GRASP with path-relinking for the quadratic assignment problem

Mauricio G.C. Resende, AT&T Research joint work with: Carlos A.S. Oliveira, U. of Florida

Panos M. Pardalos, U. of Florida

Talk given at WEA 2004 Angra dos Reis, Brazil May 2004

- The quadratic assignment problem (QAP)
- GRASP for QAP
- Path-relinking for QAP
- Computational results
- Concluding remarks

- The quadratic assignment problem (QAP)
- GRASP for QAP
- Path-relinking for QAP
- Computational results
- Concluding remarks

- The quadratic assignment problem (QAP)
- GRASP for QAP
- Path-relinking for QAP
- Computational results
- Concluding remarks

- The quadratic assignment problem (QAP)
- GRASP for QAP
- Path-relinking for QAP
- Computational results
- Concluding remarks

- The quadratic assignment problem (QAP)
- GRASP for QAP
- Path-relinking for QAP
- Computational results
- Concluding remarks

- Given N facilities f₁,f₂,...,f_N and N locations I₁,I₂,...,I_N
- Let $A^{N \times N} = (a_{i,j})$ be a positive real matrix where $a_{i,j}$ is the flow between facilities f_i and f_j
- Let $B^{N \times N} = (b_{i,j})$ be a positive real matrix where $b_{i,j}$ is the distance between locations l_i and l_i

- Given N facilities f₁,f₂,...,f_N and N locations l₁,l₂,...,l_N
- Let $A^{N \times N} = (a_{i,j})$ be a positive real matrix where $a_{i,j}$ is the flow between facilities f_i and f_j
- Let $B^{N \times N} = (b_{i,j})$ be a positive real matrix where $b_{i,j}$ is the distance between locations l_i and l_i

- Given N facilities f₁,f₂,...,f_N and N locations l₁,l₂,...,l_N
- Let $A^{N \times N} = (a_{i,j})$ be a positive real matrix where $a_{i,j}$ is the flow between facilities f_i and f_j
- Let $B^{N \times N} = (b_{i,j})$ be a positive real matrix where $b_{i,j}$ is the distance between locations l_i and l_i

- Let p: {1,2,...,N} →{1,2,...,N} be an assignment of the N facilities to the N locations
- Define the cost of assignment p to be

$$c(p) = \sum_{i=1}^{N} \sum_{j=1}^{N} a_{i,j} b_{p(i),p(j)}$$

• QAP: Find a permutation vector $p \in \prod_N$ that minimizes the assignment cost:

min c(p): subject to
$$p \in \prod_{N}$$

- Let p: {1,2,...,N} →{1,2,...,N} be an assignment of the N facilities to the N locations
- Define the cost of assignment p to be

$$c(p) = \sum_{i=1}^{N} \sum_{j=1}^{N} a_{i,j} b_{p(i),p(j)}$$

• QAP: Find a permutation vector $p \in \prod_N$ that minimizes the assignment cost:

min c(p): subject to
$$p \in \prod_{N}$$

- Let p: {1,2,...,N} →{1,2,...,N} be an assignment of the N facilities to the N locations
- Define the cost of assignment p to be

$$c(p) = \sum_{i=1}^{N} \sum_{j=1}^{N} a_{i,j} b_{p(i),p(j)}$$

• QAP: Find a permutation vector $p \in \prod_N$ that minimizes the assignment cost:

min c(p): subject to
$$p \in \prod_{N}$$

cost of assignment: $10\times1+30\times10+40\times5=510$

locations and distances

GRASP for QAP

- GRASP ** multi-start metaheuristic: greedy randomized construction, followed by local search (Feo & Resende, 1989, 1995; Festa & Resende, 2002; Resende & Ribeiro, 2003)
- GRASP for QAP
 - Li, Pardalos, & Resende (1994): GRASP for QAP
 - Resende, Pardalos, & Li (1996): Fortran suboroutines for dense
 QAPs
 - Pardalos, Pitsoulis, & Resende (1997): Fortran subroutines for sparse QAPs
 - Fleurent & Glover (1999): memory mechanism in construction

GRASP for QAP

GRASP ** multi-start metaheuristic: greedy randomized construction, followed by local search (Feo & Resende, 1989, 1995; Festa & Resende, 2002; Resende & Ribeiro, 2003)

GRASP for QAP

- Li, Pardalos, & Resende (1994): GRASP for QAP
- Resende, Pardalos, & Li (1996): Fortran subroutines for dense
 QAPs
- Pardalos, Pitsoulis, & Resende (1997): Fortran subroutines for sparse QAPs
- Fleurent & Glover (1999): memory mechanism in construction

GRASP for QAP

```
repeat {
  x = GreedyRandomizedConstruction(•);
  x = LocalSearch(x):
  save x as x* if best so far;
return x*;
```


Construction

• Stage 1: make two assignments $\{f_i \rightarrow I_k; f_j \rightarrow I_l\}$

 Stage 2: make remaining N-2 assignments of facilities to locations, one facility/location pair at a time

Construction

• Stage 1: make two assignments $\{f_i \rightarrow I_k; f_j \rightarrow I_l\}$

 Stage 2: make remaining N-2 assignments of facilities to locations, one facility/location pair at a time

sort distances b_{i,i} in increasing order:

$$b_{i(1),j(1)} \le b_{i(2),j(2)} \le \cdots \le b_{i(N),j(N)}$$
.

• sort flows a_{k.l} in decreasing order:

$$a_{k(1),l(1)} \ge a_{k(2),l(2)} \ge \cdots \ge a_{k(N),l(N)}$$
.

sort products:

$$a_{k(1),l(1)} \cdot b_{i(1),j(1)}, \ a_{k(2),l(2)} \cdot b_{i(2),j(2)}, \ \dots, \ a_{k(N),l(N)} \cdot b_{i(N),j(N)}$$

sort distances b_{i,i} in increasing order:

$$b_{i(1),j(1)} \le b_{i(2),j(2)} \le \cdots \le b_{i(N),j(N)}$$
.

sort flows a_{k,l} in decreasing order:

$$a_{k(1),l(1)} \ge a_{k(2),l(2)} \ge \cdots \ge a_{k(N),l(N)}$$
.

sort products:

$$a_{k(1),l(1)} \cdot b_{i(1),j(1)}, \ a_{k(2),l(2)} \cdot b_{i(2),j(2)}, \ \dots, \ a_{k(N),l(N)} \cdot b_{i(N),j(N)}$$

sort distances b_{i,i} in increasing order:

$$b_{i(1),j(1)} \le b_{i(2),j(2)} \le \cdots \le b_{i(N),j(N)}$$
.

• sort flows a_{k l} in decreasing order:

$$a_{k(1),l(1)} \ge a_{k(2),l(2)} \ge \cdots \ge a_{k(N),l(N)}$$
.

• sort products:

$$a_{k(1),l(1)} \cdot b_{i(1),j(1)}, \ a_{k(2),l(2)} \cdot b_{i(2),j(2)}, \ \dots, \ a_{k(N),l(N)} \cdot b_{i(N),j(N)}$$

sort distances b_{i,i} in increasing order:

$$b_{i(1),j(1)} \le b_{i(2),j(2)} \le \cdots \le b_{i(N),j(N)}$$
.

• sort flows a_{k.l} in decreasing order:

$$a_{k(1),l(1)} \ge a_{k(2),l(2)} \ge \cdots \ge a_{k(N),l(N)}$$
.

sort products:

$$a_{k(1),l(1)} \cdot b_{i(1),j(1)}, \ a_{k(2),l(2)} \cdot b_{i(2),j(2)}, \ \dots, \ a_{k(N),l(N)} \cdot b_{i(N),j(N)}$$

- If $\Omega = \{(i_1, k_1), (i_2, k_2), ..., (i_a, k_a)\}$ are the q assignments made so far, then

• Cost of assigning
$$f_j \rightarrow I_l$$
 is $c_{j,l} = \sum_{i,k \in \Gamma} a_{i,j} b_{k,l}$

 Of all possible assignments, one is selected at random from the assignments having smallest costs and is added to Ω

- If $\Omega = \{(i_1, k_1), (i_2, k_2), ..., (i_a, k_a)\}$ are the q assignments made so far, then
- Cost of assigning $f_j \rightarrow I_l$ is $c_{j,l} = \sum_{i,k \in \Gamma} a_{i,j} b_{k,l}$

$$c_{_{j,l}} = \sum_{_{i,k \in \Gamma}} a_{_{i,j}} b_{_{k,l}}$$

 Of all possible assignments, one is selected at random from the assignments having smallest costs and is added to Ω

- If $\Omega = \{(i_1, k_1), (i_2, k_2), ..., (i_a, k_a)\}$ are the q assignments made so far, then

• Cost of assigning
$$f_j \rightarrow I_l$$
 is $c_{j,l} = \sum_{i,k \in \Gamma} a_{i,j} b_{k,l}$

 Of all possible assignments, one is selected at random from the assignments having smallest costs and is added to Ω

> Sped up in Pardalos, Pitsoulis, & Resende (1997) for QAPs with sparse A or B matrices.

Swap based local search

- a) For all pairs of assignments $\{f_i \rightarrow l_k; f_j \rightarrow l_l\}$, test if swapped assignment $\{f_i \rightarrow l_l; f_j \rightarrow l_k\}$ improves solution.
- b) If so, make swap and return to step (a)

Swap based local search

- a) For all pairs of assignments $\{f_i \rightarrow l_k ; f_j \rightarrow l_l\}$, test if swapped assignment $\{f_i \rightarrow l_l ; f_j \rightarrow l_k\}$ improves solution.
- b) If so, make swap and return to step (a)

repeat (a)-(b) until no swap improves current solution

• Path-relinking:

- Intensification strategy exploring trajectories connecting elite solutions: Glover (1996)
- Originally proposed in the context of tabu search and scatter search.
- Paths in the solution space leading to other elite solutions are explored in the search for better solutions:
 - selection of moves that introduce attributes of the guiding solution into the current solution

Path-relinking:

- Intensification strategy exploring trajectories connecting elite solutions: Glover (1996)
- Originally proposed in the context of tabu search and scatter search.
- Paths in the solution space leading to other elite solutions are explored in the search for better solutions:
 - selection of moves that introduce attributes of the guiding solution into the current solution

Path-relinking:

- Intensification strategy exploring trajectories connecting elite solutions: Glover (1996)
- Originally proposed in the context of tabu search and scatter search.
- Paths in the solution space leading to other elite solutions are explored in the search for better solutions:
 - selection of moves that introduce attributes of the guiding solution into the current solution

 Exploration of trajectories that connect high quality (elite) solutions:

- Path is generated by selecting moves that introduce in the initial solution attributes of the guiding solution.
- At each step, all moves that incorporate attributes of the guiding solution are evaluated and the best move is selected:

initial (

- Path is generated by selecting moves that introduce in the initial solution attributes of the guiding solution.
- At each step, all moves that incorporate attributes of the guiding solution are evaluated and the best move is selected:

Combine solutions x and y

 $\Delta(x,y)$: symmetric difference between x and y

while $(|\Delta(x,y)| > 0)$

evaluate moves corresponding in $\Delta(x,y)$

make best move

- Originally used by Laguna and Martí (1999).
- Maintains a set of elite solutions found during GRASP iterations.
- After each GRASP iteration (construction and local search):
 - Use GRASP solution as initial solution.
 - Select an elite solution uniformly at random: guiding solution.
 - Perform path-relinking between these two solutions.

- Originally used by Laguna and Martí (1999).
- Maintains a set of elite solutions found during GRASP iterations.
- After each GRASP iteration (construction and local search):
 - Use GRASP solution as initial solution.
 - Select an elite solution uniformly at random: guiding solution.
 - Perform path-relinking between these two solutions.

- Originally used by Laguna and Martí (1999).
- Maintains a set of elite solutions found during GRASP iterations.
- After each GRASP iteration (construction and local search):
 - Use GRASP solution as initial solution.
 - Select an elite solution uniformly at random: guiding solution.
 - Perform path-relinking between these two solutions.

Repeat for Max_Iterations:

Construct a greedy randomized solution.

Use local search to improve the constructed solution.

Apply path-relinking to further improve the solution.

Update the pool of elite solutions.

Update the best solution found.

PR for QAP (permutation vectors)

Path-relinking for QAP

If swap improves solution: local search is applied

Path-relinking for QAP

Results of path relinking: S*

If $c(S^*) < \min \{c(S), c(T)\}$, and $c(S^*) \le c(S^i)$, for i=1,...,N, i.e. S^* is best solution in path, then S^* is returned.

Path-relinking for QAP

 S^i is a local minimum w.r.t. PR: $c(S^i) < c(S^{i-1})$ and $c(S^i) < c(S^{i+1})$, for all i=1,...,N.

If path-relinking does not improve (S,T), then if S^i is a best local min w.r.t. PR: return $S^* = S^i$

If no local min exists, return S*=argmin{S,T}

- S* is candidate for inclusion in pool of elite solutions (P)
- If $c(S^*) < c(S^e)$, for all $S^e \in P$, then S^* is put in P
- Else, if $c(S^*) < \max\{c(S^e), S^e \in P\}$ and $|\Delta(S^*, S^e)| \ge 3$, for all $S^e \in P$, then S^* is put in P
- If pool is full, remove argmin $\{|\Delta(S^*,S^e)|, \forall S^e \in P \text{ s.t. } c(S^e) \geq c(S^*)\}$

- S* is candidate for inclusion in pool of elite solutions (P)
- If $c(S^*) < c(S^e)$, for all $S^e \in P$, then S^* is put in P
- Else, if $c(S^*) < \max\{c(S^e), S^e \in P\}$ and $|\Delta(S^*, S^e)| \ge 3$, for all $S^e \in P$, then S^* is put in P
- If pool is full, remove argmin $\{|\Delta(S^*,S^e)|, \forall S^e \in P \text{ s.t. } c(S^e) \geq c(S^*)\}$

- S* is candidate for inclusion in pool of elite solutions (P)
- If $c(S^*) < c(S^e)$, for all $S^e \in P$, then S^* is put in P
- Else, if $c(S^*) < \max\{c(S^e), S^e \in P\}$ and $|\Delta(S^*, S^e)| \ge 3$, for all $S^e \in P$, then S^* is put in P
- If pool is full, remove argmin $\{|\Delta(S^*,S^e)|, \forall S^e \in P \text{ s.t. } c(S^e) \geq c(S^*)\}$

- S* is candidate for inclusion in pool of elite solutions (P)
- If $c(S^*) < c(S^e)$, for all $S^e \in P$, then S^* is put in P
- Else, if $c(S^*) < \max\{c(S^e), S^e \in P\}$ and $|\Delta(S^*, S^e)| \ge 3$, for all $S^e \in P$, then S^* is put in P
- If pool is full, remove argmin $\{|\Delta(S^*,S^e)|, \forall S^e \in P \text{ s.t. } c(S^e) \geq c(S^*)\}$

S is initial solution for path-relinking: favor choice of target solution T with large symmetric difference with S.

This leads to longer paths in path-relinking.

Probability of choosing $S^e \in P$:

$$p(S^e) = \frac{|\Delta(S, S^e)|}{\sum_{R \in P} |\Delta(S, R)|}$$

- Compare GRASP with and without path-relinking.
- New GRASP code in C outperforms old Fortran codes: we use same code to compare algorithms
- All QAPLIB (Burkhard, Karisch, & Rendl, 1991) instances of size N ≤ 40
- 100 independent runs of each algorithm, recording CPU time to find the best known solution for instance

- Compare GRASP with and without path-relinking.
- New GRASP code in C outperforms old Fortran codes: we use same code to compare algorithms
- All QAPLIB (Burkhard, Karisch, & Rendl, 1991) instances of size N ≤ 40
- 100 independent runs of each algorithm, recording CPU time to find the best known solution for instance

- Compare GRASP with and without path-relinking.
- New GRASP code in C outperforms old Fortran codes: we use same code to compare algorithms
- All QAPLIB (Burkhard, Karisch, & Rendl, 1991) instances of size N ≤ 40
- 100 independent runs of each algorithm, recording CPU time to find the best known solution for instance

- Compare GRASP with and without path-relinking.
- New GRASP code in C outperforms old Fortran codes: we use same code to compare algorithms
- All QAPLIB (Burkhard, Karisch, & Rendl, 1991) instances of size N ≤ 40
- 100 independent runs of each algorithm, recording CPU time to find the best known solution for instance

- SGI Challenge computer (196 MHz R10000 processors (28) and 7 Gb memory)
- Single processor used for each run
- GRASP RCL parameter α chosen at random in interval [0,1] at each GRASP iteration.
- Size of elite set: 30
- Path-relinking done in both directions (S to T to S)
- Care taken to ensure that GRASP and GRASP with path-relinking iterations are in sync

- SGI Challenge computer (196 MHz R10000 processors (28) and 7 Gb memory)
- Single processor used for each run
- GRASP RCL parameter α chosen at random in interval [0,1] at each GRASP iteration.
- Size of elite set: 30
- Path-relinking done in both directions (S to T to S)
- Care taken to ensure that GRASP and GRASP with path-relinking iterations are in sync

- SGI Challenge computer (196 MHz R10000 processors (28) and 7 Gb memory)
- Single processor used for each run
- GRASP RCL parameter α chosen at random in interval [0,1] at each GRASP iteration.
- Size of elite set: 30
- Path-relinking done in both directions (S to T to S)
- Care taken to ensure that GRASP and GRASP with path-relinking iterations are in sync

- SGI Challenge computer (196 MHz R10000 processors (28) and 7 Gb memory)
- Single processor used for each run
- GRASP RCL parameter α chosen at random in interval [0,1] at each GRASP iteration.
- Size of elite set: 30
- Path-relinking done in both directions (S to T to S)
- Care taken to ensure that GRASP and GRASP with path-relinking iterations are in sync

- SGI Challenge computer (196 MHz R10000 processors (28) and 7 Gb memory)
- Single processor used for each run
- GRASP RCL parameter α chosen at random in interval [0,1] at each GRASP iteration.
- Size of elite set: 30
- Path-relinking done in both directions (S to T to S)
- Care taken to ensure that GRASP and GRASP with path-relinking iterations are in sync

- SGI Challenge computer (196 MHz R10000 processors (28) and 7 Gb memory)
- Single processor used for each run
- GRASP RCL parameter α chosen at random in interval [0,1] at each GRASP iteration.
- Size of elite set: 30
- Path-relinking done in both directions (S to T to S)
- Care taken to ensure that GRASP and GRASP with path-relinking iterations are in sync

Time-to-target-value plots

Sort times such that $t_1 \le t_2 \le \cdots \le t_{100}$ and plot $\{t_i, p_i\}$, for i=1,...,N, where $p_i = (i-.5)/100$

Random variable time-to-target-solution value fits a two-parameter exponential distribution (Aiex, Resende, & Ribeiro, 2002).

Time-to-target-value plots

Time-to-target-value plots

C.E. Nugent, T.E. Vollmann and J. Ruml [1968]

E.D. Taillard [1991, 1994]

Y. Li and P.M. Pardalos [1992]

U.W. Thonemann and A. Bölte [1994]

L. Steinberg [1961]

400000

M. Scriabin and R.C. Vergin [1975]

S.W. Hadley, F. Rendl and H. Wolkowicz [1992]

R.E. Burkard and J. Offermann [1977]

N. Christofides and E. Benavent [1989]

C. Roucairol [1987]

J. Krarup and P.M. Pruzan [1978]

B. Eschermann and H.J. Wunderlich [1990]

B. Eschermann and H.J. Wunderlich [1990]

- New heuristic for the QAP is described.
- Path-relinking shown to improve performance of GRASP on almost all instances.
- Journal paper will also compare GRASP+PR with other heuristics for QAP on larger instances from QAPLIB.
- Experimental results and code are available at http://www.research.att.com/~mgcr/exp/gqapspr

- New heuristic for the QAP is described.
- Path-relinking shown to improve performance of GRASP on almost all instances.
- Journal paper will also compare GRASP+PR with other heuristics for QAP on larger instances from QAPLIB.
- Experimental results and code are available at http://www.research.att.com/~mgcr/exp/gqapspr

- New heuristic for the QAP is described.
- Path-relinking shown to improve performance of GRASP on almost all instances.
- Journal paper will also compare GRASP+PR with other heuristics for QAP on larger instances from QAPLIB.
- Experimental results and code are available at http://www.research.att.com/~mgcr/exp/gqapspr

- New heuristic for the QAP is described.
- Path-relinking shown to improve performance of GRASP on almost all instances.
- Journal paper will also compare GRASP+PR with other heuristics for QAP on larger instances from QAPLIB.
- Experimental results and code are available at http://www.research.att.com/~mgcr/exp/gqapspr

My coauthors

Carlos A. S. Oliveira

Panos M. Pardalos

