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Recently there has been considerable interest in the structure of universal W-algebras

which arise as large-N limits of the extended conformal symmetry algebras WN generated

by the stress tensor T (z) = W 2(z) and a collection of additional conserved (chiral)

fields {W s(z); s = 3, 4, · · · , N} with spin s, [1-4]. Although the chiral operator algebra

W∞ might not be uniquely defined in the limiting procedure, its commutation relations

capture the universal features of higher spin transformations in two dimensions. The

determining relations of WN are non-linear in general and for finite N they assume the

form, written in terms of Fourier modes,

[W s
m,W s′

n ] =
∑

{si},{ki}
Css′

s1···sp
(m,n; k1, · · · , kp; c)W

s1
k1

W s2
k2
· · ·W sp

kp
, (1)

where c is the central charge of the Virasoro subalgebra, s1 + s2 + · · · sp ≤ s + s′ − 2,

k1 + k2 + · · · + kp = m + n and W 0
n = δn,0 (inclusion of the identity operator). For

any given pair of spins (s, s′), the structure constants Css′
{si} are not universal, in the

sense that many of them depend implicitly on N , and this makes their computation

highly non-trivial. However, taking a suitable limit in which N → ∞, the structure

of W-algebras simplifies considerably and the commutation relations of the resulting

infinite dimensional symmetry algebra (when appropriately defined) are determined only

by universal constants.

It has been established that W∞ is closely related with the algebra of area preserving

diffeomorphisms of 2-manifolds (plane or cylinder) whose commutation relations are

[W s
m,W s′

n ] = ((s′ − 1)m− (s− 1)n)W s+s′−2
m+n , (2)

with both s, s′ ≥ 2 and m,n ∈ Z. To be more precise, W∞ can be described as a defor-

mation of the Lie algebra (2) using (non-trivial) cocycle terms which are local functionals

of the generating W -fields with spin less than s + s′ − 2, [2-4]. The existence of consis-

tent gauge interactions among higher spin fields with all integer values of s ≥ 2, imposes

physical restrictions on the form of the deformation terms that differentiate W∞ from the

algebra of area preserving diffeomorphisms. For physical reasons, it is natural to expect

that these terms are central or linear, but not quadratic (or higher polynomial) in the

W-fields.

A 2-parameter deformation of this type was constructed recently by Pope, Romans

and Shen (PRS), which up to redefinitions and renormalizations seems to be the most

general available, [4]. To describe it more explicitly, we introduce the combinatorial

expressions

gss′
l (m,n) =

1

2(l + 1)!
ϕss′

l N ss′
l (m,n) , (3)

where,

ϕss′
l =

∑

k≥0

(−1
2
)k(

3
2
)k(− l+1

2
)k(− l

2
)k

k!(−s + 3
2
)k(−s′ + 3

2
)k(s + s′ − l − 3

2
)k

, (4)
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N ss′
l (m,n) =

l+1∑

k=0

(−1)k

(
l + 1

k

)
(2s− l − 2)k[2s

′ − k − 2]l+1−k·

·[s− 1 + m]l+1−k[s
′ − 1 + n]k (5)

and

(a)k ≡ a(a + 1)(a + 2) · · · (a + k − 1) , (6a)

[a]k ≡ a(a− 1)(a− 2) · · · (a− k + 1) . (6b)

We also set (a)0 = [a]0 = 1 for all values of a. Then the commutation relations of the

PRS W∞ algebra are

[W s
m,W s′

n ] = ((s′ − 1)m− (s− 1)n)W s+s′−2
m+n + q2(s−2)cs(m)δs,s′δm+n,0+

+q2gss′
2 (m,n)W s+s′−4

m+n + q4gss′
4 (m,n)W s+s′−6

m+n + · · · , (7)

where the coefficients of the central terms are

cs(m) =
c

2
m(m2 − 1)(m2 − 4) · · · (m2 − (s− 1)2)

22(s−3)s!(s− 2)!

(2s− 1)!!(2s− 3)!!
(8)

and the sequence of · · · terms terminates with W 2
m+n for s + s′ even and with W 3

m+n for

s + s′ odd. Setting q = 0, we end up with a central term only in the Virasoro subalgebra

of W∞∗. For q 6= 0 we may rescale the generators W s
n by qs−2 and normalize the value

of the q-parameter to 1. ¿From now on we choose to work with q = 1 without loss of

generality.

In [5] we constructed a field theoretic representation of the PRS algebra, using a

complex free boson in two dimensions. In particular we found that the quasiprimary

fields

W s(z) = B(s)
s−1∑

k=1

(−1)kAs
k : ∂k

z φ∂s−k
z φ̄ : , (9)

which are bilinear in the U(1) ⊗ U(1) currents ∂φ, ∂φ̄ (and their derivatives) provide a

realization of the universal algebra (7) when

As
k =

1

s− 1

(
s− 1

k

)(
s− 1

s− k

)
, B(s) =

2s−3s!

(2s− 3)!!
. (10)

This realization has central charge c = 2 and arises naturally in the theory of Z∞
parafermions which we described using the coset model SU(2)N/U(1) in the large level

(N →∞) limit.

In fact, as we will demonstrate next, the theory SU(2)∞/U(1) generates the simplest

unitary representation of the chiral operator algebra WN in the limit N →∞. As is well

∗It can be verified directly that this is the only possible central extension of the area preserving
diffeomorphism algebra (2), which is consistent with the Jacobi identities.

2



known, the unitary representations of W∞ have central charge c = 2p = 2, 4, 6, · · ·, [1,5]

and they can be described by the two dimensional coset models

SU(N)1 ⊗ SU(N)p

SU(N)p+1

(11)

in the limit N → ∞. We will adopt a different picture here in order to avoid unneces-

sary complications dealing with the large N limit of SU(N) and approach the unitary

representations of the universal algebra (7) with c = 2p, using the Grassmannian coset

models

GN(p) =
SU(p + 1)N

SU(p)N ⊗ U(1)
(12)

in the large level (N →∞) limit. The cosets (11) and (12) have the same central charge,

the same chiral algebra and the same irreducible representations and therefore provide

two equivalent descriptions of the minimal models of the WN algebras for all N ≥ 2.

Clearly, for p = 1 the present discussion produces the results we have already derived

in [5]. However, for p ≥ 2 the situation becomes more interesting because as we will

see later, there are U(p)-matrix generalizations of W∞ associated with the existence of

infinitely many additional symmetries in the Grassmannian coset models we consider.

Let us begin with the simple observation that once the bosonic realization (9) of the

PRS algebra has been constructed, the generalization to arbitrary values c = 2p with

p = 1, 2, 3, · · · follows immediately, thanks to the linear structure of the commutation

relations (7). For this we introduce p independent complex scalar fields φi, i = 1, 2, · · · , p
with two-point functions normalized as follows

〈φi(z)φj(w)〉 = 〈φ̄i(z)φ̄j(w)〉 = 0 , 〈φi(z)φ̄j(w)〉 = −δij log(z − w) . (13)

The standard stress tensor of the theory is W 2(z) ≡ T (z) = −∑p
i=1 : ∂zφ

i∂zφ̄
i : and the

tower of spin fields

W s(z) = B(s)
p∑

i=1

s−1∑

k=1

(−1)kAs
k : ∂k

z φi∂s−k
z φ̄i : (14)

with s ≥ 2, provides a multicomponent generalization of (9) that yields a bosonic real-

ization of the PRS algebra with c = 2p.

This representation arises naturally in the conformal field theory models described by

G∞(p). Notice that for all p, the SU(p)N current algebra flattens out in the limit N →∞
and becomes a U(1)p2−1 current algebra. Therefore, the Grassmannian coset models

G∞(p) are parametrized by U(1)p ⊗ U(1)p affine currents, which can be identified with

the fields ∂φi and ∂φ̄i (i = 1, 2, · · · , p) in (13). W∞ is a subalgebra of the parafermionic

algebra of these models or alternatively it is a subalgebra of the enveloping algebra of

the U(1)2p current algebra. As N →∞, the spectrum of the GN(p) models behaves the

same way as in the p = 1 case. In particular, the set of primary operators with finite
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dimension can be described as vertex operators in terms of the scalar fields ~φ and ~̄φ,

ie. V~a,~b = exp[i~a · ~φ + i~b · ~̄φ]. It is a trivial exercise to show that they generate highest

weight unitary irreducible representations of the W∞ algebra with c = 2p, in analogy

with the results obtained in [5]. However what ceases to be true for p ≥ 2 is that each

U(1)2p highest weight representation provides a single unitary irreducible representation

of W∞. For arbitrary p, unitary representations of U(1)2p decompose into more than one

irreducible representations of the W∞ algebra with c = 2p. We intent to elaborate on

this point later.

Before we proceed any further, it is worth stressing that the bosonic theory we obtain

in the large-N limit of the coset models (12) is not uniquely defined. Strictly speaking,

G∞(p) does not correspond to a single conformal field theory, but to a multiparameter

collection thereof. It is certainly true that in the limit N → ∞ one obtains toroidal

scalar field models characterized by certain parameters (metric and antisymmetric ten-

sor). However, the exact values of these parameters depend on the limiting procedure,

which determines the limiting values of the dimensions of primary fields. It seems plau-

sible that if we take into account the extra parameters that characterize the target man-

ifold, G∞(p) will be described either as a family of 2-d models with toroidal moduli, or

equivalently as a single quantum field theory in higher dimensions. We reserve further

comments on this problem to a future publication.

Next we take advantage of the additional symmetries that the Grassmannian coset

models G∞(p) possess and construct a U(p)-matrix generalization of W∞, denoted by

W p
∞. For this purpose we introduce a basis {Xα; α = 0, 1, 2, · · · , p2−1} in the Lie algebra

of the unitary group U(p) ' SU(p)⊗U(1), so that in the fundamental representation X0

coincides with the p×p unit matrix and {Xa; a = 1, 2, · · · , p2−1} are traceless hermitian

matrices that satisfy the SU(p) commutation relations

[Xa, Xb] = fabcXc . (15)

The summation convention over repeated SU(p) indices is implicitly assumed. Moreover,

we may always choose (see for instance, [6]) {Xa} in a way that Tr(XaXb) = pδab, ie.

XaXb = δab1p +
1

2
fabcXc + dabcXc , (16)

where,

dabc =
1

2p
Tr((XaXb + XbXa)Xc) (17)

is the third order completely symmetric Casimir tensor (which is zero for SU(2)). Notice

that the generating fields (14) of the universal W-algebra (7) with c = 2p are of the form

W s
α(z) = B(s)

p∑

i,j=1

s−1∑

k=1

(−1)kAs
k(X

α)ij : ∂k
z φi∂s−k

z φ̄j : (18)
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with α = 0. This motivates the introduction of the U(p) fields W s
α(z) for all α =

0, 1, 2, · · · , p2− 1. In this setting, the operators (14) correspond to the U(1) trace part of

U(p). The generalized higher spin fields (18) form a closed linear operator algebra which

is a multicomponent extension of W∞. Our task is to determine its structure completely.

It is quite straightforward to obtain the operator product expansion (OPE),

W s
α(z)W s′

β (w) =
23s−7s!(s− 1)!(s− 2)!

(2s− 3)!!

δs,s′Tr(XαXβ)

(z − w)s+s′ +

+B(s)B(s′)
s+s′−2∑

l=1

Rss′
αβ;l(∂φ, ∂φ̄)

(z − w)l
, (19)

where,

Rss′
αβ;l(∂φ , ∂φ̄) =

p∑

i,j=1

s−1∑

k=1

s′−1∑

k′=1

(−1)k′As
kA

s′
k′

(k + k′ − 1)!

(k + k′ − l)!
·

·[(−1)s(XαXβ)ij∂
s+k′−l
w φi∂s′−k′

w φ̄j + (−1)s′(XβXα)ij∂
s′−k′
w φi∂s+k′−l

w φ̄j] (20)

for all s, s′ ≥ 2, using the two-point functions (13). This generalizes the results obtained

in [5] to a collection of scalar fields φ1, φ2, · · · , φp and their complex conjugates.

Since the generator X0 is represented by the identity matrix, the OPE (19) yields

immediately

[W s
0,m,W s′

α,n] = ((s′ − 1)m− (s− 1)n)W s+s′−2
α,m+n + cs(m)δα,0δs,s′δm+n,0+

+gss′
2 (m,n)W s+s′−4

α,m+n + gss′
4 (m,n)W s+s′−6

α,m+n + · · · (21)

for all α = 0, 1, 2, · · · , p2 − 1, in exact analogy with the calculation we performed in

[5]. Here, cs(m) is given by (8) with c = 2p. As required, for α = 0, the commutation

relations (21) reproduce the PRS algebra (7).

The remaining commutation relations for both α, β 6= 0 are less trivial to derive from

(19) and (20) and require more careful analysis. The new element that complicates the

situation here originates from the presence of the SU(p) structure constants fabc. To

appreciate the significance of this point when it comes to the essential details of the

calculations, recall that in the fundamental representation of SU(p), (16) describes the

decomposition of the matrix XaXb into its trace, antisymmetric and traceless-symmetric

parts. The contributions of the trace and symmetric parts to the commutation relations

of the spin fields W s
a (z) for all a are exactly the same as in (21), provided that the

indices a, b, c are displayed accordingly. However, the contribution of the antisymmetric

part ∼ fabc flips the sign of the terms (−1)s′∂s′−k′φi∂s+k′−lφ̄j in (20) and therefore the

decomposition of the operators Rss′ into linear combinations of the generating W-fields

W s+s′−2, W s+s′−4, W s+s′−6, · · · and their derivatives that we used to derive (21) is not

applicable anymore. For this reason, the commutation relations of the fields W s
a (z) will

not be of the (standard) PRS type (7) by coloring “blindly” the generators.
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Explicit calculations have shown that in this case, the contribution of the antisym-

metric part ∼ fabc to the OPE (19) involves once again W-fields and their derivatives

linearly, but with spin s + s′ − 1, s + s′ − 3, · · ·. Perhaps more amazing is the fact that

the coefficients (structure constants) of these fields, written in terms of Fourier modes,

are given by the combinatorial expressions gss′
l (cf (3)) with l extrapolated in the range

of odd integers. In particular we have verified extensively the following commutation

relations,

[W s
a,m ,W s′

b,n] = ((s′ − 1)m− (s− 1)n)(δa,bW s+s′−2
0,m+n + dabcW s+s′−2

c,m+n )+

+cs(m)δa,bδs,s′δm+n,0 +
∑

r≥1

gss′
2r (m, n)(δa,bW s+s′−2−2r

0,m+n + dabcW s+s′−2−2r
c,m+n )−

−1

2
fabc[

1

2
W s+s′−1

c,m+n +
∑

r≥1

gss′
2r−1(m,n)W s+s′−1−2r

c,m+n ] (22)

with c = 2p. In this expression the summations over r terminate either with W 2 or W 3

depending on whether s + s′ is even or odd.

The infinite dimensional algebra described by (21) and (22) provides a U(p)-matrix

generalization of W∞ and as we have already pointed out, it arises as a symmetry algebra

of the Grassmannian coset models GN(p) at large N . For obvious reasons we denote this

algebra by W p
∞. Although in our construction associativity is manifest, one may also

verify directly the compatibility of W p
∞ with the Jacobi identities. The main new feature

of this algebra is the presence of fields with spin s + s′ − 1 − 2r in the commutation

relations (22). As a result, the spin-2 U(p)-fields, W 2
α, do not form a closed subalgebra

of W p
∞, unless α = 0. That is,

[W 2
0,m,W 2

α,n] = (m− n)W 2
α,m+n +

p

6
m(m2 − 1)δα,0δm+n,0 , (23a)

[W 2
a,m,W 2

b,n] = −1

4
fabcW 3

c,m+n + (m− n)(δa,bW 2
0,m+n + dabcW 2

c,m+n)+

+
p

6
m(m2 − 1)δa,bδm+n,0. (23b)

The field W 2
0 is identified with the stress tensor of the G∞(p) models.

At this point it is appropriate to return to the highest weight (hw) irreducible repre-

sentations of W∞ with c = 2p. It is obvious from (22) that W 2
a with a = 1, 2, · · · , p2 − 1

generate a hw state of W∞, when acting on the vacuum. The remaining operators W s
a

are generated from the hw states by the action of the W∞ algebra (cf. (21)). Thus W p
∞

as a module, decomposes into W∞ and p2 − 1 hw irreducible representations thereof†. A

similar thing happens with the U(1)2p representations generated by the vertex operators.

They are reducible as W∞ algebra representations. A character analysis like the one

†This is analogous to the way that the algebra (2), viewed as a module of the Virasoro algebra,
decomposes into a direct sum of primary conformal fields with integer dimensions, [2].
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performed in [5], although in principle possible, is very hard to do for general p. Thus

although we know that the U(1)2p representations are reducible under W∞ we cannot

at the moment estimate into how many representations they decompose. It is highly

plausible that every unitary irreducible representation of W∞ can be constructed from

representations of the current algebra U(1)2p for all p.

The commutation relations (23) suggest that unlike the case of spin-1 fields, a Yang-

Mills type generalization of spin-2 fields cannot be implemented consistently without the

introduction of higher spin fields. This novelty is not shared by spin-1 fields, because

for them we simply have s + s′ − 1 = 1. It would be interesting to investigate further

the geometrical meaning of colored spin-2 fields not only in the present framework, but

also in the context of gravitational theories in spacetime dimensions D ≥ 2. It seems

reasonable to expect that for a collection of massless spin-2 fields W 2
α(z), the classical

notion of manifolds has to be generalized to “algebra manifolds” where tensor fields take

their values in U(p). However in view of the commutation relations (23), one has to fit

into the picture transformations generated by higher spin fields as well. In this case, the

results obtained in [7] for colored spin-2 fields need to be re-examined.

There are two natural questions one may ask in connection with the infinite dimen-

sional algebra W p
∞. First, is there an operator algebra W p

N whose universal structure is

described by W p
∞, for p ≥ 2? Second, what is the geometrical interpretation of W p

∞ at

large p? The answer to the first question is in the affirmative and in fact W p
N coincides

with the chiral algebra of the Grassmannian models (12). However, the corresponding

commutation relations are quite complicated to write down in any detail. As far as the

second question is concerned, we were able to derive some (partial) results for W∞
∞ using

a limiting procedure developed in [8]. Recall that in the fundamental representation the

Lie algebra U(p) can be parametrized by a set of (matrix) generators X
~K , where ~K is

a two dimensional vector with non-negative integer entries and X
~0 = 1p. Although for

finite p there are some periodicity conditions imposed on ~K, these will be ignored here

because we are interested only in the large p behaviour of the algebra. In this basis, the

commutation relations of U(p) assume the form,

[X
~K , X

~L] = −2i sin[
π

p
( ~K × ~L)]X

~K+~L , (24a)

[X
~K , X

~L]+ = 2 cos[
π

p
( ~K × ~L)]X

~K+~L . (24b)

Strictly speaking, the formulae (24) are applicable to U(p) only for p even, while for p

odd one has to change π into 2π. However, this does not alter our conclusions provided

that the rescalings we perform later incorporate the difference accordingly. Then, (21)

and (22) become

[W s, ~K
m ,W s′,~L

n ] = ((s′ − 1)m− (s− 1)n) cos[
π

p
( ~K × ~L)]W s+s′−2, ~K+~L

m+n +

7



+cs(m)δ ~K+~L,~0δm+n,0δs,s′ +
∑

r≥1

gss′
2r (m,n) cos[

π

p
( ~K × ~L)]W s+s′−2−2r, ~K+~L

m+n +

+i sin[
π

p
( ~K × ~L)][

1

2
W s+s′−1, ~K+~L

m+n +
∑

r≥1

gss′
2r−1(m,n)W s+s′−1−2r, ~K+~L

m+n ] . (25)

Since c = 2p, the central terms in (25) diverge linearly as p →∞.

Let us now consider a classical version of (25) which means dropping the central

terms. If we renormalize the generators as follows

W̃ s, ~K
m = (

iπ

2p
)s−2W s, ~K

m , (26)

then as p →∞, (25) will become

[W̃ s, ~K
m , W̃ s′,~L

n ]cl = ((s′ − 1)m− (s− 1)n)W̃ s+s′−2, ~K+~L
m+n + ( ~K × ~L)W̃ s+s′−1, ~K+~L

m+n . (27)

It is rather easy to show that the algebra (27) is associated with the algebra of symplectic

diffeomorphisms in four dimensions! To demonstrate this explicitly we have to choose a

specific basis. Let us consider a four dimensional phase space with (local) coordinates x1,

x2 and respective momenta p1 and p2. The classical Poisson bracket is defined as usual,

{F1(~x, ~p) , F2(~x, ~p)}PB =
2∑

i=1

[
∂F1

∂xi

∂F2

∂pi

− ∂F1

∂pi

∂F2

∂xi

] . (28)

If we define a basis of functions in the 4-d phase space,

F s, ~K
m ≡ xm+s−1

1 ps−1
1 eik2x2eik1p2 , (29)

where ~K ≡ (k1, k2), their Poisson bracket relations will coincide with (27). Notice that

if we had kept the central terms in (25), then under the rescaling (26) we would have

obtained (27) again with a single central term surviving only in the commutation relations

of the spin-2 fields. However, this central term is still linearly divergent and further work

is required to regularize it and elucidate its meaning.

In any event, W∞
∞ seems to be closely related with the algebra of symplectic diffeo-

morphisms in four dimensions. As such it is a subalgebra of the full volume preserving

diffeomorphism algebra. It is crucial to realize that in more that two (but even number)

of dimensions, not all volume preserving diffeomorphisms arise as symplectic transforma-

tions. Of course the converse statement is obviously true always. In [9], W∞ gravity was

introduced and treated as a “light-cone” type gauge theory. It is expected that a covari-

ant formulation of that theory would involve the algebra of symplectic diffeomorphisms in

four dimensions or perhaps the full volume preserving diffeomorphism symmetry, [10]. It

is intriguing to understand possible connections with the W∞
∞ algebra constructed here.

However, such relations are still mystery to us.
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There is another interesting infinite dimensional algebra which can be obtained as

a subalgebra of (25) in a certain limit. This is the loop algebra of area preserving

diffeomorphisms. Its commutation relations are given by

[F k
~m , F k′

~n ] = (~m× ~n)F k+k′
~m+~n , (30)

where ~m, ~n are two dimensional vectors with integer entries and k, k′ are integers. We

will consider again a classical limit of (25) by dropping the central terms. Then the

subalgebra of the zero modes is

[W s, ~K
0 , W s′,~L

0 ]cl =
i

2
sin[

π

p
( ~K × ~L)]W s+s′−1, ~K+~L

0 . (31)

Once again, we define new generators as follows

F r
~K

=
2p

iπ
W r+1, ~K

0 (32)

and take the limit p →∞. As usual, we may extend the range of ~K to all integer values,

[8]. Then, it is trivial to show that the operators F r
~K

satisfy the commutation relations of

the loop algebra of area preserving diffeomorphisms (30). This algebra arises as a hidden

symmetry of the self-dual Einstein equations in four dimensions ( see for instance, [11]).

The latter have attracted considerable attention among particle physicists recently, after

the realization that N = 2 string theory provides a quantization of the self-dual Einstein

equations in four dimensions with space-time signature (2,2), [12]. It is plausible that

W∞
∞ and its (yet unknown) deformations are related to symmetries of the quantum

theory of gravitational instantons as formulated through N = 2 string theory. We intent

to investigate these problems in more detail.
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