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Quadratic assignment problem (QAP)

� Given N facilities f1,f2,…,fN and N locations l1,l2,…,lN
� Let AN×N = (ai,j) be a positive real matrix where ai,j is 

the flow between facilities fi and fj
� Let BN×N = (bi,j) be a positive real matrix where bi,j is 

the distance between locations li and lj
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Quadratic assignment problem (QAP)

� Let p: {1,2,…,N} →{1,2,…,N} be an assignment of the N 
facilities to the N locations

� Define the cost of assignment p to be

� QAP:  Find a permutation vector p ∈ ∏N that minimizes 
the assignment cost:
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=

N

1j p(j)p(i),ji,

N

1i
ba  c(p)

min c(p): subject to p ∈ ∏N
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Quadratic assignment problem (QAP)
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GRASP for QAP

� GRASP multi-start metaheuristic: greedy randomized 
construction, followed by local search (Feo & Resende, 
1989, 1995; Festa & Resende, 2002; Resende & Ribeiro, 
2003)

� GRASP for QAP
– Li, Pardalos, & Resende (1994): GRASP for QAP

– Resende, Pardalos, & Li (1996): Fortran suboroutines for dense 
QAPs

– Pardalos, Pitsoulis, & Resende (1997): Fortran subroutines for 
sparse QAPs

– Fleurent & Glover (1999): memory mechanism in construction 
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GRASP for QAP

repeat {

x = GreedyRandomizedConstruction( );

x = LocalSearch(x);

save x as x* if best so far;

}

return x*;



Construction

� Stage 1: make two assignments {fi→lk ; fj→ll}

� Stage 2: make remaining N–2 assignments of 
facilities to locations, one facility/location pair at a 
time
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Stage 1 construction

� sort distances bi,j in increasing order:                          
bi(1),j(1)≤bi(2),j(2) ≤ ⋅ ⋅ ⋅ ≤ bi(N),j(N) .

� sort flows ak,l in decreasing order:                        
ak(1),l(1)≥ak(2),l(2) ≥ ⋅ ⋅ ⋅ ≥ ak(N),l(N) .

� sort products:                                                  
ak(1),l(1) ⋅ bi(1),j(1), ak(2),l(2) ⋅ bi(2),j(2), …, ak(N),l(N) ⋅ bi(N),j(N)

� among smallest products, select ak(q),l(q) ⋅ bi(q),j(q) at random:        
corresponding to assignments {fk(q)→li(q) ; fl(q)→lj(q)}
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Stage 2 construction

� If Ω = {(i1,k1),(i2,k2), …, (iq,kq)} are the q assignments 
made so far, then

� Cost of assigning fj→ll is

� Of all possible assignments, one is selected at random 
from the assignments having smallest costs and is 
added to Ω

∑
Γ∈
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Stage 2 construction

� If Ω = {(i1,k1),(i2,k2), …, (iq,kq)} are the q assignments 
made so far, then

� Cost of assigning fj→ll is

� Of all possible assignments, one is selected at random 
from the assignments having smallest costs and is 
added to Ω

∑
Γ∈

=

ki,
lk,ji,lj, bac

Sped up in Pardalos, Pitsoulis, & Resende (1997) for

QAPs with sparse A or B matrices.



Swap based local search

a) For all pairs of assignments {fi→lk ; fj→ll}, test if 
swapped assignment {fi→ll ; fj→lk} improves 
solution.

b) If so, make swap and return to step (a)



Swap based local search

a) For all pairs of assignments {fi→lk ; fj→ll}, test if 
swapped assignment {fi→ll ; fj→lk} improves 
solution.

b) If so, make swap and return to step (a)

repeat (a)-(b) until no swap improves current solution



Path-relinking
� Path-relinking:

– Intensification strategy exploring trajectories       
connecting elite solutions: Glover (1996)

– Originally proposed in the context of tabu search and 
scatter search.

– Paths in the solution space leading to other elite 
solutions are explored in the search for better 
solutions:

� selection of moves that introduce attributes of the guiding 
solution into the current solution 
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Path-relinking

� Exploration of trajectories that connect high quality 
(elite) solutions:

initial
solution

guiding
solution

path in the neighborhood of solutions



Path-relinking
� Path is generated by selecting moves that 

introduce in the initial solution attributes of the 
guiding solution.

� At each step, all moves that incorporate 
attributes of the guiding solution are evaluated 
and the best move is selected: 

guiding 
solutioninitial

solution
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Path-relinking

Combine solutions x and y

∆(x,y):  symmetric difference between x and y 

while  ( |∆(x,y)| > 0 ) {

evaluate moves corresponding in ∆(x,y)
make best move

update ∆(x,y)

}
x

y



GRASP with path-relinking

� Originally used by Laguna and Martí (1999).

� Maintains a set of elite solutions found during 
GRASP iterations.

� After each GRASP iteration (construction and local 
search):

– Use GRASP solution as initial solution. 

– Select an elite solution uniformly at random: guiding 
solution.

– Perform path-relinking between these two solutions.
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GRASP with path-relinking
Repeat for Max_Iterations:

Construct a greedy randomized solution.

Use local search to improve the constructed solution.

Apply path-relinking to further improve the solution.

Update the pool of elite solutions.

Update the best solution found.



PR for QAP (permutation vectors)



Path-relinking for QAP

If swap improves solution: local search is applied

initial
solution

guiding
solution

local min

local min
If local min improves
incumbent, it is saved.



Path-relinking for QAP

Results of path relinking: S*

initial
solution

guiding
solution

path in the neighborhood of solutions

S*

If c(S*) < min {c(S), c(T)}, and c(S*) ≤ c(Si), for i=1,…,N,
i.e. S* is best solution in path, then S* is returned.

S
T

S0

S1

S2

S3
SN



Path-relinking for QAP

initial
solution

guiding
solution

S*

S T

S0

Si–1

Si

Si+1

SN

Si is a local minimum w.r.t. PR:                               
c(Si) < c(Si–1) and c(Si) < c(Si+1), for all i=1,…,N.

If path-relinking does not improve (S,T), then if Si is a 
best local min w.r.t. PR: return S* = Si

If no local min exists, return S*=argmin{S,T}



PR pool management

� S* is candidate for inclusion in pool of elite 
solutions (P)

� If c(S*) < c(Se), for all Se∈ P, then S* is put in P

� Else, if c(S*) < max{c(Se), Se∈ P} and
|∆(S*,Se)| ≥ 3, for all Se∈ P, then S* is put in P

� If pool is full, remove                                      
argmin {|∆(S*,Se)|, ∀ Se∈ P s.t. c(Se) ≥ c(S*)}
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PR pool management

S is initial solution for path-relinking: favor choice of target 
solution T with large symmetric difference with S.

This leads to longer paths in path-relinking.

Probability of choosing Se ∈ P:

∑
∈

∆

∆
=

PR

e
e

|R)(S,|

|)S(S,|
  )p(S



Experimental results

� Compare GRASP with and without path-relinking.

� New GRASP code in C outperforms old Fortran 
codes: we use same code to compare algorithms

� All QAPLIB (Burkhard, Karisch, & Rendl, 1991) 
instances of size N ≤ 40

� 100 independent runs of each algorithm, recording 
CPU time to find the best known solution for 
instance
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Experimental results

� SGI Challenge computer (196 MHz R10000 
processors (28) and 7 Gb memory)

� Single processor used for each run

� GRASP RCL parameter α chosen at random in 
interval [0,1] at each GRASP iteration.

� Size of elite set: 30

� Path-relinking done in both directions (S to T to S)

� Care taken to ensure that GRASP and GRASP with 
path-relinking iterations are in sync
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Sort times such that
t1 ≤ t2 ≤ ··· ≤ t100 and plot
{ti,pi}, for i=1,…,N, where
pi = (i–.5)/100

Random variable time-to-target-solution value fits a two-parameter 
exponential distribution (Aiex, Resende, & Ribeiro, 2002).
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In 80% of trials target

solution is found in less 

than 1.4 s

Probability of finding target 

solution in less than 1 s is 

about 70%.



Time-to-target-value plots
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ALG 1 ALG 2

For a given time, compare 

probabilities of finding target

solution in at most that time.

For a given probability, compare 

times required to find with given 

probability.
We say ALG 1 is faster than 

ALG 2



C.E. Nugent, T.E. Vollmann and J. Ruml [1968]
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E.D. Taillard [1991, 1994] 
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Y. Li and P.M. Pardalos [1992]
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Concluding remarks

� New heuristic for the QAP is described.

� Path-relinking shown to improve performance of 
GRASP on almost all instances.

� Journal paper will also compare GRASP+PR with 
other heuristics for QAP on larger instances from 
QAPLIB.

� Experimental results and code are available at 
http://www.research.att.com/~mgcr/exp/gqapspr
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