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Abstract— Autonomous grasping of household objects is one
of the major skills that an intelligent service robot necessarily
has to provide in order to interact with the environment. In
this paper, we propose a grasping strategy for known objects,
comprising an off-line, box-based grasp generation technique
on 3D shape representations. The complete system is able to
robustly detect an object and estimate its pose, flexibly generate
grasp hypotheses from the assigned model and perform such
hypotheses using visual servoing. We will present experiments
implemented on the humanoid platform ARMAR-III.

I. INTRODUCTION

Future applications of service robots require advanced

object grasping and manipulation capabilities. According to

Gibson [1], one of the main properties that characterizes an

object is how it can be acted upon, namely what kind of

actions it affords. In the work presented here, we deal with

the problem of object grasping on a humanoid robot.

The development of humanoid robots for human daily

environments is an emerging research field of robotics and

challenging tasks. Recently, considerable results in this field

have been achieved and several humanoid robots have been

realized with various capabilities and skills. Integrated hu-

manoid robots for daily-life environment tasks have been

successfully presented with various complex behaviors (see

e.g. [2], [3]). However, in order for humanoid robots to

enter daily environments, it is indispensable to equip them

with fundamental capabilities of grasping. This includes

manipulating objects encountered in the environment and

dealing with kitchen appliances and furniture such as fridges,

dishwashers and doors. Research on humanoid grasping and

manipulation has been done on humanoid platforms such as

the HRP2 [4], ARMAR [3], the NASA Robonaut [5], Justin

[6], or Dexter [7], where the problem of grasping has been

approached from different perspectives.

The work to be presented in this paper is part of the

EU PACO-PLUS project (www.paco-plus.org) and follows

the concept of Object-Action Complexes [8], [9], [10].

Although humans master object grasping easily, few suitable

representations of the entire process have yet been proposed

in the neuroscientific literature. Thus, the development of

robotic systems that can mimic human grasping behavior is
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still a challenging field of research. In addition, the robot

embodiment usually does not resemble that of a human, i.e.

grasps suitable for a human may not be suitable for a robot,

and vice versa.

In our earlier work, we proposed and motivated a flexible

framework for object grasping [11]. In this framework, we

took advantage of closely connecting grasps to an efficient

shape approximation technique based on box primitives and

various dependencies that have to be considered in the field

of grasping. However, this work was done in simulation only,

using the grasp simulator GraspIt! [12].

For real experiments, object grasping with mobile manipu-

lators requires several additional modules to be at place. Our

early work demonstrated that it is possible to perform tasks

through a careful design and implementation of individual

modules [13]. The work presented here will also take into ac-

count the system integration aspects and demonstrate object

grasping tasks on a humanoid robot. It is an extension of our

previous work [3], [14] toward the realization of complexes

humanoid manipulation and grasping tasks in a kitchen

environment. Another main contribution of this paper will

be the transfer of the above mentioned grasping approach

from simulated environments to a real-world application.

This paper is organized as follows: in Section II, we

will describe the central modules of our system. In Section

III, the robot platform will be sketched, before we present

experimental grasping results in Section IV.

II. OUR APPROACH

We will now present a strategy for grasping known objects,

comprising an off-line, box-based grasp generation technique

on 3D shape representations. Since the focus of this paper

is the presentation of an integrated system, the applied

sub-modules will be described very briefly. We provide

references to our related work in which details on technical

implementations and algorithms can be found. The subtasks

of our system are:

A. An Object Database, representing 3D models of

known objects,

B. a visual Object Identification and Pose Estimation

module to recognize such an object in a real scene,

C. a Shape Approximation module to transform offline

models into primitive shape representations,

D. a Grasp Generation module to dynamically generate

grasp hypotheses from such representations, and

E. a Grasp Execution module, based on visual servoing,

to execute such hypotheses on a humanoid robot.

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on September 1, 2009 at 06:41 from IEEE Xplore.  Restrictions apply. 



Visual Object

Model

3D Object

Model

ARMAR-III

platform
ARMAR-III

modules

BoxGrasping

server

Gripper

Scene

III

II-B

II-E

II-C

II-D

II-A

Object ID,

Object Pose

Grasp

Hypotheses

Object Identification

& Pose Estimation

Grasp Execution by

Visual Servoing

Grasp Hypotheses

Generation and

Selection

Box Shape

Approximation

Object Database

Fig. 1. System architecture for the proposed grasp generation approach.

The architecture of these modules and their interaction, as

also links to the following subsections describing each single

module, is presented in Fig. 1.

A. An Object Model Database

The grasping experiments we will present in this paper

are performed on household objects with known geometry.

The respective object models are part of the public available

KIT ObjectModels Web Database [15]. In order to obtain

such models, we use the interactive object modeling sys-

tem introduced in [16],[17]. To acquire a 3D model, the

respective object is placed on a rotation plate which is

situated in front of a Minolta VI-9OO laser scanner. The

scanner uses an active triangulation measurement method,

providing a resolution of 640×480 measurement points and

an accuracy of less than 0.2mm. Different aspects of the

object are generated using different rotation angles of the

plate. The measurement process results in a registered and

triangulated mesh which is available in OpenInventor, VRML

and Wavefront OBJ formats. In addititon, an Allied Vision

Marlin stereo camera pair mounted on a rotating rig takes

images of the object during the process described above.

These images are used to generate texture information for the

object model. The meshes from the database are registered

with the recognition system (see Section II-B) and made

available for box decomposition (see Section II-C).

B. Object Identification and Pose Estimation

A two-step approach using local features is applied in

order to identify and localize textured objects in a scene, as

presented in [18]. First, the object is recognized including

2D localization, which is accomplished using 2D feature

correspondences between the image of the scene and images

in the database. 2D localization is computed from a homog-

raphy based on SIFT descriptor correspondences. Based on

the 2D localization result, a 6D pose estimate of the object is

computed by making use of the stereo camera system. For 6D

pose estimation, interest points within the localized 2D area

of the object are collected and correlated with the second

camera image, yielding a sparse depth map. The resulting

point cloud is registered with the object model.

(a) (b) (c)

Fig. 2. Visual representations and 3D models, like (a-b), are used to
describe objects in the database. (c) Result of the final pose estimate for an
example scene, after application of the calibrated rigid body transformation.

To later associate object-centered grasps with objects on

the basis of 3D meshes generated in the object modeling step,

the fixed rigid body transformation between the object mesh

and the estimated object pose has to be determined. For this

purpose, we developed a tool which computes the pose of

the object of interest by using the recognition module for one

given scene. In parallel, the scanned model is mapped into

the stereo image pair of this scene, and its pose is adjusted

manually so that the model projection matches the stereo

views. The desired rigid body transformation is then given

by the transformation between the automatically computed

pose estimate and the manually adjusted pose. An exemplary

result of a final pose estimate, as also corresponding samples

from the database, are shown in Fig. 2.

C. Shape Approximation through Box Decomposition

We base the generation of grasp hypotheses on a box-

based 3D shape approximation technique that we presented

in [19] and recently optimized in [20]. Originating from an

arbitrary 3D point set and the computation of its oriented

minimum volume bounding box (MVBB) [21], our method

recursively splits a set of boxes to tightly envelop the point

set by a set of MVBBs. By this split-and-fit strategy we

aim at approximating the object shape with a minimum

number of tight fitting MVBBs. The main parameter for a

decomposition is a volume gain value. In case a box split

will not result in a sufficient cutting-off of unoccupied space,

it will not be split any further. For more details on the

algorithm, we refer to [19], [20]. It is important to note that

we can approximate a set of points by a box constellation.

In the application here, we first decompose all 3D models

(like the one in Fig. 2b) by extracting the point data from

the meshes in the database in an offline step and store their

respective box constellations.

D. Grasp Hypotheses Generation and Selection

Grasp hypotheses directly emerge from each face of the

final box decomposition, where the approach of the gripper

is aligned to the face’s normal, and orientations aligned to

the face’s edges. The set of valid faces is reduced by mainly

applying geometrical heuristics that decribe various depen-

dencies, e.g. like spatial constellation, visibility or task at

hand, as presented in [11]. To include grasp quality learning,

we earlier presented two approaches based on supervised

neural networks that use the grasp simulator GraspIt! [12]

for learning stable grasps from 2.5D representations of object

parts. Applying boxes as shape primitives efficiently allows

us to generate such part-based 2.5D ‘depth maps’ from the
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Fig. 3. The applied neural network structure holds 228 input, 30 hidden and 3 output neurons. As an input, a face projection F plus its box dimensions
dim(F) are fed into the network, since faces are normalized to 15×15. eps and vol are the grasp quality measures that GraspIt! delivers. The force closure
is also learned separately even if it equals (eps > 0). From this model, off-line learning of grasp qualities from face representations is possible.

3D data and the box constellation (see Fig. 3). In this paper,

we will use only one specific grasp pre-shape, namely a

power-grasp with a model of the robot hand that we will

use. How an additional dependency concerning the gripper

kinematics can be introduced in order to control finger fine-

positioning was presented in [20].

E. Grasp Execution

The grasp execution on ARMAR-III [22] (see also Section

III) comprises three different stages: the first two stages

describe the approach of the end-effector to the final grasp

pose, while in the third stage the object is grasped by closing

the five-fingered hand. For approaching, two sequential poses

are generated for the end-effector: (i) a pre-grasp pose which

assures a collision free approach towards the grasp pose,

and (ii) the grasp pose itself, which determines the final

position and orientation of the end-effector before closing

the fingers. While reaching for the grasp pose requires high

accuracy in order to guarantee a stable grasp execution,

the approach of the pre-grasp pose does not demand high

accuracy. Consequently, the approach of the pre-grasp pose

is realized by solving the inverse kinematics (IK) problem,

while reaching for the final grasp pose is accomplished using

a visual servoing approach. For both stages, the 7 joints of

either the left or the right arm and the torso yaw of ARMAR-

III (around the body axis) are considered.

In order to find a solution to the IK problem, we use a

probabilistic approach which randomly samples start config-

urations. Using a Jacobian pseudoinverse method, the end-

effector is moved from the sampled configurations towards

the desired target pose. Thus local minima resulting from

the numerical approach can be overcome and invalid pos-

tures resulting from joint limits and self-collisions can be

handled. For providing natural postures as solutions for the

IK problem, the resulting configuration is rated using the

distance from a pre-defined grasp posture in joint space,

e.g. grasping an object from the right hand side when using

the right arm. The generated rating together with the ability

to find a solution for the IK problem is used to rate grasp

hypotheses with respect to the embodiment.

In order to execute a grasp, the torso and arm have to be

moved from the pre-grasp pose to the final grasping pose.

Since there are inaccuracies both in the perception of the

object pose and in the execution of arm movements, we make

use of a visual servoing approach to achieve exact alignment

of the end effector and the object [14]. With this approach

it is possible to track the hand in a robust manner and thus

to adjust the pose of the hand to the feasible grasping pose.

III. EXPERIMENTAL PLATFORM

As already mentioned, we integrated the system presented

in the last section on a humanoid platform, ARMAR-III. The

humanoid robot ARMAR-III (see Fig. 4) was designed under

a comprehensive view so that a wide range of tasks can be

performed. From the kinematics control point of view, the

robot consists of seven subsystems: head, left arm, right arm,

left hand, right hand, torso, and a mobile platform.

The head has seven degrees-of-freedom (DoF) and is

equipped with two eyes. The eyes have a common tilt and

can pan independently. Each eye is equipped with two color

cameras, one with a wide-angle lens for peripheral vision and

one with a narrow-angle lens for foveal vision. The visual

system is mounted on a four DoF neck mechanism (lower

pitch, roll, yaw, upper pitch). For the acoustic localization,

the head is equipped with a microphone array consisting of

six microphones (two in the ears, two in the front and two in

back of the head). Furthermore, an inertial sensor is installed

in the head for stabilization control of the camera images.

The upper body of the robot provides 33 DoF: 14 for

the arms, 16 for the hands and 3 for the torso. The arms are

designed in an anthropomorphic way: 3 DoF in the shoulder,

2 DoF in the elbow and 2 DoF in the wrist. Each arm is

equipped with a five-fingered hand with 8 DoF (see [23]).

Each joint of the arms is equipped with a motor encoder, an

axis sensor and a joint torque sensor to allow for position,

velocity and torque control. In the wrists, 6D force/torque

sensors are used for hybrid position and force control. Four

planar skin pads (see [24]) are mounted to the front and back

side of each shoulder, thus also serving as a protective cover

Fig. 4. ARMAR-III in the experimental kitchen environment. The robot
is equipped with an active head including peripheral and foveated vision,
two arms, two five-fingered hands and a holonomic mobile platform.
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for the shoulder joints. Similarly, cylindrical skin pads are

mounted to the upper and lower arms respectively.

The locomotion of the robot is realized using a wheel-

based holonomic platform, where the wheels are equipped

with passive rolls at the circumference (Mecanum wheels or

Omniwheels). In addition, a spring-damper combination is

used to reduce vibrations. The sensor system of the platform

consists of a combination of three laser range finders and

optical encoders to localize the platform. The platform hosts

the power supply of the robot and the main part of the robot

computer system.

For detailed information the reader is referred to [3], as

also to [25] for a detailed description of the mechanics.

IV. GRASPING EXPERIMENTS

In this section, we will demonstrate the proposed method

using the ARMAR-III humanoid platform in a kitchen envi-

ronment, grasping common household objects.

A. Experimental Setup

For the experiments, meshes for all database objects were

generated using the interactive modeling center. We will

present results for three of those objects: a zwieback box,

a cylindrical salt container and a complex shaped detergent

sprayer bottle (see Fig. 5). In the end, the process steps for

the experiment resemble the architecture modeled in Fig. 1.

In the offline preparation, all objects were registered with

the recognition system as described in II-B. In order to

generate a set of grasp hypotheses on each object, the

decomposition of the high quality meshes (generated in the

modeling step) into boxes was performed. These hypotheses

are reduced using constellation and gripper embodiment

dependencies, i.e. grasp hypotheses on blocked or too large

surfaces will be removed. In order to rate the hypotheses

related to grasp stability, grasp quality learning from a

different set of training objects was performed for the left and

the right hand of ARMAR-III using the GraspIt! simulator.

For the online experiments, each object is placed on the

kitchen sideboard, in the field of view of the robot, and

localized using the recognition system. The resulting object

pose is used to transform the object-centered grasp hypothe-

ses to the current scene. The resulting grasp hypotheses

comprise approach direction, pre-grasp pose and grasp pose.

The inverse kinematics solver is deployed in order to derive

a rating for the reachability of the generated hypotheses.

Reachable grasp hypotheses are then executable using the

configuration resulting from the solver in order to align with

Fig. 5. Objects used in the experiment: zwieback, salt, sprayer bottle.

the pre-grasp position. Finally, we manually select three of

those valid grasps for each object. To perform each of them,

the final poses are approached using visual servoing with a

red colored ball at the wrists of both hands. Once the final

grasp pose has been reached, the robot closes the hand in

order to lift the object.

B. Experimental Results

The experimental results are depicted in Tab. I. In the

first column, the corresponding models and their box ap-

proximations are shown, along with some statistics about the

decomposition. The database point meshes were generated

as described in Section II-A. Since both the zwieback and

the salt are compact shapes, only one box was found to be

necessary to suit the shape. In the case of the detergent bot-

tle, the decomposition procedure yielded an approximation

consisting of five boxes. The recursive fitting-and-splitting

strategy is also reason for the higher effort in offline com-

putation time for this object. Also note that here, though 6

boxes originally yield 30 facets, 9 of them were automatically

removed because of occlusion in the constellation.

In the second column, the complete sets of generated

hypotheses are depicted. The visual representations also in-

clude the grasp hypotheses removed from constellation (dark

triangles). While 4 hypothesis (orientation-aligned to the four

edges) emerge from each of the valid facets, some of them

are removed by further constellation or gripper dependencies.

Note, for example, that the zwieback box provides no grasp

hypotheses from the back or front side, since the dimensions

of these facets exceed the gripper aperture.

As one can see from the selected grasps in the third

column, the zwieback box was successfully grasped from

the left hand side, the right hand side and from the top.

Similar grasps were performed on the salt can. It should be

noted that it is a more difficult task to grasp the salt can from

the top because of its circular lid. The box approximation of

the object yielded a successful grasp even for this difficult

case. It also has to be mentioned that grasps are selected

manually since representations of the supporting table or

other distracting objects have not been considered in this

experiment, i.e. grasp hypotheses from the bottom of the

object would theoretically be valid, too. Grasps on the

detergent bottle were performed on two different boxes of the

set: the bottom and the central box, approaching the object

from the left hand side as well as from the right hand side,

also resulting in stable grasps.

Despite the fact that no haptic sensor feedback is used,

and that all objects turn more or less when force is applied

to them during the gripping phase, all grasps are stable even

during the lifting, as also they look quite intuitive and natural.

It is also emphasized how grasp hypotheses selection and

grasp planning can point to task-dependent grasping. For

example, a power-grasp on a large box (e.g. sprayer, bottom)

is suitable one for a ‘transport’ action, while a pinch-grasp

on a small box (e.g. sprayer, middle) is suitable for a ‘show’

or ‘hand-over’. However, the current hand model does not

support a lot of such grasp pre-shapes.
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V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a grasping strategy for known

objects, comprising an off-line, box-based grasp generation

technique on 3D shape representations. The complete system

is able to robustly detect an object and estimate its pose,

flexibly generate grasp hypotheses from the assigned model

and perform such hypotheses using visual servoing. Through

the presented systems integration approach, we showed for

the first time that grasp hypotheses delivered from box

approximations of object models are well applicable on a real

robot system. Throughout the presented experiments, object

pose changes dependent on the force applied to it. Though

grasps are generally stable and look human-like, we keep

in mind the issue of what one can call the grip component.

For the sake of efficiency and intuitive motivation, we are

aware that our approach is a pre-grip component on very

robust shape information. A sophisticated grip component

would greatly contribute in terms of corrective movements

by analyzing haptic feedback.

The box representation of an object is simple. However,

the projection of an object onto the box faces ignores the real

3D shape of the object in the box, not considering the correct

surface normals of the object in the grasp planning. Thus,

there is a possibility that planned grasps are infeasible, which

addresses the limitation of the grasp planning. In [20], we

examined the integration of gripper kinematics using finger

positioning estimates on the described projection patterns.

However, and as future work, one can imagine higher-level

part classification from point sets of the model that have

been segmented through decomposition. This topic relates to

work on part-based shape representations. Classification of

shape is a beneficial, but also complex task, as additionally,

the box constellation might be very different and unstable

as influenced by noise, perspective view and uncertainties.

For the purpose of grasp hypothesis generation, this is not a

severe problem, while it will be in part and object classifica-

tion tasks. Finally, the evaluation of the proposed method

on unknown, i.e. unmodeled, objects based on 3D input

perceived from a real vision system will be a challenging

future work task, due to the same uncertainties.
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