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ABSTRACT Grasshopper Optimization Algorithm (GOA) is a recent swarm intelligence algorithm inspired

by the foraging and swarming behavior of grasshoppers in nature. The GOA algorithm has been successfully

applied to solve various optimization problems in several domains and demonstrated its merits in the

literature. This paper proposes a comprehensive review of GOA based on more than 120 scientific articles

published by leading publishers: IEEE, Springer, Elsevier, IET, Hindawi, and others. It provides the GOA

variants, including multi-objective and hybrid variants. It also discusses the main applications of GOA in

various fields such as scheduling, economic dispatch, feature selection, load frequency control, distributed

generation, wind energy system, and other engineering problems. Finally, the paper provides some possible

future research directions in this area.

INDEX TERMS Grasshopper optimization algorithm, GOA, meta-heuristics, optimization, population-

based algorithm, swarm intelligence.

I. INTRODUCTION

In the last three decades, the area of optimization using

meta-heuristics has gained increasing interest from aca-

demics and researchers, so several meta-heuristics are being

proposed regularly for solving complex and real-world prob-

lems in different fields such as engineering, computer,

medical, economics, etc. Meta-heuristics are divided into

two major categories: single-based and population-based

algorithms as shown in Figure 1.

The main principle of single-based meta-heuristic algo-

rithms, also called trajectory algorithms, is the generation

of single solution at each run. This solution is enhanced

using the neighborhood mechanism. Some of the popu-

lar single-based meta-heuristics are: Simulated Annealing

(SA) [1], Guided Local Search (GLS) [2], Tabu Search

(TS), Variable Neighborhood Search (VNS) [3], Iterated

Local Search (ILS) [4], Stochastic Local Search (SLS) [5],

and [6], [7] Greedy Randomized Adaptive Search Procedure

(GRASP) [8]–[10].

The associate editor coordinating the review of this manuscript and

approving it for publication was Amjad Anvari-Moghaddam .

Unlike single-based meta-heuristic algorithms,

population-based meta-heuristic algorithms generate a

set of multiples solutions (population) at each run. The

class of population-based meta-heuristics can be classified

into four main categories: evolutionary-based, swarm

intelligence-based, event-based, and physics-based.

The first category of population-based algorithms is

Evolutionary Algorithms (EA) which is inspired from the

evolutionary phenomena in nature using 3 main opera-

tors including selection, recombination, and mutation. Some

well-known evolutionary algorithms are: Genetic Algorithm

(GA) [11], Differential Evolution (DE) [12], Evolution-

ary Programming (EP) [13], Genetic Programming (GP)

[14], Evolution Strategy (ES) [15], and Biogeography-Based

Optimizer (BBO) [16], [17].

The second category includes Swarm Intelligence (SI)

approaches, in which the source of information is the collec-

tive behaviours in nature. (e.g. birds, ants, bees, etc.). Particle

Swarm Optimization (PSO) [18], [19] and Artificial Bee

Colony (ABC) Algorithm [20] are of the most popular algo-

rithms in this category. Other rencetly proposed algoirthms

in this camily are Cuckoo Search Algorithm (CS) [21], [22],

Krill Herd (KH) [23], [24], Fruit Fly Optimization (FFO)
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FIGURE 1. Classification of meta-heuristic algorithms.
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algorithm [25], Grey Wolf Optimizer (GWO) [26]–[28], Ant

Lion Optimizer (ALO) [29], [30], Dragonfly Algorithm (DA)

[31], [32], Bat Algorithm (BA) [33], [34], Whale Optimiza-

tion Algorithm (WOA) [35], [36], Salp Swarm Algorithm

(SSA) [37], [38], Crow Search Algorithm (CSA) [39], [40],

Firefly Algorithm (FA) [41], [42], and Grasshopper Opti-

mization Algorithm (GOA) [43].

In the third family, the source of inspiration is not nature

bur rather from actions related to humans. For example,

Teaching Learning-Based Algorithm (TLBA) [44] mimics

the teaching and learning process in classrooms, Imperialist

Competitive Algorithm (ICA) [45] is inspired from imperi-

alism in societies, and Harmony Search (HS) [46]–[48] is

inspired from musical concepts.

The last family of meta-heuristics are Physics-based Algo-

rithms (PA). For instance, Multi-Verse Optimizer (MVO) is

inspired from some of the theories about multiple universes

and Gravitational Search Algorithm (GSA) [49]–[51] mimics

gravitational forces between masses. Other algorithms in this

class are Central Force Optimization (CFO) [52]–[54], Water

Evaporation Optimization (WEO) [55], Thermal Exchange

Optimization (TEO) [56], Vibrating Particles System Algo-

rithm (VPSA) [57], Optics Inspired Optimization (OIO) [58],

Electromagnetic Field Optimization (EFO) [59], Big-Bang

Big-Crunch (BBBC) [60], Henry Gas Solubility Optimiza-

tion (HGSO) [61],Magnetic Charged SystemSearch (MCSS)

[62], and Arithmetic Optimization Algorithm (AOA) [63].

As discussed in the abstract, GOA is a recent Swarm

Intelligence method inspired from the swarming behaviour

of grasshoppers in nature. This algorithm was proposed by

Saremi et al. in 2017 [43]. The literature shows that it has

been employed to solve various optimization problems such

as feature selection, scheduling, load frequency control, eco-

nomic dispatch, engineering, etc. GOA is inspired by the

foraging and swarming behavior of grasshoppers in nature

and revealed its merits in the literature. In this context, this

article proposes a review of GOA, its variants (modified,

multi-objective, and hybrid versions), and its applications.

We have reviewed a large number of publications coming

from several leading publishers: IEEE, Springer, Elsevier,

IET, Hindawi, and others. The following search keywords

were used in Google Scholar:

• GOA.

• Grasshopper Optimization Algorithm

• Hybrid Grasshopper Optimization Algorithm

• Grasshopper Optimization meta-heuristics

• Improved Grasshopper Optimization Algorithm

• Grasshopper Optimization Algorithm applications

• Multi-objective Grasshopper Optimization Algorithm

To sift the large number of papers found, the following

criteria were considered and used:

• Papers published in legitimate academic journals;

• Papers having more than 4 pages;

• Papers dated from 2017 to 2020

• Papers Written in English;

• Paper representing a complete version when several ver-

sions of the paper exist.

The statistics resulting from our study are shown in the

figures below. Figure 2 presents the number of GOA related

papers per scientific publishers where Elsevier and Springer

are those who published the most about GOA. Figure 3 shows

the number GOA related papers per year. We can see that

GOA attracted a lot of interest over the last 4 years with a peak

recorded in 2019. Table 1 represents the top 10 countries in

terms of the number of the publication on the GOA algorithm.

It can be seen that GOA has been the most popular in India

and China. The Top 10 Journals ranked by the number of

GOA publications are given in Table 2. Finally, Figure 4

shows the tag cloud of the top 10 GOA-related keywords. The

10 GOA co-cited articles are presented in Table 3.

FIGURE 2. Distribution of papers on GOA reviewed in this work based on
their publishing vendors.

FIGURE 3. Distribution of papers on GOA reviewed in this work based on
year of publication.

There is similar survey of GOA which analyzed over

50 research papers (in [64]). What makes this survey different
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TABLE 1. Top 10 countries ranked by the number of GOA publications.

TABLE 2. Top 10 Journals ranked by the number of GOA publications.

FIGURE 4. A word cloud of the works we have summarized, reviewed,
and analyzed in this paper.

TABLE 3. Top 10 GOA co-cited articles.

is the collection and analysis of more than 150 GOA articles

published between 2017 and the beginning of 2021.

In the rest of this paper, Section 2 first provides the struc-

ture of GOA and its pseudo-code. Section 3 the provides an

in-depth literature review of GOA’s variants and improve-

ments. An extensive overview of GOA applications in various

fields is given in section 4. Section 5 provides results and

comparisons of GAOwith some well-known meta-heuristics.

In section 6, GOA is discussed and some possible future

research directions for this algorithm are presented. Finally,

section 7 concludes the paper.

II. GRASSHOPPER OPTIMIZATION ALGORITHM

The GOA algorithm was proposed by Saremi et al. in [43],

which is a recent and interesting swarm intelligence algorithm

that mimics grasshoppers’ natural foraging and swarming

behaviors. Grasshoppers are insects well-known as a danger-

ous pests that affect and damage crop production and agri-

culture [43], [74]. Their life cycle includes two phases called

nymph and adulthood. The nymph phase is characterized by

small steps and slow movements, while the adulthood phase

is characterized by long-range and abrupt movements [43].

The movements of nymph and adulthood constitute the inten-

sification and diversification phases of GOA. The swarm-

ing behavior of grasshoppers is mathematically modeled as

follows [43]:

Pi = Si + Gi + Ai (1)

where Pi indicates the i-th grasshopper’ position, Si is the

social interaction between grasshoppers,Gi denotes the grav-

ity force on the i-th grasshopper, and Ai is the wind advection.

To produce a random behavior of grasshoppers, Equation 1

can be rewritten as follows:

Pi = r1Si + r2Gi + r3Ai (2)

where r1, r2, and r3 are random numbers in the range [0, 1]

The social interaction Si is defined as follows:

Si =

N∑

j=1
j 6=i

s(dij)d̂ij (3)

where N denotes the number of grasshoppers, dij = |Pj −Pi|
defines the Euclidean distance between the i-th and the j-th

grasshopper, d̂ij =
Pj−Pi
dij

is a unit vector from the i-th to the

j-th grasshopper, and s represents the social forces designed

by the following equation:

s(r) = f exp
−r
l − exp−r (4)

where f and l are the attraction intensity and attraction length

scale, respectively. The social interaction between grasshop-

pers can be defined as attraction and repulsion. The distance

is considered in the range [0,15]. The attraction increases in

the interval of [2.079, 4] and then decreases gradually. The

repulsion occurs in the range [0, 2.079]. When the distance

between two grasshoppers is exactly 2.079, there is neither

repulsion nor attraction (no force). This area is called comfort

zone. Figure shows 5 the interaction between grasshoppers

with respect to comfort area.

The gravity force Gi is given by the following equation:

Gi = −gêg (5)
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FIGURE 5. Interaction between grasshoppers with respect to comfort
area [43].

where g denotes the gravitational constant and êg represents

a unit vector toward the center of earth.

The wind advection Ai is given by the following equation:

Ai = uêw (6)

where u represents the drift constant and êw is a unit vector in

the wind direction.

After replacing the values of S,G, and A, the following

equation can be obtained:

Pi =

N∑

j=1
j 6=i

s(|Pj − Pi|)
Pj − Pi

dij
− gêg + uêw (7)

Equation 7 cannot be used directly to solve optimization

problems, as the grasshoppers reach quickly the comfort zone

and the swarm system does not converge to a target location

[43], [75]. An enhanced version of this equation is given as:

Pdi = c(

N∑

j=1
j 6=i

c
ubd − lbd

2
s(|Pdj − Pdi |)

Pj − Pi

dij
) + T̂d (8)

where ubd and lbd represent the upper and lower bounds in

the d-th dimension, respectively. T̂d denotes the best solution

found so far in the d-th dimension space. Note that S is

similar to S component in equation 1, G is equal to zero and

A is always toward the best solution T̂d . The parameter c1
is similar to inertia weight ω in PSO, loudness A0 in BA,

or Ea in GWO [76]. It is used to reduce the grasshoppers

movements around the target (food). Thus, it provides a

good balance between intensification and diversification. The

parameter c2 is used to reduce the repulsion zone, attraction

zone, and comfort zone between grasshoppers correspond-

ingly to the number of iterations. c1 and c2 are considered

as a single parameter and it is expressed using the following

equation [43]:

c = cmax − t
cmax − cmin

tmax
(9)

where cmax and cmin represent the maximum and minimum

values of c, respectively, t is the current iteration and tmax is

the maximum number of iterations.

The position of a grasshopper is updated based on its

current position, global best position, and the positions of

other grasshoppers within the swarm. This helps GOA to

avoid getting trapped in local optima.

The pseudo-code of the standard Grasshopper Optimiza-

tion Algorithm is given in Algorithm 1 [43]. Its flowchart can

be represented in Figure 6. The source code of GOA can be

found in: http://www.alimirjalili.com/GOA.html.

Algorithm 1The Pseudo-Code of theGrasshopper Optimiza-

tion Algorithm

1: Generate the initial population of Grasshoppers Pi(i =
1, 2, . . . , n) randomly

2: Initialize cmin, cmax and maximum number of iteration

tmax
3: Evaluate the fitness f (Pi) of each grasshopper Pi
4: T = the best solution

5: while (t < tmax) do

6: Update c1 and c2 using equation (9)

7: for i = 1 to N (all N grasshoppers in the population)

do

8: Normalize the distance between grasshoppers in

the range [1,4]

9: Update the position of the current grasshopper

using equation (8)

10: Bring the current grasshopper back if it goes out-

side the boundaries

11: end for

12: Update T if there is a better solution

13: t = t + 1

14: end while

15: Return the best solution T

III. RECENT VARIANTS OF GRASSHOPPER

OPTIMIZATION ALGORITHM

Different variants of original GOA categorized into modified

and hybrid versions have been suggested in the literature as

shown in Figure 7. The realized details of these versions are

given in the following subsections.

A. MODIFIED VERSIONS OF GRASSHOPPER

OPTIMIZATION ALGORITHM

A summary of some recent modified versions of GOA is

given in Figure 8 and Table 4. The details of each modified

version are provided below.
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FIGURE 6. Flowchart of the Grasshopper Optimisation Algorithm.

1) BINARY GRASSHOPPER OPTIMIZATION ALGORITHM

Pinto et al. [77] developed a Binary GOA (BGOA) based

on the percentile concept for solving the Multidimensional

Knapsack Problem (MKP). The performance of BGOA was

validated using OR-Library benchmarks MKP instances in

comparison with Binary Artificial Algae Algorithm (BAAA)

and K-Means Transition Ranking (KMTR). Test results

showed competitive results of BGOA compared to BAAA

and KMTR models.

In [78], a Binary GOA (BGOA) was proposed for tackling

the Set Covering Problem (SCP). The percentile concept was

FIGURE 7. Variants of Grasshopper Optimisation Algorithm.

applied to obtain the binary version of GOA. Simulation

results showed that BGOA improves significantly the accu-

racy and quality of the solutions in solving the SCP.

Hichem et al. [79] proposed a Novel Binary

GOA (NBGOA) for solving the feature selection problem.

The effectiveness of NBGOAwas evaluated using 20 datasets

with various sizes taken from the UCI datasets repository in

comparison with five well-regarded optimization techniques

in the feature selection field. Simulation results revealed

that NBGOA achieves better results compared to the

tested methods in terms of fitness function and average

classification accuracy.

Mafarja et al. [67] proposed binary variants of GOA for

tackling the feature selection problems. Two mechanisms

were used to obtain the binary version of GOA. The first

mechanism is based on Sigmoid transfer function (BGOA-S)

and V-shaped transfer function (BGOA-V). While the second

one is based on the mutation operator and best solution

found so far (BGOA-M). These techniques were evaluated

based on 25 standard UCI datasets in comparison with eight

well-known approaches. It was demonstrated that BGOA-M

outperforms BGOA-S, BGOA-V, and other existing

optimization techniques.

2) CHAOTIC GRASSHOPPER OPTIMIZATION ALGORITHM

Saxena et al. [80] proposed ten variants of enhanced chaotic

GOA (ECGOAs) for solving the three-bar truss design prob-

lem and frequency-modulated sound synthesis parameter
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FIGURE 8. Modified versions of GOA.

estimation problem. Ten Chaotic maps were used to enhance

the bridging mechanism of GOA and results showed that

ECGOAwith Singer map outperforms the standard GOA and

other 9 variants of ECGOA.

Zhang et al. [81] proposed a chaotic GOA (LMGOA)

based on Logistic Map for tackling the Multi-Area Eco-

nomic Dispatching (MAED) problem. The effectiveness of

LMGOA was validated in 3 different case studies compared

to DE, EP, PSO, and ABC algorithms. Test results illustrated

the superiority of LMGOA when compared with GOA and

state-of-the-art techniques.

In [82], an enhanced chaotic GOA (ECGOA) based PID

controller was proposed for automatic voltage regulator

system. The performance of ECGOA was validated in terms

of transient response, robustness, stability, and error. Test

results revealed the superiority of ECGOA compared to ABC,

BBO, CS, GOA, BFOA, IKA, MBO, SCA, and FPA.

Arora and Anand [83] proposed a Chaotic GOA (CGOA)

based on the integration of chaos theory into GOA for solv-

ing the global optimization problems. CGOA was evaluated

using the thirteen most widely used benchmark functions.

According to the experiments, CGOA gave optimal solu-

tions compared to the original GOA. It is proved that the

chaotic maps, especially circle map, provide a good balance

between intensification/diversification and prevent the GOA

from stagnating in local optima.
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TABLE 4. Modified versions of GOA.
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TABLE 4. (Continued.) Modified versions of GOA.

Suriya et al. [84] developed a chaotic GOA (CGOA) based

on the incorporation of chaos theory in GOA for optimiz-

ing the results of the Generation and Transmission Expan-

sion Plan (GTEP) model. The performance of CGOA was

evaluated based on 32 generating units and results showed

that CGOA outperforms other tested approaches in terms of

peak load reductions and cost of the transmission network

expansion.

Saxena [85] proposed eleven different variants of

GOA (SFECGOAs) based on the integration of chaos the-

ory and crossover operators into GOA. The robustness of

SFECGOAs was validated based on the latest 29 Congress on

Evolutionary Computation-2017 (CEC-2017). SFECGOAs

were also applied for solving the Model Order Reduction

(MOR), Protein Structure Prediction (PSP), and Frequency

Modulated (FM) sound wave parameter synthesis prob-

lems. Experimental results demonstrated the superiority of

SFCGOAs compared to the classical GOA and other state-

of-the-art optimization algorithms.

An enhanced GOA (OLCGOA) was proposed by

Xu et al. [86] for tackling the Feature Selection Problem

(FSP). The effectiveness of OLCGOA was tested using

30 IEEE CEC2017 benchmark functions. It was also applied

for solving the FSP. According to the experiments, OLCGOA

can reach optimal solutions for solving benchmarking and

feature selection problem.

Saxena and Kumar [87] proposed 10 enhanced chaotic

GOA (ECGOAs) variants for tackling the protein structure

prediction problem. The efficiency of ECGOAs was vali-

dated using artificial and real protein sequences. Test results

revealed the effectiveness of the chaotic variants (ECGOA)

compared to the original GOA.

Dwivedi et al. [88] suggested an enhanced model

(ECAGOA) based on chaotic adaptive GOA with Ensemble

of Feature Selection (EFS) for tackling the intrusion detection

problem. ECAGOA was assessed using 3 datasets includ-

ing ISCX 2012, CIC-IDS2017, and NSL-KDD. According

to the experiments, ECAGOA provided better performance

comparing with state-of-the-art feature selection techniques

in terms of accuracy, detection rate, and false alarm rate.

3) GAUSSIAN GRASSHOPPER OPTIMIZATION ALGORITHM

An improved GOA (IGOA) was proposed by Luo et al. [70]

for solving the financial stress prediction problem. Three

strategies including Gaussian mutation, opposition-based

learning, and Levy-flight were introduced in GOA to provide

a good balance between exploitation and exploration. IGOA

was evaluated using datasets collected from some Japanese

financial statements from 1995 to 2009 compared to GA,

FA, PSO, MFO, DE, SCA, and standard GOA. According to

the experiments, IGOAprovided good classification accuracy

comparing with other existing approaches.

Li et al. [89] proposed an enhanced GOA (EGOA) for

modeling multivariable systems with support vector regres-

sion. Gaussian mutation operator and coevolution strategy

were introduced into GOA to enhance the search ability.

Experimental results showed the effectiveness and supe-

riority of EGOA compared to standard GOA, GA, PSO,

and GSA.

Algamal et al. [90] suggested an improved GOA (PGOA)

by adding Gaussian function into GOA for feature selec-

tion and optimizing SVR parameters. PGOA was tested and

assessed using four chemical datasets taking into account

three metrics: prediction, number of features, and computa-

tional time. According to the simulation, PGOA outperforms

other nature-inspired algorithms such as PSO, FA, BA,WOA,

and the standard GOA.

4) LEVY-FLIGHT GRASSHOPPER OPTIMIZATION ALGORITHM

Zhang et al. [91] developed an enhanced method (LGOA)

based on the integration of Levy flight in GOA for visual

tracking. The performance of LGOA was evaluated using

8 video sequences in comparisonwith PSO, CS,ALO, and the

standard GOA. Experimental results showed the performance

and effectiveness of LGOA compared to the classical GOA,

PSO, CS, ALO algorithms.

In [92], an improved GOA (IGOA) was proposed for

task scheduling problems. Levy flight mechanism, nonlinear

comfort zone parameter, and random jumping strategy were

introduced to improve the performance of GOA. IGOA was

tested using 29 well-known benchmark functions in com-

parison with the basic GOA, PSO, DA, Opposition-Based

Learning GOA (OBLGOA), WOA, and ALO. According to

the results, IGOA obtains competitive results in compari-

son with the original GOA and other existing optimization

algorithms.

Alhejji et al. [93] suggested an adaptive GOA (AGOA) by

adding a Levy-flight distribution mechanism into the original

GOA for tackling the optimal power flow (OPF) problem.

The robustness of AGOAwas verified using 26-bus and IEEE

30-bus systems as well as 57-bus system. According to the

experiments, AGOA gave better results when compared with

other optimization approaches reported in the literature.

Chhikar and Kumar [94] developed a Multi-Islands Levy-

flight GOA model, named MI-LFGOA, for spatial image

steganalysis. MI-LFGOA was tested using SPAM (686-D)
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and SRM (34671-D) subsets taken from the BOSS base

1.01 image database. Test results revealed that MI-LFGOA

gives promising solutions when comparing with other feature

selection approaches.

Mokeddem [95] proposed an improved method (LGOA)

by incorporating the Levy-flight mechanism into GOA for

parameter extraction of solar photo-voltaic models. LGOA

was assessed using Sharp ND-R250A5 module under irra-

diance and temperature conditions. According to the experi-

ments, LGOA provided high accuracy and good performance

compared to the original GOA.

5) DYNAMIC GRASSHOPPER OPTIMIZATION ALGORITHM

An enhanced GOA (GOA_EPD) based on the use of

Evolutionary Population Dynamics (EPD) and selection

operators was proposed by Mafarja et al. [65] for tackling the

feature selection problems. GOA_EPD was evaluated based

on 22 real benchmark datasets taken from the UCI machine

learning repository. Comparative results and analysis showed

the robustness of GOA_EPD comparing with GA, PSO,

BGSA, BBA, and bGWO.

Zhao et al. [96] proposed a Dynamic Improved

GOA (DJGOA) by integrating dynamic weight strategy and

random jumping concept for tackling the single objective

numeric optimization problem. DJGOA was evaluated using

13 benchmark functions in comparison with PSO, DA, and

standard GOA. It was demonstrated that DJGOA gives better

performance compared to the standard GOA, PSO, and DA.

Wang et al. [97] suggested a dynamic quantum binary

GOA (DQBGOA_MR) based on quantum computing con-

cept, mutual information strategy, and rough set mechanism

for tackling the feature selection problem. DQBGOA_MR

was tested using twenty UCI datasets by considering three

metrics such as average classification accuracy, average fea-

ture subset size, and average fitness value. According to the

extensive experiments, DQBGOA_MR provided better solu-

tions comparing with other swarm intelligence techniques.

6) ADAPTIVE GRASSHOPPER OPTIMIZATION ALGORITHM

Wu et al. [69] proposed an adaptive GOA (AGOA)

for optimizing the trajectory planning of solar-powered

Unmanned Aerial Vehicles (SUAVs) in an urban environ-

ment. To enhance the performance of AGOA, natural selec-

tion, dynamic feedback, and democratic decision-making

strategies were incorporated into GOA. Simulation results

showed that AGOA gives better performance when compared

with standardGOA, PSO, andGWOoptimization algorithms.

Shankar et al. [101] proposed an adaptive GOA (AGOA)

for medical image security with efficient optimal secret and

public key. An adaptive process was used to enhance the

high-security investigation of GOA.

Mansoor et al. [102] proposed an adaptive GOA (GHO)

for solving the maximum power point tracking (MPPT) prob-

lem fast varying irradiance and partial shading conditions.

An adaptive search and skip method were introduced. GHO

was tested on five different cases of weather conditions in

comparison with Perturb and Observe (P&O), ABC, PSO,

DA, PSO Gravitational Search (PSOGS), and CS algorithms.

Shukla [103] suggested a self-adaptive GOA by adding the

concepts of mutation and perceptive into the original GOA

for anomaly intrusion detection. To test the performance

of self-adaptive GOA, three datasets such as NSL-KDD,

CIC-IDS 2017, and AWID were used. According to the

experiments, the self-adaptive GOA provided better results

comparingwith PSO, GA,DE, andABC in terms of accuracy,

detection rate, and false-positive rate.

7) FUZZY-BASED GRASSHOPPER OPTIMIZATION

ALGORITHM

Gampa et al. [98] developed a Fuzzy GOA model, based on

the hybridization of GOA with Fuzzy method for optimum

sizing and location of distributed generations, shunt capaci-

tors and electric vehicle charging stations. The performance

of Fuzzy GOA was evaluated based on 51-bus and 69-bus

distribution networks and results proved the performance and

effectiveness of Fuzzy GOA compared to the conventional

method, Fuzzy GA, and Fuzzy PSO.

Bhukya and Nandiraju [99] proposed GOA-based Fuzzy

Logic Control (GO-FLC) for maximum power point tracking

(MPPT). In this method, GOA was used to tune the mem-

bership functions (MFs) of FLC. It was demonstrated that

the performance and robustness of GO-FLC comparing with

other existing methods in terms of accuracy, reliability, and

computation time.

Tiwari and Jain [100] suggested a combined model

(EGOA-FC) by combining GOA with fuzzy clustering tech-

nique for cells segmentation in histopathological images.

To test the efficiency of the EGOA-FCmodel, two histopatho-

logical images (i.e TNBC patients cancer and UCSB bio

segmentation images datasets) were used in the simula-

tion. According to the experiments, EGOA-FC showed good

results compared to K-means and fuzzy c-means techniques

in terms of aggregated Jaccard index value and F1-score.

8) OPPOSITION-BASED LEARNING GRASSHOPPER

OPTIMIZATION ALGORITHM

Ewees et al. [105] proposed an enhanced version of

GOA (OBLGOA) by integrating the OBL mechanism into

GOA for tackling benchmark optimization functions and

engineering problems. The effectiveness of OBLGOA was

investigated based on twenty-three benchmark functions

and four engineering problems in comparison with stan-

dard GOA, GA, BA, DE, DA, PSO, MFO, MVO, ALO,

and SCA. Simulation results revealed that OBLGOA outper-

forms state-of-the-art optimization algorithms in terms of the

performance measures.

Raeesi et al. [106] suggested an improved GOA (IGOA)

by incorporating the opposition-based learning strategy into

GOA for tuning the parameters of Takagi-Sugeno-Kang

(TSK) model. The efficiency of IGOAwas investigated using

unimodal and multimodal test functions. According to the
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experiments, IGOA gives better solutions compared to the

original GOA.

9) MULTI-OBJECTIVE GRASSHOPPER OPTIMIZATION

ALGORITHM

Elmi and Efe [75] proposed a multi-objective GOA

(MOGOA) for robot path planning in static environments.

MOGOA was investigated for optimizing several metrics

such as path length, path cost, smoothness, and computational

time.

Tharwat et al. [76] proposed a novel multi-objective

GOA (MOGOA) for tackling constrained and unconstrained

optimization problems. MOGOAwas validated using 12 test-

ing functions (6 unconstrained functions and 6 constrained

functions) in comparison with MOPSO, MOALO, and

NSGA-II. It was demonstrated that MOGOA gives compet-

itive results when comparing with other optimization meta-

heuristics.

In [66], a multi-objective GOA (MOGOA) was proposed

for solving multi-objective problems. MOGOA was tested

on ZDT and CEC2009 and compared to NSGA-II, MOPSO,

MODA, and MOALO. It was demonstrated that MOGOA

gives competitive results compared to other multi-objective

optimization models by producing accurate Pareto optimal

solutions.

Another multi-objective optimization technique

(MOGOA) was proposed by Jahani et al. [107] for optimal

network distribution reconfiguration. The effectiveness

of MOGOA was approved based on 33-bus and 69-bus

test systems. Test results demonstrated the efficiency and

performance of MOGOA to find a Pareto set solution with

high-quality results

10) OTHER IMPROVED GRASSHOPPER OPTIMIZATION

ALGORITHM

Liu et al. [110] proposed a combined approach (LWSGOA)

by combining GOA with Linear Weighted Sum (LWS) for

solving the energy management problem. LWSGOA was

validated by establishing an optimal model of three intercon-

nected heat exchangers (EH) representing Multi-Integrated

Energy System (MIES) as the case study. Experimental

results proved the scalability and flexibility of LWSGOA

by providing lower multi-carrier energy consumption costs,

lower peak power, and heat demand for multi-IES compared

to other existing methods.

Taher et al. [111] proposed a modified GOA (MGOA) by

integrating the mutation process in the conventional GOA

for tackling the optimal power flow (OPF) problem. MGOA

was validated using standard IEEE 30-bus, IEEE 57-bus, and

IEEE 118-bus test systemswith 13 case studies in comparison

with standard GOA, GA, TLBO, and PSO algorithms. It was

demonstrated that MGOA gives better results compared to

other well-regarded optimization approaches existing in the

literature.

In the work of Zakeri and Hokmabadi [112], a real-valued

GOA (GOFS) was proposed for tackling the feature selection

problem. GOFS was validated using 10 UCI datasets and

compared with 12 well-regarded feature selection methods.

The effectiveness of GOFS was proved compared with other

optimization algorithms by achieving the highest classifica-

tion accuracy in 7 out of 10 datasets.

Yue and Zhang [113] proposed an enhanced GOA

(PCA-GOA) for global optimization problems. Principal

Component Analysis (PCA) and novel inertia weight were

incorporated into GOA to enhance its search space ability.

in a simiar work, Feng et al. [114] proposed an enhanced

GOA (EGOA) for solving the Bin Packing Problem (BPP).

Nonlinear convergence parameter, niche mechanism, and

β-hill climbing were introduced to improve the conver-

gence accuracy of GOA. Simulation results showed the

efficiency and ability of EGOA to find optimal solutions

in different problem sizes compared to the original GOA,

DA, ALO, PSO, and OBLGOA algorithms. In a simi-

lar work, an improved GOA (IGOA) was proposed by

Mishra et al. [115], in which random walk theory was lever-

aged to provide a balanced exploration and exploitation of

the search space and avoid premature convergence into local

optima.

Tanwar et al. [116] proposed a Fractional-GOA model by

integrating the fractional calculus into GOA for sensor acti-

vation control in Wireless Sensor Networks (WSNs). Exper-

imental results proved the effectiveness of Fractional-GOA

comparing with other existing models by obtaining maximal

energy, throughput, and alive nodes of 0.111, 0.85, and 11,

respectively.

Bala et al. [119] suggested an improved GOA by incorpo-

rating the Echo State Network (ESN) strategy into GOA for

predicting faults in airplane engines. The improved GOAwas

validated using time-series data collected from the GitHub

repository with mean squared error (MSE) as an objec-

tive function. According to the experiments, the improved

GOA provided accurate solutions comparing with CS, DE,

PSO, BPSO, LSTM, ESN, Deep ESN, and the classical

GOA.

Goel et al. [120] developed a modified GOA by com-

bining GOA with the random forest approach for Autism

Spectrum Disorder (ASD) detection. The modified GOA

was validated using three ASD screening datasets of differ-

ent age groups including children, adolescents, and adults.

According to the experiments, the modified GOA provides

better results when comparing with other state-of-the-art

approaches by achieving an accuracy of 100% at all stages of

life.

Huang et al. [121] suggested an improved GOA (IGOA)

by adding the social interaction mechanism and learning

strategy into GOA for optimizing the parameters of power

filter (HAPF). IGOAwas tested using numerical data of three

cases of an industrial plant taking into account the parameters

of capacitive reactance, inductive reactance, and controllable

gain of the active filter. Test results revealed that IGOA pro-

vides promising performance when compared with previous

optimization techniques.
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The analysis of the proportion of published papers that

propose a modified version of GOA reveals that most of them

focus on improving GOA. In fact, as shown in Figure 9,

23% of approaches improve the performance of the original

version of GOA. Chaotic version comes at the second position

with a proportion of 17% of the total papers.

FIGURE 9. Proportions of papers having addressed the different modified
versions of GOA.

B. HYBRIDIZED VERSIONS OF GRASSHOPPER

OPTIMIZATION ALGORITHM

Various hybridization of GOA with other optimization algo-

rithms such as meta-heuristic and machine learning can be

found in the literature. Some of them are given in Figure11

and Table 5. As shown in Figure 10, more than 50% of papers

propose hybridization with metaheuristics and 26% of them

use Neural Networks (NN) as machine learning technique.

The following subsections discuss them in details.

1) HYBRIDIZATION WITH GENETIC ALGORITHM

Alphonsa and MohanaSundaram [122] suggested a hybrid

optimization approach (GOAGA) by combining GOA with

GA for securing medical data. The performance of GOAGA

was examined in 3 different test cases in comparisonwithGA,

ABC, PSO, FA, GSO, GMGW, GWOSEB, and the standard

GOA. It was revealed that GOAGA gives better performance

for the preservation of sensitive healthcare data compared

to GA, ABC, PSO, FA, GSO, GMGW, GWOSEB, and the

original GOA.

El-Shorbagy and El-Refaey [123] suggested a combined

algorithm (hybrid-GOA-GA) by combining GOA with GA

for tackling the non-linear equations system. Eight bench-

marks of non-linear equations were used to validate and

assess the efficiency of the hybrid-GOA-GA. According to

the results, the hybrid-GOA-GA showed its competitiveness

and superiority when comparing with other existing methods

in terms of accuracy and computational cost.

2) HYBRIDIZATION WITH DIFFERENTIAL EVOLUTION

ALGORITHM

In [124], a combined approach (GOA-jDE)integrating GOA

with DE was proposed for solving the global optimization

problems. GOA-jDE was assessed using 14 optimization test

functions and results showed the feasibility of GOA-jDE

compared to DE, GOA, Modified GOA (MGOA), PSO,

FIGURE 10. Proportions of papers having addressed the different
hybridized versions of GOA.

and MVO in terms of convergence speed and calculation

precision.

Li et al. [125] suggested a novel model (DE-GOA-KELM)

by hybridizing GOA with DE and a kernel extreme learn-

ing machine (KELM) for color difference detection of dyed

fabrics. DE-GOA-KELM was tested using four indicators

(i.e average classification accuracy, best classification accu-

racy, worst classification accuracy, and standard deviation)

in comparison with Eleven optimization models. According

to the experiments, DE-GOA-KELM provided an impressive

stability with an average classification accuracy of 98.89%.

3) HYBRIDIZATION WITH ARTIFICIAL BEE COLONY

ALGORITHM

GOA and ABC was hybridized by Dahiya et al. [126]. The

authors proposed node deployment, cluster leader selection,

and optimal route selection in Wireless Sensor Networks

(WSNs). HAGOAwas examined usingmetrics such as sensor

node lifetime, energy consumption, remaining energy, end to

end delay, and maximum number of rounds in comparison

with LEACH, ACO, PSO, ABC, ACOPSO, HABCS, and

AGOA. It was demonstrated that HAGOA gives better per-

formance compared to other optimization meta-heuristics.

4) HYBRIDIZATION WITH GREY WOLF OPTIMIZER

Ahybridmethod (GWGHA) based on hybridizingGWOwith

GOA was proposed by Teng et al. [127] for the Cycle Traffic

Light Timing Optimization Problem (CTLTOP). The perfor-

mance of GWGHA was validated based on data taken from

Kaohsiung, Taiwan, Bahıa Blanca, Argentina, and Malaga,

Spain in comparison with PSO, SPSO2011, GWO, and GOA.

In [144] a hybrid algorithm (GWO-GOA) was proposed by

hybridizing GOA with GWO for tackling the text feature

selection problem. GWO-GOA was assessed using eight

datasets taking into account five metrics (i.e accuracy, sensi-

tivity, specificity, precision, recall, and F-measure). Accord-

ing to the experiments, GWO-GOA showed better quality

when comparing with GOA, GWO, and other techniques.

5) HYBRIDIZATION WITH BAT ALGORITHM

Yue and Zhang [128] suggested a hybrid model (BGOA) by

hybridizing GOA with BA for solving global optimization

problems. BGOA was assessed using 23 test benchmark test

functions comparing with GA, BA, and the standard GOA.
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TABLE 5. Hybrid versions of GOA.

According to the experiments, BGOA provided better solu-

tions compared to GA, BA, and GOA.

6) HYBRIDIZATION WITH GRAVITATIONAL SEARCH

ALGORITHM

The GOA algorithm was hybridized with GSA by

Guo et al. [129]. Gravity search and landmark operators

were adopted to enhance the global search capability of

GOA. Simulation results demonstrated that HGOA gives

competitive results compared to GOA, PSO, SCA, MFO,

SSA, and BA.

7) HYBRID GOA AND CAT SWARM OPTIMIZATION

ALGORITHM

Bansal et al. [130] hybridized the binary variant of GOA

known as Simple Matching Binary GOA (SM-BGOA) with

a variant of Cat Swarm Optimization Algorithm known

as NCSOA for feature selection and optimal design of

multi-layer perceptron. The effectiveness of SM-GNCSOA

was evaluated based on 10 data sets selected from the UCI

repository and results showed the capability of SM-GNCSOA

for solving the optimal design of multi-layer perceptron prob-

lem in terms of classification accuracy

8) HYBRIDIZATION WITH ANT LION OPTIMIZATION

ALGORITHM

One of the very first hybridization of ALO and GOA was

proposed byAmaireh et al. [131]. The authors used the hybrid

method in sidelobe-level (SLL) suppression for circular

antenna array.

9) HYBRIDIZATION WITH SALP SWARM ALGORITHM

Dahiya et al. [132] combinined GOA with SSA for dis-

covering the global optimum in a given search space. The

performance of HAGOA was assessed using unimodal and

multimodal benchmark functions.
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FIGURE 11. Hybrid versions of GOA.

10) HYBRIDIZATION WITH TEACHING-LEARNING-BASED

OPTIMIZATION

Zhang et al. [133] combined Adaptive GOA with Teaching-

Learning-Based Optimization (TLBO) algorithm (TLGOA)

and utilizes it for abrupt motion tracking.

11) HYBRIDIZATION WITH INVASIVE WEED OPTIMIZATION

ALGORITHM

Yue et al. [128] proposed a combined method (IWGOA)

based on the hybridization of GOA with invasive weed opti-

mization (IWO) for global optimization problems.

12) GRASSHOPPER OPTIMIZATION ALGORITHM WITH

SUPPORT VECTOR MACHINE

Aljarah et al. [72] proposed a combinedmethod (GOA-SVM)

based on the hybridization of GOA with SVM for optimizing

the parameters of SVM model and the location of the best

features subset simultaneously. The efficiency of GOA-SVM

was evaluated based on 18 low and high-dimensional bench-

mark datasets in comparisonwith 7well-regarded algorithms.

Another similar work was done by Barman et al. [73] and

Ibrahim et al. [135].

Shi et al. [136] suggested an improved long short-term

memory GOA (GOA-ImLSTM) by hybridizing GOA with

SVM and LSTM for decision-making for Self-Driving

Vehicles. GOA-ImLSTM was assessed using Vehicle tra-

jectory data collected from Roads of Los Angeles and

California. According to the experiments, GOA-ImLSTM

enhanced the accuracy of solutions when compared with

other decision-making techniques.

Zhang et al. [137] suggested a novel model (GOA-MSVM)

by combining GOA with SVM for fault identification accu-

racy of rotatingmachinery. GOA-MSVMwas assessed in two

case studies: rolling bearing faults and gear faults. According

to the experiments, GOA-MSVM provided promising results

compared to five other SVM-based approaches.

13) GRASSHOPPER OPTIMIZATION ALGORITHM WITH

SUPPORT VECTOR REGRESSION

Barman and Choudhury [134] hybridized GOA and Support

Vector Regression (SVR) for Short Term Load Forecast-

ing (STLF) during periods with substantial weather changes

in North-East India. The performance of GOA-SVR was

evaluated based on the data of the load dispatch center of

Assam state in 3 case studies under 3 typical weather con-

ditions. Experimental results demonstrated that GOA-SVR

outperforms the conventional methods in all cases.

14) GRASSHOPPER OPTIMIZATION ALGORITHM WITH

NEURAL NETWORK

Talaat et al. [140] proposed a hybrid approach(MFFNN-

GOA) based on the combination of multi-layer feed-forward

neural network (MFFNN) and GOA for load forecast-

ing. The effectiveness of MFFNN-GOA was tested based

on different training functions taking into account three

parameters: RMSE, MAE, and Mean Absolute Percentage

Error (MAPE). The effectiveness of MFFNN-GOA method

was demonstrated compared to MFFNN, MFFNN-GA, and

MFFNN-GWO optimization methods.

Moghanian et al. [141] suggested a novel model

(GOAMLP) by combining GOA with multi-layer perceptron

neural network for tackling the intrusion detection problem.

KDD and UNSW datasets were used to validate the robust-

ness of GOAMLP. Experimental results demonstrated that

GOAMLP is more accurate and outperforms other existing
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techniques such as RF, XGBooston, HHO, BWO, and ANN

with BOA.

A hybrid model (GORNN) by combining GOA with RNN

was proposed by Jape et al. [142] for boosting the speed

of the induction motor. The viability and effectiveness of

GORNN was validated using two scenarios: step demand

torque with constant demand speed and ramp demand torque

with constant demand speed. According to the experiments,

GORNN provided good solutions when compared with other

existing techniques.

Renukadevi and Karunakaran [143] proposed hybridized

GOA with Deep Belief Network(DBN) for liver dis-

ease classification. The performance of DBN-GOA was

evaluated based on real-time and open-source computed

tomography (CT) image datasets. It was demonstrated that

DBN-GOA provide 98%, 95.82%, 97.52%, 98.53% and

96.8% for the accuracy, sensitivity, specificity, precision, and

F-1 score, respectively.

IV. APPLICATIONS OF GRASSHOPPER OPTIMIZATION

ALGORITHM

GOA has been applied for tackling various optimization

problems in different domains such as feature selection, load

frequency control, distributed generation, scheduling, wind

energy system, and economic dispatch. Table 6 provides

some of the applications of GOA in continuous, constrained,

and combinatorial optimization sub-fields. The details are

provided below.

A. GOA FOR CONTINUOUS OPTIMIZATION

1) CLUSTERING

Łukasik et al. [147] used GOA for generating accurate data

clusterings. GOA was validated using benchmark datasets

based on real-world examples taken from the UCI machine

learning repository. Test results revealed that GOA outper-

forms the standard K-means algorithm by obtaining high

accuracy.

2) OPTIMAL LINEAR ANTENNA ARRAY

Amaireh et al. [149] employed GOA and Antlion optimiza-

tion (ALO) for optimal design of Linear Antenna Arrays

(LAA). GOA was tested on three different case studies: 10,

16, and 24 elements of linear antenna arrays in comparison

with Taguchi Algorithm (TA), PSO, and BBO.

3) STABILIZATION OF POWER SYSTEMS

Sahu et al. [151] employed GOA for optimizing the param-

eters of Static Synchronous Series Compensator (SSSC)

controller. The performance of GOA was assessed under a

single-machine infinite bus system in three scenarios: nomi-

nal loading, light loading, and heavy loading.

Hekimoğlu [152] used GOA for optimizing the power

system stabilizer (PSS) parameters with fractional-order

proportional-integral-derivative (FOPID) controller. The per-

formance of GAO was evaluated under three configurations

(light, nominal, and heavy loading cases). The merits of GOA

in such problems was demonstrated in this study.

4) RECONFIGURABLE HF BROADBAND WHIP ANTENNA

Wang et al. [154] used GOA for solving the problems

of low gain, low efficiency, and pattern warping in the

high-frequency band of the existing 10-meter HF broadband

whip antenna. Simulation results showed that GOA improves

the gain and efficiency of antenna in low and high-frequency

bands and avoids the problem of warping in antenna patterns.

5) HAND POSTURE ESTIMATION

Mirjalili et al. [155] estimated hand postures USN the GOA

algorithm. The effectiveness of GOA was evaluated using

20-Degree-of-Freedom (DoF) hand model and results

showed the reliability of GOA to find a reasonable solution

for the problem.

6) BLDC MOTOR DRIVE CONTROLLER

Potnuru and Tummala [156] applied GOA for Control-

ling a BrushLess Direct Current (BLDC) motor drive. The

performance of GOA was validated using Integral Speed

Error (ISE) as an objective function and results showed the

effectiveness of GOA in reducing the speed error and the time

of gain tuning.

7) OPTIMAL ESTIMATION OF SINGLE DIODE MODEL

PARAMETERS

Montano et al. [157] used GOA for estimating the

optimal Single Diode Model (SDM) parameters of a

photo-voltaic (PV) module. GOA was tested using four

different types of PV modules in comparison with GA and

PSO algorithms.

8) GRID-CONNECTED WIND GENERATOR

Amin et al. [158] used GOA-based Proportional-Integral (PI)

controller for optimizing and improving the grid-connected

wind generator. The effectiveness of GOA was tested using

wind speed data extracted from Zafarana wind farm in Egypt.

B. GOA FOR CONSTRAINED OPTIMIZATION

1) ECONOMIC DISPATCH PROBLEMS

Rajput et al. [159] used GOA for tackling the Economic

Load Dispatch Problem (ELDP). The robustness of GOAwas

validated using 3 power generators test cases consisting of

6 generation units with loss, 13 generation units with valve

point loading, and 38 generation units.

2) CONGESTION MANAGEMENT

Kaur and Kumar [160] used GOA for Congestion Manage-

ment Problem (CMP) in a pool-based electricity market. The

effectiveness of GOA was evaluated using IEEE 30 Bus

system and results showed the performance of GOA com-

pared to SA, PSO, and Random Search (RS) optimization

algorithms.
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TABLE 6. Applications of GOA.

3) DISTRIBUTED GENERATOR

Shishupal and Manglani [162] employed GOA for deter-

mining the optimal size and placement of shunt capacitors

at suitable bus locations in radial distribution system. The

performance of GOA was tested based on 15-bus radial

distribution system with main feeder and four lateral feed-

ers. According to the simulation, GOA gives better results

compared to the Improved Harmony Algorithm (IHA) in

minimizing the system loss and system cost of capacitor

placement. Another similar work was done by Sambaiah and

Jayabarathi [163], in which GOA was used for the optimal

allocation of distributed generation in distribution networks.

4) OPTIMAL REACTIVE POWER PLANNING

Juhari et al. [167] applied GOA for tackling the reactive

power planning problem. The robustness of GOA was eval-

uated based on the standard IEEE-30 bus test system with

minimization of real power loss as an objective function.

According to the simulation, GOA gives good results in

minimizing the power transmission loss.

5) WIND ENERGY SYSTEM

Fathy and El-baksawi [168] used GOA to extract the maxi-

mum power from the wind energy system. The performance

of GOA was evaluated using collected data for wind speed

in 4 different sites in northern Saudi Arabia (Qurayyat,

Sakaka, Tabarjal, and Dumat Al-Jandal).

6) OPTIMAL DISTRIBUTION NETWORK SYSTEM

RECONFIGURATION

Hamour et al. [169] used GOA for solving the Distribution

Network System Reconfiguration (DNSR) to minimize the

real power loss. GOA was tested on IEEE 33-bus radial dis-

tribution systems in comparisons with Enhanced GA (EGA),

Selective PSO (SPSO), and Fuzzy Adaptation of EP (FEP).

Simulation results demonstrated that GOA gives reasonable

computing time and high performance when compared to

other optimization methods.

7) OPTIMAL VARIATIONAL MODE DECOMPOSITION (VMD)

PARAMETERS

Zhang et al. [68] proposed a parameter-adaptive VMD based

on GOA for optimizing the Variational Mode Decompo-

sition (VMD) parameters. The proposed adaptive VMD

method was used for analyzing the vibration signals from

rotating machinery. According to the experiments, the pro-

posed method showed better results compared to the conven-

tional fixed-parameter VMD method on this problem area.

8) OPTIMAL SNUBBER SPRING

Neve et al. [170] used GOA for optimizing the snub-

ber spring for weight minimization in railway bogie. The
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performance of GOA was validated according to bounds,

loading, and boundary conditions and results showed the

efficiency of GOA for solving real engineering design

problems.

9) FLood ROUTING PROBLEM

Khalifeh et al. [171] used GOA for solving the non-linear

Muskingum flood routing river problem. The performance

of GOA was tested using time-series datasets of the outflow

of the Kardeh River with minimizing the Sum of Squares of

Residuals (SSQ) as the objective function.

10) OPTIMAL PROTON EXCHANGE MEMBRANE FUEL CELLS

STACK PARAMETERS

El-Fergany [174] proposed a GOA-based method for opti-

mizing the parameters of proton exchange membrane fuel

cells (PEMFCs) stack. The performance of the GOA-based

method was tested using four test studies.

11) OPTIMAL LOAD FREQUENCY CONTROL

Nosratabadi et al. [175] used GOA for optimizing the param-

eters of Predictive Functional Modified PID (PFMPID) con-

troller LFC. The performance of GOA was validated using

ITSE as objective function.

Lal et al. [176] proposed aGOA-based Fuzzy proportional-

integral-derivative (PID) controller of LFC of multi-area

interconnected microgrid power system. The efficiency of the

proposed algorithm was validated taken into account 3 met-

rics such as minimum settling time, minimum undershoot,

and overshoot.

Barik and Das [177] used GOA for optimal LFC of

solar photovoltaic/biogas/biodiesel generator based isolated

renewable microgrid. The effectiveness of GOA was evalu-

ated in different scenarios of source and load variations by

comparing it with GA, PSO, and GWO and results revealed

its robustness and efficiency compared to the three studied

algorithms.

Annamraju and Nandiraju [178] applied GOA for

tuning the parameters of the PID controller for LFC of an

autonomous two-area hybrid MicroGrid (MG). The robust-

ness of GOA was tested using three critical scenarios in

comparison with GA and Social-Spider Optimiser (SSO)

algorithms.

12) SMART LOAD MANAGEMENT SYSTEM

Talaat et al. [180] employed GOA-based Under-Frequency

Load Shedding (UFLS) for smart load management system.

The performance of GOA was validated using IEEE 9-bus

and 39-bus test systems in comparison with GA and PSO.

C. GOA FOR COMBINATORIAL OPTIMIZATION

1) FEATURE SELECTION

Shukla and Kanungo [188] used GOA based feature selection

method for face identification in a Content-Based Image

Retrieval (CBIR).

2) OPTIMAL RESOURCE ALLOCATION

Vahidi and Rahmati [189] used GOA for optimizing the

resource allocation in a cloud computing environment. The

effectiveness of GOA was evaluated using 3 sets of small-

scale, 3 sets of medium-scale, and 2 sets of large-scale

resource allocation standard examples in comparison with

GA and SEIRA algorithms.

Yadav et al. [190] applied GOA for designing a digital

finite impulse response (FIR) filters. The consistency of

GOA was done using an absolute error difference objective

function comparing with ABC, PSO, and CSA algorithms.

According to the experiments, GOA obtains better solutions

compared to ABC, PSO, and CSA approaches in terms of

minimum stop-band ripple, minimum pass-band ripple, and

higher attenuation in stop-band.

V. RESULTS AND COMPARISONS

In this section, the performance of the GOA algorithm is

investigated, evaluated, and confirmed based on three sets

of mathematical test functions (i.e. unimodal, mutlimodal,

and composite). They are compared with some well-regarded

optimization algorithms such as GA, PSO, FA, PFA, BA, and

GSA. 30 search agents and 500 iterations are employed in the

experiments. Results are normalized in the range of [0,1] for

all the functions due to their different ranges/domains. The

experimental results are provided in Table 7. Firstly, for uni-

modal test functions, it is clearly shown that GOA algorithm

gives superior results on 5 out of 7 test functions (F1, F4,

F5, F6, and F7). Due to the proprieties and characteristics of

the unimodal functions, these results revealed that GOA has

high exploitation ability and convergence. Secondly, accord-

ing to Table 7, it can be observed that GOA provides better

performance on 4 out of 6 multimodal test functions (F9,

F11, F12, and F13). These results reveal the performance

of GOA in preventing from local optima stagnation. Finally,

GOA algorithm gives excellent results on 3 out of 6 composite

test functions (F14, F16, and F18). It can be confirmed that

GOA algorithm provides good balance between exploration

and exploitation.

To confirm the significance of the results, Friedman sta-

tistical test is used and the results are given in Table 8. It is

clearly observed that GOA algorithm obtains the first rank.

These results revealed strongly the effectiveness and perfor-

mance of GAO compared to other optimization algorithms.

VI. DISCUSSION AND FUTURE WORKS

As discussed above, GOA is a recent and popular optimiza-

tion algorithm. The wide range of applications is an indi-

cation of its merits, and this algorithm benefits from high

exploration and exploitation. Some of the advantages of this

algorithm are listed in Table 9. However, GOA has some

restrictions and disadvantages. It surely requires tuning, adap-

tation, and modification to solve new optimization problems.

Just like any other meta-heuristics, the performance of this

algorithm substantially degrade proportional to the size of

a problems (e.g. number of decision variables) due to the
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TABLE 7. The average results for solving benchmark functions.

TABLE 8. The Friedman Statistical test.

TABLE 9. Advantages and disadvantages of GOA.

premature convergence. To overcome that, many variants of

GOA were proposed as summarized in Tables 4 and 5.

Some of themost interesting research directions around the

GOA algorithm are as follows:

• Development of enhanced versions of GOA to han-

dle some hard and challenging, large-scale optimization

problems.

• Comparison of the robustness of GOA with other

population-based algorithms such as AOA, CSA, FPA,

KH, WEO, CFO, and CSO algorithms.

• Hybridization of GOA with other swarm intelligence

algorithms like ACO, CS, PSO, FA, DA, CSA, andMFO

to improve the balance between exploration/exploitation

and prevent premature convergence.

• Application of GOA for handling other optimization

problems in different domains such as Multicast Rout-

ing, Intrusion Detection, UAV planning, Image segmen-

tation, Travel salesman, Virtual Machine Placement,
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Photo-electronic detection, parameter calibration, and

other real-world complex optimization problems.

VII. CONCLUSION

This work was an attempt to present, discuss, and analyze the

state-of-the-art of the GOA algorithm. We started with first

discussing the methodology of this survey. It was discussed

that several relevant keywords were used and the best pub-

lications were selected using a number of criteria to ensure

reviewing high-quality research outputs. Then, the inspira-

tions and mathematical models of GOA were presented. The

main part of this work was the discussion and critisim of vari-

ants, hybrids, and applications of the GOA in the literature.

The application areas investigated were mainly feature selec-

tion, scheduling, distributed generation, economic dispatch,

and flood routing.

Despite the success of GOA, several areas are worthy of

exploration for future works. Firstly, The modification of

the standard GOA requires more research. In addition to

three main mechanism of swarming (an individual’s position,

social interaction, and gravity), alignment, separation, and

cohesion can be used as well. Secondly. GOA variants by

hybridizing GOA with other meta-heuristics and defining

new operators and strategies to improve the exploitation and

exploration of GOA are recommended. Finally, another inter-

esting area for future research is the application of GOA

to solve other practical optimization problems, especially

complex, dynamic, and large scale optimization problems.

REFERENCES

[1] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, ‘‘Optimization by simu-

lated annealing,’’ Science, vol. 220, no. 4598, pp. 671–680, 1983.

[2] C. Voudouris and E. Tsang, ‘‘Guided local search and its application

to the traveling salesman problem,’’ Eur. J. Oper. Res., vol. 113, no. 2,

pp. 469–499, Mar. 1999.

[3] N. Mladenović and P. Hansen, ‘‘Variable neighborhood search,’’ Comput.

Oper. Res., vol. 24, no. 11, pp. 1097–1100, Nov. 1997.

[4] H. R. Lourenço, O. C. Martin, and T. Stützle, ‘‘Iterated local search,’’ in

Handbook of Metaheuristics (International Series in Operations Research

&Management Science), vol. 57, F. Glover and G. A. Kochenberger, Eds.

Boston, MA, USA: Springer, 2003, doi: 10.1007/0-306-48056-5_11.

[5] H. H. Hoos and T. Stützle, Stochastic Local Search: Foundations and

Applications. Amsterdam, The Netherlands: Elsevier, 2004.

[6] F. Glover, ‘‘Tabu search for nonlinear and parametric optimization (with

links to genetic algorithms),’’ Discrete Appl. Math., vol. 49, nos. 1–3,

pp. 231–255, Mar. 1994.

[7] F. Glover and M. Laguna, ‘‘Tabu search,’’ in Handbook of Combinatorial

Optimization, D. Z. Du and P. M. Pardalos, Eds. Boston, MA, USA:

Springer, 1998, doi: 10.1007/978-1-4613-0303-9_33.

[8] T. A. Feo and M. G. C. Resende, ‘‘A probabilistic heuristic for a compu-

tationally difficult set covering problem,’’ Oper. Res. Lett., vol. 8, no. 2,

pp. 67–71, Apr. 1989.

[9] T. A. Feo and M. G. C. Resende, ‘‘Greedy randomized adaptive search

procedures,’’ J. Global Optim., vol. 6, no. 2, pp. 109–133, Mar. 1995.

[10] M. G. Resende and C. Ribeiro, ‘‘Greedy randomized adaptive search

procedures (GRASP),’’ AT&T Labs Res., vol. 98, no. 1, pp. 1–11, 1998.

[11] J. H. Holland, ‘‘Genetic algorithms,’’ Sci. Amer., vol. 267, no. 1,

pp. 66–73, 1992.

[12] R. Storn and K. Price, ‘‘Differential evolution—A simple and efficient

heuristic for global optimization over continuous spaces,’’ J. Global

Optim., vol. 11, no. 4, pp. 341–359, 1997.

[13] X. Yao, Y. Liu, and G. Lin, ‘‘Evolutionary programming made faster,’’

IEEE Trans. Evol. Comput., vol. 3, no. 2, pp. 82–102, Jul. 1999.

[14] J. R. Koza, Genetic Programming: On the Programming of Computers

By Means of Natural Selection, vol. 1. Cambridge, MA, USA:MIT Press,

1992.

[15] H.-G. Beyer and H.-P. Schwefel, ‘‘Evolution strategies—A comprehen-

sive introduction,’’ Natural Comput., vol. 1, no. 1, pp. 3–52, 2002.

[16] D. Simon, ‘‘Biogeography-based optimization,’’ IEEE Trans. Evol. Com-

put., vol. 12, no. 6, pp. 702–713, Dec. 2008.

[17] H. Ma, D. Simon, P. Siarry, Z. Yang, and M. Fei, ‘‘Biogeography-based

optimization: A 10-year review,’’ IEEE Trans. Emerg. Topics Comput.

Intell., vol. 1, no. 5, pp. 391–407, Oct. 2017.

[18] R. Eberhart and J. Kennedy, ‘‘A new optimizer using particle swarm

theory,’’ in Proc. 6th Int. Symp. Micro Mach. Hum. Sci., 1995, pp. 39–43.

[19] J. Kennedy, ‘‘Particle swarm optimization,’’ in Proc. Conf. Encyclopedia

Mach. Learn., 2010, pp. 760–766.

[20] D. Karaboga and B. Basturk, ‘‘Artificial bee colony (ABC) optimization

algorithm for solving constrained optimization problems,’’ in Founda-

tions of Fuzzy Logic and Soft Computing (Lecture Notes in Computer

Science), vol. 4529, P. Melin, O. Castillo, L. T. Aguilar, J. Kacprzyk, and

W. Pedrycz, Eds. Berlin, Germany: Springer, 2007, doi: 10.1007/978-3-

540-72950-1_77.

[21] X.-S. Yang and S. Deb, ‘‘Cuckoo search via Lévy flights,’’ in Proc.

World Congr. Nature Biologically Inspired Comput. (NaBIC), 2009,

pp. 210–214.

[22] M. Shehab, A. T. Khader, and M. A. Al-Betar, ‘‘A survey on applications

and variants of the cuckoo search algorithm,’’ Appl. Soft Comput., vol. 61,

pp. 1041–1059, Dec. 2017.

[23] A. H. Gandomi and A. H. Alavi, ‘‘Krill herd: A new bio-inspired opti-

mization algorithm,’’ Commun. Nonlinear Sci. Numer. Simul., vol. 17,

no. 12, pp. 4831–4845, Dec. 2012.

[24] G.-G. Wang, A. H. Gandomi, A. H. Alavi, and D. Gong, ‘‘A comprehen-

sive review of krill herd algorithm: Variants, hybrids and applications,’’

Artif. Intell. Rev., vol. 51, no. 1, pp. 119–148, Jan. 2019.

[25] W.-T. Pan, ‘‘A new fruit fly optimization algorithm: Taking the financial

distress model as an example,’’ Knowl.-Based Syst., vol. 26, pp. 69–74,

Feb. 2012.

[26] S. Mirjalili, S. M. Mirjalili, and A. Lewis, ‘‘Grey wolf optimizer,’’ Adv.

Eng. Softw., vol. 69, pp. 46–61, Mar. 2014.

[27] H. Faris, I. Aljarah, M. A. Al-Betar, and S. Mirjalili, ‘‘Grey wolf opti-

mizer: A review of recent variants and applications,’’ Neural Comput.

Appl., vol. 30, no. 2, pp. 413–435, Jul. 2018.

[28] N. M. Hatta, A. M. Zain, R. Sallehuddin, Z. Shayfull, and Y. Yusoff,

‘‘Recent studies on optimisation method of grey wolf optimiser (GWO):

A review (2014–2017),’’ Artif. Intell. Rev., vol. 52, no. 4, pp. 2651–2683,

Dec. 2019.

[29] S.Mirjalili, ‘‘The ant lion optimizer,’’Adv. Eng. Softw., vol. 83, pp. 80–98,

May 2015.

[30] L. Abualigah, M. Shehab, M. Alshinwan, S. Mirjalili, and M. A. Elaziz,

‘‘Ant lion optimizer: A comprehensive survey of its variants and applica-

tions,’’ Arch. Comput. Methods Eng., vol. 3, pp. 1–20, Apr. 2020.

[31] S. Mirjalili, ‘‘Dragonfly algorithm: A new meta-heuristic optimization

technique for solving single-objective, discrete, and multi-objective prob-

lems,’’ Neural Comput. Appl., vol. 27, no. 4, pp. 1053–1073, May 2016.

[32] Y. Meraihi, A. Ramdane-Cherif, D. Acheli, and M. Mahseur, ‘‘Dragonfly

algorithm: A comprehensive review and applications,’’ Neural Comput.

Appl., vol. 32, no. 21, pp. 16625–16646, Nov. 2020.

[33] X. S. Yang, ‘‘A new metaheuristic bat-inspired algorithm,’’ in Nature

Inspired Cooperative Strategies for Optimization (Studies in Compu-

tational Intelligence), vol. 284, J. R. González, D. A. Pelta, C. Cruz,

G. Terrazas, and N. Krasnogor, Eds. Berlin, Germany: Springer, 2010,

doi: 10.1007/978-3-642-12538-6_6.

[34] X.-S. Yang, ‘‘Bat algorithm: Literature review and applications,’’ 2013,

arXiv:1308.3900. [Online]. Available: http://arxiv.org/abs/1308.3900

[35] S. Mirjalili and A. Lewis, ‘‘The whale optimization algorithm,’’ Adv. Eng.

Softw., vol. 95, pp. 51–67, May 2016.

[36] F. S. Gharehchopogh and H. Gholizadeh, ‘‘A comprehensive survey:

Whale optimization algorithm and its applications,’’ Swarm Evol. Com-

put., vol. 48, pp. 1–24, Aug. 2019.

[37] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and

S. M. Mirjalili, ‘‘Salp swarm algorithm: A bio-inspired optimizer for

engineering design problems,’’ Adv. Eng. Softw., vol. 114, pp. 163–191,

Dec. 2017.

[38] L. Abualigah, M. Shehab, M. Alshinwan, and H. Alabool, ‘‘Salp swarm

algorithm: A comprehensive survey,’’ Neural Comput. Appl., vol. 29,

pp. 1–21, Nov. 2019.

VOLUME 9, 2021 50019

http://dx.doi.org/10.1007/0-306-48056-5_11
http://dx.doi.org/10.1007/978-1-4613-0303-9_33
http://dx.doi.org/10.1007/978-3-540-72950-1_77
http://dx.doi.org/10.1007/978-3-540-72950-1_77
http://dx.doi.org/10.1007/978-3-642-12538-6_6


Y. Meraihi et al.: GOA: Theory, Variants, and Applications

[39] A. Askarzadeh, ‘‘A novel Metaheuristic method for solving constrained

engineering optimization problems: Crow search algorithm,’’ Comput.

Struct., vol. 169, pp. 1–12, Jun. 2016.

[40] Y. Meraihi, A. B. Gabis, A. Ramdane-Cherif, and D. Acheli, ‘‘A com-

prehensive survey of crow search algorithm and its applications,’’ Artif.

Intell. Rev., vol. 2020, pp. 1–48, Sep. 2020.

[41] X. S. Yang, ‘‘Firefly algorithms for multimodal optimization,’’ in

Stochastic Algorithms: Foundations and Applications (Lecture Notes in

Computer Science), vol. 5792, O. Watanabe and T. Zeugmann, Eds.

Berlin, Germany: Springer, 2009, doi: 10.1007/978-3-642-04944-6_14.

[42] I. Fister, I. Fister, X.-S. Yang, and J. Brest, ‘‘A comprehensive review of

firefly algorithms,’’ Swarm Evol. Comput., vol. 13, pp. 34–46, Dec. 2013.

[43] S. Saremi, S. Mirjalili, and A. Lewis, ‘‘Grasshopper optimisation algo-

rithm: Theory and application,’’ Adv. Eng. Softw., vol. 105, pp. 30–47,

Mar. 2017.

[44] R. V. Rao, V. J. Savsani, and D. P. Vakharia, ‘‘Teaching–learning-based

optimization: A novel method for constrained mechanical design opti-

mization problems,’’ Comput.-Aided Des., vol. 43, no. 3, pp. 303–315,

Mar. 2011.

[45] E. Atashpaz-Gargari and C. Lucas, ‘‘Imperialist competitive algorithm:

An algorithm for optimization inspired by imperialistic competition,’’ in

Proc. IEEE Congr. Evol. Comput., Sep. 2007, pp. 4661–4667.

[46] Z.W. Geem, J. H. Kim, and G. V. Loganathan, ‘‘A new heuristic optimiza-

tion algorithm: Harmony search,’’ Simulation, vol. 76, no. 2, pp. 60–68,

Feb. 2001.

[47] D. Manjarres, I. Landa-Torres, S. Gil-Lopez, J. D. Ser, M. N. Bilbao,

S. Salcedo-Sanz, and Z. W. Geem, ‘‘A survey on applications of the

harmony search algorithm,’’ Eng. Appl. Artif. Intell., vol. 26, no. 8,

pp. 1818–1831, 2013.

[48] T. Zhang and Z. W. Geem, ‘‘Review of harmony search with respect

to algorithm structure,’’ Swarm Evol. Comput., vol. 48, pp. 31–43,

Aug. 2019.

[49] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, ‘‘GSA: A gravitational

search algorithm,’’ Inf. Sci., vol. 179, no. 13, pp. 2232–2248, Jun. 2009.

[50] N. Siddique and H. Adeli, ‘‘Gravitational search algorithm and its vari-

ants,’’ Int. J. Pattern Recognit. Artif. Intell., vol. 30, no. 8, Sep. 2016,

Art. no. 1639001.

[51] E. Rashedi, E. Rashedi, and H. Nezamabadi-Pour, ‘‘A comprehensive

survey on gravitational search algorithm,’’ Swarm Evol. Comput., vol. 41,

pp. 141–158, Aug. 2018.

[52] R. A. Formato, ‘‘Central force optimization,’’ Prog. Electromagn. Res.,

vol. 77, pp. 425–491, Aug. 2007.

[53] R. A. Formato, ‘‘Central force optimization: A new nature inspired com-

putational framework for multidimensional search and optimization,’’ in

Nature Inspired Cooperative Strategies for Optimization (Studies in Com-

putational Intelligence), vol. 129, N. Krasnogor, G. Nicosia, M. Pavone,

and D. Pelta, Eds. Berlin, Germany: Springer, 2008, doi: 10.1007/978-3-

540-78987-1_21.

[54] R. A. Formato, ‘‘Central force optimization: A new deterministic

gradient-like optimization metaheuristic,’’ Opsearch, vol. 46, no. 1,

pp. 25–51, Mar. 2009.

[55] A. Kaveh and T. Bakhshpoori, ‘‘Water evaporation optimization: A novel

physically inspired optimization algorithm,’’ Comput. Struct., vol. 167,

pp. 69–85, Apr. 2016.

[56] A. Kaveh andA. Dadras, ‘‘A novelmeta-heuristic optimization algorithm:

Thermal exchange optimization,’’ Adv. Eng. Softw., vol. 110, pp. 69–84,

Aug. 2017.

[57] A. Kaveh andM. I. Ghazaan, ‘‘A newmeta-heuristic algorithm: Vibrating

particles system,’’ Scientia Iranica. Trans. A, Civil Eng., vol. 24, no. 2,

p. 551, 2017.

[58] A. Husseinzadeh Kashan, ‘‘A new metaheuristic for optimization: Optics

inspired optimization (OIO),’’ Comput. Oper. Res., vol. 55, pp. 99–125,

Mar. 2015.

[59] H. Abedinpourshotorban, S. M. Shamsuddin, Z. Beheshti, and

D. N. A. Jawawi, ‘‘Electromagnetic field optimization: A physics-

inspired metaheuristic optimization algorithm,’’ Swarm Evol. Comput.,

vol. 26, pp. 8–22, Feb. 2016.

[60] O. K. Erol and I. Eksin, ‘‘A new optimization method: Big bang–big

crunch,’’ Adv. Eng. Softw., vol. 37, no. 2, pp. 106–111, 2006.

[61] F. A. Hashim, E. H. Houssein, M. S. Mabrouk, W. Al-Atabany,

and S. Mirjalili, ‘‘Henry gas solubility optimization: A novel physics-

based algorithm,’’ Future Gener. Comput. Syst., vol. 101, pp. 646–667,

Dec. 2019.

[62] A. Kaveh, M. A. M. Share, and M. Moslehi, ‘‘Magnetic charged system

search: A new meta-heuristic algorithm for optimization,’’ Acta Mech.,

vol. 224, no. 1, pp. 85–107, Jan. 2013.

[63] L. Abualigah, A. Diabat, S. Mirjalili, M. A. Elaziz, and A. HGandomi,

‘‘The arithmetic optimization algorithm,’’ Comput. Methods Appl. Mech.

Eng., vol. 376, Apr. 2020, Art. no. 113609.

[64] L. Abualigah and A. Diabat, ‘‘A comprehensive survey of the grasshop-

per optimization algorithm: Results, variants, and applications,’’ Neural

Comput. Appl., vol. 5, pp. 1–24, Jul. 2020.

[65] M. Mafarja, I. Aljarah, A. A. Heidari, A. I. Hammouri, H. Faris,

A. M. Al-Zoubi, and S.Mirjalili, ‘‘Evolutionary population dynamics and

grasshopper optimization approaches for feature selection problems,’’

Knowl.-Based Syst., vol. 145, pp. 25–45, Apr. 2018.

[66] S. Z. Mirjalili, S. Mirjalili, S. Saremi, H. Faris, and I. Aljarah,

‘‘Grasshopper optimization algorithm for multi-objective optimization

problems,’’ Int. J. Speech Technol., vol. 48, no. 4, pp. 805–820, Apr. 2018.

[67] M. Mafarja, I. Aljarah, H. Faris, A. I. Hammouri, A. M. Al-Zoubi, and

S. Mirjalili, ‘‘Binary grasshopper optimisation algorithm approaches for

feature selection problems,’’ Expert Syst. Appl., vol. 117, pp. 267–286,

Mar. 2019.

[68] X. Zhang, Q.Miao, H. Zhang, and L.Wang, ‘‘A parameter-adaptive VMD

method based on grasshopper optimization algorithm to analyze vibration

signals from rotating machinery,’’ Mech. Syst. Signal Process., vol. 108,

pp. 58–72, Aug. 2018.

[69] J. Wu, H. Wang, N. Li, P. Yao, Y. Huang, Z. Su, and Y. Yu, ‘‘Distributed

trajectory optimization for multiple solar-powered UAVs target tracking

in urban environment by adaptive grasshopper optimization algorithm,’’

Aerosp. Sci. Technol., vol. 70, pp. 497–510, Nov. 2017.

[70] J. Luo, H. Chen, Q. Zhang, Y. Xu, H. Huang, and X. Zhao, ‘‘An

improved grasshopper optimization algorithm with application to finan-

cial stress prediction,’’ Appl. Math. Model., vol. 64, pp. 654–668,

Dec. 2018.

[71] A. A. Heidari, H. Faris, I. Aljarah, and S. Mirjalili, ‘‘An efficient hybrid

multilayer perceptron neural network with grasshopper optimization,’’

Soft Comput., vol. 23, no. 17, pp. 7941–7958, Sep. 2019.

[72] I. Aljarah, A. M. Al-Zoubi, H. Faris, M. A. Hassonah, S. Mirjalili, and

H. Saadeh, ‘‘Simultaneous feature selection and support vector machine

optimization using the grasshopper optimization algorithm,’’ Cognit.

Comput., vol. 10, no. 3, pp. 478–495, Jun. 2018.

[73] M. Barman, N. B. D. Choudhury, and S. Sutradhar, ‘‘A regional

hybrid GOA-SVM model based on similar day approach for short-

term load forecasting in assam, india,’’ Energy, vol. 145, pp. 710–720,

Feb. 2018.

[74] A. A. Ewees, M. A. Elaziz, Z. Alameer, H. Ye, and Z. Jianhua, ‘‘Improv-

ing multilayer perceptron neural network using chaotic grasshopper opti-

mization algorithm to forecast iron ore price volatility,’’ Resour. Policy,

vol. 65, Mar. 2020, Art. no. 101555.

[75] Z. Elmi and M. O. Efe, ‘‘Multi-objective grasshopper optimization algo-

rithm for robot path planning in static environments,’’ in Proc. IEEE Int.

Conf. Ind. Technol. (ICIT), Feb. 2018, pp. 244–249.

[76] A. Tharwat, E. H. Houssein, M. M. Ahmed, A. E. Hassanien, and

T. Gabel, ‘‘MOGOA algorithm for constrained and unconstrained multi-

objective optimization problems,’’ Int. J. Speech Technol., vol. 48, no. 8,

pp. 2268–2283, Aug. 2018.

[77] H. Pinto, A. Peña, M. Valenzuela, and A. Fernández, ‘‘A binary grasshop-

per algorithm applied to the knapsack problem,’’ in Artificial Intelligence

and Algorithms in Intelligent Systems (Advances in Intelligent Systems

and Computing), vol. 764, R. Silhavy, Ed. Cham, Switzerland: Springer,

2019, doi: 10.1007/978-3-319-91189-2_14.

[78] B. Crawford, R. Soto, A. Peña, and G. Astorga, ‘‘A binary grasshopper

optimisation algorithm applied to the set covering problem,’’ in Cyber-

netics and Algorithms in Intelligent Systems (Advances in Intelligent

Systems and Computing), vol. 765, R. Silhavy, Ed. Cham, Switzerland:

Springer, 2019, doi: 10.1007/978-3-319-91192-2_1.

[79] H. Hichem, M. Elkamel, M. Rafik, M. T. Mesaaoud, and C. Ouahiba, ‘‘A

new binary grasshopper optimization algorithm for feature selection prob-

lem,’’ J. King Saud Univ.-Comput. Inf. Sci., 2019. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1319157819308900,

doi: 10.1016/j.jksuci.2019.11.007.

[80] A. Saxena, S. Shekhawat, and R. Kumar, ‘‘Application and development

of enhanced chaotic grasshopper optimization algorithms,’’Model. Simul.

Eng., vol. 2018, pp. 1–14, Dec. 2018.

50020 VOLUME 9, 2021

http://dx.doi.org/10.1007/978-3-642-04944-6_14
http://dx.doi.org/10.1007/978-3-540-78987-1_21
http://dx.doi.org/10.1007/978-3-540-78987-1_21
http://dx.doi.org/10.1007/978-3-319-91189-2_14
http://dx.doi.org/10.1007/978-3-319-91192-2_1
http://dx.doi.org/10.1016/j.jksuci.2019.11.007


Y. Meraihi et al.: GOA: Theory, Variants, and Applications

[81] P. Zhang,W.Ma, Y. Dong, and B. D. Rouyendegh, ‘‘Multi-area economic

dispatching using improved grasshopper optimization algorithm,’’ Evolv-

ing Syst., vol. 2, pp. 1–11, Dec. 2019.

[82] G. Saravanan, D. S. Kumar, A. M. Ibrahim, and C. Karthikeyan,

‘‘Enhanced chaotic grasshopper optimization algorithm based pid con-

troller for automatic voltage regulator system,’’ Int. J. Recent Technol.

Eng., vol. 8, no. 4, pp. 348–354, 2019.

[83] S. Arora and P. Anand, ‘‘Chaotic grasshopper optimization algo-

rithm for global optimization,’’ Neural Comput. Appl., vol. 31, no. 8,

pp. 4385–4405, Aug. 2019.

[84] P. Suriya, S. Subramanian, S. Ganesan, and M. Abirami, ‘‘Genera-

tion and transmission expansion management using grasshopper opti-

mization algorithm,’’ Int. J. Eng. Bus. Manage., vol. 11, Jan. 2019,

Art. no. 184797901881832.

[85] A. Saxena, ‘‘A comprehensive study of chaos embedded bridging mech-

anisms and crossover operators for grasshopper optimisation algorithm,’’

Expert Syst. Appl., vol. 132, pp. 166–188, Oct. 2019.

[86] Z. Xu, Z. Hu, A. A. Heidari, M. Wang, X. Zhao, H. Chen, and

X. Cai, ‘‘Orthogonally-designed adapted grasshopper optimization: A

comprehensive analysis,’’ Expert Syst. Appl., vol. 150, Jul. 2020,

Art. no. 113282.

[87] A. Saxena and R. Kumar, ‘‘Chaotic variants of grasshopper optimiza-

tion algorithm and their application to protein structure prediction,’’

in Applied Nature-Inspired Computing: Algorithms and Case Studies

(Springer Tracts in Nature-Inspired Computing), N. Dey, A. Ashour, and

S. Bhattacharyya, Eds. Singapore: Springer, 2020, doi: 10.1007/978-981-

13-9263-4_7.

[88] S. Dwivedi, M. Vardhan, and S. Tripathi, ‘‘An effect of chaos grasshopper

optimization algorithm for protection of network infrastructure,’’ Com-

put. Netw., vol. 176, Jul. 2020, Art. no. 107251.

[89] G. Li, N. Wang, and X. Liu, ‘‘Enhanced Grasshopper optimization algo-

rithm for modeling multivariable systems with SVR,’’ in Proc. Chin.

Control Conf. (CCC), Jul. 2019, pp. 1569–1574.

[90] Z. Y. Algamal, M. K. Qasim, M. H. Lee, and H. T. M. Ali, ‘‘Improving

grasshopper optimization algorithm for hyperparameters estimation and

feature selection in support vector regression,’’ Chemometric Intell. Lab.

Syst., vol. 208, Jan. 2021, Art. no. 104196.

[91] H. Zhang, Z. Gao, J. Zhang, and G. Yang, ‘‘Visual tracking with levy

flight grasshopper optimization algorithm,’’ in Pattern Recognition and

Computer Vision (Lecture Notes in Computer Science), vol. 11857, Z. Lin

et al., Eds. Cham, Switzerland: Springer, 2019, doi: 10.1007/978-3-030-

31654-9_19.

[92] R. Zhao, H. Ni, H. Feng, Y. Song, and X. Zhu, ‘‘An improved grasshop-

per optimization algorithm for task scheduling problems,’’ Int. J. Innov.

Comput., Inf. Control, vol. 15, pp. 1967–1987, Oct. 2019.

[93] A. Alhejji, M. E. Hussein, S. Kamel, and S. Alyami, ‘‘Optimal power flow

solution with an embedded center-node unified power flow controller

using an adaptive grasshopper optimization algorithm,’’ IEEE Access,

vol. 8, pp. 119020–119037, 2020.

[94] S. Chhikara and R. Kumar, ‘‘MI-LFGOA: Multi-island Levy-flight based

grasshopper optimization for spatial image steganalysis,’’ Multimedia

Tools Appl., vol. 79, nos. 39–40, pp. 29723–29750, Oct. 2020.

[95] D. Mokeddem, ‘‘Parameter extraction of solar photovoltaic models

using enhanced Levy flight based grasshopper optimization algorithm,’’

J. Electr. Eng. Technol., pp. 1–9, 2020.

[96] R. Zhao, H. Ni, H. Feng, and X. Zhu, ‘‘A dynamic weight grasshopper

optimization algorithm with random jumping,’’ in Advances in Computer

Communication and Computational Sciences (Advances in Intelligent

Systems and Computing), vol. 924, S. Bhatia, S. Tiwari, K. Mishra, and

M. Trivedi, Eds. Singapore: Springer, 2019, doi: 10.1007/978-981-13-

6861-5_35.

[97] D. Wang, H. Chen, T. Li, J. Wan, and Y. Huang, ‘‘A novel quantum

grasshopper optimization algorithm for feature selection,’’ Int. J. Approx.

Reasoning, vol. 127, pp. 33–53, Dec. 2020.

[98] S. R. Gampa, K. Jasthi, P. Goli, D. Das, and R. C. Bansal, ‘‘Grasshopper

optimization algorithm based two stage fuzzymultiobjective approach for

optimum sizing and placement of distributed generations, shunt capaci-

tors and electric vehicle charging stations,’’ J. Energy Storage, vol. 27,

Feb. 2020, Art. no. 101117.

[99] L. Bhukya and S. Nandiraju, ‘‘A novel photovoltaic maximum power

point tracking technique based on grasshopper optimized fuzzy logic

approach,’’ Int. J. Hydrogen Energy, vol. 45, no. 16, pp. 9416–9427,

Mar. 2020.

[100] V. Tiwari and S. Jain, ‘‘Histopathological cells segmentation using

exponential grasshopper optimisation algorithm-based fuzzy clustering

method,’’ Int. J. Intell. Inf. Database Syst., vol. 13, nos. 2–4, pp. 118–138,

2020.

[101] K. Shankar, M. Elhoseny, E. D. Chelvi, S. K. Lakshmanaprabu, and

W. Wu, ‘‘An efficient optimal key based chaos function for medical image

security,’’ IEEE Access, vol. 6, pp. 77145–77154, 2018.

[102] M. Mansoor, A. F. Mirza, Q. Ling, and M. Y. Javed, ‘‘Novel grass hopper

optimization based MPPT of PV systems for complex partial shading

conditions,’’ Sol. Energy, vol. 198, pp. 499–518, Mar. 2020.

[103] A. K. Shukla, ‘‘Detection of anomaly intrusion utilizing self-adaptive

grasshopper optimization algorithm,’’ Neural Comput. Appl., vol. 2,

pp. 1–21, Nov. 2020.

[104] D. Bairathi andD. Gopalani, ‘‘An improved opposition based grasshopper

optimisation algorithm for numerical optimization,’’ in Intelligent Sys-

temsDesign and Applications (Advances in Intelligent Systems and Com-

puting), vol. 941, A. Abraham, A. Cherukuri, P. Melin, and N. Gandhi,

Eds. Cham, Switzerland: Springer, 2020, doi: 10.1007/978-3-030-16660-

1_82.

[105] A. A. Ewees, M. Abd Elaziz, and E. H. Houssein, ‘‘Improved grasshopper

optimization algorithm using opposition-based learning,’’ Expert Syst.

Appl., vol. 112, pp. 156–172, Dec. 2018.

[106] F. Raeesi, B. F. Azar, H. Veladi, and S. Talatahari, ‘‘An inverse TSK

model of MR damper for vibration control of nonlinear structures using

an improved grasshopper optimization algorithm,’’ Structures, vol. 26,

pp. 406–416, Aug. 2020.

[107] M. T. G. Jahani, P. Nazarian, A. Safari, and M. Haghifam, ‘‘Multi-

objective grasshopper optimization algorithm based reconfiguration of

distribution networks,’’ J. Oper. Autom. Power Eng., vol. 7, no. 2,

pp. 148–156, 2019.

[108] A. L. Bukar, C.W. Tan, L. K. Yiew, R. Ayop, andW.-S. Tan, ‘‘A rule-based

energy management scheme for long-term optimal capacity planning

of grid-independent microgrid optimized by multi-objective grasshopper

optimization algorithm,’’ Energy Convers. Manage., vol. 221, Oct. 2020,

Art. no. 113161.

[109] A. D. Falehi, ‘‘Optimal robust disturbance observer based sliding mode

controller using multi-objective grasshopper optimization algorithm to

enhance power system stability,’’ J. Ambient Intell. Hum. Comput.,

vol. 11, pp. 5045–5063, Nov. 2020.

[110] J. Liu, A. Wang, Y. Qu, and W. Wang, ‘‘Coordinated operation of multi-

integrated energy system based on linear weighted sum and grasshopper

optimization algorithm,’’ IEEE Access, vol. 6, pp. 42186–42195, 2018.

[111] M. A. Taher, S. Kamel, F. Jurado, and M. Ebeed, ‘‘Modified grasshopper

optimization framework for optimal power flow solution,’’ Electr. Eng.,

vol. 101, no. 1, pp. 121–148, Apr. 2019.

[112] A. Zakeri and A. Hokmabadi, ‘‘Efficient feature selection method using

real-valued grasshopper optimization algorithm,’’ Expert Syst. Appl.,

vol. 119, pp. 61–72, Apr. 2019.

[113] X. Yue and H. Zhang, ‘‘Grasshopper optimization algorithm with prin-

cipal component analysis for global optimization,’’ J. Supercomput.,

vol. 76, pp. 5609–5635, Jul. 2019.

[114] H. Feng, H. Ni, R. Zhao, and X. Zhu, ‘‘An enhanced grasshopper opti-

mization algorithm to the bin packing problem,’’ J. Control Sci. Eng.,

vol. 2020, pp. 1–19, Mar. 2020.

[115] P. Mishra, V. Goyal, and A. Shukla, ‘‘An improved grasshopper opti-

mization algorithm for solving numerical optimization problems,’’ in

Advances in Intelligent Computing and Communication (Lecture Notes

in Networks and Systems), vol. 109, M. Mohanty and S. Das, Eds.

Singapore: Springer, 2020, doi: 10.1007/978-981-15-2774-6_22.

[116] A. Tanwar, A. K. Sharma, and R. V. S. Pandey, ‘‘Fractional-grasshopper

optimization algorithm for the sensor activation control in wireless sensor

networks,’’Wireless Pers. Commun., vol. 1, pp. 1–24, Mar. 2020.

[117] M. Salami, F. M. Sobhani, and M. S. Ghazizadeh, ‘‘A hybrid short-

term load forecasting model developed by factor and feature selection

algorithms using improved grasshopper optimization algorithm and prin-

cipal component analysis,’’ Electr. Eng., vol. 102, no. 1, pp. 437–460,

Mar. 2020.

[118] H. Zhou, Z. Ding, H. Peng, Z. Tang, G. Liang, H. Chen, C. Ma, and

M. Wang, ‘‘An improved grasshopper optimizer for global tasks,’’ Com-

plexity, vol. 2020, Sep. 2020, Art. no. 4873501.

[119] A. Bala, I. Ismail, R. Ibrahim, S. M. Sait, and D. Oliva, ‘‘An improved

grasshopper optimization algorithm based echo state network for predict-

ing faults in airplane engines,’’ IEEE Access, vol. 8, pp. 159773–159789,

2020.

VOLUME 9, 2021 50021

http://dx.doi.org/10.1007/978-981-13-9263-4_7
http://dx.doi.org/10.1007/978-981-13-9263-4_7
http://dx.doi.org/10.1007/978-3-030-31654-9_19
http://dx.doi.org/10.1007/978-3-030-31654-9_19
http://dx.doi.org/10.1007/978-981-13-6861-5_35
http://dx.doi.org/10.1007/978-981-13-6861-5_35
http://dx.doi.org/10.1007/978-3-030-16660-1_82
http://dx.doi.org/10.1007/978-3-030-16660-1_82
http://dx.doi.org/10.1007/978-981-15-2774-6_22


Y. Meraihi et al.: GOA: Theory, Variants, and Applications

[120] N. Goel, B. Grover, Anuj, D. Gupta, A. Khanna, and M. Sharma, ‘‘Modi-

fied grasshopper optimization algorithm for detection of autism spectrum

disorder,’’ Phys. Commun., vol. 41, Aug. 2020, Art. no. 101115.

[121] J. Huang, C. Li, Z. Cui, L. Zhang, andW. Dai, ‘‘An improved grasshopper

optimization algorithm for optimizing hybrid active power filters’ param-

eters,’’ IEEE Access, vol. 8, pp. 137004–137018, 2020.

[122] M.M. Annie Alphonsa and N.MohanaSundaram, ‘‘A reformed grasshop-

per optimization with genetic principle for securing medical data,’’ J. Inf.

Secur. Appl., vol. 47, pp. 410–420, Aug. 2019.

[123] M. A. El-Shorbagy and A. M. El-Refaey, ‘‘Hybridization of grasshopper

optimization algorithm with genetic algorithm for solving system of non-

linear equations,’’ IEEE Access, vol. 8, pp. 220944–220961, 2020.

[124] H. Jia, Y. Li, C. Lang, X. Peng, K. Sun, and J. Li, ‘‘Hybrid grasshopper

optimization algorithm and differential evolution for global optimiza-

tion,’’ J. Intell. Fuzzy Syst., vol. 37, no. 5, pp. 6899–6910, 2019.

[125] J. Li,W. Shi, andD. Yang, ‘‘Color difference classification of dyed fabrics

via a kernel extreme learning machine based on an improved grasshopper

optimization algorithm,’’ Color Res. Appl., vol. 46, no. 2, pp. 388–401,

Apr. 2021.

[126] B. P. Dahiya, S. Rani, and P. Singh, ‘‘Lifetime improvement in wire-

less sensor networks using hybrid grasshopper meta-heuristic,’’ in Proc.

ICRIC, in Lecture Notes in Electrical Engineering, vol. 597, P. Singh,

A. Kar, Y. Singh, M. Kolekar, and S. Tanwar, Eds. Cham, Switzerland:

Springer, 2020, doi: 10.1007/978-3-030-29407-6_23.

[127] T.-C. Teng, M.-C. Chiang, and C.-S. Yang, ‘‘A hybrid algorithm based

on GWO and GOA for cycle traffic light timing optimization,’’ in Proc.

IEEE Int. Conf. Syst., Man Cybern. (SMC), Oct. 2019, pp. 774–779.

[128] X. Yue, H. Zhang, and H. Yu, ‘‘A hybrid grasshopper optimization algo-

rithm with invasive weed for global optimization,’’ IEEE Access, vol. 8,

pp. 5928–5960, 2020.

[129] S. S. Guo, J. S. Wang, W. Xie, M. W. Guo, and L. F. Zhu, ‘‘Improved

grasshopper algorithm based on gravity search operator and pigeon

colony landmark operator,’’ IEEE Access, vol. 8, pp. 22203–22224,

2020.

[130] P. Bansal, S. Kumar, S. Pasrija, and S. Singh, ‘‘A hybrid grasshopper

and new cat swarm optimization algorithm for feature selection and

optimization of multi-layer perceptron,’’ Soft Comput., vol. 1, pp. 1–27,

Mar. 2020.

[131] A. A. Amaireh, A. S. Al-Zoubi, and N. I. Dib, ‘‘Sidelobe-level suppres-

sion for circular antenna array via new hybrid optimization algorithm

based on antlion and grasshopper optimization algorithms,’’ Prog. Elec-

tromagn. Res. C, vol. 93, pp. 49–63, 2019.

[132] B. P. Dahiya, S. Rani, and P. Singh, ‘‘A hybrid artificial grasshopper

optimization (HAGOA) meta-heuristic approach: A hybrid optimizer for

discover the global optimum in given search space,’’ Int. J. Math., Eng.

Manage. Sci., vol. 4, no. 2, pp. 471–488, Apr. 2019.

[133] H. Zhang, Z. Gao, X. Ma, J. Zhang, and J. Zhang, ‘‘Hybridizing

teaching-learning-based optimization with adaptive grasshopper opti-

mization algorithm for abrupt motion tracking,’’ IEEE Access, vol. 7,

pp. 168575–168592, 2019.

[134] M. Barman and N. B. Dev Choudhury, ‘‘Hybrid GOA-SVR tech-

nique for short term load forecasting during periods with substantial

weather changes in North-East India,’’ Procedia Comput. Sci., vol. 143,

pp. 124–132, Jan. 2018.

[135] H. T. Ibrahim, W. J. Mazher, O. N. Ucan, and O. Bayat, ‘‘A grasshopper

optimizer approach for feature selection and optimizing SVM parameters

utilizing real biomedical data sets,’’Neural Comput. Appl., vol. 31, no. 10,

pp. 5965–5974, Oct. 2019.

[136] Y. Shi, Y. Li, J. Fan, T. Wang, and T. Yin, ‘‘A novel network architecture

of decision-making for self-driving vehicles based on long short-term

memory and grasshopper optimization algorithm,’’ IEEE Access, vol. 8,

pp. 155429–155440, 2020.

[137] J. Zhang, J. Zhang, M. Zhong, J. Zheng, and L. Yao, ‘‘A GOA-MSVM

based strategy to achieve high fault identification accuracy for rotating

machinery under different load conditions,’’ Measurement, vol. 163,

Oct. 2020, Art. no. 108067.

[138] S. Z. T. Motlagh and A. A. Foroud, ‘‘Power quality disturbances

recognition using adaptive chirp mode pursuit and grasshopper opti-

mized support vector machines,’’ Measurement, vol. 168, Jan. 2021,

Art. no. 108461.

[139] A. Ann Rufus and L. Kalaivani, ‘‘A GOA–RNN controller for a stand-

alone photovoltaic/wind energy hybrid-fed pumping system,’’ Soft Com-

put., vol. 23, no. 23, pp. 12255–12276, Dec. 2019.

[140] M. Talaat, M. A. Farahat, N. Mansour, and A. Y. Hatata, ‘‘Load fore-

casting based on grasshopper optimization and a multilayer feed-forward

neural network using regressive approach,’’ Energy, vol. 196, Apr. 2020,

Art. no. 117087.

[141] S. Moghanian, F. B. Saravi, G. Javidi, and E. O. Sheybani, ‘‘GOAMLP:

Network intrusion detection with multilayer perceptron and grasshopper

optimization algorithm,’’ IEEE Access, vol. 8, pp. 215202–215213, 2020.

[142] V. M. Jape, H. M. Suryawanshi, and J. P. Modak, ‘‘An efficient grasshop-

per optimization with recurrent neural network controller-based induction

motor to replace flywheel of the process machine,’’ Trans. Inst. Meas.

Control, vol. 43, no. 1, pp. 151–166, 2020.

[143] T. Renukadevi and S. Karunakaran, ‘‘Optimizing deep belief network

parameters using grasshopper algorithm for liver disease classification,’’

Int. J. Imag. Syst. Technol., vol. 30, no. 1, pp. 168–184, Mar. 2020.

[144] N. Razmjooy, S. Razmjooy, Z. Vahedi, V. V. Estrela, andG.G. deOliveira,

‘‘Skin color segmentation based on artificial neural network improved by

a modified grasshopper optimization algorithm,’’ in Metaheuristics and

Optimization in Computer and Electrical Engineering (Lecture Notes in

Electrical Engineering), vol. 696, N. Razmjooy, M. Ashourian, and

Z. Foroozandeh, Eds. Cham, Switzerland: Springer, 2021,

doi: 10.1007/978-3-030-56689-0_9.

[145] R. Purushothaman, S. P. Rajagopalan, and G. Dhandapani, ‘‘Hybridizing

gray wolf optimization (GWO) with grasshopper optimization algorithm

(GOA) for text feature selection and clustering,’’ Appl. Soft Comput.,

vol. 96, Nov. 2020, Art. no. 106651.

[146] C. Yu, M. Chen, K. Cheng, X. Zhao, C. Ma, F. Kuang, and H. Chen,

‘‘SGOA: Annealing-behaved grasshopper optimizer for global tasks,’’

Eng. with Comput., vol. 5, pp. 1–28, Jan. 2021.

[147] S. Łukasik, P. A. Kowalski, M. Charytanowicz, and P. Kulczycki, ‘‘Data

clustering with grasshopper optimization algorithm,’’ in Proc. Federated

Conf. Comput. Sci. Inf. Syst., Sep. 2017, pp. 71–74.

[148] D. Guha, P. K. Roy, and S. Banerjee, ‘‘Grasshopper optimization algo-

rithm scaled fractional order PI-D controller applied to reduced order

model of load frequency control system,’’ Int. J. Model. Simul., vol. 40,

pp. 217–242, May 2019.

[149] A. A. Amaireh, A. Alzoubi, and N. I. Dib, ‘‘Design of linear antenna

arrays using antlion and grasshopper optimization algorithms,’’ in Proc.

IEEE Jordan Conf. Appl. Electr. Eng. Comput. Technol. (AEECT),

Oct. 2017, pp. 1–6.

[150] B. Hekimoglu and S. Ekinci, ‘‘Grasshopper optimization algorithm for

automatic voltage regulator system,’’ in Proc. 5th Int. Conf. Electr. Elec-

tron. Eng. (ICEEE), May 2018, pp. 152–156.

[151] P. R. Sahu, P. K. Hota, and S. Panda, ‘‘Comparison of grasshopper and

whale optimization algorithm for design of FACTS controller with power

system stabilizer,’’ in Proc. 5th Int. Conf. Parallel, Distrib. Grid Comput.

(PDGC), Dec. 2018, pp. 424–429.

[152] B. Hekimoğlu, ‘‘Robust fractional order pid stabilizer design for multi-

machine power system using grasshopper optimization algorithm,’’

J. Fac. Eng. Archit. Gazi Univ., vol. 35, no. 1, pp. 165–180, 2020.

[153] P. C. Nayak, R. C. Prusty, and S. Panda, ‘‘Grasshopper optimisation

algorithm of multistage PDF+(1+PI) controller for AGC with GDB

and GRC nonlinearity of dispersed type power system,’’ Int. J. Ambient

Energy, vol. 3, pp. 1–13, Jan. 2020.

[154] H. Wang, C. Liu, H. Wu, and X. Xie, ‘‘A novel frequency reconfigurable

HF broadband whip antenna based on GOA optimization,’’ Prog. Elec-

tromagn. Res., vol. 87, pp. 11–21, Dec. 2019.

[155] S. Saremi, S. Mirjalili, S. Mirjalili, and J. S. Dong, ‘‘Grasshopper opti-

mization algorithm: Theory, literature review, and application in hand

posture estimation,’’ in Nature-Inspired Optimizers (Studies in Computa-

tional Intelligence), vol. 811, S. Mirjalili, J. S. Dong, and A. Lewis, Eds.

Cham, Switzerland: Springer, 2020, doi: 10.1007/978-3-030-12127-3_7.

[156] D. Potnuru and A. S. Tummala, ‘‘Implementation of grasshopper opti-

mization algorithm for controlling a BLDCmotor drive,’’ in Soft Comput-

ing in Data Analytics (Advances in Intelligent Systems and Computing),

vol. 758, J. Nayak, A. Abraham, B. Krishna, G. C. Sekhar, and A. Das,

Eds. Singapore: Springer, 2019, doi: 10.1007/978-981-13-0514-6_37.

[157] J. Montano, A. Tobón, J. Villegas, and M. Durango, ‘‘Grasshopper opti-

mization algorithm for parameter estimation of photovoltaic modules

based on the single diode model,’’ Int. J. Energy Environ. Eng., vol. 6,

pp. 1–9, Feb. 2020.

[158] M. N. Amin, M. A. Soliman, H. M. Hasanien, and A. Y. Abdelaziz,

‘‘Grasshopper optimization algorithm-based PI controller scheme for per-

formance enhancement of a grid-connected wind generator,’’ J. Control,

Autom. Electr. Syst., vol. 31, no. 2, pp. 393–401, Apr. 2020.

50022 VOLUME 9, 2021

http://dx.doi.org/10.1007/978-3-030-29407-6_23
http://dx.doi.org/10.1007/978-3-030-56689-0_9
http://dx.doi.org/10.1007/978-3-030-12127-3_7
http://dx.doi.org/10.1007/978-981-13-0514-6_37


Y. Meraihi et al.: GOA: Theory, Variants, and Applications

[159] N. Rajput, V. Chaudhary, H. M. Dubey, and M. Pandit, ‘‘Optimal gener-

ation scheduling of thermal system using biologically inspired grasshop-

per algorithm,’’ in Proc. 2nd Int. Conf. Telecommun. Netw. (TEL-NET),

Aug. 2017, pp. 1–6.

[160] M. Kaur and E. R. Kumar, ‘‘Overloading of transmission lines manage-

ment by using grasshopper optimization algorithm,’’ Int. J. Sci. Eng. Res.,

vol. 9, pp. 1086–1091, Mar. 2018.

[161] M. Ahanch, M. S. Asasi, and M. S. Amiri, ‘‘A grasshopper optimiza-

tion algorithm to solve optimal distribution system reconfiguration and

distributed generation placement problem,’’ in Proc. IEEE 4th Int. Conf.

Knowl.-Based Eng. Innov. (KBEI), Dec. 2017, pp. 659–666.

[162] K. G. Shishupal and T. Manglani, ‘‘Voltage profile improvement in

radial distribution system using grasshopper optimization algorithm,’’ Int.

J. Recent Res. Rev., vol. 12, pp. 26–30, Dec. 2019.

[163] K. S. Sambaiah and T. Jayabarathi, ‘‘A survey on load/power flow

methods and DG allocation using grasshopper optimization algorithm in

distribution networks,’’ in Soft Computing for Problem Solving (Advances

in Intelligent Systems and Computing), vol. 1057, K. Das, J. Bansal,

K. Deep, A. Nagar, P. Pathipooranam, and R. Naidu, Eds. Singapore:

Springer, 2020, doi: 10.1007/978-981-15-0184-5_53.

[164] A. M. Elsayed, M. M. Mishref, and S. M. Farrag, ‘‘Optimal allocation

and control of fixed and switched capacitor banks on distribution systems

using grasshopper optimisation algorithm with power loss sensitivity

and rough set theory,’’ IET Gener., Transmiss. Distrib., vol. 13, no. 17,

pp. 3863–3878, Sep. 2019.

[165] K. S. Rani, B. K. Saw, P. Achargee, and A. K. Bohre, ‘‘Optimal sizing and

placement of renewable DGs using GOA considering seasonal variation

of load and DGs,’’ in Proc. Int. Conf. Comput. Intell. Smart Power Syst.

Sustain. Energy (CISPSSE), Jul. 2020, pp. 1–6.

[166] S. K. Sudabattula, M. Kowsalya, and V. Suresh, ‘‘Simultaneous allocation

of multiple distributed generators and shunt capacitor banks in radial

distribution systems using grasshopper optimisation algorithm,’’ Int.

J. Energy Technol. Policy, vol. 16, nos. 5–6, pp. 563–586,

2020.

[167] M. A. A. Juhari, N. R. H. Abdullah, I. H. Shanono,M.Mustafa, R. Samad,

and D. Pebrianti, ‘‘Optimal placement of TCSC for reactive power plan-

ning using grasshopper optimization algorithm considering line outage

(N-M),’’ in Proc. 10th Nat. Tech. Seminar Underwater Syst. Technol., in

Lecture Notes in Electrical Engineering, vol. 538, Z. M. Zain et al., Eds.

Singapore: Springer, 2019, doi: 10.1007/978-981-13-3708-6_57.

[168] A. Fathy and O. El-baksawi, ‘‘Grasshopper optimization algorithm for

extracting maximum power from wind turbine installed in Al-Jouf

region,’’ J. Renew. Sustain. Energy, vol. 11, no. 3, May 2019,

Art. no. 033303.

[169] H. Hamour, S. Kamel, H. Abdel-mawgoud, A. Korashy, and F. Jurado,

‘‘Distribution network reconfiguration using grasshopper optimization

algorithm for power loss minimization,’’ in Proc. Int. Conf. Smart Energy

Syst. Technol. (SEST), Sep. 2018, pp. 1–5.

[170] A. G. Neve, G.M. Kakandikar, O. Kulkarni, and V.M. Nandedkar, ‘‘Opti-

mization of railway bogie snubber spring with grasshopper algorithm,’’ in

Data Engineering and Communication Technology (Advances in Intelli-

gent Systems and Computing), vol. 1079, K. Raju, R. Senkerik, S. Lanka,

and V. Rajagopal, Eds. Singapore: Springer, 2020, doi: 10.1007/978-981-

15-1097-7_80.

[171] S. Khalifeh, K. Esmaili, S. Khodashenas, and S. Akbarifard, ‘‘Data on

optimization of the non-linear Muskingum flood routing in Kardeh River

using Goa algorithm,’’ Data Brief, vol. 30, Jun. 2020, Art. no. 105398.

[172] P. Singh and S. Prakash, ‘‘Optimizing multiple ONUs placement in

fiber-wireless (FiWi) access network using grasshopper and harris hawks

optimization algorithms,’’ Opt. Fiber Technol., vol. 60, Dec. 2020,

Art. no. 102357.

[173] X. Xiang, X. Ma, Y. Fang, W. Wu, and G. Zhang, ‘‘A novel hyper-

bolic time-delayed grey model with grasshopper optimization algorithm

and its applications,’’ Ain Shams Eng. J., vol. 12, no. 1, pp. 865–874,

Mar. 2021.

[174] A. A. El-Fergany, ‘‘Electrical characterisation of proton exchange mem-

brane fuel cells stack using grasshopper optimiser,’’ IET Renew. Power

Gener., vol. 12, no. 1, pp. 9–17, Jan. 2018.

[175] S.M. Nosratabadi, M. Bornapour, andM. A. Gharaei, ‘‘Grasshopper opti-

mization algorithm for optimal load frequency control considering pre-

dictive functional modified PID controller in restructured multi-resource

multi-area power system with redox flow battery units,’’ Control Eng.

Pract., vol. 89, pp. 204–227, Aug. 2019.

[176] D. K. Lal, A. K. Barisal, and M. Tripathy, ‘‘Load frequency con-

trol of multi area interconnected microgrid power system using

grasshopper optimization algorithm optimized fuzzy pid controller,’’

in Proc. Recent Adv. Eng., Technol. Comput. Sci. (RAETCS), 2018,

pp. 1–6.

[177] A. K. Barik and D. C. Das, ‘‘Expeditious frequency control of solar pho-

tovoltaic/biogas/biodiesel generator based isolated renewable microgrid

using grasshopper optimisation algorithm,’’ IET Renew. Power Gener.,

vol. 12, no. 14, pp. 1659–1667, Oct. 2018.

[178] A. Annamraju and S. Nandiraju, ‘‘Frequency control in an autonomous

two-area hybrid microgrid using grasshopper optimization based robust

PID controller,’’ in Proc. 8th IEEE India Int. Conf. Power Electron.

(IICPE), Dec. 2018, pp. 1–6.

[179] D. Tripathy, S. Behera, and N. B. Dev Choudhury, ‘‘Implementation of

grasshopper optimization algorithm based cascaded fuzzy PD-PI con-

troller for frequency stability in a multi-area power system,’’ J. Interdis-

cipl. Math., vol. 23, no. 2, pp. 335–345, Feb. 2020.

[180] M. Talaat, A. Y. Hatata, A. S. Alsayyari, and A. Alblawi, ‘‘A smart load

management system based on the grasshopper optimization algorithm

using the under-frequency load shedding approach,’’ Energy, vol. 190,

Jan. 2020, Art. no. 116423.

[181] Z. Lv and R. Peng, ‘‘A novel meta-matching approach for ontol-

ogy alignment using grasshopper optimization,’’ Knowl.-Based Syst.,

vols. 201–202, Aug. 2020, Art. no. 106050.

[182] L. Xu, Y. Tu, and Y. Zhang, ‘‘A grasshopper optimization-based approach

for task assignment in cloud logistics,’’ Math. Problems Eng., vol. 2020,

Apr. 2020, Art. no. 3298460.

[183] M. Bhuyan, A. K. Barik, and D. C. Das, ‘‘GOA optimised frequency con-

trol of solar-thermal/sea-wave/biodiesel generator based interconnected

hybrid microgrids with DC link,’’ Int. J. Sustain. Energy, vol. 39, no. 7,

pp. 615–633, 2020.

[184] V. A. Raju, P. Srilatha, K. K. Anumandla, S. Patnaik, and A. V. Prabu,

‘‘Grasshopper algorithm based channel assignment for cognitive radio

networks,’’Mater. Today, Proc., 2020.

[185] T. Dutta, R. M. Aich, S. Dhabal, and P. Venkateswaran, ‘‘Finite impulse

response filter design using grasshopper optimization algorithm and

implementation on FPGA,’’ in Proc. IEEE Appl. Signal Process. Conf.

(ASPCON), Oct. 2020, pp. 313–317.

[186] X. Zeng, A. T. Hammid, N. M. Kumar, U. Subramaniam, and

D. J. Almakhles, ‘‘A grasshopper optimization algorithm for optimal

short-term hydrothermal scheduling,’’ Energy Rep., vol. 7, pp. 314–323,

Nov. 2021.

[187] V. V. S. S. S. Chakravarthy, P. S. R. Chowdary, J. Anguera, D. Mokara,

and S. C. Satapathy, ‘‘Pattern recovery in linear arrays using grasshop-

per optimization algorithm,’’ in Microelectronics, Electromagnetics and

Telecommunications (Lecture Notes in Electrical Engineering), vol. 655,

P. Chowdary, V. Chakravarthy, J. Anguera, S. Satapathy, and V. Bhateja,

Eds. Singapore: Springer, 2021, doi: 10.1007/978-981-15-3828-5_78.

[188] A. K. Shukla and S. Kanungo, ‘‘An automated face retrieval system using

grasshopper optimization algorithm-based feature selection method,’’

in Emerging Trends in Computing and Expert Technology (Lecture

Notes on Data Engineering and Communications Technologies), vol. 35,

D. Hemanth, V. Kumar, S. Malathi, O. Castillo, and B. Patrut, Eds. Cham,

Switzerland: Springer, 2020, doi: 10.1007/978-3-030-32150-5_47.

[189] J. Vahidi and M. Rahmati, ‘‘Optimization of resource allocation in cloud

computing by grasshopper optimization algorithm,’’ in Proc. 5th Conf.

Knowl. Based Eng. Innov. (KBEI), Feb. 2019, pp. 839–844.

[190] S. Yadav, R. Yadav, A. Kumar, and M. Kumar, ‘‘A novel approach

for optimal design of digital FIR filter using grasshopper optimization

algorithm,’’ ISA Trans., vol. 108, pp. 196–206, Feb. 2021.

YASSINE MERAIHI received the Ph.D. degree

from the University of M’Hamed Bougara

Boumerdes, Algeria, in 2017. He is currently

an Associate Professor with the University of

Boumerdes, Algeria. His research interests include

QoS for wireless networks, routing in chal-

lenged networks, including WMSNs/VANETs,

and applications of meta-heuristics to optimization

problems.

VOLUME 9, 2021 50023

http://dx.doi.org/10.1007/978-981-15-0184-5_53
http://dx.doi.org/10.1007/978-981-13-3708-6_57
http://dx.doi.org/10.1007/978-981-15-1097-7_80
http://dx.doi.org/10.1007/978-981-15-1097-7_80
http://dx.doi.org/10.1007/978-981-15-3828-5_78
http://dx.doi.org/10.1007/978-3-030-32150-5_47


Y. Meraihi et al.: GOA: Theory, Variants, and Applications

ASMA BENMESSAOUD GABIS received the

master’s degree from the Ecole Nationale

Supérieure d’Informatique, Algiers, Algeria,

in 2010, where she is currently pursuing the Ph.D.

degree with LMCS. Her research interests include

network design and communication, application

of AI, machine learning, and meta-heuristics

for multi-objective optimization and performance

evaluation.

SEYEDALI MIRJALILI (Senior Member, IEEE) is

currently the Director of the Centre for Artificial

Intelligence Research and Optimization, Torrens

University Australia. He is internationally recog-

nized for his advances in swarm intelligence and

optimization, including the first set of algorithms

from a synthetic intelligence standpoint—a radical

departure from how natural systems are typically

understood—and a systematic design framework

to reliably benchmark, evaluate, and propose com-

putationally cheap robust optimization algorithms. He has published over

200 publicationswith over 25,000 citations and anH-index of 55. As themost

cited researcher in Robust Optimization, he is in the list of 1% highly-cited

researchers and named as one of the most influential researchers in the

world by Web of Science, since 2019. His research interests include robust

optimization, engineering optimization, multi-objective optimization, swarm

intelligence, evolutionary algorithms, and artificial neural networks. He is

working on the application of multi-objective and robust meta-heuristic

optimization techniques aswell. He is anAssociate Editor of several journals,

including Neurocomputing, Applied Soft Computing, Advances in Engineer-

ing Software, Applied Intelligence, and IEEE ACCESS.

AMAR RAMDANE-CHERIF received the Ph.D.

degree from Pierre and Marie University, Paris,

in 1998. Since 2000, he has been a Professor

with the University of Versailles SaintQuentin en

Yvelines, France. His research interests include

software architecture, dynamic architecture, archi-

tectural quality attributes, architectural styles, and

design patterns.

50024 VOLUME 9, 2021


