cast into a nonstrict LMI wit)(z) = diag( Az + b), i.e.,

1,...,m, with the S]s being symmetric. Replacing in (20 o o L

by > would yield afstrict LI?/II ;nd would resF,)trict tﬁe cc()nta)lct So = diag(b)  Si = diag(as), i=Loom. (24)

forces to lie in the interiors of their respective friction cones, As a direct application of this example, partition the joint ef-

denoted byint(FC). fort constraints” defined in (12) into two linear inequality con-
One key property of LMIs is that both nonstrict LMIs andstraints

strict LMIs are convex constraints anas indicated in the fol- )

lowing proposition. TR+ T — 7520, —Jl g =T +77 >0 (25)
Proposition 2: GivenQ(xz) = So + >, ; 215, whereS; =

ST1=0,...,m. The setsd, = {= € R |Q(x) = 0} and and formulate the corresponding LMIs

A, = {z € R™[Q(z) > 0} are convex. Tr‘(a:) = diag(JEa: T+ Text — TL)
In general, LMIs can be viewed as an extension of linear in- m

equality constraints where the componentwise inequalities be- =TE+ ZTILQH =0

tween vectors are replaced by matrix inequalities. It is shown in =1

[24] that LMIs can represent a wide class of convex constrains TY(x) = diag(—Jil @ — Texe + 1Y)

onz such as linear inequalities, (convex) quadratic inequalities m

or matrix norm inequalities. Consider, for instancesezond- =Ty + ZTan;l = 0.

order coneconstraint [18] (which is also called a quadratic, -1

ice-cream, or Lorenz cone constraint) Therefore, the joint effort constraints (12) can also be cast into

Az +b|| < Tz +d (21) One LMI constraint, shown in (26) at the bottom of the page,
whereT; = Blockdiag(TE, T),1=0,...,m.
where the constraint variable is the vectoe R™, the problem  Utilizing proposition 1, we obtain the LMI which in-
parameters arel € R™*™ b € R* ¢ € R™, andd € R. corporates both friction cone and joint effort limit con-
The vector norm appearing in the constraint is the standard Btraints, shown in (27) at the bottom of the page, where
clidean norm, i.e.|lu|| = («"w)/2. It is shown [18] that a D; = Blockdiag(S;,1),1 = 0,...,m.

T(x) = Blockdiag(T%(z), T (z)) = Tp + Z Tix; =0 (26)
=1

D(z) = Blockdiag(P(z), T(z)) = Do + zn: Dz = 0 (27)
=1
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In closing this section, we first note that our model for grasp Substituting (28) into the LMIP(z;,,;) > 0, we obtain an
analysis using LMIs is defined by (20) and (26). Second, waxjuivalent LMI in terms ofz for admissible strictly-internal
stress that the representational breadth of LMIs is greater tHarces

what was required by our formulation. So the LMI approach is -
not restricted to the friction models used in this paper. As long P(z) = P(Vz) = Z 25 > 0. (29)
as the friction cone models and other system constraints can be =

cast into LMIs, the grasp analysis problems can be formulated
in the same vein as those discussed in the next section, and ;) is indeed an LMI since LMI structure is preserved under
can be readily solved by the efficient LMI algorithms. affine transformations as indicated in the following proposition.
Proposition 3: GivenQ(xz) = So + >_;—; 215, whereS; =
SF,1=0,...,m.Lete = Az+b, whered € R™*" b € R™,
IV. GRASP FORCEANALYSIS PROBLEMS andz € R™ is the new variable. The®(z) := Q(Az + b)
has the LMI structure, i.eQ(z) = So + 3.1, #15;, andS; =
Based on the LMI formulation of grasp force constraints, WET [ =0,...,n.

now restate the grasp analysis problems as follows. In summary, the force closure problem is solved by first
Problem 1: Force Closure Problem checking the rank of¥ and, if it is onto, then determining if
Given a grasp(@, FC) and admissible contact force conthere exists @ € R™ such that (29) holds. The latter problem

straintsC, determine if for everyf” € RS 3z € C, such that s a standard.MI feasibility problem[24].

P(z) = 0andGz = F. Remark 1:If the conventional quadratic representation of
Problem 2: Force Feasibility Problem the friction cones (5), (6), (7), (8) is used instead of their LMI
Given a grasfg@, FC), admissible contact force constraintormulations (14), (15), (16), (17), thaternal force existence

C, joint effort constraints/, a joint external loacd,;, and an problemcan be castintosecond-order cone feasibiliproblem

object wrencht” € RS, determine iix € C, such thatD(z) =  utilizing same process described in this section.

0 andGzx = F.

Problem 3: Force Optimization Problem B. Force Feasibility Problem
Given a grasfG, FC), admissible contact force constraints The grasp force feasibility probleris very similar to then-

C, joint effort constraintsZ, a joint external load.;, and an ternal force existence probleamd can be solved using a similar

object wrenchF” € RS, find an “optimal” grasp force: € C approach: First, determine if there exists a solutigne R™

satisfyingD(z) > 0 andGz = F. for the linear equation

In this section, we will analyze these problems and trans-
form them into standarcbnvex optimization problems involving Gzog = F. (30)
LMiIs, which can be efficiently solved ipolynomial timeusing

recently developed interior-point methods [25], [24]. Here,zo € R™ need not satisfy the grasp force constraints.

Thus, a simple choice is the least-square solution
A. Force Closure Problem o =G"F (31)

It was shown that a grasp has force closure if and only if they o .o +# is the generalized inverse 6. The solutionzo is
grasp map has full row rank and there exists an admissiblgxact if ¥ € RangéG). Otherwise, the answer to the grasp
strictly—inFe_rnaI grasp force [7]. In othfar_words, the foIIowing:Orce feasibility problem is negative. For the case thate
two conditions are simultaneously satisfied: Range(@), the general admissible force satisfying (30), if ex-

1) rank(G) = 6; ists, has the form
2) Jzine € C,S.t. P(zing) > 0 @andGziy;, = 0. ) R R
While verification of the first condition is straightforward, T=30+Vz=G¥F+Z+VzeC (32)

the second condition is difficult due to the nonlinear friction

_ . ~ +# _
constraints. To resolve this problem, note that needs to lie Whef% € Null(G) helps to brlng_ro =Grr + o to bg an
in the intersection of the null space 6f and the range spaceadm'ss'bIe force satisfying (30), sineg alone might not lie in

’ mXm H iccj
of J. If such an intersection is empty, then the answer to tl§e The columns oV € R form a basis of the admissible

force closure problem is negative. Otherwise, concatenate asg.égspace of the null space 6t
c

of the basis vectors of the admissible subspace of the null sp? htj_s’ t::e agswelr t_(f)}he g{{’lSp‘foge ftiasmlhty p;oble}r;nls af-
as column vectors to form a matriX € R, wherem is rmative if and only if I € Range(G), there existz €

the dimension of the admissible subspace. Then an admissﬁﬁgswing (32) and: € ™ holding the LM

internal force can be written as . - - o
D(Z) = D(.QNZO + VZ) =Dy + Z 21Dy > 0. (33)
=1
Tint = V2 (28) Again, the last problem is anMI feasibility problemand can

also be cast as a second-order cone feasibility problem as noted
wherez € R™ is the free variable. in Remark 1.
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One important property on the force feasibility problem thahe overall squeezing force on the object. With the linear objec-
can be derived from the convexity of the problem is: tive function (38), the grasp force optimization problem can be
Proposition 4: Given a graspG, FC), admissible contact cast with respect te as follows.
force constraint€, joint effort constraints/, a joint external ~ Optimization Problem 1:Minimizing the summation of

load ey, if every objectwrenchinset = {F1,...,F;} C R normal force components (SDP)
is feasible, then every object wrench in the convex hull ofSet N N
is feasible. minimize W(z) = w2 4+ ¥,
A similar result for frictionless contacts was proved in paper subjectto D(z) = 0 (39)
[28].

wherew? = wTV, ¥, = wTi, is a constant and can be
C. Force Optimization Problem omitted from the objective function. Optimization Problem 1 is
in the standard form odemidefinite programming (SDIF31],
5[13]. If we use the conventional nonlinear expression of the fric-
tion cones (5), (6), (7), (8) instead of their LMI formulations
(14), (15), (16), (17), then the grasp force optimization problem
as defined below becomessacond-order cone programming
(SOCP)problem [18], [13].

Optimization Problem 2:Minimizing the summation of

Here, we only consider the nontrivial case when the feasible ggtrmal force components (SOCP)

A is nonz_mgty. Thfis is_grlgte if ark;cli o_nly ?‘rthe tz?msvxierttho_ the minimize ¥(z) = vz
correspondindorce feasibility problems affirmative. In this :
case, there exists a nonempty feasible setfor subjectto  (2), (3), (10), and (12). (40)

Given a grasgg&G, ¥C), admissible contact force constraint
C, joint effort constraints/, a joint external load.,:, and an
object wrench¥’, thegrasp force optimization probleamounts
to finding an optimal grasp force in the feasible set

A, ={ze€C|D(z) = 0,Gz = F}. (34)

Both semidefinite programming and second-order cone pro-
gramming problems can be solved efficiently [25], [31], [18].
However, one potential problem with these formulations is that
: ) the linear objective function (38), while minimizing the total

Noting that bothA,. and A are convex, we would like 10 041 hressure on the object, may push the contact forces to-
define a convex objective functiofi(x) to take advantage of o their friction cone boundaries. Grasping with such contact
the properties of convex optimizatiband formulate the force (o caq is not robust to the uncertainty of friction coefficients and
optimization problem as may cause the slippage between the object and the fingers. One
strategy to overcome this drawback is to add a term that will
confine contact forces to the interior of their friction cones. In
particular, let¥(x) be defined as

A.={z€ R™|D(z) = 0} (35)

whereD(z) is defined in (33).

argmin V(z). (36)
zCA;

Substituting (32) into the objective functidin(z) yields W) = Tz 4 log det P (x) 41)
W(2) = (a0 +V2). where the vectotw is the same as in function (38) and is used
to weight the normal components of the contact force$he
second termlog det P~1(z), tends to infinity as any contact
L= force approaches the boundary of its friction cone and thus
argmin ¥(z). 37 - _ 7 L
ZeA. yields optimal grasp forces interior to their friction cones. It
can be proven that the functidag det P~1(x) is convex and
The latter problem is also a convex optimization probleme|f-concordanf25], two properties essential for the design of
since the convexity of a function eservedinder affine trans- polynomial time algorithms and making it self-concordant

Then the problem (36) can be transformed into a problem of

formation [30]. barrier for the set of the symmetric positive definite matrices.
Recall that an affine function is convex. Therefore, we can proposition 5: The functiorlog det P—1, whereP = PT »
define 0, is convex and self-concordant on the set of symmetric positive
. definite matrices.
U(z)=wz (38) Proof: See Appendix A.

. Proposition 6: The function¥(x) = w?'x+log det P~1(x)
where the vectorw = [w( ---w; ---wi]" € R™is used t0 s strictly convex on the sed,.
weight the normal components of the grasp fargéor a fric- Proof: See Appendix A.

tionless contacty; = [d;], for a PCWF contact; = [00d;]*  Thjs objective function (41) is very similar to the self-con-
and for a SFC contaet; = [00 d; 0]*, d; > 0. In other words, cordant one proposed in [23]. The weight veatdoalances the
this objective function minimizes the sgmmanon of the ”O_Vm%inimal normal (squeezing) forces (linear term) and friction
force components. The smaller the objective value, the lightgsne boundary (slippage avoidance) conditions (logarithmic

4 convex function reaches its global minimum at its local minimum point®M)- Largerw will generally lead to smaller squeezing forces
[29]. while smallerw will push the contact forces away from their
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friction cone boundaries. The grasp force optimization problemaximization problems withinterior-point convex program-
under the self-concordant objective function as given belowrigsing techniqueswhich need a valid initial grasp force to
in the form of adeterminant maximization (maxdet) problenstart the optimization procedure. Our solver of the grasp force

with LMI constraintg[32]. feasibility problem, discussed in next section, will provide such
Optimization Problem 3:Force optimization as a maxdetan initial force, if the problem is determined to be feasible.
problem (maxdet1) Such an initial force can also be used for other optimization
. . procedures, such as the gradient flow algorithm by BHM [20],
minimize W(z) =@z + logdet P~1(z) [23].
subjectto P(z) > 0
T(z) = 0 (42) D. Transforming LMI Feasibility Problem to Optimization
Problem

While the above maxdet problem can generate grasp forceshis section shows that an LMI feasibility problem can be
robust to friction cone constraints, it does not prevent grag@nsformed to an optimization problem with an easily com-
forces from moving to upper or lower joint effort limits, espeputable starting point, and thus, can be solved utilizing corre-
cially for small weights. Small weights put more emphasis o§ponding optimization algorithms.
the friction cone barrier ternog det P~1(x), which may re- First notice that for a symmetric matrig
sult in forces that are far away from friction cone boundaries
but close to the joint effort limits. One way to generate optimal Q-0 <0, st.Q+tI =0 (45)
forces that are robust to both friction cone and joint effort con-
straints is to use the matri®(z) in the logarithmic term of the wheret € R, I is the identity matrix with same dimension as
maxdet objective function. In other words, formulate the forc@(z). This is true since (aJ? + tI > 0 is true if and only if

optimization problem as follows. t > —Anin(@), whereA,in (@) is the minimal eigenvalue of
Optimization Problem 4:Force optimization as a maxdet®. (b) Under the constraif® + ¢/ > 0,¢ < 0 if and only if
problem (maxdet2) Amin(Q) > 0,i.e.,Q) is positive semidefinite. (A matrix is posi-
3 3 tive semidefinite if and only if all of its eigenvalues are nonneg-
minimize W(z) = w2 +logdet D™!(2) ative.)
subject to D(z) = 0. (43) Therefore, an LMI feasibility problem@(z) > 0, can be

formulated as a semidefinite programming problem.

The objective function (43) restricts optimal force solution to Optimization Problem 5:The SDP problem equivalent to the
the interior of the constraint set. It is known [25], [33] that inLMI feasibility problem
terior solutions to convex optimization programs vary smoothly
with changes in the input data. Therefore, the convex Optimiza- minimize ¢
tion Problem 4 would lead to smooth optimal force solutions. subjectto Q(z)+tI = 0.

Remark 2: There are many other ways to define convex
objective functions for the force optimization problemThe LMI is feasible if and only if the optimal valug < 0.
which can be formulated as semidefinite programmin&econd-order feasibility problem can be transformed to second
second-order cone programming or determinant maximizarder cone programming problem in a similar manner.
tion problems. For example, define an objective function asNotice that a valid initial point for Optimization Problem 5
max;(||zi]]),t = 1,...,k, i.e., the maximum contact wrenchis x = 0,¢ = —,,,;,(Q(0)), where\,,;;,(Q(0)) is the minimal
magnitude among all contact wrenches of a grasp. Themenvalue of2(0). Therefore, we can use this initial point to
the minimization problem for this objective function can betart any interior-point semidefinite program algorithms to solve

formulated as follows: Optimization Problem 5.
o Also notice that the SDP Problem 5 can be transformed to an
minimize ¢ equivalent maxdet problem by choosing the logarithmic term
subject tg lz:l| < i=1,...,k Plz)=1,ie,
(2), (3), (10), and (12) (44)

minimize ¢+ logdet(1)
wheret is a slack variable. Since the newly-added constraint subjectto Q(z)+1tI = 0. (46)
|lz:|| < tis also a second order cone constraint, the problem
above can be castinto SOCP and SDP problems as discussed iherefore, a maxdet algorithm can also solve the LMI feasi-
this section. bility problem. Indeed, SDP is a special case of maxdet.
Remark 3: This paper formulates the force optimization Finally notice that the optimal objective value of Optimiza-
problem in terms of contact forces It should be noted that tion Problem 5 is the negative of the maximum minimum eigen-
the force optimization problem can be similarly formulatedalue ofQ(x). In particular, when the LM@Q(z) > Ois feasible,
and solved with respect to joint efforts or both joint effaatsd  Optimization Problem 5 is equivalent to
grasp forces to obtain various kinds of “optimal grasp forces.” o
Remark 4: Current algorithms solve the semidefinite pro- maximize  Auwin(Q(2))
gramming, second-order cone programming and determinant subjectto Q(z) =0 47
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with the optimal values of the two problems being related bplerance was set in the way that its corresponding relative tol-
t* = —maxg(z)> 0 Amin(Q(2)). erance was at most 0.005. Note that relaxing tolerance criteria
The minimal eigenvalue of a positive definite matrix can beould reduce the running times.
used as a “robustness” criterion of the matrix since it denotes
how far the matrix is to the boundary of the set of the positiV@- Numerical Example
definite matrices [20]. Therefore, the optimal solution from Op- Consider a case in which four fingertips grasp a ball of unit
timization Problem 5 can be interpreted as the “most robust” sedius. In our numerical study, we assumed the following. a)
lution to the LMI constraint under th@ax-mindefinition (47). The first two contact points were frictionless. (b) The third
Optimization Problem 5, when used to solve the grasp foreentact was a soft finger contact with elliptic approximation
feasibility problem, will yield a grasp force corresponding (SFCE), with 0.632 tangential friction coefficient and 0.669
to forces at each contact point that are farther away from thg@sion friction coefficient. (c) The fourth contact was a point
boundaries of their friction cones and the joint effort limits.  contact with friction (PCWF) with 0.4 tangential friction
It should be noted that the SDP and maxdet formulations edefficient. (d) The contact points on the object had spherical
the grasp force optimization problems only need a valid graspordinates [71(0,0), (7/5,7/2), (0,2 /3), (0, —27 /3)}. To
force to start the optimization procedure. So there is no needsimplify the presentation, we will present the numerical results
finish the Optimization Problem 5. Instead, it can be terminatedthout including a detailed kinematic description of a robotic
whenever becomes negative and then use the correspondingand in the problem. In our study, however, we mimicked kine-

as a valid initial force. matic effects on the grasping capabilities by assuming partially
admissible space of the contact forces. We also assumed that
V. NUMERICAL EXAMPLES the minimal normal solutiorxy (31) to the force equilibrium

In this section, we present the numerical results obtained frdt nstraint (30) was admissible, and thus, the tegrin our

. o admissible force formula (32) was set to zero. Furthermore, we
applying themaxdebptimization package developed by W assumed lower and upper bounds for the contact force compo-

al. [34] to grasp force feasibility and optimization problems. ts as a simolified wav o incoroorate ioint effort constraints

The results for the force closure problem are not presented h ?Qart'c Iarl aﬁ l:lont;\cl:ty relnch c%m or{elnts ere ass mled t.o

since the existence problem of an admissible internal force is L particular, LW P W u
ave—10 and 10 as their lower and upper bounds. The task was

sentially a force feasibility problem. The figures in the paper a solve the grasp force feasibility and optimization problems
chosen to highlight the convergence of contact forces and theéfr— resultant object wrencf2.1, —0.2, —4.3,0.4, 1.5, 0.6),

fect of different optimization problem formulations on optimal
forces. More numerical results and figures can be found in ogr Numerical Results

technical report [35].
port [35] The grasp magrc R%*? of the four-finger grasp was rank 6

A. MaxDet and had a 3-D null space, whose basis vectors Wers66,

0.6042, 0.1183, —0.2781, —0.5772, 0.2051, 0.2368, 0.2781,
The ANSI C source code aghaxdetwas downloaded from —0.0128), (0.7033, —0.3277, —0.0642, —0.3986, 0.1661,

http://www.stanford.edu/~boyd/MAXDET.html. We further_0_11127 ~0.1284, 0.3986, —0.1400), and (0.3703, 0.3180,
developed auxiliary C code to compute various problem daé_q)6237 0.1176, 0.4254, 0.1079, 0.1246, —0.1176, 0.7225).
(such as grasp maps), formulate LMI constraints, transform @jhen the last basis vector of the null space was assumed to be
LMI feasibility problem to a maxdet optimization problem, ang,onadmissible, the problem was determined to be infeasible
record the feasibility and optimization data. An executable file, 7 31 ms. On the other hand, when the first basis vector was
was generated by Iiljking the standard Fortran77 math librarigs; admissible, the system could generate the desired object
blas andlapack provided on our HP/Convex computer to th§yrench. The figures in this section show the feasibility and
object files generated hycc optimization results for the latter case.

Maxdetimplements a primal-dual interior-point convex opti- 'The convergence of the contact forces and objective value
mization algorithm. Assume.that the_optimal objective value @§; the feasibility phase is shown in Fig. 1. Notice the grasp
a concernednaxdetproblem isw™. Briefly, maxdetcomputes ¢oce constraints were violated at the beginning. a) At step O,
an upper bound* and a lower boupdﬂ for the optimal value. ¢ first contact force:,,, reached 10.02, above its upper limit
The qualityl — &' is called theduality gap[32], [34]. The pro- 10 0. p) Again at step 0, the weighted tangential force at the
gram uses three parameters, namely, maximum number of itgfisrth contact pointz.,|, was larger than the normal force com-
ations allowed, absolute toleranabstoland relative tolerance onentz.,, violating the friction cone constraints. c) At steps

reltol, as its termination criteria. More specifically, the prograrg,e through four, the normal force component of the fourth
will stop if at least one of the following conditions is SatiSﬁed3contactx4n was greater than its upper limit 10.0. By the end
+ the maximum number of iterations is exceeded; of the feasibility phase, all contact wrenches satisfied friction

« the absolute tolerance is reachdd: — W' < abstol; cone constraints and torque limit constraints, which were also

+ the relative tolerance is reached. If both upper and loweatisfied through the whole optimization procedure (Figs. 2-5).
bounds are positive anéi* — W' < reltol + ¥, or both  One point to notice here is that the feasibility condition became

bounds are negative and' — ¥! < —reltol + U, satisfied at step 5 (the objective value became negative), while

In our numerical study, the maximum number of iterationthe feasibility phase continued up to step 15. This is because
allowed was 100, the relative tolerance was 0.005; the absolotaxdet implements a two-loop optimization algorithm and only
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the outer loop checks the objective value and may terminate the

algorithm if at least one termination criteria is satisfied. It woulid: 5 Force optimization phase for problem maxdet2= 0.01).

be easy to let the inner loop check the objective value, which

would add more computation to each step but could reduce the other hand, the optimal forces for weight 0.01 (Fig. 4) were

total time needed for the feasibility phase by reduced numberfaftherest from the friction cone boundaries (the largest gap be-

steps. tweenz;, and|z;|,7 = 3,4, among three different weights),
Figs. 2—4 are the results of three different runs of force Optiut were closest to the upper limits of the (simulated) joint ef-

mization Problem 3 (maxdetl) with the weighifs being setto fort constraints. The weight 0.6 puts approximately equal im-

10, 0.6 and 0.01, respectively. Recall that larger weights favoortance on the linear term and the self-concordant term in the

smaller normal forces, while smaller weights favor forces thataxdet objective function. Fig. 3 shows that its corresponding

are far away from the friction cone boundaries. The effect of dibptimization results were found to lie between those for larger

ferent weights were clearly reflected in Figs. 2—4. The normaleight 10 and smaller weight 0.01.

forces were smallest when the weight was 10.0 (Fig. 2), and theyFig. 5 shows the optimization results under problem formula-

were the closest to the friction cone boundary. (Notice that tkien 4 (maxdet2), i.e., with the actuator limits being included in

curve of|z;+| almost coincides with that of;,,,z = 3,4.) On the logarithmic barrier term, and with weightss being 0.01.
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Forces of Frictionless Contacts 1 and 2

Notice that the normal forces were not as close to their upper 8.5
bounds 10.0 as those in Fig. 4. This was expected since the ob-
jective function (43) for Optimization Problem 4 would move to
infinity as any force moves to its friction or effort boundaries and
thus prohibit any force to be close to its upper or lower limits.
Figs. 1 -5 observed larger contact force adjustment at some

Forces

act

iteration steps (e.g., step 5 in Fig. 1) than at others, which hap-§ '5

pened at the start of new outer loop optimization and appeared as |

to be caused by the two-loop optimization procedure. This kind al e

of behavior, which is also typical for many other optimization as bl

algorithms, is not expected to cause much difficulty in manipu- 0 10 20 3°Si,?,8,a$8n .ﬁgex7° 80 90 100

lation experiments since not all intermediate forces computed Forces of Contact 3 (SFCE)

within an optimization procedure need to be sent to the robotic 7 S

systems especially when the optimal forces can be generatec e

fast, which is the case of the maxdet algorithm. Instead, the i I X34

continuity of optimal force trajectories during a manipulation & 3l L

task is important for a stable implementation of the task, and our g D ]

next numerical example shows the maxdet performance on this £ LI

regard. For the ball-in-hand system discussed above, we sim-S L B

ulated a manipulation task where contact points moved as the -1

ball rotated 180 relative to itsz-axis. The incremental change 2r S

values of the contact and object configurations were taken to 3 0 10 20 30 40 50 60 70 80 90 100

be (0.000396, 0.000840, 0.000353, 0.000447, 0.000319, Simulation Index

0.000 886, 0.000 016, 0.000 584) and°1 Big. 6 highlights the 10 . Foreesof Contact 4 (PCWF)

smoothness of the solution trajectories during this simulated R SR o AL

manipulation. Also, we observed that the tangential friction 8 r Xan T

force directions varied by 129.040or contact 3 and 305.47 8 6 | x4t

for contact 4. If we were to produce the solution trajectories &

using linearized friction cones and an LP-based grasp analysis,§ 4r

we would expect the friction force directions to contain jump § 2

discontinuities. In other words, a friction direction would

point toward a particular facet in the linearized friction cone °

until the external force changed enough to cause it to jump -2 —_

to a neighboring facet. This behavior is inherent in linearized 0 10 20 3°Si$3|af;5§n .‘ﬁ?,exm 80 90 100

approaches, but is avoided by our LMI formulation. Optimal Objective Values

For the results presented in Figs. 1 Ataxdettook at most -12.2 T T

124 | objective value —— 4

7.81 ms to solve the feasibility problem or the optimization

problem. The total computation times, including computing the 12:

problem data, preparing the LMI constraints, determining the § 3l

feasibility and optimizing the objectives, ranged from 7.81t0 ¢ .132 p

15.63 ms, which indicated the preprocessing times, including § -13.4
o

computing problem data and prepare the LMI constraints, were -13.6
insignificant. The last example took about 0.9453 s for the 100 -13.8 ¢

runs of maxdet. 14
-14.2

0O 10 20 30 40 50 60 70 80 90 100
Simulation Index

VI. CONCLUSION i )
Fig. 6. Optimal forces for problem maxdef2 = 0.01).

Grasp analysis is of fundamental importance in robotics,
yet despite many years of research effort, efficient solutiomenvex optimization problems involving LMIShe resulting
to general formulations of some of the basic problems, suplhoblems can be solved polynomial timeby highly efficient
as grasp feasibility, have not previously been developed. Talgorithms. Our simulation results showed the simplicity and
major stumbling block has been tmnlinear friction cone efficiency of this approach.
constraints imposed by the contact models. In this paper, base@onvex optimization has found wide applications in various
on the important observation by BHM, that the nonlineareas such as control and system theory, combinatorial opti-
friction cone constraints are equivalent to the constraint thaization, statistics, computational geometry and pattern recog-
certain symmetric matrices be positive definite, we have cast thigon. It can efficiently solve problems involving nonlinear and
friction cone constraints intbnear matrix inequalities (LMIs) nondifferentible functions, which would be considered to be
and formulated the basic grasp analysis problems as a sevedy difficult in a standard treatment of optimization. Due to
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its natural application to grasp analysis problems, it appearsThe proof of self-concordance utilizes the similar strategy as
that convex optimization will play an increasingly active rol@bove butinvolves more computation, and is omitted here. More
in solving complicated mathematical and engineering problemdstails can be found in book [25].
in robotics. Proof of Proposition 6:Since A, is convex, we know
Vzy, 29 € Ay, andvVA € (0,1), 25 = Az + (1 — Nao is still
APPENDIX A in A,. Also note that

PROOFS OFPROPOSITIONS

U(z) = whz 4 logdet P~ (z) = wlz + &(P(z))

P(a:)\) = )\P(ﬂ?l) + (1 — )\)P(.TQ) = )\Pl + (1 — )\)PQ

This appendix only proves relatively difficult propositions,
namely Propositions 5 and 6. Refer to [36] for proofs of all
propositions.

Definition of Self-Concordant BarrierAssumeG C R"
is a closed convex subset#i. A function £ defined oveld is
a self-concordant barrier fa¥ if the following two properties
are satisfied:

Therefore

U(xy) = wlzy + logdet P~ 1(zy)
= wh (Azy 4+ (1 = Nza) + B(P(z)))
= wlz + (1= Nwlzy + AP+ (1 - N P)
< wTz + (1- )\)wag
FAB(P) + (1 — NO(Py)
= A(z1) + (1 — N ¥(zs).

|D3F(2)[h, h, h]| < constant{ D?F(z)[h, h]}*

|DF(z)[R]| < constant{D*F(z)[h, k]}*  (48) (by Proposition 5)

whereDF(x), D*F(z), D®*F(x) denote the first, second, and

third order Frechet derivatives of the functighat a pointz in

tGhe interior of G, int(&), andh € R™ is a tangent vector atto ACKNOWLEDGMENT
Proof of Proposition 5: Denote the set of symmetric ma- The authors would like to thank M. Buss and T. Schlegl of

trices and the set of symmetric positive semidefinite matrices Bchnical University of Munich for the motivating discussions
dimensiom by S(n) andS+(n), respectively and generous offer of their grasp force optimization code for

regrasping [22]. The authors are also grateful to A. Bicchi of

S(n) ={S e RV ST =5} University of Pisa for pointing out the importance of kinematic-
ST(n)={S e ™" | ST =5, 5> 0}. structure-imposed force constraints, as well as S. Boyd and C.

Crusius of Stanford University, S. Jiang of The Hong Kong Uni-

Note thatS(n) andS™(n) are smooth manifolds [37] of di- versity of Science and Technology for helpful discussions, and
mension(n(n + 1)/2), andZpS*(n), the tangent space to anonymous reviewers for helpful comments.

STt (n) at pointP, is S(n). Define a function

@ :int(ST(n)) —» R
P — &(P) = logdet(P~1). M

We need to prove that the functidnis a strictly convex and .
self-concordant barrier on the s&t (n).
Proof: Denote the first, second, and third order Frechet
derivatives of the functio® at a pointP asD® », D?>® > and
D3®p. V¢, n, & € TpST(n), it can be computed that

D®p(¢) = —Tx(P7Y¢),
D*®p(¢,n) = Te(P (P 1),
D*®p(¢,n,8) = —2Te(PTH¢PTInPYE)

(3]
(4]

(3]
(6]

[7]
whereTr denotes trace.

To show thatb is strictly convex, we only need to prove that (8]
the Hessian of? is strictly positive definite, or equivalently, [g]
D2®p(¢,¢) > 0,YP € St(n),( # 0 € TpSt(n). This is
true since

D*@p((,¢) = TH(PH(PY) el
=Tx (PP LCPTIQPT) 1)
_ ([P%ICP%I]Q)
20 [12]

and the equality holds if and only {f = 0.
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