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Abstract. Motivated by image perturbation and the geometry of mani-
folds, we present a novel method combining these two elements. First, we
form a tangent space from a set of perturbed images and observe that
the tangent space admits a vector space structure. Second, we embed
the approximated tangent spaces on a Grassmann manifold and employ
a chordal distance as the means for comparing subspaces. The matching
process is accelerated using a coarse to fine strategy. Experiments on
the FERET database suggest that the proposed method yields excellent
results using both holistic and local features. Specifically, on the FERET
Dup2 data set, our proposed method achieves 83.8% rank 1 recognition:
to our knowledge the currently the best result among all non-trained
methods. Evidence is also presented that peak recognition performance
is achieved using roughly 100 distinct perturbed images.

1 Introduction

The use of manifolds has received great attention in recent years. This is because
manifolds capture the image variability and provide more information than a
single image. There are two main schools of thought for making use of manifolds.
The first is to learn the structure of manifolds whereas the other is to model the
manifold directly.

Many manifold learning techniques like ISOMAP [1] and LLE [2] attempt to
unfold the curved manifold onto a flat space. These manifold learning techniques
need a large amount of training data and dense sampling on a manifold. Such
rich training data may not be available in some real-world applications.

Another school of thought is to model the image manifold directly. Image
perturbation that synthesizes a single image to a set of registration images has
been employed to model nonlinear image manifolds [3] [4] [5] [6]. The mani-
fold distances are derived by matching spanning sets, for example the tangent
distance [3] and the joint manifold distance [4]. However, these methods only
consider the best match between two spanning sets and ignore the curved geom-
etry of manifolds, and the distance metric remains in Euclidean spaces.
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This paper formally introduces the concept of the Grassmann registration
manifold and demonstrates its utility in the context of face recognition. We
construct a tangent space from a set of perturbed images. The structure of the
approximated tangent space is essentially a vector space. Therefore, rather than
proceeding on an unknown image manifold, we embed the approximated tangent
space on a Grassmann manifold where each element on this manifold represents
a subspace. The key aspect of this embedding is the use of a geodesic distance
which is well defined on Grassmann manifolds, thus the underlying geometry is
exercised.

Our proposed method assumes local linearity and selects k nearest neighbors
from a registration manifold to form a tangent space. The tangent space is then
approximated and embedded on a Grassmann manifold. A chordal distance is
used to compute the distance between vector spaces. To ease the illumination
effect, histogram equalization followed by a Gabor filter is applied. We employ a
holistic image as a primary mode as well as an ensemble of classifiers using both
holistic and local features.

Comparisons to seven well-known and recent algorithms on the FERET
database suggest our algorithm is competitive with the best, achieving a rank 1
recognition rate of 83.8% on the the most challenging probe set (Dup2). Only
one of the seven algorithms does better at 85.0%, and unlike our method, this
algorithm is a trained method. While of course training can be valuable, it in-
troduces a set of concerns about generalization that non-trained methods avoid.

The rest of this paper is organized as follows: Related work is discussed in
Section 2. Grassmann manifolds and subspace distances are reviewed in Sec-
tion 3. The Grassmann registration manifolds are presented in Section 4. The
image features and image preprocessing method are revealed in Section 5. The
outline of our proposed algorithm is given in Section 6. The coarse and fine
matching strategy is introduced in Section 7. Finally, the experimental results
and conclusions are provided in Section 8 and Section 9 respectively.

2 Related Work

Image perturbation that expands a single image to an image-set has been exer-
cised for more than a decade and proven to be be useful and effective. In this
section, we summarize some of the related methods.

Simard et al. [3] considered using synthesized images to model a nonlinear
manifold. Tangent planes are approximated by a first order Taylor expansion.
The distance between tangent planes, called tangent distance, is then used to
measure the distance between manifolds. However, the tangent distance is still
defined in the Euclidean space, and the geometry of manifolds has not been
examined.

Fitzgibbon and Zisserman [4] computed a joint manifold distance to clus-
ter appearances. The manifold is captured by a mean and a set of basis vectors.
Affine transformation is added to a set of spanning images to overcome geometric
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deformation. This makes the measure affine resilient for appearance clustering.
Although the span of a linear space is computed as a subspace distance, only
the infimum between points in two subspaces is considered. As a result, the
underlying geometry of manifolds remains imperceptible.

Nakayama and Kumakura [5] extracted three facial expressions (smiles, anger,
and screams) using an eigenspace method. Then synthesized facial expressions
are produced and added into a model as additional training data. Support vector
machines were used to perform the classification.

Mart́ınez [7] employed image perturbation to model localization errors using
a single training image per class (i.e. subject). Perturbed images are utilized for
learning all possible localization errors. These localization errors are modeled
as a subspace by means of a mixture of Gaussians distribution for all training
images such that imprecise localization can be tolerated.

Arandjelovic and Cipolla [6] modeled a face manifold as a probability distri-
bution in video sequences. The face manifold is repopulated by a set of randomly
drawn affine synthesized images. These synthesized images are augmented in the
face manifold. The RANSAC algorithm is applied to remove outliers. The image
data are then projected on a kernel PCA space and a symmetry version of the
Kullback-Leibler divergence is exploited to compute the distance. Essentially,
this method models face images on an unknown manifold.

Lui et al. [8] embedded a set of images on Grassmann manifolds and computed
a geodesic distance for a subset of FRGC, version 2, experiment 4. This method
achieves 15% and 40% improvements for face identification and face verification
over MSM by switching to a geodesic distance. Moreover, the verification rates
can be further boosted up by 50% when cohort normalization is employed in
conjunction with image-set matching.

3 Grassmann Manifolds and Subspace Distances

To facilitate our discussion of Grassmann registration manifolds, we briefly de-
scribe the properties of Grassmann manifolds, canonical angles, and subspace
distances. Detail descriptions on these subjects can be found in [9].

3.1 Grassmann Manifolds

A Grassmann manifold Gn,p is a set of p-dimensional linear subspaces of Rn

(p-planes in Rn) for 0 < p ≤ n. This Grassmann manifold has a natural quotient
representation Gn,p = Vn,p / Op, where Vn,p is a Stiefel manifold (a set of
n×p orthonormal matrices) and Op is the orthogonal group. This representation
states that two matrices belong to the same equivalence class if their columns
span the same p dimensional subspace. Hence, the entire equivalence class can
be represented as the subspace spanned by the columns of a given matrix Y.

[Y] = {YQp : Qp ∈ Op} (1)
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In other words, a point on the Grassmann manifold is a linear subspace which
may be specified by any arbitrary orthogonal basis.

3.2 Canonical Angles

Given two vectors x and y ∈ Rn, the angle between these two vectors is defined
as

∠{x, y} = arccos
〈x, y〉

‖ x ‖‖ y ‖ (2)

For subspaces, one can recursively define a set of angles between them which
are called canonical angles, also known as principal angles [10]. Let [X ] and [Y]
be two subspaces in Rn then the canonical angles, ∠k{[X ], [Y]}, can be defined
recursively as

cos(θk) = max
u∈[X ]

max
v∈[Y]

uT v = uT
k vk (3)

subject to

‖ u ‖ = ‖ v ‖ = 1, uT ui = 0, vT vi = 0, i = 1, . . . , k − 1

Clearly, ∠k{[X ], [Y]} ∈ [ 0, π
2 ], and Θ is a vector of all canonical angles.

3.3 Subspace Distances

Since the Grassmannian space is curved, the shortest distance between points
on this space is geodesic. Wong [11] shows that the geodesic distance is defined
using a set of canonical angles shown as

dg(X , Y) = ‖ Θ ‖2 (4)

However, this distance is not differentiable everywhere. An alternative measure
of geodesic distance is a chordal distance [12] defined as

dc(X , Y) = ‖ sin θ ‖2 (5)

The chordal distance approximates the geodesic distance when the planes are
close and is differentiable everywhere. We employ dc(X , Y) as our subspace dis-
tance metric.

4 Grassmann Registration Manifolds

4.1 Registration Manifolds Formation

Sampling and characterizing a registration manifold is the key step in our pro-
posed approach. Given a pair of eye coordinates, we determine a set of affine
parameters for geometric normalization. The affine transformation maps the
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(x, y) coordinate from a source image to the (u, v) coordinate of a normalized
image. The transformation can be written as follows:

⎛

⎝

u

v

w

⎞

⎠ =

⎛

⎝

cos(θ) − sin(θ) dx

sin(θ) cos(θ) dy
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⎞
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x
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z

⎞

⎠ (6)

where the first matrix describes rotation and translation, the second matrix
represents skew, and the third matrix denotes scaling. These transformed coor-
dinates can be re-written more compactly as:

(

u

v

)

=

(

p1 p3 p5

p2 p4 p6

)

⎛

⎝

x

y

1

⎞

⎠ (7)

Equation 7 reveals that there are six control parameters for the affine transfor-
mation. In this paper, a set of registration images are sampled by perturbing
these six affine parameters as shown in Equation 8.

(

u

v

)

=

(

p1 + ∆p1 p3 + ∆p3 p5 + ∆p5

p2 + ∆p2 p4 + ∆p4 p6 + ∆p6

)

⎛

⎝

x

y

1

⎞

⎠ (8)

Specifically, we perturb the initial affine parameters with ∆p in a ± range,
such that we synthesize 36 (729) perturbed images. These 729 images reside
on an affine registration manifold M. In our experiments, we employ bilinear
interpolation for sampling the registration manifold, and set ∆p1, ∆p2, ∆p3,
and ∆p4 as {-0.03, 0, 0.03}, and ∆p5 and ∆p6 as {-3, 0, 3}. An example of
registration images is given in Fig. 1.

Fig. 1. Examples of registration images

4.2 Grassmann Registration Manifolds Formation

The affine registration manifold has a nonlinear structure [3]. One way to utilize
the sampled registration manifold is to assume local linearity and explore its
tangent space. By the mean value theorem [13], we can approximate a tangent
vector using a nearby secant. A collection of these approximated tangent vectors
at a point x ∈ R

n forms a tangent space. The logical choice for the base point x
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is the canonical sampled image (∆pi = 0 in Equation 8) illustrated by the center
image in Fig. 1.

The selected base point x is assumed to be an interior point that has a
neighborhood homeomorphic to an open ball. Then, given k nearest neighbors
{x∗

1, x
∗
2, . . . , x

∗
k} where x∗

i ∈ M , a tangent space centered at x on a registration
manifold M may be represented as:

TxM : x + span{x − x∗
1, x − x∗

2, . . . , x − x∗
k} (9)

where {x−x∗
1, x− x∗

2, . . . , x− x∗
k} are the approximated tangent vectors around

x. This tangent space TxM has a vector space structure and any point on this
tangent space can be reconstructed as:

x +

k
∑

i=1

αi(x − x∗
i ) (10)

The k nearest neighbors define the tangent basis. Because we assume local lin-
earity about x, the k nearest neighbors are defined using an Euclidean distance:

x∗
k = x∗

k−1

⋃

argmin
xj �∈x∗

k−1

‖ x − xj ‖2
2 (11)

where x∗
0 = {}. Although we apply the same image perturbation to generate

each sampled image, the k nearest neighbors for different face images are usu-
ally different. This is because changing the face image may change the relative
Euclidean distances between different perturbed images.

Recall that a Grassmann manifold Gn,p is a set of p-dimensional linear sub-
spaces of Rn. Because a tangent space admits a vector space structure, and the
approximated tangent vectors are the bases spanning the subspace, we use these
tangent vectors to embed a linear subspace on a Grassmann manifold. The ben-
efits of embedding a subspace on a Grassmann manifold are that its properties
and distance metrics are well studied. Since we embed the registration mani-
fold on a Grassmann manifold, we call the resulting manifold the Grassmann
Registration Manifold (GRM).

Selecting the number of nearest neighbors to approximate the tangent space
has significant implications. At the extreme low end, k = 1, minimizing the
chordal distance equates to maximizing the correlation between pairs of images
(Equation 2). At the other extreme, taking hundreds or thousands of samples is
not only computationally burdensome; at some point the local linearity assump-
tion is stretched beyond the breaking point. The effect of different choices for k

on the FERET Dup2 data set is shown in Fig. 2. As Fig. 2 depicts, the rank 1
recognition rate starts to decrease when k is larger than 128. In our experiments,
we choose k = 100. As Fig. 2 suggests, any value around 100 can be expected to
perform well.
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Fig. 2. The effect of K nearest neighbors

5 Image Features and Image Preprocessing

A holistic image is regarded as the whole face whereas local features can be
divided into local components and local regions [14]. Local components are typ-
ically an interesting part of the face, for example an eye. Local regions are
derived from regular sampling patterns, for example a grid laid over the face. In
this paper, we employ a holistic image, local components, and local regions for
face recognition. We choose the local components as the upper face, lower face,
eyes, left eye and right eye. Local regions are 3 × 3 and 5 × 5 facial windows.1

Examples of a holistic face, local components, and local regions are given in
Fig. 3.

Fig. 3. Examples of a holistic face, local components, and local regions

For each probe and gallery image, the 729 registration images are sampled
using eye coordinates provided with the data along with the perturbation process

1 Since most of the lower left and lower right regions are covered by a mask in the 5
× 5 facial window, we eliminate these two regions from our feature set.
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described previously. An elliptical mask is applied to remove the background.
At this point the local regions are left alone while histogram equalization and a
Gabor filter [15] are applied to the holistic image and local components. Treating
local regions differently from local components makes classifiers based upon local
regions and local components more independent. The specific DC-free Gabor
filter is defined as follows:

ψu,v(z) =
‖ ku,v ‖2

σ2
e(−‖ku,v‖

2‖z‖2/2σ2)
[

eiku,vz − e−σ2/2
]

, ku,v =
kc

fv
eiφu (12)

where u and v are the control parameters for orientations and scales, respectively,
and z is the position. In our experiments, we set the f =

√
2, kc = 4π

5 , σ = 3π
2 ,

v = 0, and φu = 0.

6 The Grassmann Registration Manifold Algorithm

Putting all things together, the outline of the proposed Grassmann Registration
Manifold (GRM) algorithm is given as follows:

– Use eye coordinates to determine the initial affine registration parameters
p1, . . . , p6 for each image. (Equation 7)

– Sample the affine registration manifold by perturbing the affine parameters
(Equation 8)

– Compute the k nearest neighbors {x∗
1, x

∗
2, . . . , x

∗
k} from the registration man-

ifold (Equation 11)
– (Optional) Apply histogram equalization and a Gabor filter (Equation 12)
– Construct the tangent space (Equation 9)
– Embed the approximated tangent space and compute canonical angles

(Equation 3)
– Compute the subspace distance (Equation 5)

7 Coarse to Fine Matching Strategy

Initial studies of cumulative match curves indicate that 95% of the correct iden-
tifications are included in the top 10% of gallery candidates using just holistic
image matching and k = 16, i.e. 16 registration manifold samples. Consequently,
considerable time can be saved with a coarse to fine matching strategy as de-
picted in Fig. 4. The approach is coarse to fine not in the traditional sense of
reduced image resolution, but instead in the sense of a reduced number of gallery
candidates.

Note that each probe image has its own gallery candidates. Once the 16 sam-
ple matching is completed, the top 10% gallery candidates are passed to the
32 sample level. In the 32 sample level, only these 10% gallery candidates will
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be searched. Similarly, the top 5% of the gallery candidates are propagated to
the 100 sample level and are examined. We can further propagate the top 5%
gallery candidates to all local features. This coarse to fine strategy speeds up
the matching process by roughly a factor of 800, (20 × 40).2

Fig. 4. The proposed coarse to fine matching strategy

8 Experiments

8.1 Data Collection

The performance of our proposed algorithm is compared to well-known algo-
rithms on the FERET database [16]. The frontal view imagery of the FERET
database is divided into 5 categories: Fa, Fb, Fc, Dup1, and Dup2, containing
1,196, 1,195, 194, 722, and 234 faces, respectively. Both Fa and Fb are taken
in the same day with the same illumination condition but with different facial
expressions. Fc is taken at the same day as Fa but with different illumination
condition. Dup1 is acquired on different days from Fa. Dup2 is acquired at least
one year apart from Fa. Following the FERET protocol, Fa is always the gallery
and Fb, Fc, Dup1, and Dup2 are used as probe sets.

2 5% candidates and 40 features.
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8.2 Prior Art on the FERET Database

The Elastic Bunch Graph Matching (EBGM) algorithm [17] was one of the top
algorithms for the FERET database for more than half of a decade until the
Local Binary Pattern (LBP) [18] was introduced. Since then, many LBP-like
algorithms have been reported and continue to push the performance envelope
for FERET. Zhang et al. [19] applied Gabor filters to extract local patterns
and encoded them as phase-quadrant and XOR patterns. Tan and Triggs [20]
proposed to combine Gabor and LBP features, and projected it on a discriminant
space using kernel discriminative common vectors. Zou et al. [14] used a large
set, 4, 172, of Gabor jets and achieved excellent results.

Liu et al. [21] create 9 images by horizontally and vertically shifting sam-
ples (left/right and up/down). The authors view these images as the basis for
linear spatial filters because the 9 translated images make up a filter mask.
Subsequently, the subspace distance between local patches is computed and the
aggregated score is used for final classification. We include this algorithm in our
comparison because it involves subspaces defined by different registration sam-
ples, and is thus related to our own work. However, Liu et al. only present their
approach in the context of linear spatial filters, whereas we consider the under-
lying geometrical interpretation. In such, we make use of local linearity and do
not choose the same image set all the times.

Table 1 summarizes the results of the above algorithms and two variants of
our proposed method for the FERET database. The rightmost column indicates
whether an algorithm requires training.

Table 1. Rank 1 recognition rate on the FERET database

Methods Fb Fc Dup1 Dup2 Trained

EBGM [17] 95.0 82.0 59.0 52.0 Yes
Gabor-LBP-KDCV [20] 98.0 98.0 90.0 85.0 Yes
Weighted LBP [18] 97.0 79.0 66.0 64.0 Yes

Non-Weighted LBP [18] 93.0 51.0 61.0 50.0 No
HGPP [19] 97.6 98.9 77.7 76.1 No
GaborJets [14] 99.5 99.5 85.0 79.5 No
SIS [21] 91.0 90.0 68.0 68.0 No
GRM-Holistic 94.1 92.8 70.8 76.9 No
GRM-Local 97.5 97.9 79.5 83.8 No

8.3 Results with the Holistic Feature

Using the entire face image, our GRM-Holistic achieves 94.1%, 92.8%, 70.8%
and 76.9% rank 1 recognition for Fb, Fc, Dup1, and Dup2, respectively. These
results already outperform half of the top algorithms shown in Table 1. Specif-
ically, the proposed GRM-Holistic ranks second among all non-trained algo-
rithms and third among all algorithms for Dup2, the probe set for which most
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Fig. 5. Rank 1 recognition rate on the FERET database for the selected algorithms
(Non-Weighted LBP [18], EBGM [17], Weighted LBP [18], SIS [21], HGPP [19], Gabor-
Jets [14], and Gabor-LBP-KDCV [20]) where * indicates trained methods

algorithms have the greatest difficulty. To better visualize the ranking for Dup2,
the results are shown from worst to best in Fig. 5.

It is worth to mention the variability associated with these rank 1 recognition
rates. Assuming a binomial model [22] for rank 1 identification success/failure,
a 95% confidence interval for the rank 1 recognition rate is about ±0.05 for the
FERET Dup2 results.

8.4 Results with Holistic + Local Features

While there is general agreement that peak performance is typically achieved
using local features, Section 5 described the local features we have chosen. Fig. 6
shows the rank 1 recognition rates achieved when a GRM algorithm is con-
structed using each individual feature.

Neither space allows us to identify each feature, nor is it actually that impor-
tant. What is important is first to note that the left most column in Fig. 6 is
the holistic image as a feature, and it is consistently one of the best individual
features. Hence, we can dismiss any thought that a single local feature consis-
tently does much better than the whole image. Second, there is a fair amount of
apparently random variation between features and between probe sets.

More specifically, a careful study of Fig. 6 reveals that no single local feature
consistently ranks in the top 3 for all data sets. Consequently, the strength of
using local features comes from the combination of independent decisions boost-
ing recognition performance [23]. A good example is our Dup1 results shown in
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Fig. 6. Recognition rate for individual feature: The first row is Fb, the second row is
Fc, the third row is Dup1 and the last row is Dup2
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Fig. 6. In this paper, we use the majority voting rule [23] to combine all the
feature outcomes.

Using the whole image plus local features, the GRM-Local algorithm achieves
97.5%, 97.9%, 79.5% and 83.8% rank 1 recognition for Fb, Fc, Dup1, and Dup2,
respectively. The 83.8% rank 1 recognition for Dup2 is the best result for all non-
trained algorithms and second among all algorithms depicted in Fig. 5.

9 Conclusions

A novel method (GRM) that embeds registration images on a Grassmann man-
ifold is presented. We demonstrate that the underlying geometry is an impor-
tant characteristic and proper utilization of this attribute enhances recognition
results in the context of face recognition. Unlike many manifold learning algo-
rithms, our proposed method does not require dense samples or training data.
Therefore, our proposed method is more generic. Empirical evidence suggests
that approximately 100 local samples from the affine registration manifold opti-
mizes recognition performance. A coarse to fine matching strategy is introduced
for fast computation.

A relatively simple holistic image version of our proposed GRM algorithm
does very well on FERET tests, and introduction of local features further boosts
recognition performance. Specifically, among all the non-trained algorithms con-
sidered, we achieve the best results of the FERET Dup2 data set.

Introducing the Grassmann registration manifold and associated algorithm
further promotes a general trend of research into image manifolds. Our future
work will focus in further exploring the question of how best to locally sample
the affine registration manifold.
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