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Abstract— This paper reports recent research efforts to
advance the functionality of Unmanned Aerial Vehicles (UAVs)
beyond passive observation to active interaction with and
manipulation of objects. The archetypical aerial manipulation
task — grasping objects during flight — is difficult due to
the unstable dynamics of rotorcraft and coupled object-aircraft
motion. In this paper, we analyze key challenges encountered
when lifting a grasped object and transitioning into laden
free-flight. We demonstrate that dynamic load disturbances
introduced by the load mass will be rejected by a helicopter
with PID flight control. We determine stability bounds in which
the changing mass-inertia parameters of the system due to the
grasped object will not destabilize this flight controller. The
conditions under which transient partial contact mechanics
of objects resting on a surface will not induce instability are
identified. We demonstrate grasping and retrieval of a variety
of objects while hovering, without touching the ground, using
the Yale Aerial Manipulator testbed.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have rapidly evolved

into capable mobility platforms able to maneuver, navigate

and survey proficiently. A natural progression is to advance

beyond simple motion and observation to interaction with

objects and the fixed environment. Of specific interest is

grasping and retrieving objects while hovering, combining

terrestrial robot manipulation capabilities with the range,

speed and vertical workspace of flying vehicles. This could

make possible novel applications for UAVs, such as search

and retrieval in rough or inaccessible terrain or networked

aerial logistical supply chains over large areas.

Several limited examples of flying vehicles physically

interacting with objects have been demonstrated, such as

in-flight refueling [1], [2] and the transport of slung loads,

both individually and cooperatively [3], [4], [5], [6]. In these

examples the interacting object is either not acquired auto-

matically (such as a load attached by a human operator on

the ground) or highly structured (e.g. refueling booms with

optical markers). Efforts to develop autonomous helicopter

UAV payload acquisition have relied on structuring of the

target object to simplify the task, such as a hanging magnet

at the end of a probe to collect ferrous objects [7], [8], or a

hook at the end of a probe to snag a hoop on an object [9].

In contrast to more constrained approaches, our aim is

to demonstrate generalized object retrieval and transport

of unstructured objects from aerial platforms. The most
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Fig. 1. Yale Aerial Manipulator capturing a block in hover.

substantial aspects of this problem can be classified into

approach and alignment, grasp performance, aircraft stability

during object contact, and laden flight stability.

We address the first two issues by incorporating a highly

adaptive compliant grasper mounted ventrally on a helicopter

airframe. This enables the aircraft to acquire a variety of

target objects even in the presence of large positioning errors

due to aerodynamic disturbances [10], and remain stable

when coupled to the payload on the ground [11]. Laden

aircraft stability, object contact and transition to free flight

are the primary focus of this paper.

Instability and fragility of hovering vehicles encourage an

“avoid at all costs” approach to contact with surroundings.

Landing and take-off generally involve rapidly transitioning

through partial contact conditions, with minimal time in

intermediate states between static and dynamic stability,

where the danger of ground collision is high. For grasping

and manipulating external objects, operation in these regimes

is required — both when grasping objects and in the process

of lifting a target clear of the ground. The stability of the

aircraft in coupled and partial contact with ground, and once

airborne with payload, must be analyzed and assured.

In this paper, we discuss key challenges of grasping from

a hovering vehicle and present our experimental platform,

the Yale Aerial Manipulator (Fig. 1). A dynamic model of

the longitudinal and pitch dynamics of a helicopter with

a PID attitude controller is used to determine object mass

and placement limits for closed-loop stability and cyclic

control saturation bounds. We show both analytically and

experimentally (using a PID-stabilized helicopter) that the

system is robust to load step disturbances similar to those

applied by a captured object. We experimentally show stable

hover of a helicopter coupled to an object fixed to ground,

analysis of which was presented in [11]. Finally, we discuss

transition to free flight and demonstrate retrieval of a number

of unstructured objects by the helicopter in stable hover.
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Fig. 2. Yale Aerial Manipulator with gripper and fixed gear.

II. GRASPING FROM A HOVERING VEHICLE

The grasping task can be divided into phases: approach

and alignment to the target, grasping hover while coupled

to an object resting on the ground, partial coupling during

liftoff, and departure. Each phase poses specific challenges.

Disruptive aerodynamic surface effects make near-ground

position-keeping outdoors more difficult than hover in free

air [10]. The wake of the rotor is contained by the surface

underneath it, creating a repelling cushion of air referred to

as ‘ground effect’. As a rotorcraft moves laterally through

ground effect, the deflected wake is pushed ahead of the

aircraft and can be entrained and recirculated by the rotor,

causing a ground vortex. When the vortex enters the rotor, the

thrust decreases rapidly; together these create an instability

that causes the aircraft to bounce on descent and then drift

and plunge from wake interactions. Typical UAV helicopter

free-air station-keeping accuracy is on the order of tens

of centimeters; the Rotomotion SR-100 UAV (7 kg, 2 m

rotor) has a reported 20 cm position-keeping accuracy [9].

In practice, UAV hovering is not yet sufficiently precise to

enable grasping with a rigid manipulator.

When the vehicle is in position and has a secure grasp

on the target, its flight dynamics become coupled to the

ground through forces transmitted by the gripper. Certain

ratios of lateral and angular coupling stiffness can destabilize

the aircraft [11]. As thrust increases and the surface normal

force decreases, this coupling must remain well-conditioned.

Once the object is lofted clear of the ground, the added

load must not destabilize the helicopter. The added mass

changes physical parameters of the system — the net mass,

moment of inertia, and location of the Center of Gravity

(CoG) of the vehicle are all altered. Flight controllers tuned

for specific aircraft parameters may not accommodate chang-

ing plant mid-flight — interaction between the controller

and changing system parameters must not lead to instability.

Aircraft mass change mid-flight is usually negative, as fuel

is consumed or payload is deployed; the effects of directly

attaching payload to a helicopter mid-flight are unexplored.

A. Yale Aerial Manipulator

Our experimental platform, the Yale Aerial Manipulator,

consists of a compliant underactuated manipulator, based on

the SDM Hand [14], mounted ventrally between the skids of

Fig. 3. Planar aircraft dynamics free body diagram.

a 4 kg, 1.5 m rotor, T-Rex 600 ESP radio control helicopter

(Align, Taiwan) (Fig. 3). The gripper consists of four fingers

with two elastic joints each, actuated by a parallel tendon

mechanism that balances loads across each digit; it has a

grasp span of 115 mm. The special characteristics of the hand

design — open-loop adaptive grasping, wide finger span,

insensitivity to positional error – closely match the chal-

lenges associated with the UAV manipulation task, allowing

for a very simple, light-weight mechanism, without the need

for imposed structural constraints on the load. The gripper

unit and landing gear are modular, allowing for alternative

payloads, retractable skids and other fittings to be attached.

III. FLIGHT STABILITY WITH PAYLOAD

Much work has been done to control autonomous ro-

torcraft flight attitude, and the dynamics of helicopters in

hover are well understood [7], [12], [15]. Due to the largely

decoupled lateral and longitudinal dynamics of helicopters

around hover, a planar linear model is useful for analyzing

the stability of both the free-air and ground-coupled systems.

In this paper, longitudinal dynamics are considered, but the

analysis is equally applicable to lateral flight near hover.

A. Helicopter Dynamic Model

The rigid-body dynamics of the linearized planar heli-

copter in hover are1 (Fig. 3):

mẍ = −mgβ −mgθ −mgu (1)

Iθ̈ = mghβ +mghu+ w (2)

where m is the mass of the helicopter, I is the rotational

inertia in pitch, g is acceleration due to gravity, x, z and θ
are the longitudinal, vertical and angular position of the CoG

with respect to the inertial frame, h is the rotor height above

the CoG, β is the first harmonic longitudinal rotor flapping

angle, u is the cyclic pitch control input, and w is the pitch

moment applied by the payload.

All helicopters exhibit rotor flapping [16]; we consider a

teetering rotor free to pivot at the center like a see-saw . In

horizontal motion, the on-coming wind causes an imbalance

in lift between the blades on either side of the rotor disc. This

causes the rotor plane to pitch upward, changing the angle

of attack of each blade until a new equilibrium is reached.

1Rotor thrust is taken as constant, exactly canceling helicopter weight.
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The angled rotor directs some of its thrust aft, slowing

the helicopter and producing a pitching moment. Flapping

dynamics are a crucial part of helicopter stability analysis,

even at low speeds [12]. The rotor pitch response time is

extremely fast, and so it can be represented analytically,

without need for additional states.

At low speeds, the flapping angle produced by a ‘see-saw’

teetering rotor head is an approximately linear combination

of the longitudinal translation and pitch velocities:

β = q1ẋ− q2θ̇ (3)

where q1 and q2 are constant parameters of the rotor [12].

In the case of rotor heads with Bell-Hiller stabilizer bars,

the flapping angle is augmented by that of the sub-rotor,

multiplied by the mechanical advantage of the stabilizer

linkage transmission K [15]:

β′ = β +K(q1sẋ− q2sθ̇) (4)

where q1s and q2s are the stabilizer flapping parameters.

Together, the stabilized rotor dynamics are homologous to

that of a conventional rotor with slower time constants:

β′ = (q1 +Kq1s)ẋ− (q2 +Kq2s)θ̇ (5)

Thus, we need not distinguish between the two in this

analysis.

Helicopter pitch and longitudinal motion are strongly

interdependent, but vertical motion is effectively decou-

pled from these around hover. Solving the longitudinal

translation-pitch equations together produces a single-input-

single-output transfer function between the cyclic control

input and the pitch angle in free flight:

H =
m2ghs

IGs2 +mghq2Gs−m2g2hq1(q2s− 1)
(6)

where G = (ms + q1mg), the dynamics associated with

translation due to pitch.

B. Flight Stability With Payload Mass

While several autonomous helicopters have flown with

tethered loads [3], [5], [6], the slung configuration is specif-

ically designed to decouple the motion of the load from the

helicopter, and separate the timescales of the attitude and

tether-pendulum dynamics [4]. In the case of grasped loads,

the payload is directly coupled to vehicle pitch and lateral

motions – the closed-loop system must be shown to remain

stable in the expected range of system mass and inertia.

Level flight of helicopters is regulated by an onboard flight

controller, maintaining θ = 0. A common architecture used

in UAV rotorcraft is Proportional-Integral-Derivative control.

The transfer function for a PID controller has the form:

C = k

(

1 + ki
1

s
+ kds

)

(7)

where k is the control gain, and ki and kd are the integral

and differential control parameters.

The stability of the closed-loop system can be assessed

by examining the transfer function characteristic polynomial.

The polynomial is the sum of the products of the numerators

(subscript n) and denominators (subscript d) of C and H:

CnHn + CdHd (8)

Substituting (6) and (7), this becomes:

s3+

(

mgh

I
(q2 + kkd) + q1g

)

s2+k
mgh

I
s+

mgh

I
(kki+q1)

(9)

As the unladen helicopter is stable in free air, this polynomial

is known to be stable.

Adding payload to the aircraft changes three key parame-

ters: m, the mass of the helicopter, I , the rotational inertia of

the helicopter, and h, the height of the rotor plane above the

CoG. Changes to these values depend on three attributes of

the acquired load: n, the mass of the payload, and dx and dz ,

the longitudinal and vertical offsets of the payload mass from

the vehicle CoG. The adjusted parameters are calculated by:

m′ = m+ n (10)

I′ = I + In + n(d2x + d2z) (11)

h′ = h+
n

n+m
dz (12)

where In is the rotational inertia of the added payload2.

The continued stability of the characteristic polynomial

can be assessed using the Routh-Hurwitz criterion [11]. The

criterion states that for a dynamical system to be stable, its

characteristic polynomial must have all positive coefficients,

and that leading entries in the Routh-Hurwitz array derived

from those coefficients must be positive. In the case of a

third order polynomial:

s3 + a1s
2 + a2s+ a3 (13)

The lead elements of the array are given by:

b1 = (a1a2 − a3)/a1 (14)

c1 = a3 (15)

Mass added to the helicopter is always positive. While in

principle dz may be arbitrarily positive or negative, the struc-

ture of most helicopters precludes adding mass sufficiently

far above their centers of gravity such that h′ < 0. Thus, the

characteristic polynomial coefficients are always positive.

Therefore, as c1 = a3, only array element b1 can change

signs. From (14) the stability condition becomes:

a1a2 − a3 > 0 (16)

Substituting the characteristic polynomial coefficients and

(10)–(12) and rearranging, this can be expressed as:

m′gh′

I′
>

q1g − q1gk + kki
(q2 + kkd)k

(17)

Note that the right-hand side of the inequality consists only

of constant terms of the aerodynamics and controller; we

denote this constant P . All mass and inertial parameters

2Note that all rotations are considered to occur around the unloaded CoG
of the helicopter; offset mass effects are accounted for in the load bias
torque.

2493



Fig. 4. Stability region for offset loads: a. Position-mass height map, b. Vertical position-mass elevation, c. Isometric with mass isoclines.

modified by changing payload appear on the left-hand side of

the inequality; we denote this variable Q. Thus, any loading

configuration will be stable provided that Q > P . This

stability criterion Q is a physical characteristic of the vehicle

relating rotor cyclic torque to rotational acceleration, and has

units of s−2. It appears in (2) as the open-loop pitch transfer

function gain:
θ(s)

β(s)
= Q

1

s2
(18)

Stability criterion (17) can be directly transformed into a

relation between the three load attributes:

(m+ n)g(h+ n

m+n
dz)

I + n(d2x + d2z)
> P (19)

The rotational inertia of the load, In, is considered to

be very small and is treated as zero. This relation can be

solved to compute the range of permissible offsets, given a

known payload mass, or conversely for maximum load given

a payload position envelope.

The surface of the stability bound Q = P is a hyperbolic

cylindrical funnel (Fig. 4a and 4b); loading configurations

under this surface are stable. The funnel is centered around

dz = g/2p with a circular asymptote (Fig. 4b) of radius:
√

4ph+ g2

4p2
(20)

Within this circle, no amount of added mass will destabilize

the vehicle.

In practice, the distribution of payload on a helicopter with

a ventral gripper has much less variation in dz than dx due

to the fixed height of the gripper below the helicopter. The

boundary of the cross-section through the stable configura-

tion region can be determined by holding dz fixed:

d2x <

(

mgh− pI

p

)

1

n
+

gh+ gdz − pd2z
p

(21)

Correspondingly, the hyperbolic asymptote (Fig. 5) is

given by:

dx =

√

h+ dz − pd2z
p

(22)

Fig. 5. Stability metric position-mass isoclines, dz = 0.2 m.

Similarly to (20), any mass (up to the capacity of the vehicle)

may be added without destabilizing the aircraft.

Beyond predicting stability, the Q metric provides an

indication of the robustness of the system. The value of Q
decreases monotonically as dx and n approach the stability

bound at Q = P (Fig. 5).

C. Load Offset Rejection

Given loading conditions known not to destabilize the

vehicle in flight, it can be shown that bias torque loads

accompanying payloads offset from the CoG will be rejected

by the controller. Solving the linearized equations in the s-

domain, the aircraft pitch angle can be written as a sum of

the open loop system transfer function and a filtered load

disturbance (Fig. 6):

θ(s) =
m2ghsu(s) +Gw(s)

IGs2 +mghq2Gs−m2g2hq1(q2s− 1)
(23)

where G = (ms+ q1mg). This can be rewritten as:

θ(s) =
Hn

Hd

u(s) +
G

Hd

w(s) (24)

As the system is linear, the two transfer functions can

be considered separately. In closed-loop control with linear

compensator C, the transfer function between the disturbance
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Fig. 6. System disturbance block diagram.

Fig. 7. Cyclic trim balance angle.

and the output is:

θ(s)

w(s)
=

G

Hd + CHn

(25)

The denominator is identical to that of the stabilized closed

loop transfer function between reference, r, and the output:

θ(s)

r(s)
=

CHn

Hd + CHn

(26)

Thus, the stability of the disturbance response is not depen-

dent upon G. Given a compensator that successfully regu-

lates the attitude dynamics around hover, small torque bias

disturbances that do not take the system into the nonlinear

regime or saturate the cyclic control margin will be rejected.

However, the finite response time of the compensator can still

result in large transient responses, such as when an object is

dropped mid-flight, potentially leading to sufficiently large

excursions to result in a crash [3].

D. Flight Trim Under Load

When an unbalanced load is added to the helicopter,

the trim position during hover is affected. From (2), by

inspection the equilibrium condition occurs when:

m′gβ +m′gu =
w

h′
(27)

Substituting into (1), the lateral acceleration becomes:

m′ẍ = −
w

h′
−m′gθ (28)

As the onboard controller seeks to return θ to zero in equi-

librium, this will result in constant longitudinal acceleration.

Human pilots trim for this imbalance by allowing non-zero

values of θ in hover.

For simple weight load torque w = ngdx, this gives the

trim condition:

mgθ = ng
dx
h′

(29)

Fig. 8. Longitudinal position-mass stability bounds for dz = 0.2 m.

Fig. 9. Position stability bound isoclines for 0.5 and 1 kg loads.

which yields:

θ =
dx

hm

n
+ h+ dz

(30)

This is the angle subtended by the rotor axis and the

combined CoG – the trim condition where the net mass is

suspended directly below the rotor hub in hover (Fig. 7).

If the mass and attachment position of the payload is

known, the flight controller can be instructed to maintain

this pitch angle and so avoid unbounded position drift.

For level hover, u = −θ, and this angle must always be

within the helicopters cyclic control range. If the cyclic con-

trol saturates, the helicopter will be uncontrollable. Typical

cyclic range for a small scale helicopter is ±10◦ [16]. The

cyclic range places a static load bound on the allowable mass

distribution, with an asymptote at:

dx = θ(h+ dz) (31)

where dz < h.

Combined with (22), the cyclic trim bound of (30) de-

scribes the range of allowable payload mass and position

parameters (Fig. 8). Of the two, the cyclic trim applies a

much stricter limit on payload position (Fig. 9). The limited

cyclic control range ensures that statically stable payload will

not adversely effect dynamic stability of the aircraft.

IV. PAYLOAD STABILITY EXPERIMENTS

To demonstrate aircraft stability under PID control after

payload capture, two experiments were performed: the first

to demonstrate robustness of the flight controller to step
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Fig. 10. Yale Aerial Manipulator with payload rail and fixed gear.

TABLE I

AIRCRAFT PARAMETERS

Aerodynamics and Mass Parameters

g 9.81 ms−s m 4 kg
h 0.2 m I 0.1909 kgm
q1 0.0039 dz 0.275 m
q2 0.0266

PID Control Parameters

k 0.24 kd 1.7
ki 0.7

loads and the second to assess stability of the controller with

changing payload positions.

The helicopter is fitted with a Helicommand Profi flight

stability system that employs a PID attitude controller, with

known parameters. It also controls height above ground and

position drift using optical feedback, but this function is

turned off during experiments to avoid interference with

dynamic response measurements. Flight attitude is measured

by a 3DM-GX3-25 inertial measurement unit (Microstrain,

Vermont USA) and transmitted via bluetooth to an off-board

laptop. Aircraft and control parameters are given in Table I.

A 0.48 m long aluminum rail is mounted ventrally between

the helicopters skids, 0.2 m below the unladen aircraft CoG,

aligned with the aircraft x axis (Fig. 10). The rail has

mounting holes every 25.4 mm to which a fixed mass or

remote-triggered electromagnet may be secured, allowing

loads to be shifted between tests, or dropped mid-test.

A. Dynamic Load Bias Test

In the first experiment, a 0.125 kg test mass is dropped

from a range of mounting positions under the helicopter to

produce step load disturbances. From (27), rotor cyclic con-

trol is analogous to applied torque. By trimming the aircraft

in flight with the test mass in place and then releasing it,

the pitch dynamics will emulate the effect of instantaneously

applying an unbalanced payload, which is difficult to achieve

in practice.

Prior to the drop, the helicopter is autonomously held

stationary out of ground effect, at a pitch angle that cancels

the moment of the test mass. As the drop is triggered,

the horizontal position control of the flight stabilizer is

simultaneously disabled. Five trials were performed, with the

test mass starting 50.8 mm forward of rotor axis and moved

50.8 mm further away each time. The resulting pitch motion

of the aircraft shows that the system successfully rejects step

Fig. 11. Normalized unit load bias step responses.

Fig. 12. Normalized shifted mass drop step responses.

biases (Fig. 11). As expected from (28), however, the lateral

motion of the aircraft was unbounded and experiment settling

time was limited by available flight space.

B. Added Mass Flight Stability Test

In the second experiment, the stability of the system with

different fixed mass configurations is tested. A weight is

attached at a range of locations on the mounting rail, and the

helicopter is trimmed for the added mass, along with a small

test mass at a set location. Experiment setup is as previously:

the craft is kept stationary under autonomous control until

the test mass is released to induce a step response. In total, 24

trials were performed, with the fixed mass moved 25.4 mm

further from the rotor axis every third trial.

From (25), the expected disturbance step response is a one

zero, three pole system with a decaying oscillation period of

7.6 s. Due to limited airspace for testing, not all tests could

be allowed to continue to complete settling, as the aircraft

translated at a high rate from unbalanced trim after the drop.

In outdoor flight, the pitch motion of the aircraft is noisy,

making estimation of the system poles difficult. Some cross-

coupling between pitch and roll was observed; a least-

squared regression on roll measurements identified a linear

coupling factor and phase lag that was used to remove its

influence in the pitch measurement.

The aggregate dynamics tracked the predicted step re-

sponse of the system (Fig. 12), with a slightly shorter

oscillation period than predicted (∼5 s). Given the noise in

the measurements, the oscillatory poles identified from the

step responses were widely spaced; these identified poles

2496



Fig. 13. Shifted mass step response pole positions.

and zeros are shown in superimposed on the root locus with

respect to changing Q in figure 13. As Q decreases, the

system is expected to become more oscillatory, crossing the

axis when Q = P . However, the limitation imposed by

(30) prevented the mass from being displaced far enough

to discern any trend towards incipient instability.

V. GRASPING WHILE HOVERING

A. Hovering Coupled to a Fixed Object

It was shown in an earlier analysis that a hovering

helicopter grasping an object fixed to the ground with a

compliant gripper should be stable for certain ratios of

lateral and angular gripper stiffness, k′x and k′
θ

[11]. For a

generalized stiffness model of the gripper forces and torques

applied to the airframe, Fx = k′xx and τ = k′
θ
θ, the stability

bound was:

k′x <
mh

I(h+ q1dz)
k′θ + g

(

mh

I(h+ q1dz)

)2

(32)

The Aerial Manipulator gripper system stiffnesses are small,

and therefore the final term of (32) dominates ensuring the

inequality is satisfied, and the system remains stable.

To validate the stability of the aircraft in coupled hovering

under PID control, we used the aerial manipulator platform

to grasp a wood block attached to the ground (Fig. 14). The

aircraft was flown into position under control of a human

safety pilot with landing gear retracted and then switched to

autonomous PID hover as the gripper was closed. For the

duration of the experiment, the hover thrust was maintained

and the pilot did not issue commands to the vehicle.

After achieving a grasp the vehicle remained stable; the

aircraft gripper was released after 32 seconds (Fig. 15 and

Fig. 14d). The slow oscillation of the aircraft during contact

hover is thought to be due to wind eddy currents in the

outdoor test facility. The experiment was repeated, with the

aircraft hovering in contact for 26 seconds. The aircraft did

not touch the ground during either trial.

B. Transition to Free Flight

Once grasped, retrieving the object requires the helicopter

to apply increased thrust to balance the weight of the payload

Fig. 14. Coupled hovering, grasping a block fixed to ground.

Fig. 15. Coupled hovering pitch and roll angles.

and transition to free flight. As the surface normal force

reduces the lateral force produced by object contact friction

will decrease — eventually the object slips, resulting in

much reduced lateral stiffness. Similarly, the ground torque

reaction decreases, devolving to single-point contact with

only kinematic angular stiffness, until the payload begins to

lift clear (Fig. 16).

Continued stability in partial contact depends on the object

geometry and contact properties. A long flat object on ice

will slide freely but hold the helicopter level, while a sticky

rubber sphere on tarmac will act like a pin joint, potentially

causing the helicopter to pivot into the ground.

In practice, transient contact conditions are difficult to

maintain, due to the sensitivity of the helicopter to distur-

bances – as the applied thrust exceeds the net mass of the

vehicle, the aircraft quickly loses contact with the ground.

However, when grasping round objects, tractive objects with

short base lengths, this transition should be made quickly

so that instantaneous unstable conditions do not persist long

enough to pose a danger to the aircraft.

C. Object Retrieval While Hovering

Complete operation of the Yale Aerial Manipulator was

demonstrated by grasping and retrieving a variety of objects

while hovering under PID control. Similar to the coupled

grasping experiment, the helicopter was positioned over the
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Fig. 16. Transitional contact force coupling model.

Fig. 17. Grasp and retrieval of a block while in hover.

target, switched to autonomous hover mode, and the gripper

closed. Once the grasp was secure, rotor collective was

increased until the object lifted clear of the ground (Fig. 17).

We have successfully demonstrated unstructured object

retrieval 18 times; no trials exhibited instability, or caused

the helicopter to touch the ground while grasping. Objects

grasped include a wood block (700 g, 265 mm), PVC

cylinder (900 g, 390 mm), softball (160 g, 89 mm), and

a weighted tool case (1.45 kg, 335 mm, see Fig. 18). The

block grasping and ground-coupled experiments described

above are documented in the video attached to this paper.

VI. CONCLUSIONS

We have presented a planar helicopter model and analysis

of attitude stability subject to bias and step disturbance

encountered during the aerial grasping task. We have shown

that under PID control, a helicopter will reject added load

trim offsets, and that cyclic trim imitations dominate the

range of allowable load positions; these load positions are

within the range of expected grasp offsets. Experiments

testing the response of a helicopter to trim imbalance demon-

strated stability of the aircraft under these conditions.

Furthermore, we have examined the effect of transitional

coupled hovering grasps as the aircraft picks up objects from

the ground. We have verified the stability of a helicopter elas-

tically coupled to a load for over 30 seconds. Finally, we have

demonstrated successful object retrieval by a PID-stabilized

teleoperated helicopter UAV 18 times, for a variety of object

masses, sizes and shapes. To the authors’ knowledge, this

is the first instance of unstructured object retrieval with an

aircraft-mounted gripper, while the aircraft is in flight.

Fig. 18. Yale aerial manipulator retrieving a 1.5 kg tool case.
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