
GRASP with path-relinking

for the quadratic

assignment problem

Mauricio G.C. Resende, AT&T Research
joint work with:

Carlos A.S. Oliveira, U. of Florida

Panos M. Pardalos, U. of Florida

Talk given at WEA 2004

Angra dos Reis, Brazil

May 2004

Summary

� The quadratic assignment problem (QAP)

� GRASP for QAP

� Path-relinking for QAP

� Computational results

� Concluding remarks

Summary

� The quadratic assignment problem (QAP)

� GRASP for QAP

� Path-relinking for QAP

� Computational results

� Concluding remarks

Summary

� The quadratic assignment problem (QAP)

� GRASP for QAP

� Path-relinking for QAP

� Computational results

� Concluding remarks

Summary

� The quadratic assignment problem (QAP)

� GRASP for QAP

� Path-relinking for QAP

� Computational results

� Concluding remarks

Summary

� The quadratic assignment problem (QAP)

� GRASP for QAP

� Path-relinking for QAP

� Computational results

� Concluding remarks

Quadratic assignment problem (QAP)

� Given N facilities f1,f2,…,fN and N locations l1,l2,…,lN
� Let AN×N = (ai,j) be a positive real matrix where ai,j is

the flow between facilities fi and fj
� Let BN×N = (bi,j) be a positive real matrix where bi,j is

the distance between locations li and lj

Quadratic assignment problem (QAP)

� Given N facilities f1,f2,…,fN and N locations l1,l2,…,lN
� Let AN×N = (ai,j) be a positive real matrix where ai,j is

the flow between facilities fi and fj
� Let BN×N = (bi,j) be a positive real matrix where bi,j is

the distance between locations li and lj

Quadratic assignment problem (QAP)

� Given N facilities f1,f2,…,fN and N locations l1,l2,…,lN
� Let AN×N = (ai,j) be a positive real matrix where ai,j is

the flow between facilities fi and fj
� Let BN×N = (bi,j) be a positive real matrix where bi,j is

the distance between locations li and lj

Quadratic assignment problem (QAP)

� Let p: {1,2,…,N} →{1,2,…,N} be an assignment of the N
facilities to the N locations

� Define the cost of assignment p to be

� QAP: Find a permutation vector p ∈ ∏N that minimizes
the assignment cost:

∑∑ ==
=

N

1j p(j)p(i),ji,

N

1i
ba c(p)

min c(p): subject to p ∈ ∏N

Quadratic assignment problem (QAP)

� Let p: {1,2,…,N} →{1,2,…,N} be an assignment of the N
facilities to the N locations

� Define the cost of assignment p to be

� QAP: Find a permutation vector p ∈ ∏N that minimizes
the assignment cost:

∑∑ ==
=

N

1j p(j)p(i),ji,

N

1i
ba c(p)

min c(p): subject to p ∈ ∏N

Quadratic assignment problem (QAP)

� Let p: {1,2,…,N} →{1,2,…,N} be an assignment of the N
facilities to the N locations

� Define the cost of assignment p to be

� QAP: Find a permutation vector p ∈ ∏N that minimizes
the assignment cost:

∑∑ ==
=

N

1j p(j)p(i),ji,

N

1i
ba c(p)

min c(p): subject to p ∈ ∏N

Quadratic assignment problem (QAP)

l1 l2

l3

10

cost of assignment: 10×1+ 30×10 + 40×5 = 510

1

30 f1 f2

f3

40

10
5

facilities and flowslocations and distances

Quadratic assignment problem (QAP)
1

l1 l2

l3

10

40

f1 f2

f3

5

cost of assignment: 10×1+ 30×10 + 40×5 = 510

swap locations of facilities f2 and f3

f1 f2

f3

1

5
10

facilities and flows

cost of assignment: 10×10+ 30×1 + 40×5 = 330

30

10

Quadratic assignment problem (QAP)
10

l1 l2

l3

10

40

f1 f3

f2

5

swap locations of facilities f1 and f3

cost of assignment: 10×10+ 30×5 + 40×1 = 290

Optimal!
30 1

f1 f2

f3

1

5
10

facilities and flows

GRASP for QAP

� GRASP multi-start metaheuristic: greedy randomized
construction, followed by local search (Feo & Resende,
1989, 1995; Festa & Resende, 2002; Resende & Ribeiro,
2003)

� GRASP for QAP
– Li, Pardalos, & Resende (1994): GRASP for QAP

– Resende, Pardalos, & Li (1996): Fortran suboroutines for dense
QAPs

– Pardalos, Pitsoulis, & Resende (1997): Fortran subroutines for
sparse QAPs

– Fleurent & Glover (1999): memory mechanism in construction

GRASP for QAP

� GRASP multi-start metaheuristic: greedy randomized
construction, followed by local search (Feo & Resende,
1989, 1995; Festa & Resende, 2002; Resende & Ribeiro,
2003)

� GRASP for QAP
– Li, Pardalos, & Resende (1994): GRASP for QAP

– Resende, Pardalos, & Li (1996): Fortran subroutines for dense
QAPs

– Pardalos, Pitsoulis, & Resende (1997): Fortran subroutines for
sparse QAPs

– Fleurent & Glover (1999): memory mechanism in construction

GRASP for QAP

repeat {

x = GreedyRandomizedConstruction();

x = LocalSearch(x);

save x as x* if best so far;

}

return x*;

Construction

� Stage 1: make two assignments {fi→lk ; fj→ll}

� Stage 2: make remaining N–2 assignments of
facilities to locations, one facility/location pair at a
time

Construction

� Stage 1: make two assignments {fi→lk ; fj→ll}

� Stage 2: make remaining N–2 assignments of
facilities to locations, one facility/location pair at a
time

Stage 1 construction

� sort distances bi,j in increasing order:
bi(1),j(1)≤bi(2),j(2) ≤ ⋅ ⋅ ⋅ ≤ bi(N),j(N) .

� sort flows ak,l in decreasing order:
ak(1),l(1)≥ak(2),l(2) ≥ ⋅ ⋅ ⋅ ≥ ak(N),l(N) .

� sort products:
ak(1),l(1) ⋅ bi(1),j(1), ak(2),l(2) ⋅ bi(2),j(2), …, ak(N),l(N) ⋅ bi(N),j(N)

� among smallest products, select ak(q),l(q) ⋅ bi(q),j(q) at random:
corresponding to assignments {fk(q)→li(q) ; fl(q)→lj(q)}

Stage 1 construction

� sort distances bi,j in increasing order:
bi(1),j(1)≤bi(2),j(2) ≤ ⋅ ⋅ ⋅ ≤ bi(N),j(N) .

� sort flows ak,l in decreasing order:
ak(1),l(1)≥ak(2),l(2) ≥ ⋅ ⋅ ⋅ ≥ ak(N),l(N) .

� sort products:
ak(1),l(1) ⋅ bi(1),j(1), ak(2),l(2) ⋅ bi(2),j(2), …, ak(N),l(N) ⋅ bi(N),j(N)

� among smallest products, select ak(q),l(q) ⋅ bi(q),j(q) at random:
corresponding to assignments {fk(q)→li(q) ; fl(q)→lj(q)}

Stage 1 construction

� sort distances bi,j in increasing order:
bi(1),j(1)≤bi(2),j(2) ≤ ⋅ ⋅ ⋅ ≤ bi(N),j(N) .

� sort flows ak,l in decreasing order:
ak(1),l(1)≥ak(2),l(2) ≥ ⋅ ⋅ ⋅ ≥ ak(N),l(N) .

� sort products:
ak(1),l(1) ⋅ bi(1),j(1), ak(2),l(2) ⋅ bi(2),j(2), …, ak(N),l(N) ⋅ bi(N),j(N)

� among smallest products, select ak(q),l(q) ⋅ bi(q),j(q) at random:
corresponding to assignments {fk(q)→li(q) ; fl(q)→lj(q)}

Stage 1 construction

� sort distances bi,j in increasing order:
bi(1),j(1)≤bi(2),j(2) ≤ ⋅ ⋅ ⋅ ≤ bi(N),j(N) .

� sort flows ak,l in decreasing order:
ak(1),l(1)≥ak(2),l(2) ≥ ⋅ ⋅ ⋅ ≥ ak(N),l(N) .

� sort products:
ak(1),l(1) ⋅ bi(1),j(1), ak(2),l(2) ⋅ bi(2),j(2), …, ak(N),l(N) ⋅ bi(N),j(N)

� among smallest products, select ak(q),l(q) ⋅ bi(q),j(q) at random:
corresponding to assignments {fk(q)→li(q) ; fl(q)→lj(q)}

Stage 2 construction

� If Ω = {(i1,k1),(i2,k2), …, (iq,kq)} are the q assignments
made so far, then

� Cost of assigning fj→ll is

� Of all possible assignments, one is selected at random
from the assignments having smallest costs and is
added to Ω

∑
Γ∈

=

ki,
lk,ji,lj, bac

Stage 2 construction

� If Ω = {(i1,k1),(i2,k2), …, (iq,kq)} are the q assignments
made so far, then

� Cost of assigning fj→ll is

� Of all possible assignments, one is selected at random
from the assignments having smallest costs and is
added to Ω

∑
Γ∈

=

ki,
lk,ji,lj, bac

Stage 2 construction

� If Ω = {(i1,k1),(i2,k2), …, (iq,kq)} are the q assignments
made so far, then

� Cost of assigning fj→ll is

� Of all possible assignments, one is selected at random
from the assignments having smallest costs and is
added to Ω

∑
Γ∈

=

ki,
lk,ji,lj, bac

Sped up in Pardalos, Pitsoulis, & Resende (1997) for

QAPs with sparse A or B matrices.

Swap based local search

a) For all pairs of assignments {fi→lk ; fj→ll}, test if
swapped assignment {fi→ll ; fj→lk} improves
solution.

b) If so, make swap and return to step (a)

Swap based local search

a) For all pairs of assignments {fi→lk ; fj→ll}, test if
swapped assignment {fi→ll ; fj→lk} improves
solution.

b) If so, make swap and return to step (a)

repeat (a)-(b) until no swap improves current solution

Path-relinking
� Path-relinking:

– Intensification strategy exploring trajectories
connecting elite solutions: Glover (1996)

– Originally proposed in the context of tabu search and
scatter search.

– Paths in the solution space leading to other elite
solutions are explored in the search for better
solutions:

� selection of moves that introduce attributes of the guiding
solution into the current solution

Path-relinking
� Path-relinking:

– Intensification strategy exploring trajectories
connecting elite solutions: Glover (1996)

– Originally proposed in the context of tabu search and
scatter search.

– Paths in the solution space leading to other elite
solutions are explored in the search for better
solutions:

� selection of moves that introduce attributes of the guiding
solution into the current solution

Path-relinking
� Path-relinking:

– Intensification strategy exploring trajectories
connecting elite solutions: Glover (1996)

– Originally proposed in the context of tabu search and
scatter search.

– Paths in the solution space leading to other elite
solutions are explored in the search for better
solutions:

� selection of moves that introduce attributes of the guiding
solution into the current solution

Path-relinking

� Exploration of trajectories that connect high quality
(elite) solutions:

initial
solution

guiding
solution

path in the neighborhood of solutions

Path-relinking
� Path is generated by selecting moves that

introduce in the initial solution attributes of the
guiding solution.

� At each step, all moves that incorporate
attributes of the guiding solution are evaluated
and the best move is selected:

guiding
solutioninitial

solution

Path-relinking
� Path is generated by selecting moves that

introduce in the initial solution attributes of the
guiding solution.

� At each step, all moves that incorporate
attributes of the guiding solution are evaluated
and the best move is selected:

guiding
solutioninitial

solution

Path-relinking

Combine solutions x and y

∆(x,y): symmetric difference between x and y

while (|∆(x,y)| > 0) {

evaluate moves corresponding in ∆(x,y)
make best move

update ∆(x,y)

}
x

y

GRASP with path-relinking

� Originally used by Laguna and Martí (1999).

� Maintains a set of elite solutions found during
GRASP iterations.

� After each GRASP iteration (construction and local
search):

– Use GRASP solution as initial solution.

– Select an elite solution uniformly at random: guiding
solution.

– Perform path-relinking between these two solutions.

GRASP with path-relinking

� Originally used by Laguna and Martí (1999).

� Maintains a set of elite solutions found during
GRASP iterations.

� After each GRASP iteration (construction and local
search):

– Use GRASP solution as initial solution.

– Select an elite solution uniformly at random: guiding
solution.

– Perform path-relinking between these two solutions.

GRASP with path-relinking

� Originally used by Laguna and Martí (1999).

� Maintains a set of elite solutions found during
GRASP iterations.

� After each GRASP iteration (construction and local
search):

– Use GRASP solution as initial solution.

– Select an elite solution uniformly at random: guiding
solution.

– Perform path-relinking between these two solutions.

GRASP with path-relinking
Repeat for Max_Iterations:

Construct a greedy randomized solution.

Use local search to improve the constructed solution.

Apply path-relinking to further improve the solution.

Update the pool of elite solutions.

Update the best solution found.

PR for QAP (permutation vectors)

Path-relinking for QAP

If swap improves solution: local search is applied

initial
solution

guiding
solution

local min

local min
If local min improves
incumbent, it is saved.

Path-relinking for QAP

Results of path relinking: S*

initial
solution

guiding
solution

path in the neighborhood of solutions

S*

If c(S*) < min {c(S), c(T)}, and c(S*) ≤ c(Si), for i=1,…,N,
i.e. S* is best solution in path, then S* is returned.

S
T

S0

S1

S2

S3
SN

Path-relinking for QAP

initial
solution

guiding
solution

S*

S T

S0

Si–1

Si

Si+1

SN

Si is a local minimum w.r.t. PR:
c(Si) < c(Si–1) and c(Si) < c(Si+1), for all i=1,…,N.

If path-relinking does not improve (S,T), then if Si is a
best local min w.r.t. PR: return S* = Si

If no local min exists, return S*=argmin{S,T}

PR pool management

� S* is candidate for inclusion in pool of elite
solutions (P)

� If c(S*) < c(Se), for all Se∈ P, then S* is put in P

� Else, if c(S*) < max{c(Se), Se∈ P} and
|∆(S*,Se)| ≥ 3, for all Se∈ P, then S* is put in P

� If pool is full, remove
argmin {|∆(S*,Se)|, ∀ Se∈ P s.t. c(Se) ≥ c(S*)}

PR pool management

� S* is candidate for inclusion in pool of elite
solutions (P)

� If c(S*) < c(Se), for all Se∈ P, then S* is put in P

� Else, if c(S*) < max{c(Se), Se∈ P} and
|∆(S*,Se)| ≥ 3, for all Se∈ P, then S* is put in P

� If pool is full, remove
argmin {|∆(S*,Se)|, ∀ Se∈ P s.t. c(Se) ≥ c(S*)}

PR pool management

� S* is candidate for inclusion in pool of elite
solutions (P)

� If c(S*) < c(Se), for all Se∈ P, then S* is put in P

� Else, if c(S*) < max{c(Se), Se∈ P} and
|∆(S*,Se)| ≥ 3, for all Se∈ P, then S* is put in P

� If pool is full, remove
argmin {|∆(S*,Se)|, ∀ Se∈ P s.t. c(Se) ≥ c(S*)}

PR pool management

� S* is candidate for inclusion in pool of elite
solutions (P)

� If c(S*) < c(Se), for all Se∈ P, then S* is put in P

� Else, if c(S*) < max{c(Se), Se∈ P} and
|∆(S*,Se)| ≥ 3, for all Se∈ P, then S* is put in P

� If pool is full, remove
argmin {|∆(S*,Se)|, ∀ Se∈ P s.t. c(Se) ≥ c(S*)}

PR pool management

S is initial solution for path-relinking: favor choice of target
solution T with large symmetric difference with S.

This leads to longer paths in path-relinking.

Probability of choosing Se ∈ P:

∑
∈

∆

∆
=

PR

e
e

|R)(S,|

|)S(S,|
)p(S

Experimental results

� Compare GRASP with and without path-relinking.

� New GRASP code in C outperforms old Fortran
codes: we use same code to compare algorithms

� All QAPLIB (Burkhard, Karisch, & Rendl, 1991)
instances of size N ≤ 40

� 100 independent runs of each algorithm, recording
CPU time to find the best known solution for
instance

Experimental results

� Compare GRASP with and without path-relinking.

� New GRASP code in C outperforms old Fortran
codes: we use same code to compare algorithms

� All QAPLIB (Burkhard, Karisch, & Rendl, 1991)
instances of size N ≤ 40

� 100 independent runs of each algorithm, recording
CPU time to find the best known solution for
instance

Experimental results

� Compare GRASP with and without path-relinking.

� New GRASP code in C outperforms old Fortran
codes: we use same code to compare algorithms

� All QAPLIB (Burkhard, Karisch, & Rendl, 1991)
instances of size N ≤ 40

� 100 independent runs of each algorithm, recording
CPU time to find the best known solution for
instance

Experimental results

� Compare GRASP with and without path-relinking.

� New GRASP code in C outperforms old Fortran
codes: we use same code to compare algorithms

� All QAPLIB (Burkhard, Karisch, & Rendl, 1991)
instances of size N ≤ 40

� 100 independent runs of each algorithm, recording
CPU time to find the best known solution for
instance

Experimental results

� SGI Challenge computer (196 MHz R10000
processors (28) and 7 Gb memory)

� Single processor used for each run

� GRASP RCL parameter α chosen at random in
interval [0,1] at each GRASP iteration.

� Size of elite set: 30

� Path-relinking done in both directions (S to T to S)

� Care taken to ensure that GRASP and GRASP with
path-relinking iterations are in sync

Experimental results

� SGI Challenge computer (196 MHz R10000
processors (28) and 7 Gb memory)

� Single processor used for each run

� GRASP RCL parameter α chosen at random in
interval [0,1] at each GRASP iteration.

� Size of elite set: 30

� Path-relinking done in both directions (S to T to S)

� Care taken to ensure that GRASP and GRASP with
path-relinking iterations are in sync

Experimental results

� SGI Challenge computer (196 MHz R10000
processors (28) and 7 Gb memory)

� Single processor used for each run

� GRASP RCL parameter α chosen at random in
interval [0,1] at each GRASP iteration.

� Size of elite set: 30

� Path-relinking done in both directions (S to T to S)

� Care taken to ensure that GRASP and GRASP with
path-relinking iterations are in sync

Experimental results

� SGI Challenge computer (196 MHz R10000
processors (28) and 7 Gb memory)

� Single processor used for each run

� GRASP RCL parameter α chosen at random in
interval [0,1] at each GRASP iteration.

� Size of elite set: 30

� Path-relinking done in both directions (S to T to S)

� Care taken to ensure that GRASP and GRASP with
path-relinking iterations are in sync

Experimental results

� SGI Challenge computer (196 MHz R10000
processors (28) and 7 Gb memory)

� Single processor used for each run

� GRASP RCL parameter α chosen at random in
interval [0,1] at each GRASP iteration.

� Size of elite set: 30

� Path-relinking done in both directions (S to T to S)

� Care taken to ensure that GRASP and GRASP with
path-relinking iterations are in sync

Experimental results

� SGI Challenge computer (196 MHz R10000
processors (28) and 7 Gb memory)

� Single processor used for each run

� GRASP RCL parameter α chosen at random in
interval [0,1] at each GRASP iteration.

� Size of elite set: 30

� Path-relinking done in both directions (S to T to S)

� Care taken to ensure that GRASP and GRASP with
path-relinking iterations are in sync

Time-to-target-value plots

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

p
ro

b
a

b
ili

ty

time to target solution value (seconds)

Sort times such that
t1 ≤ t2 ≤ ··· ≤ t100 and plot
{ti,pi}, for i=1,…,N, where
pi = (i–.5)/100

Random variable time-to-target-solution value fits a two-parameter
exponential distribution (Aiex, Resende, & Ribeiro, 2002).

Time-to-target-value plots

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

p
ro

b
a

b
ili

ty

time to target solution value (seconds)

In 80% of trials target

solution is found in less

than 1.4 s

Probability of finding target

solution in less than 1 s is

about 70%.

Time-to-target-value plots

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

time to target solution

ALG 1 ALG 2

For a given time, compare

probabilities of finding target

solution in at most that time.

For a given probability, compare

times required to find with given

probability.
We say ALG 1 is faster than

ALG 2

C.E. Nugent, T.E. Vollmann and J. Ruml [1968]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: nug12

GRASP with PR
GRASP

nug12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: nug20

GRASP with PR
GRASP

nug20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: nug25

GRASP with PR
GRASP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000 12000 14000

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: nug30

GRASP with PR
GRASP

nug25 nug30

E.D. Taillard [1991, 1994]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: tai15a

GRASP with PR
GRASP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: tai17a

GRASP with PR
GRASP

tai17atai15a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: tai20a

GRASP with PR
GRASP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: tai25a

GRASP with PR
GRASP

tai20a tai25a

Y. Li and P.M. Pardalos [1992]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: lipa30a

GRASP with PR
GRASP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: lipa20a

GRASP with PR
GRASP

lipa30a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20000 40000 60000 80000 100000 120000 140000 160000

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: lipa40a

GRASP with PR
GRASP

lipa20a

lipa40a

U.W. Thonemann and A. Bölte [1994]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100000 200000 300000 400000 500000 600000

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: tho40

GRASP with PR
GRASP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: tho30

GRASP with PR
GRASP

tho30

tho40

L. Steinberg [1961]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20000 40000 60000 80000 100000 120000 140000 160000 180000

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: ste36c

GRASP with PR
GRASP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50000 100000 150000 200000 250000 300000 350000 400000

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: ste36a

GRASP with PR
GRASP

ste36a

ste36c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: ste36b

GRASP with PR
GRASP

ste36b

M. Scriabin and R.C. Vergin [1975]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: scr12

GRASP with PR
GRASP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: scr15

GRASP with PR
GRASP

scr12 scr15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: scr20

GRASP with PR
GRASP

scr20

S.W. Hadley, F. Rendl and H. Wolkowicz [1992]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: had14

GRASP with PR
GRASP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: had16

GRASP with PR
GRASP

had14 had16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: had18

GRASP with PR
GRASP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: had20

GRASP with PR
GRASP

had20had18

R.E. Burkard and J. Offermann [1977]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: bur26a

GRASP with PR
GRASP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: bur26b

GRASP with PR
GRASP

bur26a bur26b

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: bur26c

GRASP with PR
GRASP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: bur26d

GRASP with PR
GRASP

bur26c bur26d

N. Christofides and E. Benavent [1989]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: chr18a

GRASP with PR
GRASP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: chr20a

GRASP with PR
GRASP

chr18a chr20a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000 12000 14000 16000

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: chr22a

GRASP with PR
GRASP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000 12000 14000 16000

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: chr25a

GRASP with PR
GRASP

chr22a chr25a

C. Roucairol [1987]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: rou12

GRASP with PR
GRASP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: rou15

GRASP with PR
GRASP

rou12 rou15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: rou20

GRASP with PR
GRASP

rou20

J. Krarup and P.M. Pruzan [1978]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: kra30a

GRASP with PR
GRASP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000 7000

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: kra30b

GRASP with PR
GRASP

kra30a

kra30b

B. Eschermann and H.J. Wunderlich [1990]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: esc32a

GRASP with PR
GRASP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: esc32b

GRASP with PR
GRASP

esc32a esc32b

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: esc32d

GRASP with PR
GRASP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: esc32h

GRASP with PR
GRASP

esc32hesc32d

B. Eschermann and H.J. Wunderlich [1990]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: esc32c

GRASP with PR
GRASP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: esc32e

GRASP with PR
GRASP

esc32eesc32c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: esc32f

GRASP with PR
GRASP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target value (seconds on an SGI Challenge 196MHz R10000)

prob: esc32g

GRASP with PR
GRASP

esc32f esc32g

Concluding remarks

� New heuristic for the QAP is described.

� Path-relinking shown to improve performance of
GRASP on almost all instances.

� Journal paper will also compare GRASP+PR with
other heuristics for QAP on larger instances from
QAPLIB.

� Experimental results and code are available at
http://www.research.att.com/~mgcr/exp/gqapspr

Concluding remarks

� New heuristic for the QAP is described.

� Path-relinking shown to improve performance of
GRASP on almost all instances.

� Journal paper will also compare GRASP+PR with
other heuristics for QAP on larger instances from
QAPLIB.

� Experimental results and code are available at
http://www.research.att.com/~mgcr/exp/gqapspr

Concluding remarks

� New heuristic for the QAP is described.

� Path-relinking shown to improve performance of
GRASP on almost all instances.

� Journal paper will also compare GRASP+PR with
other heuristics for QAP on larger instances from
QAPLIB.

� Experimental results and code are available at
http://www.research.att.com/~mgcr/exp/gqapspr

Concluding remarks

� New heuristic for the QAP is described.

� Path-relinking shown to improve performance of
GRASP on almost all instances.

� Journal paper will also compare GRASP+PR with
other heuristics for QAP on larger instances from
QAPLIB.

� Experimental results and code are available at
http://www.research.att.com/~mgcr/exp/gqapspr

My coauthors

Carlos A. S. Oliveira Panos M. Pardalos

	Summary
	Summary
	Summary
	Summary
	Summary
	Quadratic assignment problem (QAP)
	Quadratic assignment problem (QAP)
	Quadratic assignment problem (QAP)
	Quadratic assignment problem (QAP)
	Quadratic assignment problem (QAP)
	Quadratic assignment problem (QAP)
	Quadratic assignment problem (QAP)
	Quadratic assignment problem (QAP)
	Quadratic assignment problem (QAP)
	GRASP for QAP
	GRASP for QAP
	GRASP for QAP
	Construction
	Construction
	Stage 1 construction
	Stage 1 construction
	Stage 1 construction
	Stage 1 construction
	Stage 2 construction
	Stage 2 construction
	Stage 2 construction
	Swap based local search
	Swap based local search
	Path-relinking
	Path-relinking
	Path-relinking
	Path-relinking
	Path-relinking
	Path-relinking
	Path-relinking
	GRASP with path-relinking
	GRASP with path-relinking
	GRASP with path-relinking
	GRASP with path-relinking
	PR for QAP (permutation vectors)
	Path-relinking for QAP
	Path-relinking for QAP
	Path-relinking for QAP
	PR pool management
	PR pool management
	PR pool management
	PR pool management
	PR pool management
	Experimental results
	Experimental results
	Experimental results
	Experimental results
	Experimental results
	Experimental results
	Experimental results
	Experimental results
	Experimental results
	Experimental results
	Time-to-target-value plots
	Time-to-target-value plots
	C.E. Nugent, T.E. Vollmann and J. Ruml [1968]
	E.D. Taillard [1991, 1994]
	Y. Li and P.M. Pardalos [1992]
	U.W. Thonemann and A. Bölte [1994]
	L. Steinberg [1961]
	M. Scriabin and R.C. Vergin [1975]
	S.W. Hadley, F. Rendl and H. Wolkowicz [1992]
	R.E. Burkard and J. Offermann [1977]
	N. Christofides and E. Benavent [1989]
	C. Roucairol [1987]
	J. Krarup and P.M. Pruzan [1978]
	B. Eschermann and H.J. Wunderlich [1990]
	B. Eschermann and H.J. Wunderlich [1990]
	Concluding remarks
	Concluding remarks
	Concluding remarks
	Concluding remarks
	My coauthors

