
Grasp Planning in Complex Scenes

Dmitry Berenson∗ Rosen Diankov∗ Koichi Nishiwaki† Satoshi Kagami† James Kuffner∗†

∗The Robotics Institute †Digital Human Research Center

Carnegie Mellon University National Institute of Advanced Industrial Science and Technology

5000 Forbes Ave., Pittsburgh, PA, 15213, USA 2-41-6 Aomi, Koto-ku, Tokyo, Japan 135-0064

{dberenso, rdiankov, kuffner}@cs.cmu.edu {k.nishiwaki, s.kagami}@dh.aist.go.jp

Abstract— This paper combines grasp analysis and manip-
ulation planning techniques to perform fast grasp planning
in complex scenes. In much previous work on grasping, the
object being grasped is assumed to be the only object in the
environment. Hence the grasp quality metrics and grasping
strategies developed do not perform well when the object is
close to obstacles and many good grasps are infeasible. We
introduce a framework for finding valid grasps in cluttered
environments that combines a grasp quality metric for the
object with information about the local environment around the
object and information about the robot’s kinematics. We encode
these factors in a grasp-scoring function which we use to rank
a precomputed set of grasps in terms of their appropriateness
for a given scene. We show that this ranking is essential for
efficient grasp selection and present experiments in simulation
and on the HRP2 robot.

I. INTRODUCTION

In recent years, many researchers in Humanoid Robotics

have focused on topics in autonomous manipulation. Re-

search in manipulation has been done on humanoid platforms

such as the HRP2 [16], ARMAR [17], the NASA Robonaut

[14], Justin [15], Dexter [13], and Domo [18]. However,

much humanoid grasping still relies on tele-operation or

hand-scripted grasps.

Many researchers have approached the problem of grasp-

ing from a machine learning perspective where the goal is to

find grasps of novel objects using information about grasps

of already-known objects [11] [12]. While these approaches

are promising, it is difficult to find a general parameterization

of objects that preserves sufficient information for grasp-

ing. Also, because robotic manipulators usually have very

different kinematics and sensing capabilities from those of

human hands, it is difficult to successfully apply imitation-

learning algorithms that extract information from humans

[10] to robotic grasping.

Another main area of grasping research focuses on finding

a placement of contact points on an object’s surface to max-

imize a certain grasp metric [6] [7]; however, it is difficult

to match those contact points to a feasible configuration of

a humanoid’s manipulator that is collision-free in a given

environment and reachable by the robot.

Regardless of the method used for grasp selection, much

previous research has focused on finding grasps for the

object when it is alone in the environment. Furthermore,

Fig. 1. The HRP2 lifting an object after executing one of the top-ranked grasps

evaluated by the grasp-scoring function.

the manipulator is often assumed to be disembodied when

approaching the object [1], so the kinematics of the robot are

not taken into account. While the above assumptions may

be valid in certain situations, they are certainly not true for

cluttered and constrained environments. Thus we approach

grasp selection and manipulation planning from a holistic

point of view. The goal is not only to select a grasp that is

stable for a given object, but also to ensure it is feasible.

The remainder of the paper is outlined as follows: In

section II, we give an outline of our overall framework.

In section III, we describe the steps needed to compute

the grasp-scoring function. In section IV, we show that our

method greatly outperforms the naive approach to grasp

selection and show results in simulation and on the HRP2.

II. GRASP PLANNING FRAMEWORK

This framework is similar to many papers in that it uses

force-closure [5] to evaluate good grasps when the object is

alone in the environment. It relies on a sampling of the grasp-

parameter space to find a set of successful grasps for each

object of interest [17]. However, once this set of valid grasps

is computed for the given object, the following problem oc-

curs: Out of the potentially thousands of precomputed grasps,



which one should be choosen for a given environment? Many

grasps are infeasible due to collisions with environment, still

more can be unreachable because of the kinematics of the

robot arm. The naive approach is to keep trying grasps in an

arbitrary order and take the first one that is collision-free and

reachable. Because of the potentially large number of grasps

in a grasp set, this approach is extremely time-consuming.

An alternative possibility is to prune the grasp set; however,

there is always the risk that pruning can eliminate the only

feasible grasp in the current environment. It is also possible

to apply manipulation planning techniques from [2] [3] [4]

to move obstacles out of the way. But the problem of grasp

selection still remains since picking up and moving obstacles

implies finding a way to grasp them.

Instead we propose a more intelligent framework for grasp

selection that combines the force-closure scores of our grasp

set with the features of the object’s local environment and

features of the robot kinematics to produce an overall grasp-

scoring function. We use this function to evaluate each grasp

and then compute a plan using Bidirectional RRTs [8] that

takes the end-effector1 to the first valid grasp position and

close the fingers appropriately.

Our method of grasp planning consists of two main steps:

a precomputation step and an online computation step (see

Figure 2). The precomputation step uses a geometric model

of our manipulator and the target object to build a set of

feasible grasps in terms of force-closure. The online compu-

tation step computes the score of each grasp for the given

environment using the grasp-scoring function. The grasps are

ranked in order of the scores assigned by the Grasp-scoring

Function and validated using collision checking and Inverse

Kinematics(IK) algorithms. Once a feasible grasp is found,

we plan a reaching motion for the arm of the robot to reach

and grasp the object using Bidirectional RRTs. The process

is detailed below:

Precomputation: First, sample a set of grasp parameters

in the grasp-parameter space. Second, compute the final

manipulator pose by executing a grasping policy on those

parameters for the given manipulator and object. Third,

Compute the force-closure scores of all grasps and store the

ones that have force closure in the grasp set.

On-line Computation: Fourth, evaluate the grasp set using

a grasp-scoring function that takes into account the force

closure score, the object’s local environment, and the kine-

matics of the robot. Use the scores assigned by this function

to rank the set of grasps. Fifth, test the grasps in order of

their rank for collisions in the environment and reachability.

Sixth, plan an arm trajectory to achieve the first valid grasp,

if the plan fails, try the next valid grasp and so on.

A. Defining a Grasp

Choosing a parameterization for grasping policies is key

to grasp planning. Since one goal is to generalize beyond

a given manipulator, the definition of parameters must be

as broad as possible, yet the definition must also include

1The part of the robot that will be making contact with the object.

Fig. 2. The proposed grasp planning framework. The precomputation section need

only be computed once for each object-manipulator pair. Once the grasp set is built by

precomputation, the online part of the framework sorts grasps using the grasp-scoring

function and plans a trajectory to get to the first valid grasp.

manipulator-specific information to take advantage of the

unique capabilities of a given manipulator. Thus we define

the following general parameters:

• Pd, the direction of approach of the hand (a 3D unit

vector)

• Pt, the 3D point on the surface of the object that the

hand is approaching

• Pr, the roll of the hand about the approach direction

• Pp, parameter(s) defining the preshape2 of the hand

In addition to the above, other hand-specific parameters

can be included in P. Also define O as the object to be

grasped and E as the current environment.

B. Grasping Policy

The grasping policy is a function that maps a set of

parameters P to a final grasping pose of the manipulator. A

manipulator pose is defined by the manipulator’s translation,

orientation, and joint angles. In the grasping policy of

[1], the manipulator first starts with a specified preshape

and approaches the object’s center of mass from a given

direction; the parameters are the approach direction, the roll

around the direction, and the preshape. Once any part of the

manipulator hits the object, manipulator joints close until

each finger reaches collision.

We use a similar but slightly more general policy in

this paper. From empirical experiments with several robotic

hands, the most successful grasps usually have the manipu-

lator’s palm facing the object’s surface normal at the palm

contact points. By using the parameterization of [1], the

manipulator’s palm will rarely face the surface normal unless

the object is a sphere, and many good grasps will be missed.

Instead of approaching the center of the object, our grasping

policy approaches a target point Pt (Figure 3) with the palm

normal oriented towards Pd and a roll angle Pr around the

approach direction. Although the dimension of the grasp

2The preshape is the initial joint values of the manipulator.



Fig. 3. The grasping policy that is used to evaluate grasp quality. (a) The manipulator

is placed inside the object at its target grasp point (specified by Pt). (b) The

manipulator is rotated so that its palm normal faces along Pd. (c) The manipulator is

moved back along −Pd until it is just out of collision. (d) The fingers are wrapped

around the object until every finger is in collision or has hit its joint limits. The contact

wrenches (blue arrows) are used to compute force closure.

policy seems to have increased significantly from that of

[1], we constrain Pt to always lie on the surface of the

object O and Pd so that it always points towards the normal

of the object’s surface at Pt. Compared to using [1], the

percentage of total force-closure grasps usually increases by

four times for the objects we use in our experiments while

the dimension of the grasp parameters only increases by one.

C. Precomputing a Valid Grasp Set

Given the above grasping policy, we can generate P and

determine its force-closure quality for a given O. Though it is

desirable to generalize across objects, our approach currently

does not possess this capability, thus a set of grasps is stored

for every O of interest. Because each grasp set can be stored

in a small file on disk, having such a set for every object of

interest is reasonable considering the multi-terrabyte hard-

drives available today. Also, storing grasps along with their

grasp-quality saves computation time because we never need

to re-evaluate force-closure online.

However, we must be careful to generate P values that are

likely to yield force-closure for the object, otherwise we will

waste time computing grasps that have no chance of achiev-

ing force-closure. Thus we sample our grasp-parameter space

as follows:

We start by sampling the surface of O using six fine-

resolution grids, one on each side of the object (Figure 4).

A ray is cast from every point in the grids and the location

where it first intersects O becomes a sample of the object’s

surface. Let the number of rays hitting the surface be N .

Each sample is treated as the target point Pt. For every target

point Pt, define the approach directions Pd as the negative

of O’s surface normal at Pt. The parameters left to define

Fig. 4. An object (red) with sampled surface points (pink). Each surface point can

be transformed to a set of grasps by using the point’s position as Pt and the surface

normal at that point as Pd.

are the roll Pr and the preshapes Pp. Roll is discretized into

R bins in [0, 2π]. The preshapes of the manipulator Pp are

specific to the given manipulator. Let the number of possible

preshapes be M . Then the total number of samples used to

build the force closure table is NRM . We run the grasping

policy for each P and record the force-closure values in a

table. Because this procedure is done offline, the computation

time is not an issue.

D. Grasp-scoring Function

Much previous research on grasping has focused on select-

ing grasps in terms of force-closure, but force-closure alone

is not sufficient when choosing a grasp for an object in a

cluttered environment, especially when the manipulator is

attached to an arm with its own unique kinematic structure.

Taking into account the force closure value of a grasp

guarantees successful manipulation only if both the object

and manipulator are freely floating in space, but this is never

the case. If there is a cup on a table and the environment

is not taken into account, then testing grasps that approach

from under the table is simply a waste of processing time.

Such grasps would never be tested if the environment is

considered. Therefore, taking the environment into account

can filter out those grasps which are likely to collide with

environment obstacles, and consequently saves time spent

on needless testing. Furthermore, considering the position

of the robot can filter out grasps that are unreachable and

again save time in validation and planning. The goal of the

grasp-scoring function is to take into account all important

information to score grasps in terms of likelihood of success.

Section III describes the computation of the scores assigned

by this function in detail.

It is essential that the grasp-scoring function be computed

quickly because it must be evaluated online for the current

environment. Since fully simulating a grasp is time consum-

ing, the grasp-scoring function must rely on approximations.

Therefore, grasps must be validated in simulation even if they

recieve a high score. As shown in section IV, using the grasp-

scoring function greatly reduces the amount of validation

necessary before a successful grasp is found.

E. Validation and Planning

Since the grasp-scoring function cannot gaurantee that a

grasp will be successful, grasps must be validated one-by-one

in the current environment by running the grasping policy.

If there is no collision with environment obstacles during



the execution of the grasping policy, we evaluate the IK

equations of the arm to see if the grasp is reachable and

check if the IK solution3 is in collision. If the final pose of

the arm is collision-free, we plan a path using Bidirectional

RRTs to reach the desired manipulator position and close the

fingers. The planner’s configuration space consists of the arm

and manipulator joints of the robot. The planner uses the IK

solution values for the arm and final manipulator joint values

from the grasping policy to set the configuration space goal.

If any of the above steps fail, we try the next grasp in the

set, as ranked by the grasp-scoring function.

III. COMPUTING THE GRASP-SCORING FUNCTION

The goal of the Grasp-scoring function is to predict the

result of a given grasp of a given object in a given envi-

ronment. Let G(O, E,P) be the score of the grasp defined

by the grasp policy parameters P performed on object O in

environment E. O can change depending on which object

is being considered for grasping and E changes whenever

something in the environment is moved. G is composed of

three parts:

• Gq(P), the force-closure score of P

• Gb(E,P), the robot-relative position score

• Ge(O,E,P), the environment clearance score

Once the three scores are computed, they are combined

into a final score as shown in the equation below.

G(O,E,P) = e(c1Gq)e(c2Gb)e(c3Ge) (1)

where c1, c2, and c3 are coefficients that determine the

relative importance of the three criteria in computing the

overall score.

We set Gq by looking it up in our precomputed grasp set

(Section II-C).

Gb(E,P) takes into consideration the position of the robot

in the given environment. Since the robot’s base is fixed,

we use standard IK algorithms to check if a given grasp is

feasible. However, testing IK feasibility for all grasps in the

grasp set is time-consuming. As a simple approximation, we

set Gb to be the cosine of the angle between the manipulator

approach direction and the vector from the robot to the target

object. This ensures that grasps where the palm faces away

from the robot are preferred over grasps where the palm faces

the robot.

Ge(O,E,P) allows us to consider the environment around

the object when computing the grasp score. We calculate

the clearance along the approach direction Pd at the point

Pt. If that clearance is small, the manipulator is likely to

collide when executing the grasp specified by P. When the

clearance is high, there is a greater chance that the grasp will

be collision-free. We detail the computation of Ge below.

Figure 7 shows how the various scores are combined into

a total score for a ‘T’ shaped object in a certain scene. Note

that all grasps and scoring function computations should be

3If IK equations exist for the arm of the robot, this step is trivial. If not,
there exist many numerical methods for IK.

Fig. 5. Computing the minimum distance value for one point in the distance map.

The red object is the object we wish to grasp, the green one is an obstacle in the

environment. θ is the width of the cone whose tip is at P and whose alignment is the

surface normal at P. Dist(p, r) is the minimum distance as evaluate over all rays,

r, in the cone.

Fig. 6. Distance map for the ‘T’-shaped object in the scene shown. Distances range

from dark red (high clearance) to blue (low clearance). The arrow denotes the front

of the object.

computed with the identity transform of the O. When O is

transformed, all grasps should be transformed accordingly.

A. Computing the Environment Clearance Score

The assumption when computing the environment clear-

ance score is that grasps approaching the object along

directions with high clearance to obstacles are more likely to

succeed. Although such directions are not always guaranteed

to be feasible for the manipulator, it is more likely that a

successful grasp approaches from high-clearance directions

than from directions cluttered with obstacles. The distance

map, D(O,E)(p, θ), gives the distance to the nearest obstacle

within a cone of angle θ whose tip is at the surface point p

and whose alignment is the surface normal of p (see Figure

5). A cone is used so that each direction summarizes a bigger

region of the environment; if D(O,E)(p, θ) has some value,

this implies that the entire cone is free of obstacles up to

that value in meters. The wider the cone angle, the more

conservative the distance map becomes in estimating free

regions. Let Dist(p, d) be the distance to the nearest point

the ray starting at position P with direction d hits. The

distance map is defined as:

D(O,E)(p, θ) = min
r:r·SurfNorm(p)≤cos(θ)

Dist(p, r). (2)

θ = pi
12 for all experiments.



Fig. 7. (a) Environment Clearance Score (Ge(O, E, P )), (b) Grasp Quality

(Gq(P )) of grasps with Pr = 3π
2

and Pp = 0 for the HRP2 manipulator. (c)

Robot-relative position score (Gb(E, P )) (d) Total combined score (G(O, E, P)).

To generate the surface points needed for the distance map,

we sample the surface of O as described in Section II-C but

at a finer resolution. Because ray collision checking is very

fast, a distance map for scenes similar to Figure 6 can be

generated in about one second on a 3Ghz CPU. Once a high-

resolution distance map is computed, we look up the point Pt

in the distance map using a k-nearest-neighbor algorithm and

take the weighted-average of the distances of the neighbors

of Pt to determine Ge(O, E, P ).

Figure 6 shows a scene with the target object and the

computed distance map for its position.

IV. RESULTS

To gauge the usefullness of the grasp-scoring function,

we perfomed a benchmark experiment on two robots in

simulation. In this experiment, we compare the number of

tests necessary before finding a valid grasp when sorting the

grasp set by the grasp-scoring function to the number of tests

necessary when randomly ordering the grasp set. We also

describe an implemenation of the framework on an HRP2

robot at the Digital Human Research Center and show it

performing several complex tasks.

A. Benchmark Experiment

In order to benchmark our algorithm’s effectiveness, we

compare it to a more naive approach to grasp selection. In the

naive approach, a table of valid grasps is created in exactly

the same manner as in our approach. However, instead of

sorting the grasp set, the grasps are tested on the object in

the given scene in a random order. The question we seek to

answer is: how many grasps must we test before finding a

successful one when using the grasp-scoring function vs. the

naive method?

We compare the statistics for 50 randomly generated

scenes. When using the naive approach, we re-run the

validation 10 times for each scene, each time re-ordering the

set randomly. We record the indices of the first successful

grasp of each run and compute their mean. This mean is

compared to the index of the first successful grasp when

using the grasp-scoring function to sort the grasp set. No re-

running is necessary when using the grasp-scoring function

because our algorithm does not use any random variables.

Generating the random scenes is done as follows: The

position of the robot is always fixed. The object to be grasped

is placed in a region that is known to be reachable by the

Fig. 8. Objects on which we tested our algorithm (above) and the HRP2 and Puma

grasping those objects in random scenes. The objects are referred to as 1, 2, and 3,

numbered from left to right. All grasps shown were ranked in the top 50 grasps by

our grasp-scoring function for their respective scenes.

robot4. Obstacles are then placed randomly around the object

to be grasped in a circle with 20cm radius and rotated

randomly about the vertical axis. No collisions between

obstacles are allowed. See Figure 8 for several random

scenes.

This experiment is run for three different objects and two

different robots in simulation, see Figure 8. The robots used

where an HRP2 robot, with the manipulator shown in Figure

9 and a Puma 560 robot with a Barrett hand. The two robots

have very different kinematics and reachability ranges. The

manipulators are also very different, the HRP2’s manipulator

is designed to wrap-around objects, while the Barrett hand

is meant for more precision and dexterous grasping. We run

experiments on these two robots to show that our frame-

work, and especially the grasp-scoring function, is general

enough to be applied to any reasonable robot-manipulator

combination.

For both robots and all objects, the grasp-scoring function

clearly outperforms the naive approach to grasp selection,

see Figure 9. For the HRP2, grasp-scoring outperformed the

4Doing otherwise would result in many IK failures that would tell us
nothing about the efficacity of sorting by the G(O, E,P) scores



Fig. 9. Box plot of the statistics for the benchmark experiment on the three objects for the HRP2 and Puma robots. Each object shown at the top was placed in 50 random

scenes. The vertical axis is the number of grasps tried before a successful one was found. The red line in each box plot represents the number of tests necessary averaged over

the 50 scenes. Lower is better. (a) Statistics when using the HRP2. (b) Statistics when using the Puma+Barrett hand robot.

naive method in 98%, 100%, and 98% of scenes for objects

1, 2, and 3, respectively. For each scene, grasp scoring

performed 57.06, 11.51, and 10.59 times better on average

than the naive approach for objects 1, 2 and 3, respectively.

For the Puma robot, grasp-scoring outperformed the naive

method in 96%, 72%, and 98% of scenes. Grasp scoring

performed 6.861, 3.101, and 12.54 times better on average

than the naive approach. The results for the Puma robot

are less impressive because the Puma has a far larger

reachability, thus many more grasps have an IK solution and

there is a greater chance that a random grasp is reachable.

B. Experiments with the real HRP2

To evaluate our method in a real environment with a real

robot, we ran several experiments on the HRP2. We used a

motion capture system to get the position of the robot and

the objects in our scene. The robot’s base was fixed in these

experiments.

The first task was for the HRP2 to reach and grasp objects

1 and 2 and place them into a “trash can.” We required all

trajectories to be collision-free and required each object to

stay within the robot’s grasp during the trajectory to reach

the trash can. The experiment was meant to simulate a clean-

up task, where some objects in the environment must be

thrown away, which is one of the target applications for many

humanoid robots. Several frames from a video showing the

robot performing this task for object 1 can be seen in Figure

10. Since we compute the grasp-scoring function online, the

robot is able to compensate for changing scenes and the

addition/removal of obstacles and objects to grasp. All grasps

and trajectories required for this proceedure were automati-

cally generated online using our grasp-planning framework.

Videos of the robot performing the clean-up task in multiple

scenes can be seen in the video corresponding to this paper.

The second task was for the HRP2 to pick up object 2 and

place it upside-down on the other side of the table. Because

Fig. 10. The HRP2 reaching, grasping, and dropping object 1 into the trash can.

(1) The initial state of the environment. (2) Grasping the object. (3) Lifting the object.

(4)-(5) Moving the object to the trash can. (6) Dropping the object into the trash can.

of the reachability constraints of the robot, this task could

not be accomplished using only one arm, so re-grasping the

object was necessary. To accomplish this task, we specified

that the robot must first grasp the object with its right hand,

move it into an intermediate position, grasp the object with

its left hand, release the object with the right hand, and

move the object into the destination position with its left

hand. See Figure 11 for snapshots from the execution of this

proceedure. Again, all grasps and trajectories required for

this proceedure were automatically generated online using

our grasp-planning framework. A video showing the re-

grasping sequence can be seen in the video corresponding

to this paper.



Fig. 11. The HRP2 picking up, regrasping, and putting down object 2. The task is

to place the object upside down into the white rectangle. (1) The initial state of the

environment. (2) Grasping the object with the right hand. (3) Moving the object to

an intermediate position. (4) Grasping the object with the left hand. (5) Releasing the

object with the right hand. (6) Placing the object into the goal position with the left

hand.

V. CONCLUSION

This paper presents a general framework for grasping

which takes into account the kinematics of the robot, the

environment around the object being grasped, and the grasp’s

force-closure quality. By precomputing a set of grasps offline

and efficiently computing a grasp-scoring function online

to rank the grasps, we are able to quickly find stable,

collision-free, reachable grasps in cluttered environments.

We show that our framework greatly outperforms a more

naive approach and that it can be applied to two different

robots with very different manipulators. We also describe an

implementation of the framework on the HRP2, which allows

it to perform complex manipulation tasks in a dynamic

environment.

In the future, we plan to extend our framework to various

manipulators and robots. We plan to improve our methods

for measuring grasp quality to take into account task-specific

constraints as well as improving our sampling strategy for

generating grasp tables. We are also exploring the integration

of our framework with planning for a mobile base.

VI. ACKNOWLEDGEMENTS

We thank the students and staff at the Digital Human

Research Center, AIST for their assistance and advice. This

work was supported by NSF grant OISE-0714497 and the

Japan Society for the Promotion of Science summer program.

REFERENCES

[1] Pelossof, R., Miller, A., Allen, P., Jebara, T., “An SVM Learning
Approach to Robotic Grasping,” ICRA, 2004.

[2] Stilman, M., Schamburek, J., Kuffner, J., and Asfour, T., “Manipula-
tion Planning Among Movable Obstacles,” ICRA, 2007.

[3] Okada, K., Haneda, A., Nakai, H., Inaba, M., and Inoue, H., “Environ-
ment Manipulation Planner for Humanoid Robots Using Task Graph
That Generates Action Sequence,” IROS, 2004.

[4] Cambon, S., Gravot, F., and Alami, R., “A robot task planner that
merges symbolic and geometric reasonning,” ECAI, 2004.

[5] Mason, M.T., “Mechanics of Robotic Manipulation,” Cambridge, MA:
MIT Press, August 2001.

[6] Li, Z., and Sastry, S., “Task oriented optimal grasping by multifingered
robot hands,” IEEE Trans. on Robotics and Automation, 1988.

[7] Zhu, X., Wang, J., “Synthesis of Force-Closure Grasps on 3-D Objects
Based on the Q Distance,” IEEE Trans. on Robotics and Automation,
2003.

[8] LaValle, S., and Kuffner, J., “Rapidly exploring random trees: Progress
and prospects,” Workshop on the Algorithmic Foundations of Robotics,
2000.

[9] Hirano, Y., Kitahama, K., and Yoshizawa, S., “Image-based Object
Recognition and Dexterous Hand/Arm Motion Planning Using RRTs
for Grasping in Cluttered Scene,” IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2005.
[10] Li Y., Fu J., and Pollard N., “Data driven grasp synthesis using shape

matching and task-based pruning,” IEEE Transactions on Visualization

and Computer Graphics, 2007.
[11] Saxena, A., Driemeyer, J., Kearns, J., and Ng, A., “Robotic Grasping

of Novel Objects,” NIPS, 2007.
[12] Hsiao K., and Lozano-Perez, T., “Imitation Learning of Whole-Body

Grasps,” Proc. RSS Workshop: Manipulation for Human Environments,
2006.

[13] Platt, R., “Learning and Generalizing Control Based Grasping and
Manipulation Skills,” PhD Dissertation, Department of Computer

Science, University of Massachusetts Amherst, 2006.
[14] Martin, T., Ambrose, R., Diftler, M., Platt, R., Jr., and Butzer, M.,

“Tactile gloves for autonomous grasping with the NASA/DARPA
Robonaut” ICRA, 2004.

[15] Wimbock, T., Ott, C., Hirzinger, and Gerd., “Impedance Behaviors for
Two-handed Manipulation: Design and Experiments” ICRA, 2007.

[16] Okada, K., Ogura, T., Haneda, A., Fujimoto, J., Gravot, F., and Inaba,
M., “Humanoid motion generation system on HRP2-JSK for daily
life environment,” IEEE International Conference Mechatronics and

Automation, 2005.
[17] Morales, A., Asfour, T., Azad, P., Knoop, S., and Dillmann, R.,

“Integrated Grasp Planning and Visual Object Localization For a
Humanoid Robot with Five-Fingered Hands” IROS 2006.

[18] Edsinger-Gonzalez, A., and Webber, J., “Domo: a force sensing
humanoid robot for manipulation research,” IEEE International Con-

ference on Humanoid Robots, 2004.


