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Abstract

In this paper, we examine non-stretchable two-dimensional polygonal
cloth, and place bounds on the number of fingers needed to immobi-
lize it. For any non-stretchable cloth polygon, it is always necessary
to pin all of the convex vertices. We show that for some shapes, more
fingers are necessary. No more than one-third of the concave vertices
need to be pinned for simple polygons, and no more than one-third
of the concave vertices plus two fingers per hole are necessary for
polygons with holes.

KEY WORDS—grasping, rigidity, cloth manipulation

1. Introduction

Cloth manipulation is difficult as a result of the flexibility of
cloth. When cloth is suspended from one or two points, it
develops buckles in a manner that is hard to predict. Grasps
that minimize buckling will therefore make it easier to han-
dle a piece of cloth, such as during the flattening or folding
of laundry. If we can entirely immobilize a piece of cloth in a
flattened configuration, we have full configuration information
with which we can plan further actions.

We make a few simple assumptions about the cloth grasp-
ing problem. The cloth is non-stretchable, and we place
some number of point fingers on the cloth. These fingers are
“pinned” to the plane� once they are placed, they do not move
and directly immobilize the point on the cloth underneath
them.
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Fig. 1. Three flat cloth shapes grasped by fingers. All but (b)
are immobilized.

The fundamental questions in grasping ask how many
fingers are needed for a grasp, and where they should be
placed. Figure 1 shows three pieces of cloth, all of which are
immobilized except for (b).

Fact 1. Any line segment with pinned endpoints that is fully
contained in a polygon (the endpoints are mutually visi-
ble) is immobilized.

First-order line segments of this type are indicated by solid
lines in Figure 1. If a point somewhere in the polygon lies
on a line segment between grasp points or first-order lines,
then it will also be immobilized, since the endpoints of this
second-order line are immobilized. A few second-order lines
are shown as dashed lines in the figure. This process can be
repeated as needed with higher-order line segments until the
entire cloth is immobilized.

There are some cases where we cannot validate a grasp
by drawing immobilized lines between fingers. Consider the
polygon shown in Figure 2. No finger is visible from another
finger. However, no point in the shaded hexagon can move fur-
ther from any of the fingers, so this region is immobilized�
therefore, the entire polygon is immobilized.

To immobilize a cloth polygon, there must be a finger at
least at each convex vertex� otherwise, that convex vertex will
be free to move. In some cases, pinning just the convex ver-
tices is enough. However, the piece of cloth shown in Figure 3
cannot be immobilized by pinning the three convex vertices
of the shape. We have verified this result experimentally (Fig-
ure 3(b)) and theoretically (Section 5.1).
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Fig. 2. Star grasped with three fingers.

Fig. 3. Polygon that cannot be immobilized by pinning convex
vertices (closed circles). (a) Arrows indicate possible instanta-
neous velocities. (b) Paper polygon after motion was applied.

This polygon is representative of a class of polygons that we
call pinwheels. These polygons all require more than nconvex

fingers for immobilization. In Theorem 6, we show that the
upper bound is nconvex �

�
1
3 nconcave

�
fingers for simple poly-

gons. This bound is tight� there exist polygons that require this
many fingers for immobilization.

2. Related Work

Minimal grasping has always been a challenging problem in
robotics, with numerous papers on the subject, as evidenced
the survey of theoretical work on grasping by Bicchi and Ku-
mar (2000). The listing here is meant to be a subset of grasp-
ing work that is closest to this paper. Nguyen (1986) exam-
ined the synthesis of planar force-closure grasps. Mishra et al.
(1987) found bounds on the number of fingers needed to grasp
a rigid object. Rimon and Burdick (1995) showed that three
convex fingers suffice to immobilize any smooth or polygo-
nal planar object. Erickson et al. (2007) examined the use of
disc-shaped robots for capturing an arbitrary convex object in
the plane. Cheong et al. (2007) gave bounds for the number
of fingers that immobilize a flexible chain of hinged polygons.
Rodríguez et al. (2006) worked on motion planning in an envi-
ronment where every object is deformable. This type of plan-
ning can also be applied to grasping problems.

There are two major types of polygon skeletons that are
similar to the support tree that we construct in Section 6.2.
The first is the medial axis (Preparata 1977), which has the
same number of vertices and edges as a support tree. However,
medial axes allow for curved edges. The second similar type
of skeleton is the straight skeleton (Aichholzer et al. 1995),
which has straight edges, but contains more vertices and edges
than are needed for a support tree.

This paper also depends on general concepts in visibility,
such as those surveyed by Ghosh (2007), and on triangulation
and its applications to the art gallery problem, as explored by
O’Rourke (1987).

Our problem is similar to that of trying to determine
whether a structure consisting only of cables is infinitesimally
rigid when it is pinned at a set of points. This type of problem
is briefly mentioned in the work on tensegrities and rigidity
theory by Connelly (1999).

There has been significant exploration of cloth behavior in
the field of computer graphics. Some examples include the
work by Breen et al. (1994) on building cloth simulations us-
ing real-world measurements as inputs and the work of Choi
and Ko (2002) on cloth buckling.

Cloth manipulation has been used in various laundry fold-
ing projects� however, only a few fingers are used for grasp-
ing in these projects. Ono et al. (1991) have worked on a ma-
nipulator for cloth handling, as well as cooperative systems
combining touch and vision to unfold cloth (Ono et al. 1995).
Salleh et al. (2004) have developed a system in which they
trace cloth boundaries with grippers to flatten clothes. Hama-
jima and Kakikura (2000) have worked on developing plan-
ning strategies for unfolding clothes.

3. Cloth Models and Definitions

Cloth can be modeled in several different ways. In the graph-
ics and simulation worlds, ball and spring models are quite
common. However, for our approach, we want the cloth to not
stretch, which suggests a developable surface model.

We use a model that is “almost” a developable surface
model. We assume that the cloth cannot stretch, but that the
cloth may compress slightly. Our upper bound on the max-
imum number of fingers needed to grasp cloth (nconvex ��

1
3 nconcave

�
) holds for developable surfaces, but we only dis-

cuss the existence of polygons requiring this many fingers for
the compressible model.

3.1. Support Graphs

To discuss polygon immobilization, we use a specific type of
polygon skeleton called a support graph� an example is shown
with dotted lines in Figure 4.
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Fig. 4. Example of a support graph in a cloth polygon.

Definition 1. A support graph for a polygon is an embed-
ded planar graph contained within the polygon, such that every
point of the polygon falls on a line segment (possibly of length
zero) that:

� is completely contained within the polygon� and

� has endpoints that are points of the embedded graph (on
an edge or at a node).

A support tree is a support graph with no cycles.

It is clear that if a support graph for a polygon is immobi-
lized by some set of fingers, every line segment specified in the
definition is immobilized, and therefore the polygon is immo-
bilized. We can examine the immobilization of support graphs
by placing fingers at vertices.

Definition 2. A pinned vertex is a graph or polygon vertex
that is held in place by a finger. This is indicated in diagrams
by a closed circle. (Unpinned vertices have open circles.)

Definition 3. A positively-spanned vertex is a vertex in
a graph whose adjacent edges positively span �

2. (For a
definition of positive linear spans, see Davis (1954).)

There are many ways to construct a support graph for a
polygon. Figure 4 shows a support graph constructed by hand,
but we can always easily construct a (possibly more complex)
support graph by triangulating a polygon. Therefore, if a trian-
gulation of the polygon is immobilized, the polygon is immo-
bilized.

We assume a model of cloth that allows the cloth to com-
press. In this case, if a triangulation of the cloth is not immo-
bilized by a set of fingers, the cloth is not immobilized.

4. Immobilizing Trees, Graphs, and Polygons

As an approach to specifying the fingers required to grasp a
piece of cloth, we can first describe the fingers needed to im-
mobilize a connected, linear network of non-stretchable string
embedded in the plane. If this network is a support graph for

Fig. 5. Allowed motion of a non-positively spanned vertex.

Fig. 6. Restriction on allowed motions of u.

a polygon, then that polygon is immobilized in two and three
dimensions.

At a minimum, all non-positively spanned vertices must be
pinned in order to immobilize a non-stretchable planar graph.
The shaded region in Figure 5 illustrates the free motions of an
unpinned and non-positively spanned vertex.

4.1. Immobilizing Non-stretchable Graphs

Initially, we consider a non-stretchable tree, and assume that
all vertices have degree one or three. In addition, we assume
that all interior vertices (non-leaves) are positively spanned
vertices. These assumptions will be relaxed later, but they are
useful in the first stage of the proof.

In the theorems that follow, we consider only first-order
constraints on the free motions of vertices, since linear con-
straints are sufficient for the proofs and simpler to analyze.
Using quadratic distance constraints yields the same results.
We use the notation ��u� to indicate a normalized vector point-
ing from vertex u to vertex � . Figure 6 illustrates the following
lemma.

Lemma 1. Consider a planar non-stretchable tree, with
all vertices of degree one or three, and with only positively
spanned interior vertices. Let all of the leaves (non-positively
spanned vertices) be pinned, except for one leaf, labeled u.
Let � be the vertex adjacent to u. Vertex u cannot move into
the half plane defined by normal ���u. (This can also be written
as a constraint of the form �u � ���u 	 0.)
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Fig. 7. Base case (vertex � is pinned, as indicated by the closed
circle).

Fig. 8. Inductive step.

Proof.

Induction hypothesis. Consider a tree subject to the assump-
tions with all leaves pinned except for u, and let � be the vertex
adjacent to u. Then u cannot move into the half plane indicated
by the constraint �u � ���u 	 0.

Base case. The base case is a tree consisting of only vertices �
and u (Figure 7), with vertex � pinned.

Inductive step. Given a tree T , break it at vertex � into two
trees, T1 and T2. Let a be the vertex adjacent to � in T1, and b
be the vertex adjacent to � in T2 (Figure 8). By the induction
hypothesis, T1 imposes the constraint �� � ��a� 	 0 (equivalent to
�� ����a 
 0), and T2 imposes the constraint �� ���b� 	 0 (equivalent
to �� � ���b 
 0).

From our assumptions, we know that ���a,
��
�b, and ���u posi-

tively span�2. As a result, if both �� ����a 
 0 and �� ����b 
 0 are
satisfied, then �� � ���u 	 0, proving the induction hypothesis.�

This lemma can be extended from restricted motion to im-
mobilization.

Lemma 2. Consider a planar non-stretchable tree, with all
vertices of degree one or three, that contains only positively
spanned vertices in its interior. If all of the leaves of this tree
are pinned, the tree will be immobilized.

Proof. Consider a tree that satisfies Lemma 1, and label its
unpinned leaf u. Leaf u cannot move away from its adjacent
vertex �( �u � ���u 	 0, which also implies �� � ���u 	 0). If we now
pin u, we impose a constraint on � of �� � ��u� 	 0. Combined
with the previous constraints at � from the other adjacent edges
(which we know positively span�2 if edge �u is included), this
completely immobilizes � . The immobilization of � can now
be used to show that the vertices adjacent to � are also immo-
bilized. This immobilization can be continued throughout the
tree, showing that the entire tree is immobilized. �

This result can be strengthened to any non-stretchable pla-
nar tree. The next theorems depend on the concept of splitting
vertices of a non-stretchable tree or graph by pinning them. If a
vertex � has k adjacent edges, and we pin � , then this is equiv-
alent to having k pinned vertices all located at the same point
as � , with each vertex adjacent to exactly one of the edges ad-
jacent to � . Physically, the resulting tree or graph is exactly
equivalent to the original tree or graph, as constraints do not
propagate past pinned vertices.

Theorem 3. Any planar non-stretchable tree embedded in
�

2 (with vertices of any degree) that has its non-positively
spanned vertices pinned is immobilized.

Proof. First, we remove the assumption that all interior ver-
tices must be spanned vertices, and we allow degree two ver-
tices. If any vertex is non-positively spanned, then it is pinned,
as is specified by the theorem statement. In addition, note that
any degree two vertices can never have edges positively span-
ning �2, and therefore must be pinned. If we break the tree
into a forest by splitting it at each non-positively spanned (and
pinned) interior vertex, each component of the forest will be
immobilized by Lemma 2. When joined, the resulting com-
plete tree is still immobilized.

Finally, we allow vertices of degree greater than three. If
such a vertex is non-positively spanned, we can simply use the
argument above. If it is positively spanned, then we need to
slightly rework the inductive step of Lemma 1. If vertex � is
of degree d � 3, it will be split into d � 1 subtrees (along all
edges except �u). By the inductive hypothesis, we know there
are constraints of the form �� � ���ai 
 0 for each subtree Ti . We
can pick a pair of subtrees Ti and Tj , such that ���ai ,

���a j , and���u positively span �2. Now, as in the original inductive step,
this gives us the desired constraint on u. �

If we split a graph into a tree by adding one finger per cy-
cle (and pinning non-positively spanned vertices), the graph is
immobilized.

Theorem 4. Any planar non-stretchable graph with all non-
positively spanned vertices pinned and at least one vertex
pinned within each cycle is immobilized.
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Proof. Pin one vertex per cycle of the graph. This splits the
graph at all of these pinned vertices. Splitting each cycle with
one finger converts the graph into a tree, with properties satis-
fying Theorem 3. �

If no vertices in a cycle are pinned, there is no guarantee
that the cycle is immobilized. In fact, in general it is very likely
that the cycle can move. There are specific cases in which the
cycle is immobilized (in particular, if the edges supporting the
cycle bisect the exterior angles of the cycle), but these cases
are rare.

4.2. Grasping Polygons

A tree or graph embedded in a cloth polygon can be used to
show that the polygon is immobilized.

Theorem 5. If a cloth polygon contains a planar non-
stretchable graph G such that non-positively spanned vertices
of the graph correspond exactly to the convex vertices of the
polygon, then the graph is a support graph for the polygon,
and immobilizing the graph immobilizes the polygon.

Proof. In order to fit the definition of a support graph
(Definition 1), every point in the polygon must lie on a line
with endpoints on the support graph.

Consider the polygon and graph shown in Figure 9. Since
non-positively spanned vertices of the graph (thin line) exactly
map to all convex vertices, the polygon (thick line) is divided
up into two types of cells. Cells that are contained within cy-
cles of the graph are trivial to handle (indicated by A in the
figure). For any point within a cycle, any line through the
point has endpoints on the graph, and thus is immobilized if
the graph is immobilized.

The other type of cell is enclosed by graph edges and
a chain of (possibly zero) concave vertices on the polygon
boundary (B in the figure). The polygon boundary must con-
sist purely of concave vertices, as a convex vertex would have
a non-positively spanned graph vertex located at it, splitting
the cell. Now, consider any point x in the cell. Find the closest
polygon edge e. Extend a line through x parallel to e until both
ends of the line hit the boundary of the cell. The endpoints
must both lie on graph edges� if this were not the case, the
polygon boundary would contain a convex vertex, and it does
not. Therefore, for any point in this type of cell, there exists a
line with both endpoints on the graph. Since both types of cells
satisfy the definition of a support graph, G is a support graph.
By the definition of a support graph, if G is immobilized, the
polygon is immobilized. �

We can now show that nconvex �
�

1
3 nconcave

�
fingers are

always sufficient to immobilize a polygon. In the following
proof, we view a triangulation of a polygon as a graph embed-
ded in the polygon.

Fig. 9. Two types of cells (A and B) in a polygon containing a
support graph.

Theorem 6. A simple cloth polygon can always be immobi-
lized by pinning nconvex �

�
1
3 nconcave

�
vertices.

Proof. Portions of this proof are similar to Fisk’s proof that
an art gallery requires

�
n
3

�
guards (Fisk 1978). In both proofs,

the main problem is placing one item (a guard or a pinned
vertex) per triangle.

As in Fisk’s proof, we begin by considering a triangula-
tion T � �V� E� of the polygon P . We consider the most
strict form of a triangulation, in which triangle vertices must
also be polygon vertices. In this type of triangulation, concave
polygon vertices will be positively spanned by incident graph
edges, and convex vertices will not be. Concave vertices must
be positively spanned because each exterior angle at a concave
vertex is less than ��2, and the interior angle is split into an-
gles of less than ��2 by the triangulation.

Let all convex vertices of the polygon (and thus all non-
positively spannedvertices of T ) be pinned. By Theorem 4, T
is immobilized if we also pin one vertex per cycle (which, for
a triangulation, means one pinned vertex per triangle).

Convex vertices must always be pinned, so we can ignore
any edges that are adjacent to them, and we can construct a
T � � �V �� E�� that removes these edges. Specifically, T � con-
tains only the concave vertices of P , and only edges that are
between pairs of concave vertices. Since any triangulation can
be three-colored (O’Rourke 1987), and since T � is a subset of
a (three-colorable) triangulation T , T � is also three-colorable.
As in Fisk’s proof, one of the three colors must be used no
more than  1

3 �V ��� �  1
3 nconcave� times. Now, pin each vertex

labeled with the least frequently used color. Since each triangle
must have one vertex of each color, each triangle (and there-
fore cycle) of T � has one pinned vertex, and therefore each
cycle of T has one pinned vertex. As a result, T (and, thus, P)
is immobilized. �

The above proof does not hold for non-simple polygons,
as triangulations of such polygons are not necessarily three-
colorable. However, we can use the same general idea to give
a bound for polygons with holes as well.
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Corollary 7. A cloth polygon with nholes holes can always be
immobilized by pinning nconvex�

�
1
3 nconcave

��2nholes vertices,
where both nconcave and nconvex include the concave and convex
vertices in the polygon’s holes.

Proof. If we place cuts in the polygon such that each hole is
open to the region outside the polygon (either directly through
a single cut, or by a chain of cuts through other holes), then
we have turned the polygon with holes into a simple polygon
with at most 4nholes new vertices (careful cutting can reduce
this to 2nholes new vertices if the cuts go between existing ver-
tices). These new vertices will be convex vertices� however,
since the two sides of the cut are in the same place, we can
use one finger to pin each pair of new convex vertices. As in
Theorem 6, we now triangulate the simple polygon, which re-
quires us to pin up to

�
1
3 nconcave

�
concave vertices, plus the

original convex vertices, plus two fingers per cut (equivalent
to two fingers per hole). Therefore, a polygon with holes will
be immobilized with nconvex �

�
1
3 nconcave

�� 2nholes vertices.�

5. When Convex Vertices are Not Enough

We have shown that nconvex �
�

1
3 nconcave

�
fingers are always

sufficient to immobilize a simple polygon, but in order to show
that this bound is also necessary, we must first show that there
are polygons for which a convex vertex grasp is insufficient for
immobilization. If we can compute possible free motions of a
grasped cloth polygon, then the grasp is clearly insufficient.

5.1. Determining Free Motions

We can verify a grasp by constructing an appropriate linear
program, and by testing to see whether it has any non-zero so-
lutions. This linear program is built from distance constraints,
which require that the endpoints of an edge cannot move apart
beyond their initial stretched distance. We use the standard no-
tion of polygon visibility in this section.

If xi and x j are mutually visible, then at every time t , the
distance between the points must not be greater than the initial
(fully stretched) distance:

����xi x j �t��2 	 ����xi x j �0��2	 (1)

At time 0, the time derivative of every distance between
pairs of mutually visible points must be non-positive:

�xi � ���x j xi � �x j � ���xi x j 	 0	 (2)

A simple example is a network of points attached by strings
as shown in Figure 10. Let x1 and x2 be unpinned points, and
let x3 through x6 be pinned. There are five distance constraints,

Fig. 10. A network of points connected by strings (closed cir-
cles are pinned).

corresponding to the edges. Using the constraints from Equa-
tion (2), we have

�
������������

���x3x1 0

���x5x1 0

0 ���x4x2

0 ���x6x2

���x2x1
���x1x2

�
�����������	



� �x1

�x2

�
 	 0	 (3)

We can rewrite this as

J �x 	 0	 (4)

This is in the form of constraints for a linear program, and
therefore we can use a solver to see if there are any solutions
other than �x � 0. If such solutions exist, then the line network
can move as described by one of these solutions.

We can extend this easily to an algorithm to verify a grasp
for a cloth polygon. To do this, we take any triangulation of
the polygon, and consider this as our line network. We then
build J , which has one row for every edge of the triangula-
tion (with the exception of any edges between pinned points,
since the coefficients would all be zero in this case). If J �x 	 0
only has the solution �x � 0, then the triangulation network
is immobilized by the given grasp. We have implemented this
algorithm in Matlab, using CGAL (CGAL) to construct trian-
gulations and lp_solve to check for non-zero solutions given
the constraints. An example run of this algorithm for a non-
immobilized polygon is shown in Figure 11, with crosses in-
dicating one possible set of additional fingers that immobilize
the polygon.

If non-zero solutions exist for the lines of a triangulation,
we believe that this means that the cloth can move within the
given grasp. However, this statement may depend on the cloth
model that we use. If we assume that the cloth can simply com-
press into itself, then it is clear that a non-zero solution will al-
low movement of the cloth. It is less clear as to what happens
if a more realistic model that involves buckling is used, or if
the cloth is a developable surface.
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Fig. 11. A dual pinwheel, with free motions as shown. Adding
fingers at the crosses immobilizes the polygon.

5.2. Pinwheels

As shown with the example in Figure 11, there are polygons
for which a convex vertex grasp is insufficient. All such poly-
gons that we have found fall into a class that we refer to as
pinwheels.

Definition 4. An n-pinwheel is a polygon with a cyclic first-
order visibility structure, where a first-order visibility structure
is defined as the set of visibility polygons from all of the con-
vex vertices of the polygon. The number n refers to the number
of points in the pinwheel.

In an n-pinwheel, the visibility polygon from a vertex �2

first intersects its clockwise neighbor’s (�3) visibility poly-
gon, followed by its counter-clockwise neighbor’s (�1) visibil-
ity polygon (see Figure 12 for an example of a four-pinwheel).
The directions can be reversed� if a vertex first sees its counter-
clockwise neighbor’s visibility polygon, followed by that of
its clockwise neighbor, then the polygon also has a pinwheel
structure. In order to actually be a pinwheel, this type of visi-
bility intersection must be repeated for all vertices, leading to
a cycle of visibility intersections.

Theorem 8. A non-stretchable cloth n-pinwheel can always
be immobilized with nconvex � 1 fingers.

Proof. A support graph with one cycle and nconvex non-
positively spanned vertices located at the convex vertices of
the pinwheel can be constructed from the cyclic visibility in-
tersections present in a pinwheel (Figure 12). We already know
that all nconvex convex vertices must be pinned. By Theorem 4,

Fig. 12. A four-pinwheel, with its cyclic support graph and
first-order visibility polygons.

Fig. 13. Multiple pinwheels.

pinning any one vertex of the cycle immobilizes the graph, and
therefore, pinning the corresponding point in the pinwheel im-
mobilizes the pinwheel. �

We use pinwheels to show that our upper bound on the num-
ber of fingers needed for immobilization is a tight bound.

Theorem 9. There exist non-stretchable cloth polygons that
require a grasp of nconvex �

�
1
3 nconcave

�
fingers to be immobi-

lized.

Proof. The class of polygons that we use to satisfy the state-
ment is based on three-pinwheels. Consider the triple three-
pinwheel shown in Figure 13. The points have been expanded
to two vertices to simplify the edge that is common to pairs
of three-pinwheels. As discussed in Section 5.1, we can build
a linear program that gives the possible motions of a three-
pinwheel. From this, we can easily show that only pinning the
six convex vertices does not suffice to immobilize one of the
modified three-pinwheels by itself. It is possible to immobilize
a single pinwheel by adding one additional finger.
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Fig. 14. Repeating chain of pinwheels.

Now, consider attaching pinwheel B to pinwheel A, with
all convex vertice spinned. Let us assume that the dual A–B
pinwheel can be immobilized with just one additional finger.
If this finger is on the boundary between A and B, then neither
pinwheel will be immobilized, as this single finger will pro-
vide no more support than would have existed had we pinned
the convex vertices of each pinwheel. Next, assume that we
have placed the extra finger in such a way that all of A is im-
mobilized (note that this is not actually possible). If this is the
case, the boundary line between A and B will also be immo-
bilized. However, as we have already stated, this is not enough
to immobilize B. The same situation exists in reverse if we put
a finger in B that immobilizes B.

Finally, we can extend this chain by adding pinwheel C,
followed by another pinwheel attached to C’s right point, and
so on (Figure 14). There must be one finger per pinwheel to
be able to immobilize the entire shape, as fingers outside the
boundaries of a pinwheel do not suffice to immobilize it. Since
each pinwheel has three concave vertices, this means that the
overall shape requires nconvex �

�
1
3 nconcave

�
fingers. �

We are able to make general statements about several
classes of polygons. It is possible to place a support tree with
non-positively spanned vertices only at convex vertices in all
star-shaped and convex polygons� such polygons are thus im-
mobilized by a convex vertex grasp. Pinwheels do not fall
into either of these classes. Interestingly, we can construct
monotone (Figure 15(a)) and orthogonal (Figure 15(b)) pin-
wheels.

We have now shown that for a simple non-stretchable cloth
polygon, the minimum number of fingers needed to immobi-
lize it is nmin � [nconvex� nconvex �  1

3 nconcave�].

6. Grasping with Fewer Fingers

A simple algorithm for generating grasps begins by testing a
convex vertex grasp using our linear program formulation. If

Fig. 15. (a) Monotone and (b) orthogonal polygons that cannot
be immobilized by a convex vertex grasp.

this fails, the triangulation method is used to obtain a grasp
that pins one-third of the concave vertices.

Disregarding the linear programming step, this algorithm
has a running time of O�n�. Chazelle (1991) showed that tri-
angulation of a simple polygon requires O�n� time, and the
three-coloring of a triangulation can be implemented with a
simple linear time algorithm.

This algorithm is guaranteed to generate a valid grasp� how-
ever, the grasp may include unnecessary fingers if there are
lengthy chains of concave vertices, as in Figure 16.

6.1. Grasp Reduction

We have developed an algorithm to reduce the size of the
grasp, which removes certain fingers by checking to see
whether they are already immobilized by other portions of the
grasp. Consider the example shown in Figure 17. Vertex �2 can
be unpinned as long as vertex �1 and edge e1 remain immobi-
lized. Vertices �2 and �3 can be unpinned as long as edges e2

and e3 are immobilized. This grasp reduction algorithm has a
running time of O�n2�, as all edges must be scanned for each
vertex.

Figure 16 shows example results from our algorithms. Fig-
ure 16(a) gives a minimal grasp, which consists of six convex
vertices, plus one concave vertex. Figure 16(b) shows the re-
sults of the grasp building algorithm, and Figure 16(c) shows
the grasp after it has been reduced. A few extra vertices still re-
main� the algorithm could be improved by enabling it to recog-
nize immobilized lines between immobilized edges, such as
the dotted line in Figure 16(a).

6.2. Graphical Method for Analyzing Immobilization

We have developed a graphical method for determining
whether a cloth polygon is immobilized by a given grasp. This
method relies on embedding a support tree within a polygon. A
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Fig. 16. A polygon with nconcave � 28, nconvex � 6. (a) A valid
(minimal) grasp (one pinned concave vertex). (b) Grasp built
by algorithm (nine pinned concave vertices). (c) The result of
the reduction algorithm (four pinned concave vertices).

support tree is fundamentally based on visibility� in particular,
adjacent vertices in the support tree must be mutually visible.
Visibility is fairly easy to assess visually, and therefore manu-
ally placing a support tree in a polygon is a quick method for
determining whether a polygon is immobilized with a given
grasp. We have taken this manual method and expanded it into
an algorithm for constructing support trees. Our algorithm re-
peatedly intersects visibility regions to form a skeleton, and
uses an optimizer to try to shift the vertices of the skeleton
until the skeleton becomes a support tree.

We have implemented this algorithm in Matlab, using
CGAL (CGAL) and VisiLibity (Obermeyer 2008) to handle

Fig. 17. Method for reducing the number of pinned points.

Fig. 18. Output from the support tree construction algorithm.

polygon and visibility operations, and OGDF for graph pla-
narity testing. Figure 18 shows the result of running the algo-
rithm on a comb shape.

7. Conclusion

We have determined that for simple cloth polygons,

nmin �
�
nconvex� nconvex �

�nconcave

3

��
� (5)

and for non-simple polygons,

nmin �
�
nconvex� nconvex �

�nconcave

3

�
� 2nholes

�
	 (6)

We have shown that both bounds are tight for simple polygons,
and that the lower bound is tight for polygons with holes. In
addition, we have developed the geometric method of using
support trees to determine whether a polygon is immobilized
with a given grasp. This method is particularly valuable for
visually determining if a polygon is likely to be immobilized
with a given grasp.

Our theorems have led directly to an algorithm for con-
structing a valid grasp for any simple cloth polygon. This algo-
rithm does not guarantee a minimal grasp, but it is a significant
first step in designing grasps for cloth objects. The algorithm
makes use of a simple linear programming method for verify-
ing the validity of a given grasp. We have implemented both
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a linear-program-based grasp verifier, and a support tree con-
struction algorithm.

Natural extensions of this work include polygons with
holes, and three-dimensional cloth, such as cloth polyhedra.
Our results are also applicable to cloth sensing. If the location
of any grasp point is unknown, there is no way to show that
the cloth is in a flat configuration. Thus, by sensing all of the
grasp points, we can determine whether a piece of cloth is flat.
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