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Abstract: We propose and describe a new class of optical modes consisting 
of superposition of three waveguide modes which can be supported by a 
few-mode waveguide spatially modulated by two co-spatial gratings. These 
supermodes bear a close, but not exact, formal analogy to the three-level 
quantum states involved in EIT and its attendant slow light propagation 
characteristics. Of particular interest is the supermode which we call the 
dark mode in which, in analogy with the dark state of EIT, one of the three 
uncoupled waveguide modes is not excited. This mode has unique 
dispersion characteristics that translate into a slow light propagation which 
possesses high bandwidth-delay product and can form the basis for a new 
generation of optical resonators and lasers. 
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1. Introduction 

Electromagnetically induced transparency (EIT) is a phenomenon that comes from quantum 
destructive interference between excitation pathways to the upper level of an atomic three-
level system [1]. The combination of absorption cancellation and strong dispersion has led to 
the observation of very slow and stored light [2,3]. In these experiments, atoms are prepared 
in a “dark”, coherent superposition of the two lower levels, a stationary eigenstate of the 
system of a three-level atom and two laser fields. 

Classical analogs of EIT can be established in coupled optical resonators, referenced as 
coupled-resonator-induced transparency (CRIT) [4], where the mode splitting is a classical 
counterpart of dressed states arising from ac Stark effect. Several configurations of coupled 
resonators to obtain EIT-like resonances have been proposed and experimentally 
demonstrated [4–12]. These EIT-like resonances demonstrate much narrower linewidth than 
those of individual resonators. 

In this paper we propose to use a three-mode waveguide modulated by two co-spatial 
gratings as an optical analog to EIT. The three waveguide modes play the roles of the three 
quantum states in EIT, while the gratings are counterparts of the electromagnetic waves. 
Unlike CRIT, where the waveguide-resonator and inter-resonator coupling occur only at 
discrete points, the coupling of waveguide modes by gratings is continuous along the 
waveguide. This enables us to describe our system by coupled mode equations, in analogy to 
the Hamiltonian in the EIT system. The counterpart of the dark state in EIT is one of the 
supermodes of the waveguide-plus-grating system. By inserting phase shifts or apodizing the 
gratings, we are able to utilize the slow dark mode and produce EIT-like resonance. The 
structures can be a new class of optical resonators or optical delay lines. 

2. Grating induced transparency and the Dark mode 

Guided by the formalism of the EIT three quantum state atomic system, we consider a 
waveguide supporting three distinct spatial modes with complex amplitudes a, b, c, 
propagation constants βa, βb, βc, and containing two co-spatial gratings (one connects a and b; 
the other connects b and c). We do not restrict the direction of propagation of each mode. In 
the case of weak perturbation, the eigenmodes of the waveguide-plus-grating system, the 
supermodes, can be taken as linear superpositions of the unperturbed modes a, b, c, which 
obey the coupled Eqs. (13): 
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where Λab = 2π/(βa0 − βb0) and Λbc = 2π/(βc0 − βb0) are the periods of the two gratings designed 
for a center frequency ω0. κij (i, j = a, b, c) are the coupling coefficient connecting modes i and 

j. By introducing new variables A, B, C, defined by a(z) = A(z)exp(−jβa0z), b(z) = 

B(z)exp(−jβb0z), c(z) = C(z)exp(−jβc0z), we arrive at a z-independent coupling matrix: 
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where δi ≡  βi − βi0 is the detuning of the propagation constant. In the neighborhood of ω0, δi = 

ni(�ω)/c where ni is the group index of each mode and �ω = ω−ω0. The eigenvectors of the 
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matrix are the supermodes of the perturbed waveguide, while the eigenvalues are the 
propagation constants of the supermodes. For example, the electric field of a supermode [va vb 

vc]
T
 with a propagation constant � is given by exp( )i z�− [
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v  
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profile. At center frequency ω0, one of the supermodes is proportional to [κbc 0 −κba]
T
, with 

the eigenvalue equal to 0. In this supermode, which we name the dark mode, the intermediate 
mode B is unexcited. For comparison, the coupled equation of EIT ignoring decay rates is [1] 
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where �p and �c are the Rabi frequencies of the probe and coupling beams, respectively, and 
�ω is the frequency detuning of the probe beam. Equations (2) and (3) are similar on 
resonance. They are respectively equations of space and time. Conservation of energy defines 

the relation between κij and κji [13]: If mode i and j copropagate, κij = −κji* ; if mode i and j 
counterpropagate, κij = κji*. Suppose A is the input forward mode, there are four different 
choices of propagating directions of mode B and C (Fig. 1). The formal similarity between 
Eqs. (2) and (3) depends on the nature of the κij coefficients, which implies both modes B and 
C are forward propagating (Fig. 1(a)). This makes sense since in quantum mechanics each 
state evolves forward with time. Nevertheless, the choice which is the most interesting for our 
slow light phenomenology is one where mode A is forward while B and C are backward 
propagating (Fig. 1(d)). A short-period grating connects modes A and B (κab), while a long- 

period grating connects modes B and C (κbc). The coupling constants obey κbc = −κcb* and κab 
= κba*. By shifting constant phases of variables A, B, and C, Eq. (2) can be rewritten as 
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Fig. 1. Four configurations of the directions of the three modes. The black grating (/) couples 
modes A and B, while the red grating (\) couples mode B and C. The gratings are short-period 
or long-period depending on the directions of the connected modes. 

where K is defined as the coupling matrix. Now both κab and κbc are real numbers. At �ω = 0, 

if |κab| ≠ |κbc|, the corresponding eigenvectors and eigenvalues are: 
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The three eigenvectors are not orthogonal to each other. They are nearly parallel when |κab| 
and |κbc| are nearly equal. The two bright modes can propagate only if |κab| < |κbc|, in which 
case the propagation constants ± �β0 are real. Interestingly, the dark mode is a “propagating” 
(non-evanescent) supermode consisting of a superposition of two counter-propagating waves, 
A and C, which results in a group velocity that falls between the positive group velocity of the 
forward wave A and the negative group velocity of the backward wave C and can be derived 
by perturbation theory as 
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where the tuning factor α ≡  κab / κbc. The group velocity is reduced to 0 when α approaches 1. 
We focus on the region |α| < 1 where the group velocity is positive. Plotting the propagation 
constants of the three supermodes as functions of �ω results in the band structure shown in 
Fig. 2 where α = 0.9. In general the waveguide is not periodic, unless the ratio of Λab and Λbc 
is rational. Therefore, the band structure has two sets of Brillouin zones that repeat the 
dispersion curves periodically. The three modes intersect at �ω = 0 and anti-crossing occurs. 
A narrow transmission band in the center lies between two band gaps. All the three 
supermodes can propagate within the transmission band, while no forward-propagating mode 
exists within the two band gaps since the only propagating supermode consists mainly of 
backward modes B and C. The group velocity dispersion (GVD) of the dark mode in the 

center (�ω = 0) is zero. The group velocity of the two bright modes is vg,bright = −(1−α2
)·c/n in 

the assumption that na ≈nb ≈nc ≈n. 
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Fig. 2. (a) Band structures of a GIT waveguide. na = 1.5, nb = 2.5, nc = 2. κab = 90 / m, κbc = 100 
/ m. Dash lines are the band structure without grating perturbation. (b) Zoom-in figure of the 
bending region. The red dashed curve is the dark mode. 
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3. Uniform GIT waveguide 

To take advantage of the new modes, especially the dark one, we propose two types of 
structures. The first is a uniform one where both gratings (κab and κbc) are of uniform strengths 
along the length L of the waveguide. If the boundary condition corresponds to a single input 
mode A at z = 0 and no input backward modes B and C at z = L, the field at z = L is 
proportional to [1 0 0]

T
, which decomposes into all the three supermodes. Transmission of 

mode A and field distribution along the structure can be obtained by back propagating the 
three supermodes to z = 0. Unity transmission at �ω = 0 results if the length is a multiple of 

Lmin = 2π/
2 2

bc ab
κ κ−  since 0 and 

2 2

bc ab
κ κ± −  are the propagation constants of the three 

supermodes. Figures 3(a) and 3(b) show the transmission spectrum of a waveguide with α = 
0.9, κbc = 1,000/m, and L = Lmin = 1.44 cm. The transmission spectrum is similar to that of 
EIT. The FWHM bandwidth is 66.2 MHz, and the group delay in the center wavelength is 
4.97 ns with group velocity reduction of 71.3 (compared to group velocity of mode A). 
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Fig. 3. (a) Transmission spectrum of a uniform structure. κab = 900 / m, κbc = 1,000 / m, and L = 
Lmin = 1.44 cm. The refractive indices are na = 1.45, nb = 1.425, and nc = 1.4. (b) Transmission 
spectrum in a narrower span of the same structure in (a). (c) Transmission spectrum of a 
uniform structure with L = 6Lmin. (d) Transmission spectrum of a uniform structure with L = 
6Lmin and periodic inversion of κab. (e) Group delay of the structure in (d). 
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The case of uniform gratings occupying 0 < z < L can be viewed as a resonator where the 
two backward bright modes are reflected into the forward dark mode at z = 0 and conversely 
at z = L. The round-trip phase of the cavity includes the forward propagation of the dark 
mode, the backward propagation of the two bright modes, and the phase of reflectance of the 
two mirrors. This explains why L has to be a multiple of Lmin for resonance at �ω = 0. Since 
the transmission of mode A depends on phase matching of the three supermodes, the 
bandwidth is extremely narrow and the group velocity reduction is much larger than that of 
the dark mode in Eq. (7). At �ω = 0, the field distributions of the individual modes are 
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assuming the input A(0) = 1. Figure 4 plots the field distribution for α = 0.95 and L = 2Lmin. 
Since the three supermodes are nearly parallel, they interfere constructively to extremely high 
intensities of individual modes A, B, C in the middle of the structure, and destructively 
interfere to small intensity of A at the two ends. The quality factor Q of the resonator defined 

as ω ⋅ (energy stored) / (power loss) can be obtained from Eq. (8) assuming na ≈nb ≈nc and is 
given by 
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where L is fixed to be a multiple of Lmin. If α is close to 1, say 0.999 for example, the factor (1 
+ 2α

2
)/(1-α

2
)

2
 is as high as 7.5 × 10

5
, while the length required is 14 cm assuming κbc = 

1,000/m. By employing gain in the structure with a high quality factor we can make a laser 
with the minimum threshold gain occurring when L is a multiple of Lmin and is inversely 
proportional to the quality factor. 
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Fig. 4. Energy distribution of a uniform structure with L = 2Lmin and an input A(0) = 1. κab = 
900 / m, κbc = 1,000 / m, and L = 2.88 cm. The refractive indices are na = 1.45, nb = 1.425, and 
nc = 1.4. 

For the example in Figs. 3(a) and 3(b), the phase shift across the transmission band is 
about π, limiting the delay-bandwidth product less than 0.5, like a single resonator. Cascading 
N resonators, namely increasing L to N·Lmin, will result in more delay but reduced bandwidth, 
since the phase mismatch of the three supermodes is approximately proportional to (�ω)L. In 

fact, as shown in Fig. 3(c), there are 2N−1 peaks in the transmission spectrum, each with a 
phase shift of π across, limiting the delay-bandwidth product still less than 0.5. To break this 
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limit, we propose to invert the sign of α ( = κab / κbc) every Lmin along the waveguide, as 
illustrated in Fig. 5(a). By doing this periodic inversion, it can be shown that the first-order 
term of the reflectance at z = 0 as a function of �ω is cancelled out when N is even. Figures 
3(d) and 3(e) show the transmission spectrum and group delay of the modified waveguide 
with L = N·Lmin, where the bandwidth is not reduced and the envelope of the ripples is 
approximately a quadratic function. The group delay at �ω = 0 and the quality factor of the 
modified waveguide is exactly the same as the original one, while the delay-bandwidth 
product is unlimited and the total phase shift across the bandwidth is Nπ. 
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Fig. 5. (a) κab and κbc in a uniform structure with periodic inversion. (b) κab and κbc in an 
adiabatic structure. Lad and Luni are the lengths of the adiabatic and uniform region, 
respectively. 

4. Adiabatic GIT waveguide 

The second structure limiting the excitation to the dark mode alone is achieved by employing 
adiabatic transition [14,15]. This is accomplished by changing the structure (waveguide + 
gratings) sufficiently slowly along the direction of propagation (z) so that the propagating 
wave remains in the same local eigenmode. As shown in Fig. 5(b), the waveguide consists of 
two adiabatic regions at the two ends and a uniform region in the middle. κbc is set to be a 
constant throughout the structure, while κab, and thus α, are functions of z. The input mode A 
entering the structure encounters only grating κbc and is thus the dark mode (Eq. (5)) where it 
will remain till exiting the structure. As it propagates, the grating κab is turned on spatially 
adiabatically. In the middle of the structure, the dark mode which now has a mode C 
component possesses a small group velocity. At the output, κab is adiabatically decreased to 0, 
and the propagating wave is transformed back, always staying dark, to mode A at the exit. 

The adiabatic condition ensuring that a wave remains in the same (dark) mode is defined 
as the situation where the fraction of the energy converted to other modes never exceeds an 

arbitrarily chosen small number ε . The adiabatic condition of the GIT waveguide and an 

optimal function α(z) can be derived in a similar way as in quantum mechanics [16] and an 
adiabatic mode converter [17], with careful treatment of the non-orthogonal basis. The three 
eigenvectors in Eqs. (5) and (6) should be renormalized such that the total forward energy 

flow is 1 or −1, given by 
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Likewise for abright-2(z). The adiabatic condition where only the Dark mode exists requires 
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The closer α is to 1, the smaller dα/dz is required to achieve adiabaticity. By solving Eq. 
(15) with equality, we obtain an optimal function α(z) given by 

 1( ) sin (tan( ))z azα −= ,  (16) 

where a is a scaling constant. It takes infinite length to transform α to 1 to reach zero group 
velocity. Figure 6 shows the transmission spectrum and group delay of an adiabatic GIT 
structure, where α of the uniform region is 0.9 and the total length is 10 cm. The transmission 
spectrum resembles a rectangular function, with a bandwidth of 4.48 GHz, equal to that of the 
dark mode of the uniform region. The group delay mainly depends on the group velocity of 
the dark mode of the uniform region and is 2.92 ns at the center wavelength with group 
velocity reduction of 6.04. The delay-bandwidth product, which is 13.1 in this case, can be 
made arbitrarily large by increasing the length of the uniform region without reducing the 
bandwidth. 
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Fig. 6. (a) Transmission and (b) group delay of an adiabatic structure. Lad = 3 cm, Luni = 4 cm, 
κbc = 4,000 / m, and αmax = 0.9. The refractive indices are na = 1.45, nb = 1.425, and nc = 1.4. 

5. Discussion and conclusion 

We have analyzed the EIT-analog waveguide and proposed two types of structures to control 
the propagation of supermodes. This GIT waveguide can be implemented using a few-mode 
fiber or a few-mode on-chip waveguide. One short-period grating and another long-period 
grating are imposed on the waveguide. For a waveguide with geometric symmetry, the modes 
are either symmetric or anti-symmetric, so are the gratings that couple the modes. Therefore, 
the two gratings can be independent of each other if they have opposite symmetry. The 
symmetry of a grating can be controlled by tilting the grating in fibers or designing the 
transverse profile of a waveguide grating. The phase indices of the three modes should be 
carefully chosen, in case any unwanted mode is coupled by one of the gratings, since there are 
three forward and three backward modes in total. Moreover, to reduce loss, coupling into the 
radiation modes should be prevented. 

In conclusion, the new energy storage mechanism resulting from the internal bouncing of 
waves between two Bragg gratings gives rise to a new class of propagating modes which 
includes a dark mode with “slow light” characteristics. These modes can potentially form the 
basis of a new class of narrow band filters, high Q resonators and lasers. The adiabatic GIT 
structures which excite the dark mode alone possess high delay-bandwidth product. 
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