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Terrestrial ecosystem productivity is widely accepted to be nutrient limited
1
.  

Although nitrogen is deemed a key determinant of aboveground net primary 

production
2,3

, the prevalence of co-limitation by nitrogen and phosphorus is 

increasingly recognized
4-8

.  However, the extent to which terrestrial productivity is 

co-limited by nutrients other than nitrogen and phosphorus, such as potassium and 

micronutrients, has remained unclear.  Here, we report results from a standardized 

factorial nutrient addition experiment, in which we added nitrogen (N), phosphorus 

(P), and potassium combined with a selection of micronutrients (K+µ), alone or in 

concert, to 42 grasslands spanning five continents, and monitored aboveground net 

primary production.  Nutrient availability limited productivity at 31 of the 42 

grassland sites studied. Pairwise combinations of N, P, and K+µ co-limited 

aboveground net primary production at 24 of the 42 sites, and nitrogen limitation 

peaked in cool, high latitude sites.  Our findings indicate widespread variation in the 

combination of nutrients that limit aboveground grassland productivity, and 

highlight the importance of potassium and micronutrients, and an apparent absence 

of limitation by the nutrients we considered at some sites.  This variation in nutrient 

limitation must be considered when assessing the ecosystem-scale consequences of 

nutrient enrichment. 
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 Terrestrial ecosystem productivity is widely accepted to be nutrient limited1, and many 1 

studies have focused on limitation by a single nutrient, nitrogen (N)2,3.  In grasslands, and in 2 

other systems, the role of additional nutrients is increasingly recognized. A recent meta-analysis 3 

of 1400 N and phosphorus (P) fertilization studies4 showed limitation of terrestrial productivity 4 

by both N and P. Furthermore, these nutrients often were synergistically co-limiting, where 5 

together they limited productivity more than the sum of their individual limitations. This meta-6 

analysis is the most comprehensive assessment of ecosystem nutrient limitation to date.  7 

However, the global extent and magnitude of multiple limitation by nutrients other than N and P 8 

remains poorly understood in natural systems4,5,9, including grasslands3,10, a critically endangered 9 

biome that accounts for approximately one-third of Earth’s terrestrial net primary production11. 10 

More importantly, multiple nutrient limitation has not been experimentally tested in grasslands 11 

on a global scale using a standardized experimental approach. The potential for synergistic co-12 

limitation of grasslands by multiple nutrients, or conversely, failing to account for the absence of 13 

single or multiple nutrient limitation means we may misestimate the magnitude and extent of 14 

nutrient limitation of terrestrial net primary productivity.  15 

 Humans now produce more reactive N than is produced from all natural terrestrial 16 

sources, primarily as fertilizers, industrial products, and through fossil fuel combustion12,13. 17 

Anthropogenic increases in atmospheric N will result in further terrestrial N deposition, altering 18 

ecosystem function12,14-17 and potentially increasing limitation by other nutrients, such as P, 19 

potassium (K), or trace elements16. K occurs in high concentrations in plant tissues18 and its 20 

uptake is correlated with that of other nutrients19,20. Our understanding of limitation by nutrients 21 

other than N in grasslands lags that of agro-ecosystems, where the importance of P, K, and 22 

micronutrients is better understood20.  23 
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 Here we report the frequency, magnitude, and global extent of nutrient limitation of 24 

grassland ANPP by N, P, and K combined with micronutrients (K+µ) at 42 grassland sites in the 25 

Nutrient Network (NutNet; Supplementary Material and 21). All sites conducted the same 26 

standardized N-P-K+µ addition experiment, the definitive test for nutrient limitation. This 27 

approach overcomes major constraints of previous meta-analyses4, differing nutrient addition 28 

rates and methodologies and the rarity of factorial nutrient treatments in the underlying studies5.  29 

 Sites were located on five continents (Supplementary Figure 1) and spanned a 23-fold 30 

range in ANPP (Supplementary Figure 2A), over 25° in absolute latitude (actual latitudes 54° N 31 

to 37° S), nearly 3,500 m in elevation, and wide ranges in mean annual precipitation (260 – 1900 32 

mm), mean annual temperature (0.3 – 22° C; Supplementary Figure 1), soil texture, and pre-33 

treatment soil N, P, and K pools (Supplementary Table 1). The sites included both native and 34 

previously cultivated grassland, and some sites were managed with burning, grazing, or other 35 

practices. Thus, we were able to evaluate single and multiple-nutrient limitation of ANPP at 36 

global, continental, and site spatial extents, and as influenced by management, climate, and soils.  37 

 N, P, and K+µ were factorially applied annually to replicated 5 m2 plots at the beginning 38 

of each site’s growing season at rates commonly used in grassland fertilization experiments22,23. 39 

The K+µ treatment included a micronutrient mix in the first treatment year only, to avoid 40 

micronutrient toxicity. Nutrient limitation of ANPP was quantified by harvesting current year 41 

standing crop biomass for 3 to 5 years. and computing the log response ratio (LRR), the natural 42 

logarithm of the ratio of treatment plot to control plot ANPP, a metric commonly used in meta-43 

analyses24 44 
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 Multiple nutrient limitation of ANPP often occurs in the form of co-limitation5. Co-45 

limitation is synergistic when the response to multiple nutrients is greater than the sum of the 46 

responses to each nutrient added individually, additive if the multiple-nutrient response equals 47 

the sum of the individual nutrient responses, and sub-additive if less than the sum of the single-48 

nutrient responses5. Across all sites and years, the combined addition of N and P increased 49 

ANPP by an average of 40% over controls (LRR= 0.34), compared to increases of only 18% 50 

(LRR = 0.16) for N individually and 9% for P individually (LRR = 0.09; p = 0.03, Figure 1A, 51 

Supplementary Figure 3). This provides clear evidence for globally-averaged synergistic co-52 

limitation of ANPP by N and P in these grasslands.  Synergistic co-limitation by N and P across 53 

sites and years emerged from frequent occurrence of NP co-limitation at the site level.  Some 54 

form of NP co-limitation averaging 67% (LRR = 0.51) occurred at 60% of the sites, including 55 

sites on all five continents, with synergistic NP co-limitation at 13 sites and sub-additive co-56 

limitation at 12 sites, (Supplementary Table 3). Globally-averaged synergistic co-limitation of 57 

grassland ANPP by N and P contradicts the long-held perception that N is the predominant 58 

nutrient limiting grassland productivity3,10 and highlights a critical role for P. 59 

 There was no globally-averaged single or multiple-nutrient limitation involving K+µ (p > 60 

0.32, Supplementary Table 2). However, this did not preclude frequent site-level single and 61 

multiple-nutrient K+µ limitation of grassland ANPP.  ANPP was limited at 3 sites by K+µ alone 62 

and co-limited by NK+µ at 18 sites, both averaging 48% (LRR = 0.39; Figure 1A, Supplementary 63 

Table 3). Additionally, ANPP was co-limited by PK+µ at 9 sites by an average of 52% (LRR = 64 

0.42), approaching the magnitude of ANPP limitation at sites where N (57%) or P (54%) 65 

individually limited ANPP (Figure 1A). Site-level NK+µ and PK+µ co-limitation occurred in 66 

synergistic, additive, and sub-additive forms, and in total, single or multiple-nutrient limitation 67 
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involving K+µ occurred at 24 sites again occurring on all five continents (Supplementary Table 68 

3).  This finding represents the broadest assessment to date of potential K+µ limitation of 69 

grassland ANPP, and suggests that single- and multiple-nutrient K limitation, potentially 70 

augmented by micronutrient addition during year 1, occurs more frequently than previously 71 

recognized20,25.  72 

 Although single and multiple-nutrient limitation of ANPP was widespread, there were 73 

nonetheless 15 sites with no evidence for multiple nutrient limitation, and at 12 of the 15 also no 74 

evidence for single-nutrient limitation (Supplementary Table 3). The presence and magnitude of 75 

nutrient limitation may depend on site climate, soil development, or fertility26,27. For these 76 

reasons, greater site-level limitation of ANPP by one nutrient may correlate with greater 77 

limitation by one or more additional nutrients. Indeed, site-level individual nutrient limitation of 78 

ANPP increased with limitation by other individual nutrients (R2 0.08 – 0.15; Figure 2A,B,D), 79 

and ANPP limitation by nutrient pairs increased with that of a third individual nutrient (R2 0.07 – 80 

0.21; Figure 2C,E,F). These correlations suggest that site-level attributes may predict the 81 

magnitude of single and multiple nutrient limitation of ANPP.   82 

 Sites differed in various potential qualitative and quantitative predictors of the presence 83 

and magnitude of nutrient limitation of ANPP (Supplementary Table 1). We found no evidence 84 

that nutrient limitation differed among the qualitative predictors continent, history of 85 

management with burning, grazing, and previous cultivation, and predominant soil texture 86 

(Supplementary Figure 4, Supplementary Table 4). Quantitative predictors were examined at the 87 

19 longest running sites, where estimates of site mean nutrient limitation should best correspond 88 

to site mean climate and soil attributes. N limitation increased with decreasing site mean annual 89 

temperature (MAT; R2 = 0.40, p = 0.002, Figure 3A) and peaked at temperate latitude sites 90 
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(~45°;  R2 = 0.38, p = 0.009, Figure 3B) with lower MAT (R2 = 0.66, p < 0.0001, Figure 3B 91 

inset). Limitation of ANPP by other single or multiple nutrient combinations was not correlated 92 

with soil texture fractions, pre-treatment soil nutrient contents, soil pH, or climate variables (p > 93 

0.05, data not shown).  These findings suggest that N limitation predominated at cooler 94 

temperate latitudes, as others have predicted26, and validate the power of these experiments to 95 

detect spatial trends in ecosystem nutrient limitation.  96 

 The magnitude of single or multiple-nutrient limitation of grassland ANPP may increase 97 

through time (Supplementary Figure 2B). To isolate the temporal signal of nutrient addition 98 

effects on ANPP, we calculated new ANPP response ratios using the pre-treatment year (i.e., 99 

year 0) ANPP for each treatment plot rather than the control plot, to control for plot-to-plot 100 

spatial variation in ANPP.  For 37 sites with no missing ANPP data in years 1-3, the ANPP 101 

response to nutrient addition increased through time in all treatments,  ANPP increased each year 102 

more in treatments containing N (p < 0.005, Figure 4, Supplementary Table 2) compared to the 103 

P, K+µ, and PK+µ treatments. Thus, the larger global-averaged increase in ANPP with N than P or 104 

K+µ (Figure 1A) can be explained partly by both smaller and later manifestation of P and K+µ 105 

effects. The full extent of nutrient limitation of grassland ANPP, particularly for nutrients other 106 

than N, may require additional years to emerge.  107 

 Multiple nutrient limitation of ANPP in these grasslands was spatially and temporally 108 

varied, often included K and micronutrients, but sometimes none of the nutrients we considered. 109 

Thus, while N was an important limiting nutrient in many grasslands, P and K+µ were also 110 

limiting in many instances, both alone and in combination with each other and with N. These 111 

estimates for globally-averaged nutrient limitation in these grasslands are conservative because 112 
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nutrient limitation increased in successive treatment years. The magnitude of nutrient limitation 113 

may require revision upward if the increases continue in future years.  114 

Multiple nutrient limitation in grasslands, especially synergistic co-limitation, makes the 115 

consequences of anthropogenic nutrient inputs in these and other systems more difficult to 116 

predict. For example, nutrient co-limitation may actually restrict the impacts of single nutrient 117 

inputs such as N deposition17, but ecosystems may respond more rapidly than expected to 118 

subsequent inputs of the co-limiting nutrient. Considering only one of the co-limiting nutrients 119 

would risk reaching erroneous conclusions about the consequences of future inputs for 120 

biodiversity or ecosystem goods/services provision14,15,28,29. It is imperative to consider multiple 121 

nutrient constraints on primary productivity in grasslands and other ecosystems.  122 

Full Methods and any associated references are available in the online version of the paper at 123 

www.nature.com/nature. 124 

Received  |date|; Accepted  |date|. 125 

Published online  |date|. 126 

 127 

Methods 128 

Study system 129 

 The rationale, goals, and experimental protocols used at grasslands in the Nutrient 130 

Network (NutNet) are described in Borer et al.21, and are summarized here. This study used 131 

aboveground net primary productivity (ANPP) data from a standardized nutrient addition 132 

experiment conducted at 42 NutNet sites in eight countries (Australia, Canada, China, 133 

Switzerland, Tanzania, United Kingdom, USA, South Africa) on five continents (Australia [N = 134 

http://www.nature.com/nature
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4], Africa [N = 4], Europe [N = 5], Asia [N = 1], North America [N = 28]; Supplementary Figure 135 

1, Table 1).  136 

 The grassland types included alpine/montane grasslands, shortgrass, mixed, and tallgrass 137 

prairies, desert and semi-arid grasslands, old fields and pastures, savanna and shrub-steppe, and 138 

annual grasslands.  Sites span wide ranges of mean annual precipitation (MAP; 252 - 1898 mm 139 

y-1), mean annual temperature (MAT; 0.3 - 22.1 °C; Supplementary Figure 1), elevation (50 - 140 

3500 m), and absolute latitude (over 25°, actual latitudes 54° N to 37° S, Supplementary Table 141 

1). Site climate data were derived from the WorldClim database30 (version 1.4,). Local 142 

investigators classified sites as to management practice (burned, grazed, other management) and 143 

native or anthropogenic (restored grassland and agricultural pasture) origin. Sites collected pre-144 

treatment soil nutrient content and texture data. 145 

 At each site, N, P, and K were added in full factorial combination (8 treatments including 146 

control plots) to 5 x 5 m plots in a randomized complete blocks design with N=3 for most sites 147 

(range 2-6). This experimental scale is well-suited for the relatively short-statured herbaceous 148 

vegetation in grasslands.  Micronutrients (6% Ca, 3% Mg, 12% S, 0.1% B, 1% Cu, 17% Fe, 149 

2.5% Mn, 0.05% Mo, and 1% Zn) were added with K only in year 1 to avoid possible 150 

micronutrient toxicity. Nutrient additions began at most sites in 2008 (N = 28), and additional 151 

sites began in 2009 (N = 9), 2010 (N = 3) and 2011 (N = 2).   152 

Sampling 153 

 Total ANPP  (g m-2 yr-1) was estimated annually from clip samples of current year peak 154 

aboveground biomass from two 0.1 m2 quadrats per plot.  Samples were dried to constant mass at 155 

60°C.  156 
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Statistical Analyses 157 

 We tested for nutrient treatment effects on ANPP using linear mixed models in 158 

SAS/STAT v 9.2. First, we tested for variation among sites in nutrient main and interactive 159 

effects and their variation with treatment year (Equation 1): 160 

ln(ANPP)ijkl = µ + nutrientsi + nutrients(site)ij + nutrients(year)ik  161 

+ nutrients(site x year)ijk + eijkl. (1) 162 

where nutrients refers to the eight factorial combinations of added N, P, and K.  Nutrient 163 

treatments (i) were nested within site (j), within year (k), and within site x year (jk). Year was 164 

not treated as a repeated effect because each site experienced each year differently, and thus both 165 

the year effects and the covariance among years were not the same at each site. There were 42 166 

sites with three years of data, 33 sites with four years, and 22 sites with five years. Model (1) was 167 

tested using all available treatment years, and with only the first three treatment years to 168 

ascertain whether any nutrient x year interactions were caused by sites added later with fewer 169 

years of nutrient addition. 170 

 We tested whether ANPP responses to nutrient treatments varied with continent, 171 

management, dominant soil texture, and origin by replacing the site term in Eq. 1 with each of 172 

the site classification and soils variables, one at a time. Europe and Asia were combined in tests 173 

of continent because of the single Asian site. 174 

Calculation of nutrient effect sizes 175 

 Effects sizes of the nutrient treatments were calculated and graphed as natural-log 176 

response ratios (LRR). LRRs were calculated in two ways; first, by comparing the ANPP of each 177 
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treatment plot to the ANPP of the control plot in the same block (2), to isolate treatment effects; 178 

and second, by compared treatment plot ANPP to that of its pre-treatment (i.e., year 0) ANPP 179 

(3). This isolated the temporal signal of nutrient addition responses. 180 

LRR = ln[ANPPtrt/ANPPcontrol]      (2) 181 

LRR = ln[ANPPtrt(year X)/ANPPtrt(year 0)]    (3) 182 

We estimated a critical threshold LRR (4) for categorizing the significance of site LRRs. An 183 

LRR was considered statistically significant if it exceeded a value corresponding to the critical 184 

Z-score (1.65) at p = 0.05, computed as:  185 

Threshold LRR=    1/7 * (LRRN + LRRP + LRRK + …. LRRNPK)/pooled SD.  (4) 186 

Correlations of site variables with nutrient effects 187 

 We used linear regression analyses to test whether LRRs for each single nutrient and 188 

nutrient pair were predicted by site latitude (absolute value), elevation, mean annual precipitation 189 

(MAP), mean temperature annual (MAT), potential evapotranspiration (PET), soil fractions of 190 

sand, silt, and clay, pre-treatment soil N, P, and K contents, and soil pH. We presented 191 

regressions only where p < 0.05, and fit polynomial curves where indicated by evaluation of 192 

residuals. 193 

  194 
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Figure 1 

 282 

Figure 1. Nutrient limitation of aboveground net primary productivity (ANPP; log response 283 

ratio, ln[treatment · control-1],) by nitrogen (N), phosphorus (P), and potassium plus year 1 284 

micronutrients (K+µ). a) Mean ± SE over all years available at each site. Means for all sites are 285 

closed symbols. Means of sites where individual nutrient treatments had significant positive 286 

effects (defined in panel b) are open symbols. b) Site nutrient limitation of ANPP ranked by the 287 

magnitude of limitation, averaged over all available years. Vertical dashed lines mark the effect 288 

sizes approximating a 0.05 significance level for negative and positive nutrient effects on ANPP. 289 

Note that sites rank in a different order in each nutrient treatment. 290 
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Figure 2 

 292 

Figure 2. Correlations of nutrient limitation of aboveground net primary productivity (ANPP; 293 

log response ratios, ln[treatment · control-1]) among single and paired nutrients.  a,b,d) 294 

Correlations among single nutrients. c,e,f)  Correlations of nutrient pairs with the third nutrient. 295 

Coefficients of determination (R2) from linear regression (0.002 ≤ P ≤ 0.05). 296 
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Figure 3 

  299 

 300 
Figure 3. Predictors of nitrogen (N) limitation of aboveground net primary productivity (ANPP; 301 

log response ratio, ln[treatment · control-1]). a) site mean annual temperature (MAT), b) site 302 

latitude, in degrees away from the equator, and inset) MAT relationship with site latitude. N 303 

limitation values are means of five continuous years of nutrient treatment from 19 sites. 304 
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Figure 4. Aboveground net primary productivity (ANPP) responses to factorial nitrogen (N), 306 

phosphorus (P) and potassium plus year 1 micronutrient (K+µ) treatments by year in 37 307 

grasslands with three continuous years of ANPP data. Data represent the mean natural log 308 

response ratio of ANPP in the treatment year  to ANPP in the pre-treatment year in the same 309 

plot, which controls for plot-to-plot variation. 310 




