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ABSTRACT This paper proposes GraspCNN, an approach to grasp detection where a feasible robotic

grasp is detected as an oriented diameter circle in RGB image, using a single convolutional neural network.

By detecting robotic grasps as oriented diameter circles, grasp representation is thereby simplified. In addi-

tion to our novel grasp representation, a grasp pose localization algorithm is proposed to project an oriented

diameter circle back to a 6D grasp pose in point cloud. GraspCNNpredicts feasible grasping circles and grasp

probabilities directly from RGB image. Experiments show that GraspCNN achieves a 96.5% accuracy on

the Cornell Grasping Dataset, outperforming existing one-stage detectors for grasp detection. GraspCNN is

fast and stable, which can process RGB image at 50 fps and meet the requirements of real-time applications.

To detect objects and locate feasible grasps simultaneously, GraspCNN is executed in parallel with YOLO,

which achieves outstanding performance on both object detection and grasp detection.

INDEX TERMS Convolutional neural network, grasp detection, grasp pose, oriented diameter circle.

I. INTRODUCTION

The goal of 2D grasp detection is to localize feasible grasps

in the images of objects. A camera observes a cluttered scene

and finds feasible robotic grasps in the images, as shown

in Fig. 1. More specifically, in this work, we aim to predict

feasible robotic grasps directly from RGB image.

RGB image has been widely used for 2D object detec-

tion. Convolutional neural networks, such as YOLO [1]–[3],

SSD [4], Mask RCNN [5] and CornerNet [6], have achieved

great success. Currently, deep learning has also been uti-

lized successfully for robotic grasp detection, which has

achieved significant improvements over conventional meth-

ods. However, some grasp detection methods are a two-stage

cascaded system based on deep learning which detect objects

in the first stage and then each cropped object region is sent to

a second stage network to predict a feasible robotic grasp for

this specified object. These complex pipelines are very slow

and hard to optimize.

Visual-based grasping is a very simple action for human

beings. However, robotic grasping is still a challenging prob-

lem in robotics. Robotic arm needs providing an accurate
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grasp pose. Besides, there should be enough room to accom-

modate the open gripper without collision in a grasped area.

In this paper, we propose an oriented diameter circle

representation for robotic grasp in image space. A single

neural network is used to locate feasible grasps by oriented

diameter circles directly on RGB image. Extensive experi-

mentation shows that GraspCNN achieves competitive grasp

detection accuracy compared to existing one-stage detectors.

GraspCNN is executed in parallel with YOLO to perform

object grasping detection, which can detect objects and locate

feasible grasps simultaneously in a cluttered scene.

To summarize, our main contributions are as follows:

1) A single end-to-end model for grasp detection is pre-

sented, which can process RGB image at 50 fps and meet the

requirements of real-time applications.

2) An oriented diameter circle representation is introduced

and a new metric is proposed to evaluate the predicted grasp.

The grasping circle representation is suitable for all kinds

of grippers and able to discriminate between good and bad

grasps better.

3) A grasp pose localization algorithm is proposed to

project an oriented diameter circle back to a 6D grasp pose,

which means that the oriented diameter circle is a reliable

representation for robotic grasp.
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FIGURE 1. GraspCNN directly operates on the raw RGB image and
produces the grasp detection results using a single end-to-end trainable
network. 6D grasp poses are projected back into point cloud. The y-axis is
shown in green and represents the gripper closing direction. The z-axis is
shown in blue and represents the grasp approach anti direction.

This paper is organized as follows. Section II contrasts

related grasp detection methods, and Section III presents

the oriented diameter circle representation and provides a

detailed description of computing the grasp pose using the

oriented diameter circle representation. Section IV presents

the design of GraspCNN, and Section V demonstrates its

effectiveness in experiments. Section IV concludes the paper

and discusses the future work.

II. METHODS OVERVIEW

Grasp detection considers the grasping task as the problem of

predicting the object grasp pose, where the system looks at the

scene and chooses the best locations at which to grasp. A typ-

ical approach for grasp detection is to use a sliding window

to select local image patches, evaluate grasp probabilities,

and choose the image patch with the highest grasp probabil-

ity for grasp. Template-based methods also performed well

to detect grasps in ideal scenarios. Currently deep learning

has performed state-of-the-art grasp detection results over

conventional methods. Real-time robotic grasp detection has

achieved remarkable performance improvements.

A. ROBOT GRASPING WITH 3D MODEL OR

GRASP TEMPLATES

Most previous work performed stable grasps in ideal scenar-

ios by assuming full knowledge of the object to be grasped.

Rosales et al. [7] performed optimization of grasps given both

a 3Dmodel of the object and the desired contact points for the

robot gripper. Pokorny et al. [8] defined spaces to discover

grasps of graspable objects, then map new objects to these

spaces to discover grasps. However, the robot cannot interact

with a new environment very well because of the numerous

unpredictable objects in our daily life. Othermethods follow a

template-based approach where grasps that are demonstrated

on a set of training objects are generalized to new objects.

Herzog et al. [9] proposed a template-based grasp selection

algorithm operating on depth map which uses demonstrated

grasp configurations and generalizes them to grasps for novel

objects. Detry et al. [10] grasped novel objects by modeling

the geometry of local object shapes and fitting these shapes

to new objects. Osadchy et al. [11] used shape primitives like

spheres, cones and boxes to approximate object shape and

used the simulation environment GraspIt for grasp stability

tests. Template-basedmethods are useful in detecting texture-

less objects. However, they cannot handle occlusions between

objects very well. Other works use hand-design visual fea-

tures and hand-code grasping rules, which are difficult to

apply in massive objects in real world.

B. ROBOT GRASPING USING DEEP LEARNING

Recent research in robotic grasp has largely focused on per-

forming grasp detection using deep learning. Lenz et al. [12]

presented a two-stage system for detecting robotic grasps

from RGBD data using a deep learning approach. Redmon

and Angelova [13] performed real-time grasp detection for

the grasping area of an object using convolutional neural net-

works. Morrison et al. [14] proposed a Generative Grasping

Convolutional Neural Network, which predicts the quality

and pose of grasps at every pixel. However, there should be

an optimal grasp in a neighboring region if it exists. This one-

to-one mapping from depth image to find the best grasp is not

necessary. Wang et al. [15] proposed DenseFusion, a generic

network framework for estimating 6D pose of a set of known

objects from RGBD images. DenseFusion processes the two

data sources individually and uses a novel dense fusion net-

work to extract pixel-wise dense feature embedding, from

which the pose is estimated. Xiang et al. [16] proposed

PoseCNN, a convolutional neural network for 6D object

pose estimation. PoseCNN is robust to occlusions, can han-

dle symmetric objects and provide accurate pose estimation

using only color images as input. Kalashnikov et al. [17]

proposed QT-Opt, a scalable self-supervised vision-based

reinforcement learning framework for robotic manipulation,

which enables dynamic closed-loop control. It automatically

learns grasping strategies and probes objects to find the most

effective grasps using only RGB vision-based perception

from an over-the-shoulder camera. Asif et al. [18] proposed

a novel CNN architecture termed GraspNet which produces

pixel-level labeling of grasping regions using RGB-D images.

With squeeze and dilated convolutions, GraspNet achieves

competitive grasp detection accuracy and real-time inference

speed on embedded GPU hardware. Mousavian et al. [19]

take 3D point clouds as input and formulate the problem of

grasp detection as sampling a set of grasps using a variational

autoencoder and assess and refine the sampled grasps using
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a grasp evaluator model. Park et al. [20] proposed fully

convolutional neural network termed FCNN, which can be

applied to images with any size for detecting multiple grasps

onmultiple objects. Chu et al. [21] proposed two-stage neural

networks combining region proposal network and robotic

grasp detection network base on Faster R-CNN.

C. ROBOT GRASPING REPRESENTATION

Several representations have been proposed to give an

intuitive description about robotic grasp in image space.

Saxena et al. [22] represented a grasp as a grasping point,

using supervised learning algorithms to detect a grasping

point from the image. Le et al. [23] proposed a new repre-

sentation based on a pair of points. However, grasping point

representation only indicates where to grasp, which is incom-

plete to perform a stable grasp. Jiang et al. [24] represented

a grasp as a 2D oriented rectangle in image space, using

support vector machines to select a good grasp from extracted

features. The oriented rectangle representationworks for two-

jaw grippers and it can potentially represent grasps for multi-

fingered hands as well. Multiple fingers could be represented

using different locations within the rectangle.

Most researchers adopt the rectangle-based method, with

two edges corresponding to the gripper plates. However,

the oriented rectangle representation is not intuitive and con-

cise enough for multiple fingers. And in order to perform

one of these grasps, the gripper must approach the grasp

target from a direction roughly orthogonal to the image.

Considering this, an oriented diameter circle representation

is proposed for robotic grasp, which is suitable for all kinds

of grippers, such as a parallel plate gripper, a multi-finger

gripper, or a robotic hand.

III. PROBLEM DESCRIPTION

A. MOTIVATION OF ORIENTED DIAMETER CIRCLE

REPRESENTATION

The oriented diameter circle representation is inspired from

grasp action. The robotic arm would approach an object with

accurate position and then the gripper would pick it up in a

feasible way with appropriate rotation.

The oriented diameter circle is a 4D representation encod-

ing the gripper configuration, which is represented as:

G = {x, y, d, θ} (1)

with (x, y) denoting the center of the circle, d denoting the

oriented diameter of the circle, and θ denoting the angle of the

oriented diameter relative to horizontal diameter. Fig. 2 shows

an example of this grasp representation. It is a simplifica-

tion of the full 7D gripper configuration (the 3D position,

3D orientation and the gripper opening width) and can be

projected back to the full 7D gripper configuration. The circle

center (x, y) can be used to obtain the 3D grasp position from

point cloud; the oriented diameter angle θ and surface normal

of grasp position are used to obtain the 3D orientation; the

gripper opening width can be calculated using the intrinsic

parameters of camera and circle diameter d .

FIGURE 2. A 4D grasp representation based on the oriented diameter
circle. A grasp is defined by circle center coordinates (x, y), oriented
diameter angle θ relative to the horizontal diameter and circle diameter d
corresponding to the gripper opening width before a grasp is performed.

Compared with some previous representations for robotic

grasp, the oriented diameter circle representation has two

advantages:

First, robotic grasping is presented in a more intuitive way.

Grasping circle representation provides the gripper opening

width before it closes on an object, which ensures there is

enough room to accommodate the open gripper and execute

a stable grasp without collision in a grasped area.

Second, the oriented diameter circle representation is suit-

able for all kinds of grippers without nuisance parameters

like the gripper size in the oriented rectangle and it can be

associated with grasp behavior of the robotic arm.

B. GRASP EVALUATION METRIC

The oriented diameter circle gives a brief description of

robotic grasping in image space. The circle represents a

grasped area and the oriented diameter represents the gripper

opening width and closing direction. To evaluate the pre-

dicted grasp, it is considered to be correct if both:

a. The oriented diameter angle θ is within 30◦ of the

ground-truth grasp.

b. The Intersection Over Union (IOU) of the predicted

grasping circle and ground-truth grasping circle is

greater than 50 percent.

The area of a grasping circle is S = π∗ d2
4
. The IOU reflects

how confident the predicted grasping circle represents an

appropriate grasped area. The circle metric can discriminate

between good and bad grasps better than the rectangle metric

since the circle metric weights errors in large grasped areas

and small grasped areas unequally. The oriented diameter

circle indicates the actual grasp more faithfully.

The oriented diameter circle representation is compared

with the oriented rectangle representation in Fig. 3. The

ground-truth grasp is shown in red and the predicted grasp

is shown in blue. As the Fig. 3 shows, the oriented diameter

circle representation can give us a more intuitive impression

of differences between the predicted grasp and ground-truth
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FIGURE 3. Three sets of examples (a), (b), and (c) with grasps represented
by the proposed oriented diameter circle and the oriented rectangle. The
ground-truth grasp is shown in red and the predicted grasp is shown in
blue. The oriented diameter circle representation indicates the actual
grasp more faithfully.

grasp. The grasped area is localized perfectly, as shown

in Fig. 3(a). The IOU of oriented rectangle cannot indicate

that well, while the IOU of oriented diameter circle is 1.

Moreover, in contrast to oriented rectangle, it is intuitive to

check a good predicted grasp using the oriented diameter

circle representation, shown in Fig. 3(b) and Fig. 3(c).

C. GRASP POSE

Recently low-cost RGBD sensors, such as Kinect, have been

widely used. With the accessibility of depth image and point

cloud, grasp quality and stability have been improved signif-

icantly. In this section, a grasp pose localization algorithm

is presented to compute the accurate grasp pose using the

oriented diameter circle and corresponding point cloud.

Let PA = (xA, yA, zA)
T denote a random point in coordi-

nate system A. The coordinate system A is rotated around

its z-axis counterclockwise through an angle θ , as shown in

Fig. 4. After rotation, in new coordinate system B, PB =
(xB, yB, zB)

T describes the same point. Let B
AR denote the

rotation matrix from A to B. The transformation is defined as:

(xB, yB, zB)
T = B

AR (xA, yA, zA)
T (2)

The Grasp Reference Frame is defined with its origin at

the grasp point P. The unit vector along the z-axis is defined

as the surface normal vector of grasp point P. The y-axis

FIGURE 4. Illustration of rotation around z-axis of coordinate system A
counterclockwise through an angle θ . P describes the same point in
coordinate system A and B.

FIGURE 5. Illustration of projection back to a 6D grasp pose in point
cloud. The Grasp Reference Frame is constructed using the surface
normal of grasp point and horizontal diameter, as shown in (a). Then the
Grasp Reference Frame is rotated around its z-axis through an angle θ to
get the Grasp Frame, as shown in (b).

parallels the intersection line of the plane y = 0 and the

cutting plane of grasp pointP in the Camera Frame. Similarly,

the Grasp Frame is defined according to the surface normal

of grasp point P and the corresponding oriented diameter, as

shown in Fig. 5.

Algorithm 1 describes the process of computing the grasp

pose using the oriented diameter circle.

Given an oriented diameter circle in image space, the grasp

point P can be obtained directly from point cloud using the
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Algorithm 1 Grasp Pose Localization

Input: a point cloud; an oriented diameter circle

G ={x, y, d,θ}

Output: a 6-DOF grasp pose in the Camera Frame

1: Get the grasp point P using (x, y)

2: Set surface normal vector of P as the unit vector

along the z-axis of Grasp Reference Frame

3: Set the intersection line vector of cutting plane

of P and the plane y = 0 as the unit vector along

the y-axis of Grasp Reference Frame

4: Get the unit vector along the x-axis of Grasp Ref-

erence Frame according to right hand coordinate

system

5: Construct the Grasp Reference Frame

6: Rotate around the z-axis of Grasp Reference

Frame through an angle θ to construct the Grasp

Frame

circle center (x, y). Let cgR denote the rotation matrix from

the Grasp Frame to the Camera Frame,crR denote the rotation

matrix from theGraspReference Frame to the Camera Frame,

and rgR denote the rotationmatrix from the Grasp Frame to the

Grasp Reference Frame.

The surface normal vector of P termed (fx , fy, fz)
T is calcu-

lated in its neighboring region and set as the unit vector along

the z-axis of Grasp Reference Frame. The transformation is

represented as:

(fx , fy, fz)
T = c

rR(0, 0, 1)
T (3)

The intersection line between the plane y = 0 and cutting

plane of P is calculated and expressed as:
{

fxx + fyy+ fzz= 0

y= 0
(4)

The intersection line vector (
fz√

fx fx+fzfz
, 0,

fx√
fx fx+fzfz

)
T
is set

as the unit vector along the y-axis of Grasp Reference Frame.

The transformation is given by:

(
fz√

fx fx + fzfz
, 0,

fx√
fx fx + fzfz

)
T

= c
rR (0, 1, 0)T (5)

The unit vector along the x-axis of Grasp Reference Frame

termed (nx , ny, nz)
T is the cross product of the unit vector

along y-axis and the unit vector along z-axis. The transfor-

mation is calculated as:

(nx , ny, nz)
T = c

rR (1, 0, 0)T (6)

The above transformations are combined to get the rotation

matrix from theGraspReference Frame to the Camera Frame.

The rotation matrix is expressed as:










nx
fz√

fx fx + fzfz
fx

ny 0 fy

nz
fx√

fx fx + fzfz
fz











= c
rR





1 0 0

0 1 0

0 0 1



 = c
rR (7)

The Grasp Reference Frame is rotated around its z-axis

through an angle θ to construct the Grasp Frame. Similarly,

the rotation matrix from the Grasp Frame to the Grasp Refer-

ence Frame becomes:




cosθ −sinθ 0

sinθ cosθ 0

0 0 1



 = r
gR





1 0 0

0 1 0

0 0 1



 = r
gR (8)

Two subsequent rotations can be combined into a single

rotation. Therefore, the final rotation matrix from the Grasp

Frame to the Camera Frame can be written as follows:

c
gR =











nx
fz√

fx fx + fzfz
fx

ny 0 fy

nz
fx√

fx fx + fzfz
fz















cosθ − sinθ 0

sinθ cosθ 0

0 0 1



 (9)

Let cgT denote the transformation from the Grasp Frame

to the Camera Frame. With the rotation matrix and grasp

position, the grasp pose in the Camera Frame is constructed

using:

c
gT =

(

c
gR P

03×1 1

)

(10)

An oriented diameter circle can be projected back to a 6D

grasp pose, which means that the oriented diameter circle is

a faithful representation for robotic grasp.

IV. GRASP DETECTION

GraspCNN takes RGB image as input and predicts feasi-

ble grasping circles for every object in a cluttered scene.

For training and testing, our model runs on an Intel Core

i7-4770K CPU and a NVIDIA GTX1080 GPU.

A. ARCHITECTURE

In this section, we present the design of GraspCNN.

Fig. 6 shows the architecture of grasp detection network.

GraspCNN is implemented as a fully convolutional neural

network, which is all made up of 1 × 1 and 3 × 3 con-

volutional layers. It has 5 initial convolutional layers to

extract basic features from RGB image followed by 1 ×
1 and 3 × 3 convolutional layers to do feature fusion and

extract advanced features while the final convolutional layer

predicts grasping circles with grasp probabilities. The feature

extraction module subsamples the input by a factor of 32 to

produce 512 basic feature maps of size 13 × 13. The feature

fusion module consists of three convolutional blocks. The

first two blocks termed conv6 and conv7 are 1× 1, 3× 3, and

1 × 1 convolutions, which are introduced to compute more

abstract features for local patches. The 1 × 1 convolution

layer termed conv8 is responsible for reducing feature dimen-

sions and pursing better abstractions for the final prediction

layer. The prediction module produces 6 feature maps of size

13 × 13 separately, where probability is the grasp confi-

dence prediction, (tx , ty) is the grasp point offset prediction,
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FIGURE 6. Overview of the proposed GraspCNN. Given RGB image, the first five convolutional layers learn basic features
of local image regions. Then the next three convolutional blocks extract advanced features. The final layer predicts
feasible grasping circles. The convolution layer parameters are denoted as ‘‘[kernel size] × [kernel size] –s– [stride]’’. ‘‘s’’
represents the stride length of the convolution.

(sin2θ , cos2θ ) is the grasp angle prediction, and td is the grasp

width prediction.

GraspCNN is trained and evaluated on the Cornell Grasp-

ing Dataset [12]. This dataset is specially designed for the

parallel plate gripper and adopts the oriented rectangle rep-

resentation. Therefore, the positive grasping rectangles need

converting to the oriented diameter circles at first. Then

extensive data augmentation is performed by translating and

rotating RGB image randomly. Finally, a center crop of 416×
416 pixels is used to fit the input layer.

The input RGB image is divided into a 13 × 13 grid. If the

grasping circle center falls into a grid cell, that grid cell is

responsible for detecting that grasp. The ground-truth grasp in

the grid cell is treated as a mask and the corresponding value

is set as 1. The final layer predicts both grasp probabilities and

grasping circles. The probability reflects how confident that

the grid cell contains a feasible grasp. We compute the diam-

eter in pixels (maximum of 160) of each grasping circle in

dataset. Therefore, the circle diameter d is normalized by the

scaling factor 160 to put it in the range [0, 1]. Grasp is closely

related to local information in a neighboring region. The

grasping circle center coordinates (x, y) are parameterized to

be offsets of corresponding grid cell. Then the offsets are nor-

malized by the subsample factor 32 so they are also bounded

between 0 and 1. The oriented diameter angle θ is in the range

[−π /2, π /2], which is two-fold rotationally symmetric. It is

parameterized by using sin2θ and cos2θ to keep values in

the range [−1, 1] and remove any discontinuities. GraspCNN

predicts (tx , ty, td , tsin, tcos) for each grasping circle and its

probability p. If that cell is offset from the top left corner

of the image by (cx , cy) and the oriented diameter circle has

circle center (x, y), diameter d and oriented diameter angle θ ,

the predictions can be represented as:






























x = 32 tx + cx

y = 32ty + cy

d = 160 td

tsin = sin2θ

tcos = cos2θ

(11)

Fig. 7 shows the predictions of GraspCNN in image

space. The Cornell Grasping Dataset needs converting into

the expected output format of the proposed network, which

makes grasp distribution easier for the network to learn.

B. TRAINING

GraspCNN is trained from the beginning without pre-training

on the ImageNet classification task. 85% images of Cornell

Grasping Dataset are randomly selected as training data and

remains are test data. It trains on RGB image at the resolution

of 416 × 416 and subsamples the input by a factor of 32 to

get output feature map of 13 × 13. The RELU activation

function is used for all convolutional layers except the last

prediction layer, which is designed to use a linear activation

function. We use SGD with momentum of 0.9 to optimize

for sum-squared error in the output of our model and use a

learning rate of 0.0001 and a weight decay of 0.0001 to train

GraspCNN for 5 epochs.

At inference time, we first extract the peaks in the proba-

bility feature map for each grid cell independently. We detect
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FIGURE 7. Oriented diameter circle predictions. GraspCNN predicts the
diameter and center coordinates of the oriented diameter circle. It also
predicts sin2θ and cos2θ to remove discontinuities of oriented diameter
angle θ .

all grasp probability scores whose value is greater or equal

to its 8-connected neighbors and keep the top 20 peaks. The

grasp probability score of the top 20 peaks whose value is

larger than a certain threshold (e.g., 0.4) will be considered

as a feasible grasp detection. GraspCNN predicts (tx , ty, td ,

tsin, tcos) and probability score p for each grid cell. If that grid

cell is responsible for a feasible grasp detection, the grasping

circle can be constructed as shown in Fig. 7. An example is

presented to illustrate the accurate predictions of GraspCNN.

With the combined network output, optimal grasping circles

can be obtained as shown in Fig. 8(a). Fig. 8(b) shows the pre-

diction of probability score feature map. GraspCNN predicts

a higher probability score for a graspable region. Fig. 8(c)

shows the prediction of diameter map in pixels, which is

associated with the probability map. The visualization of

network output reflects that GraspCNN is effective to detect

grasps from RGB image.

V. RESULTS

A. GRASP DETECTION RESULTS

Table 1 shows a comparison of our method with the pre-

vious work for grasp detection on the Cornell Grasping

Dataset. Fast Search [24], SAE [12], Multiple Grasp [13],

GGCNN [14], GraspNet [18], FCNN [20] are existing

state-of-the-art grasp detection methods. To evaluate the

correctness of our predicted grasping circles, a comparison is

performed between the predicted grasping circles and labeled

input ground-truth grasping circles. The grasp detection accu-

racy is evaluated using proposed grasping circle metrics.

Across the board, our model outperforms the current state-

of-the-art robotic grasp detection algorithms in terms of accu-

racy. Park et al. [20] predict multiple oriented rectangles and

confidence scores associated with those oriented rectangles.

FIGURE 8. (a) Illustration of the GraspCNN output. From the combined
output, the optimal grasping circles can be obtained. (b) Visualization of
the probability map of GraspCNN output. (c) Visualization of the diameter
map in pixels of GraspCNN.
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FIGURE 9. Qualitative results of GraspCNN. GraspCNN can detect multiple grasps in a cluttered scene. It performs well to detect grasps for novel
objects.

FIGURE 10. Illustration of object grasping detection model. GraspCNN is executed in parallel with YOLO. It can detect objects
and locate grasps simultaneously in a cluttered scene.

This approach is most similar to our own, GraspCNN also

predicts multiple oriented diameter circles and weights them

by a confidence score. The key difference is that GraspCNN

maintains a compact design using only the standard convo-

lutions without batch normalization, max pooling and skip

connection and only predicts one optimal grasping circle for

each cell instead of multiple anchor box candidates. The pre-

dictions of GraspCNN are straightforward and closely related

to local image regions, which makes it easier to train. After

5 epochs, it performs stable predictions with high accuracy.

Grasp detection is similar to object detection. The goal

of 2D object detection is to localize and recognize objects in

an image using object bounding boxes, while the goal of 2D

grasp detection is just to localize feasible robotic grasps in an

image using grasping circles. Compared to object detection,

grasp detection is simpler and closely related to local image
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TABLE 1. Grasp detection performance on cornell grasping dataset.

FIGURE 11. Visualization of object grasping detection results. With the
combined model GraspCNN + YOLO, it achieves outstanding performance
on both object detection and grasp detection.

regions. The output format of GraspCNN is designed to asso-

ciate with local image regions. It reflects the regular pattern

of robotic grasp, which makes GraspCNN more efficient and

accurate. The grasp detection results in a real cluttered scene

are shown in Fig. 9.

B. OBJECT GRASPING DETECTION RESULTS

In the experiments, KinectV2 publishes RGBD images at

a resolution of 960 × 540 pixels with the corresponding

point cloud. The RGB image is used as input of YOLO,

which utilizes pre-trained weights on COCO dataset to detect

objects. Meanwhile, a center crop of 416 × 416 pixels is sent

to GraspCNN to locate grasps.

GraspCNN is executed in parallel with YOLO. Fig. 10

shows the framework of object grasping detectionmodel. The

oriented diameter circle with the highest probability score in

the bounding box of an object is chosen for grasp detection

results. The object grasping detection results from real-world

testing are shown in Fig. 11.

VI. CONCLUSION AND FUTURE WORK

We present GraspCNN, a single end-to-end network for grasp

detection, which is simple to construct and utilizes local

region information to predict at least one feasible grasp for

every object in a cluttered scene. GraspCNN maintains a

compact design using only the standard convolutions and

achieves the state-of-the-art performance on Cornell Grasp-

ing Dataset. With the combined model GraspCNN + YOLO,

it can detect objects and locate grasps simultaneously in

clustered environments, while each individual network must

be trained separately.

Our future work will focus on using a single unified detec-

tion network to perform object grasping detection.
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