GRASP with path-relinking for the quadratic assignment problem

Mauricio G.C. Resende, AT\&T Research joint work with:
Carlos A.S. Oliveira, U. of Florida Panos M. Pardalos, U. of Florida

Talk given at WEA 2004 Angra dos Reis, Brazil May 2004

Summary

- The quadratic assignment problem (QAP)
- GRASP for QAP
- Path-relinking for QAP
- Computational results
- Concluding remarks

是

Summary

- The quadratic assignment problem (QAP)
- GRASP for QAP
- Path-relinking for QAP
- Computational results
- Concluding remarks

9

Summary

- The quadratic assignment problem (QAP)
- GRASP for QAP
- Path-relinking for QAP
- Computational results
- Concluding remarks

㫛

Summary

- The quadratic assignment problem (QAP)
- GRASP for QAP
- Path-relinking for QAP
- Computational results
- Concluding remarks
sur

Summary

- The quadratic assignment problem (QAP)
- GRASP for QAP
- Path-relinking for QAP
- Computational results
- Concluding remarks

是

Quadratic assignment problem (QAP)

- Given N facilities $f_{1}, f_{2}, \ldots, f_{N}$ and N locations $I_{1}, I_{2}, \ldots, I_{N}$
- Let $A^{N \times N}=\left(a_{i, j}\right)$ be a positive real matrix where $a_{i, j}$ is the flow between facilities f_{i} and f_{j}
- Let $B^{N \times N}=\left(b_{i, j}\right)$ be a positive real matrix where $b_{i, j}$ is the distance between locations I_{i} and I_{j}

Quadratic assignment problem (QAP)

- Given N facilities $f_{1}, f_{2}, \ldots, f_{N}$ and N locations $I_{1}, I_{2}, \ldots, I_{N}$
- Let $A^{N \times N}=\left(a_{i, j}\right)$ be a positive real matrix where $a_{i, j}$ is the flow between facilities f_{i} and f_{j}
- Let $B^{N \times N}=\left(b_{i, j}\right)$ be a positive real matrix where $b_{i, j}$ is the distance between locations I_{i} and I_{j}

Quadratic assignment problem (QAP)

- Given N facilities $f_{1}, f_{2}, \ldots, f_{N}$ and N locations $I_{1}, I_{2}, \ldots, I_{N}$
- Let $A^{N \times N}=\left(a_{i, j}\right)$ be a positive real matrix where $a_{i, j}$ is the flow between facilities f_{i} and f_{j}
- Let $B^{N \times N}=\left(b_{i, j}\right)$ be a positive real matrix where $b_{i, j}$ is the distance between locations I_{i} and I_{j}

Quadratic assignment problem (QAP)

- Let p: $\{1,2, \ldots, N\} \rightarrow\{1,2, \ldots, N\}$ be an assignment of the N facilities to the N locations
- Define the cost of assignment p to be

$$
c(p)=\sum_{i=1}^{N} \sum_{j=1}^{N} a_{i, j} b_{p(i), p(i)}
$$

- QAP: Find a permutation vector $\mathrm{p} \in \prod_{\mathrm{N}}$ that minimizes the assignment cost:

$$
\min c(p): \text { subject to } p \in \prod_{N}
$$

Quadratic assignment problem (QAP)

- Let p: $\{1,2, \ldots, N\} \rightarrow\{1,2, \ldots, N\}$ be an assignment of the N facilities to the N locations
- Define the cost of assignment p to be

$$
c(p)=\sum_{i=1}^{N} \sum_{j=1}^{N} a_{i, j} b_{p(i), p(j)}
$$

- QAP: Find a permutation vector $p \in \prod_{N}$ that minimizes the assignment cost:

$$
\min c(p): \text { subject to } p \in \prod_{N}
$$

Quadratic assignment problem (QAP)

- Let $\mathrm{p}:\{1,2, \ldots, \mathrm{~N}\} \rightarrow\{1,2, \ldots, \mathrm{~N}\}$ be an assignment of the N facilities to the N locations
- Define the cost of assignment p to be

$$
c(p)=\sum_{i=1}^{N} \sum_{j=1}^{N} a_{i, j} b_{p(i), p(j)}
$$

- QAP: Find a permutation vector $\mathrm{p} \in \prod_{\mathrm{N}}$ that minimizes the assignment cost:

$\min c(p)$: subject to $p \in \prod_{N}$

Quadratic assignment problem (QAP)

locations and distances
cost of assignment: $10 \times 1+30 \times 10+40 \times 5=510$

facilities and flows

Quadratic assignment problem (QAP)

Quadratic assignment problem (QAP)

GRASP for QAP

- GRASP * multi-start metaheuristic: greedy randomized construction, followed by local search (Feo \& Resende, 1989, 1995; Festa \& Resende, 2002; Resende \& Ribeiro, 2003)
- GRASP for QAP
- Li, Pardalos, \& Resende (1994): GRASP for QAP
- Resende, Pardalos, \& Li (1996): Fortran suboroutines for dense QAPs
- Pardalos, Pitsoulis, \& Resende (1997): Fortran subroutines for sparse QAPs
- Fleurent \& Glover (1999): memory mechanism in construction

GRASP for QAP

- GRASP * multi-start metaheuristic: greedy randomized construction, followed by local search (Feo \& Resende, 1989, 1995; Festa \& Resende, 2002; Resende \& Ribeiro, 2003)
- GRASP for QAP
- Li, Pardalos, \& Resende (1994): GRASP for QAP
- Resende, Pardalos, \& Li (1996): Fortran subroutines for dense QAPs
- Pardalos, Pitsoulis, \& Resende (1997): Fortran subroutines for sparse QAPs
- Fleurent \& Glover (1999): memory mechanism in construction

GRASP for QAP

repeat \{

$x=$ GreedyRandomizedConstruction(•);
$x=$ LocalSearch(x);
save x as x^{*} if best so far;
\}
return x^{*};

Construction

- Stage 1: make two assignments $\left\{\mathrm{f}_{\mathrm{i}} \rightarrow l_{\mathrm{k}} ; \mathrm{f}_{\mathrm{j}} \rightarrow I_{\mathrm{l}}\right\}$
- Stage 2: make remaining N-2 assignments of facilities to locations, one facility/location pair at a time

Construction

- Stage 1: make two assignments $\left\{\left.\mathrm{f}_{\mathrm{i}} \rightarrow\right|_{k} ;\left.\mathrm{f}_{\mathrm{j}} \rightarrow\right|_{\mid}\right\}$
- Stage 2: make remaining N-2 assignments of facilities to locations, one facility/location pair at a time

是

Stage 1 construction

- sort distances $b_{\mathrm{i}, \mathrm{j}}$ in increasing order:

$$
\mathrm{b}_{\mathrm{i}(1), \mathrm{j}(1)} \leq \mathrm{b}_{\mathrm{i}(2), \mathrm{j}(2)} \leq \cdots \leq \mathrm{b}_{\mathrm{i}(\mathrm{~N}), \mathrm{j}(\mathrm{~N})}
$$

- sort flows $a_{k, 1}$ in decreasing order:

$$
a_{k(1), l(1)} \geq a_{k(2), l(2)} \geq \cdots \geq a_{k(N), l(N)} .
$$

- sort products:

$$
a_{k(1), l(1)} \cdot b_{i(1), j(1)}, a_{k(2), l(2)} \cdot b_{i(2), j(2)}, \cdots, a_{k(N), l(N)} \cdot b_{i(N), j(N)}
$$

- among smallest products, select $\mathrm{a}_{\mathrm{k}(\mathrm{q}), \mathrm{I}(\mathrm{q})} \cdot \mathrm{b}_{\mathrm{i}(\mathrm{q}), \mathrm{j}(\mathrm{q})}$ at random: corresponding to assignments $\left\{\mathrm{f}_{\mathrm{k}(\mathrm{q})} \rightarrow \mathrm{I}_{\mathrm{i}(q)} ; \mathrm{f}_{\mathrm{I}(\mathrm{q})} \rightarrow \mathrm{l}_{\mathrm{j}(\mathrm{q})}\right\}$

Stage 1 construction

- sort distances $b_{\mathrm{i}, \mathrm{j}}$ in increasing order:

$$
b_{i(1), j(1)} \leq b_{i(2), j(2)} \leq \cdots \leq b_{i(N), j(N)}
$$

- sort flows $a_{k, 1}$ in decreasing order:

$$
a_{k(1),(1)} \geq a_{k(2),(2)} \geq \cdots \geq a_{k(N),(N)} .
$$

- sort products:

$$
a_{k(1),(1)} \cdot b_{i(1), j(1)}, a_{k(2),(2)} \cdot b_{i(2), j(2)}, \ldots, a_{k(N),(N)} \cdot b_{i(N), j(N)}
$$

- among smallest products, select $a_{k(q),(q)} \cdot b_{i(q), j(q)}$ at random: corresponding to assignments $\left\{\mathrm{f}_{\mathrm{k}(q)} \rightarrow \mathrm{l}_{\mathrm{i}(q)} ; \mathrm{f}_{\mathrm{I}(q)} \rightarrow \mathrm{l}_{\mathrm{j}(q)}\right\}$

Stage 1 construction

- sort distances $b_{i, j}$ in increasing order:

$$
\mathrm{b}_{\mathrm{i}(1), \mathrm{j}(1)} \leq \mathrm{b}_{\mathrm{i}(2), \mathrm{j}(2)} \leq \cdots \leq \mathrm{b}_{\mathrm{i}(\mathrm{~N}), \mathrm{j}(\mathrm{~N})} .
$$

- sort flows $a_{k, 1}$ in decreasing order:
$a_{k(1),(1)} \geq a_{k(2),(2)} \geq \cdots \geq a_{k(N),(N)}$.
- sort products:
$a_{k(1), l(1)} \cdot b_{i(1), j(1)}, a_{k(2), l(2)} \cdot b_{i(2), j(2)}, \ldots, a_{k(N), l(N)} \cdot b_{i(N), j(N)}$
- among smallest products, select $\mathrm{a}_{\mathrm{k}(\mathrm{q}), \mathrm{I}(\mathrm{q})} \cdot \mathrm{b}_{\mathrm{i}(\mathrm{q}), \mathrm{j}(\mathrm{q})}$ at random: corresponding to assignments $\left\{\mathrm{f}_{\mathrm{k}(\mathrm{q})} \rightarrow \mathrm{I}_{\mathrm{i}(q)} ; \mathrm{f}_{\mathrm{I}(\mathrm{q})} \rightarrow \mathrm{I}_{\mathrm{j}(\mathrm{q})}\right\}$

Stage 1 construction

- sort distances $b_{\mathrm{i}, \mathrm{j}}$ in increasing order:

$$
\mathrm{b}_{\mathrm{i}(1), \mathrm{j}(1)} \leq \mathrm{b}_{\mathrm{i}(2), \mathrm{j}(2)} \leq \cdots \leq \mathrm{b}_{\mathrm{i}(\mathrm{~N}), \mathrm{j}(\mathrm{~N})} .
$$

- sort flows $a_{k, 1}$ in decreasing order:

$$
a_{k(1),(1)} \geq a_{k(2),(2)} \geq \cdots \geq a_{k(N),(N)} .
$$

- sort products:

$$
a_{k(1),(1)} \cdot b_{i(1), j(1)}, a_{k(2),(2)} \cdot b_{i(2), j(2)}, \ldots, a_{k(N),(N)} \cdot b_{i(N), j(N)}
$$

- among smallest products, select $a_{k(q),(q)} \cdot b_{i(q), j(q)}$ at random: corresponding to assignments $\left\{\mathrm{f}_{\mathrm{K}(q)} \rightarrow \mathrm{l}_{\mathrm{i}(q)} ; \mathrm{f}_{\mathrm{Iq})} \rightarrow \mathrm{j}_{\mathrm{j}(q)}\right\}$

Stage 2 construction

- If $\Omega=\left\{\left(\mathrm{i}_{1}, \mathrm{k}_{1}\right),\left(\mathrm{i}_{2}, \mathrm{k}_{2}\right), \ldots,\left(\mathrm{i}_{\mathrm{q}}, \mathrm{k}_{\mathrm{q}}\right)\right\}$ are the q assignments made so far, then
- Cost of assigning $f_{j} \rightarrow l_{1}$ is $c_{\mathrm{j}, \mathrm{l}}=\sum_{\mathrm{i}, \mathrm{k} \in \mathrm{\Gamma}, \mathrm{j}} \mathrm{a}_{\mathrm{k}, 1} \mathrm{~b}_{\mathrm{l}}$
- Of all possible assignments, one is selected at random from the assignments having smallest costs and is added to Ω

Stage 2 construction

- If $\Omega=\left\{\left(\mathrm{i}_{1}, \mathrm{k}_{1}\right),\left(\mathrm{i}_{2}, \mathrm{k}_{2}\right), \ldots,\left(\mathrm{i}_{\mathrm{q}}, \mathrm{k}_{\mathrm{q}}\right)\right\}$ are the q assignments made so far, then
- Cost of assigning $f_{j} \rightarrow l_{1}$ is $c_{\mathrm{i}, 1}=\sum_{\mathrm{i}, \mathrm{k} \in \Gamma} \mathrm{a}_{\mathrm{i}, \mathrm{j}} \mathrm{b}_{\mathrm{k}, 1}$
- Of all possible assignments, one is selected at random from the assignments having smallest costs and is added to Ω

童

Stage 2 construction

- If $\Omega=\left\{\left(\mathrm{i}_{1}, \mathrm{k}_{1}\right),\left(\mathrm{i}_{2}, \mathrm{k}_{2}\right), \ldots,\left(\mathrm{i}_{\mathrm{q}}, \mathrm{k}_{\mathrm{q}}\right)\right\}$ are the q assignments made so far, then
- Cost of assigning $f_{j} \rightarrow l_{1}$ is $c_{\mathrm{i}, \mathrm{l}}=\sum_{\mathrm{i}, \mathrm{k} \in \Gamma} \mathrm{a}_{\mathrm{i}, \mathrm{j}} \mathrm{b}_{\mathrm{k}, 1}$
- Of all possible assignments, one is selected at random from the assignments having smallest costs and is added to Ω

Sped up in Pardalos, Pitsoulis, \& Resende (1997) for QAPs with sparse A or B matrices.

Swap based local search

a) For all pairs of assignments $\left\{\left.\mathrm{f}_{\mathrm{i}} \rightarrow\right|_{k} ;\left.\mathrm{f}_{\mathrm{j}} \rightarrow\right|_{\mid}\right\}$, test if swapped assignment $\left\{f_{i} \rightarrow I_{l} ; f_{j} \rightarrow I_{k}\right\}$ improves solution.
b) If so, make swap and return to step (a)

Swap based local search

a) For all pairs of assignments $\left\{f_{i} \rightarrow l_{k} ; f_{j} \rightarrow l_{\mid}\right\}$, test if swapped assignment $\left\{f_{i} \rightarrow I_{l} ; f_{j} \rightarrow l_{k}\right\}$ improves solution.
b) If so, make swap and return to step (a)

> repeat (a)-(b) until no swap improves current solution

Path-relinking

- Path-relinking:
- Intensification strategy exploring trajectories connecting elite solutions: Glover (1996)
- Originally proposed in the context of tabu search and scatter search.
- Paths in the solution space leading to other elite solutions are explored in the search for better solutions:
- selection of moves that introduce attributes of the guiding solution into the current solution

Path-relinking

- Path-relinking:
- Intensification strategy exploring trajectories connecting elite solutions: Glover (1996)
- Originally proposed in the context of tabu search and scatter search.
- Paths in the solution space leading to other elite solutions are explored in the search for better solutions:
- selection of moves that introduce attributes of the guiding solution into the current solution

Path-relinking

- Path-relinking:
- Intensification strategy exploring trajectories connecting elite solutions: Glover (1996)
- Originally proposed in the context of tabu search and scatter search.
- Paths in the solution space leading to other elite solutions are explored in the search for better solutions:
- selection of moves that introduce attributes of the guiding solution into the current solution

Path-relinking

- Exploration of trajectories that connect high quality (elite) solutions:

guiding
solution

9

Path-relinking

- Path is generated by selecting moves that introduce in the initial solution attributes of the guiding solution.
- At each step, all moves that incorporate attributes of the guiding solution are evaluated and the best move is selected:
solution

㫛

Path-relinking

- Path is generated by selecting moves that introduce in the initial solution attributes of the guiding solution.
- At each step, all moves that incorporate attributes of the guiding solution are evaluated and the best move is selected:
initial solution
 guiding
solution

Path-relinking

Combine solutions x and y
$\Delta(x, y)$: symmetric difference between x and y while $(|\Delta(x, y)|>0)$ \{ evaluate moves corresponding in $\Delta(x, y)$ make best move

㫛

GRASP with path-relinking

- Originally used by Laguna and Martí (1999).
- Maintains a set of elite solutions found during GRASP iterations.
- After each GRASP iteration (construction and local search):
- Use GRASP solution as initial solution.
- Select an elite solution uniformly at random: guiding solution.
- Perform path-relinking between these two solutions.

GRASP with path-relinking

- Originally used by Laguna and Martí (1999).
- Maintains a set of elite solutions found during GRASP iterations.
- After each GRASP iteration (construction and local search):
- Use GRASP solution as initial solution.
- Select an elite solution uniformly at random: guiding solution.
- Perform path-relinking between these two solutions.

GRASP with path-relinking

- Originally used by Laguna and Martí (1999).
- Maintains a set of elite solutions found during GRASP iterations.
- After each GRASP iteration (construction and local search):
- Use GRASP solution as initial solution.
- Select an elite solution uniformly at random: guiding solution.
- Perform path-relinking between these two solutions.

GRASP with path-relinking

Repeat for Max_Iterations:

Construct a greedy randomized solution.
Use local search to improve the constructed solution.
Apply path-relinking to further improve the solution.
Update the pool of elite solutions.
Update the best solution found.

PR for QAP (permutation vectors)

Path-relinking for QAP

If swap improves solution: local search is applied

Path-relinking for QAP

Results of path relinking: S^{*}

If $c\left(S^{*}\right)<\min \{c(S), c(T)\}$, and $c\left(S^{*}\right) \leq c\left(S^{i}\right)$, for $i=1, \ldots, N$, i.e. S^{*} is best solution in path, then S^{*} is returned.

Path-relinking for QAP

S^{i} is a local minimum w.r.t. PR : $c\left(\mathrm{~S}^{i}\right)<c\left(\mathrm{~S}^{\mathrm{i}-1}\right)$ and $c\left(\mathrm{~S}^{i}\right)<c\left(\mathrm{~S}^{i+1}\right)$, for all $\mathrm{i}=1, \ldots, \mathrm{~N}$.
initial

guiding
solution

If path-relinking does not improve (S, T), then if S^{i} is a best local min w.r.t. PR: return $\mathrm{S}^{*}=\mathrm{S}^{i}$

If no local min exists, return $S^{*}=\operatorname{argmin}\{S, T\}$

PR pool management

- S^{*} is candidate for inclusion in pool of elite solutions (P)
- If $c\left(S^{*}\right)<c\left(S^{e}\right)$, for all $S^{e} \in P$, then S^{*} is put in P
- Else, if $c\left(S^{*}\right)<\max \left\{c\left(S^{e}\right), S^{e} \in P\right\}$ and $\left|\Delta\left(S^{*}, S^{e}\right)\right| \geq 3$, for all $S^{e} \in P$, then S^{*} is put in P
- If pool is full, remove $\operatorname{argmin}\left\{\left|\Delta\left(\mathrm{S}^{*}, \mathrm{~S}^{e}\right)\right|, \forall \mathrm{S}^{e} \in \mathrm{P}\right.$ s.t. $\left.c\left(\mathrm{~S}^{e}\right) \geq c\left(\mathrm{~S}^{*}\right)\right\}$

PR pool management

- S^{*} is candidate for inclusion in pool of elite solutions (P)
- If $c\left(S^{*}\right)<c\left(S^{e}\right)$, for all $S^{e} \in P$, then S^{*} is put in P
- Else, if $c\left(S^{*}\right)<\max \left\{c\left(S^{e}\right), S^{e} \in P\right\}$ and $\left|\Delta\left(S^{*}, S^{e}\right)\right| \geq 3$, for all $S^{e} \in P$, then S^{*} is put in P
- If pool is full, remove $\operatorname{argmin}\left\{\left|\Delta\left(S^{*}, S^{e}\right)\right|, \forall S^{e} \in P\right.$ s.t. $\left.c\left(S^{e}\right) \geq c\left(S^{*}\right)\right\}$

PR pool management

- S^{*} is candidate for inclusion in pool of elite solutions (P)
- If $c\left(S^{*}\right)<c\left(S^{e}\right)$, for all $S^{e} \in P$, then S^{*} is put in P
- Else, if $c\left(S^{*}\right)<\max \left\{c\left(S^{e}\right), S^{e} \in P\right\}$ and $\left|\Delta\left(S^{*}, S^{e}\right)\right| \geq 3$, for all $S^{e} \in P$, then S^{*} is put in P
- If pool is full, remove $\operatorname{argmin}\left\{\left|\Delta\left(\mathrm{S}^{*}, \mathrm{~S}^{e}\right)\right|, \forall \mathrm{S}^{e} \in \mathrm{P}\right.$ s.t. $\left.c\left(\mathrm{~S}^{e}\right) \geq c\left(\mathrm{~S}^{*}\right)\right\}$

PR pool management

- S^{*} is candidate for inclusion in pool of elite solutions (P)
- If $c\left(S^{*}\right)<c\left(S^{e}\right)$, for all $S^{e} \in P$, then S^{*} is put in P
- Else, if $c\left(S^{*}\right)<\max \left\{c\left(S^{e}\right), S^{e} \in P\right\}$ and $\left|\Delta\left(S^{*}, S^{e}\right)\right| \geq 3$, for all $S^{e} \in P$, then S^{*} is put in P
- If pool is full, remove $\operatorname{argmin}\left\{\left|\Delta\left(S^{*}, S^{e}\right)\right|, \forall S^{e} \in P\right.$ s.t. $\left.c\left(S^{e}\right) \geq c\left(S^{*}\right)\right\}$

PR pool management

S is initial solution for path-relinking: favor choice of target solution T with large symmetric difference with S .

This leads to longer paths in path-relinking.

Probability of choosing $\mathrm{S}^{e} \in \mathrm{P}$:

$$
p\left(S^{e}\right)=\frac{\left|\Delta\left(S, S^{e}\right)\right|}{\sum_{R \in P}|\Delta(S, R)|}
$$

Experimental results

- Compare GRASP with and without path-relinking.
- New GRASP code in C outperforms old Fortran codes: we use same code to compare algorithms
- All QAPLIB (Burkhard, Karisch, \& Rendl, 1991) instances of size $\mathrm{N} \leq 40$
- 100 independent runs of each algorithm, recording CPU time to find the best known solution for instance

Experimental results

- Compare GRASP with and without path-relinking.
- New GRASP code in C outperforms old Fortran codes: we use same code to compare algorithms
- All QAPLIB (Burkhard, Karisch, \& Rendl, 1991) instances of size $\mathrm{N} \leq 40$
- 100 independent runs of each algorithm, recording CPU time to find the best known solution for instance

Experimental results

- Compare GRASP with and without path-relinking.
- New GRASP code in C outperforms old Fortran codes: we use same code to compare algorithms
- All QAPLIB (Burkhard, Karisch, \& Rendl, 1991) instances of size $\mathrm{N} \leq 40$
- 100 independent runs of each algorithm, recording CPU time to find the best known solution for instance

Experimental results

- Compare GRASP with and without path-relinking.
- New GRASP code in C outperforms old Fortran codes: we use same code to compare algorithms
- All QAPLIB (Burkhard, Karisch, \& Rendl, 1991) instances of size $\mathrm{N} \leq 40$
- 100 independent runs of each algorithm, recording CPU time to find the best known solution for instance

Experimental results

- SGI Challenge computer (196 MHz R10000 processors (28) and 7 Gb memory)
- Single processor used for each run
- GRASP RCL parameter α chosen at random in interval $[0,1]$ at each GRASP iteration.
- Size of elite set: 30
- Path-relinking done in both directions (S to T to S)
- Care taken to ensure that GRASP and GRASP with path-relinking iterations are in sync

Experimental results

- SGI Challenge computer (196 MHz R10000 processors (28) and 7 Gb memory)
- Single processor used for each run
- GRASP RCL parameter α chosen at random in interval $[0,1]$ at each GRASP iteration.
- Size of elite set: 30
- Path-relinking done in both directions (S to T to S)
- Care taken to ensure that GRASP and GRASP with path-relinking iterations are in sync

Experimental results

- SGI Challenge computer (196 MHz R10000 processors (28) and 7 Gb memory)
- Single processor used for each run
- GRASP RCL parameter α chosen at random in interval $[0,1]$ at each GRASP iteration.
- Size of elite set: 30
- Path-relinking done in both directions (S to T to S)
- Care taken to ensure that GRASP and GRASP with path-relinking iterations are in sync

Experimental results

- SGI Challenge computer (196 MHz R10000 processors (28) and 7 Gb memory)
- Single processor used for each run
- GRASP RCL parameter α chosen at random in interval [0,1] at each GRASP iteration.
- Size of elite set: 30
- Path-relinking done in both directions (S to T to S)
- Care taken to ensure that GRASP and GRASP with path-relinking iterations are in sync

Experimental results

- SGI Challenge computer (196 MHz R10000 processors (28) and 7 Gb memory)
- Single processor used for each run
- GRASP RCL parameter α chosen at random in interval $[0,1]$ at each GRASP iteration.
- Size of elite set: 30
- Path-relinking done in both directions (S to T to S)
- Care taken to ensure that GRASP and GRASP with path-relinking iterations are in sync

Experimental results

- SGI Challenge computer (196 MHz R10000 processors (28) and 7 Gb memory)
- Single processor used for each run
- GRASP RCL parameter α chosen at random in interval $[0,1]$ at each GRASP iteration.
- Size of elite set: 30
- Path-relinking done in both directions (S to T to S)
- Care taken to ensure that GRASP and GRASP with path-relinking iterations are in sync

Time-to-target-value plots

> Sort times such that
> $t_{1} \leq t_{2} \leq \cdots \leq t_{100}$ and plot $\left\{t_{i} D_{i}\right\}$, for $i=1, \ldots, N$, where $P_{i}=(i-.5) / 100$

Random variable time-to-target-solution value fits a two-parameter exponential distribution (Aiex, Resende, \& Ribeiro, 2002).
星

Time-to-target-value plots

Time-to-target-value plots

C.E. Nugent, T.E. Vollmann and J. Ruml [1968]

E.D. Taillard [1991, 1994]

prob: tai20a

prob: tai17a

prob: tai25a

Y. Li and P.M. Pardalos [1992]

U.W. Thonemann and A. Bölte [1994]

prob: tho40

L. Steinberg [1961]

M. Scriabin and R.C. Vergin [1975]

S.W. Hadley, F. Rendl and H. Wolkowicz [1992]

prob: had18

prob: had16

prob: had20

R.E. Burkard and J. Offermann [1977]

prob: bur26c

N. Christofides and E. Benavent [1989]

prob: chr22a

C. Roucairol [1987]

prob: rou12

time to target value (seconds on an SGI Challenge 196 MHz R10000)

J. Krarup and P.M. Pruzan [1978]

B. Eschermann and H.J. Wunderlich [1990]

B. Eschermann and H.J. Wunderlich [1990]

prob: esc32f

Concluding remarks

- New heuristic for the QAP is described.
- Path-relinking shown to improve performance of GRASP on almost all instances.
- Journal paper will also compare GRASP+PR with other heuristics for QAP on larger instances from QAPLIB.
- Experimental results and code are available at http://www.research.att.com/~mgcr/exp/gqapspr

Concluding remarks

- New heuristic for the QAP is described.
- Path-relinking shown to improve performance of GRASP on almost all instances.
- Journal paper will also compare GRASP+PR with other heuristics for QAP on larger instances from QAPLIB.
- Experimental results and code are available at http://www.research.att.com/~~mgcr/exp/gqapspr

Concluding remarks

- New heuristic for the QAP is described.
- Path-relinking shown to improve performance of GRASP on almost all instances.
- Journal paper will also compare GRASP+PR with other heuristics for QAP on larger instances from QAPLIB.
- Experimental results and code are available at http://www.research.att.com/~mgcr/exp/gqapspr

Concluding remarks

- New heuristic for the QAP is described.
- Path-relinking shown to improve performance of GRASP on almost all instances.
- Journal paper will also compare GRASP+PR with other heuristics for QAP on larger instances from QAPLIB.
- Experimental results and code are available at http://www.research.att.com/~~mgcr/exp/gqapspr

My coauthors

Carlos A. S. Oliveira

Panos M. Pardalos

